Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization

Functional data used in this project have been meticulously catalogued and archived in the BBMRI-NL data infrastructure (https://hfgp.bbmri.nl/, accessed on 12 February 2020) using the MOLGENIS open-source platform for scientific data. Multiple myeloma (MM) arises following malignant proliferation o...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Molecular Sciences Vol. 24; no. 10; pp. 8500 - 20
Main Authors Clavero, Esther, Sanchez-Maldonado, José Manuel, Macauda, Angelica, Ter Horst, Rob, Marques, Maria Belém Sousa Sampaio, Jurczyszyn, Artur, Clay-Gilmour, Alyssa, Stein, Angelika, Hildebrandt, Michelle A. T., Weinhold, Niels, Buda, Gabriele, García-Sanz, Ramón, Tomczak, Waldemar, Vogel, Ulla, Jerez, Andrés, Zawirska, Daria, Wątek, Marzena, Hofmann, Jonathan N., Landi, Stefano, Spinelli, John J., Butrym, Aleksandra, Kumar, Abhishek, Martínez-López, Joaquín, Galimberti, Sara, Sarasquete, María Eugenia, Subocz, Edyta, Iskierka-Jażdżewska, Elzbieta, Giles, Graham G., Rybicka-Ramos, Malwina, Kruszewski, Marcin, Abildgaard, Niels, Verdejo, Francisco García, Sánchez Rovira, Pedro, da Silva Filho, Miguel Inacio, Kadar, Katalin, Razny, Małgorzata, Cozen, Wendy, Pelosini, Matteo, Jurado, Manuel, Bhatti, Parveen, Dudzinski, Marek, Druzd-Sitek, Agnieszka, Orciuolo, Enrico, Li, Yang, Norman, Aaron D., Zaucha, Jan Maciej, Reis, R. M., Markiewicz, Miroslaw, Rodríguez Sevilla, Juan José, Andersen, Vibeke, Jamroziak, Krzysztof, Hemminki, Kari, Berndt, Sonja I., Rajkumar, Vicent, Mazur, Grzegorz, Kumar, Shaji K., Ludovico, Paula, Nagler, Arnon, Chanock, Stephen J., Dumontet, Charles, Machiela, Mitchell J., Varkonyi, Judit, Camp, Nicola J., Ziv, Elad, Vangsted, Annette Juul, Brown, Elizabeth E., Campa, Daniele, Vachon, Celine M., Netea, Mihai G., Canzian, Federico, Försti, Asta, Sainz, Juan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 09.05.2023
Multidisciplinary Digital Publishing Institute
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
1661-6596
DOI10.3390/ijms24108500

Cover

Loading…
Abstract Functional data used in this project have been meticulously catalogued and archived in the BBMRI-NL data infrastructure (https://hfgp.bbmri.nl/, accessed on 12 February 2020) using the MOLGENIS open-source platform for scientific data. Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte hemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP corre lated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+ IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4 ) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4 ). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways. This work was supported by the European Union’s Horizon 2020 research and innovation program, N° 856620 and by grants from the Instituto de Salud Carlos III and FEDER (Madrid, Spain; PI17/02256 and PI20/01845), Consejería de Transformación Económica, Industria, Conocimiento y Universidades and FEDER (PY20/01282), from the CRIS foundation against cancer, from the Cancer Network of Excellence (RD12/10 Red de Cáncer), from the Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS [01ZX1309]), and from National Cancer Institute of the National Institutes of Health under award numbers: R01CA186646, U01CA249955 (EEB). This work was also funded d by Portuguese National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000055, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).
AbstractList Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; < 1 × 10 ) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, , , , , , and associated with MM risk ( = 4.47 × 10 -5.79 × 10 ). Mechanistically, we found that the SNP correlated with circulating concentrations of vitamin D3 ( = 4.0 × 10 ), whereas the SNP correlated with the number of transitional CD24 CD38 B cells ( = 4.8 × 10 ) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 ( = 3.6 × 10 ). We also found that the SNP correlated with numbers of CD19 B cells, CD19 CD3 B cells, CD5 IgD cells, IgM cells, IgD IgM cells, and CD4 CD8 PBMCs ( = 4.9 × 10 -8.6 × 10 ) and circulating concentrations of interleukin (IL)-20 ( = 0.00082). Finally, we observed that the SNP correlated with levels of CD4 EMCD45RO CD27 cells ( = 9.3 × 10 ). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3 , MCP-2 , and IL20-dependent pathways.
We investigated the influence of autophagy-related variants in modulating Multiple Myeloma (MM) risk through a meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined the functional mechanisms behind the observed associations. We identified SNPs within the six CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A loci associated with MM risk and observed that their effect on disease risk was mediated by specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent mechanisms. Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10[sup.−9]) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10[sup.−4]−5.79 × 10[sup.−14]). Mechanistically, we found that the ULK4[sub.rs6599175] SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10[sup.−4]), whereas the IKBKE[sub.rs17433804] SNP correlated with the number of transitional CD24[sup.+]CD38[sup.+] B cells (p = 4.8 × 10[sup.−4]) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10[sup.−4]). We also found that the CD46[sub.rs1142469] SNP correlated with numbers of CD19[sup.+] B cells, CD19[sup.+]CD3[sup.−] B cells, CD5[sup.+]IgD[sup.−] cells, IgM[sup.−] cells, IgD[sup.−]IgM[sup.−] cells, and CD4[sup.−]CD8[sup.−] PBMCs (p = 4.9 × 10[sup.−4]−8.6 × 10[sup.−4]) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2A[sub.rs2811710] SNP correlated with levels of CD4[sup.+]EMCD45RO[sup.+]CD27[sup.−] cells (p = 9.3 × 10[sup.−4]). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3[sup.−], MCP-2[sup.−], and IL20-dependent pathways.
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways.
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.
Simple SummaryWe investigated the influence of autophagy-related variants in modulating Multiple Myeloma (MM) risk through a meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined the functional mechanisms behind the observed associations. We identified SNPs within the six CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A loci associated with MM risk and observed that their effect on disease risk was mediated by specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent mechanisms.AbstractMultiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways.
Functional data used in this project have been meticulously catalogued and archived in the BBMRI-NL data infrastructure (https://hfgp.bbmri.nl/, accessed on 12 February 2020) using the MOLGENIS open-source platform for scientific data. Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte hemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP corre lated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+ IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4 ) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4 ). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways. This work was supported by the European Union’s Horizon 2020 research and innovation program, N° 856620 and by grants from the Instituto de Salud Carlos III and FEDER (Madrid, Spain; PI17/02256 and PI20/01845), Consejería de Transformación Económica, Industria, Conocimiento y Universidades and FEDER (PY20/01282), from the CRIS foundation against cancer, from the Cancer Network of Excellence (RD12/10 Red de Cáncer), from the Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS [01ZX1309]), and from National Cancer Institute of the National Institutes of Health under award numbers: R01CA186646, U01CA249955 (EEB). This work was also funded d by Portuguese National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000055, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).
We investigated the influence of autophagy-related variants in modulating Multiple Myeloma (MM) risk through a meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined the functional mechanisms behind the observed associations. We identified SNPs within the six CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A loci associated with MM risk and observed that their effect on disease risk was mediated by specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent mechanisms.
Audience Academic
Author Marek Dudzinski
Charles Dumontet
Daniele Campa
Małgorzata Razny
Mitchell J. Machiela
Miroslaw Markiewicz
Elizabeth E. Brown
Rui Manuel Reis
Nicola J. Camp
Niels Weinhold
Grzegorz Mazur
Paula Ludovico
Angelica Macauda
Angelika Stein
Malwina Rybicka-Ramos
Manuel Jurado
Vibeke Andersen
Ulla Vogel
John J. Spinelli
Elzbieta Iskierka-Jażdżewska
Jan Maciej Zaucha
Sara Galimberti
Waldemar Tomczak
Stefano Landi
Abhishek Kumar
Stephen J. Chanock
Katalin Kadar
Parveen Bhatti
Shaji K. Kumar
Asta Försti
Francisco García Verdejo
Ramón García-Sanz
Joaquín Martínez-López
Matteo Pelosini
José Manuel Sanchez-Maldonado
Arnon Nagler
Kari Hemminki
Agnieszka Druzd-Sitek
Celine M. Vachon
Judit Varkonyi
Esther Clavero
María Eugenia Sarasquete
Michelle A. T. Hildebrandt
Krzysztof Jamroziak
Andrés Jerez
Enrico Orciuolo
Sonja I. Berndt
Mihai G. Netea
Federico Canzian
Aaron D. Norman
Jonathan N. Hofmann
Miguel Inacio da Silva Filho
Rob Ter Horst
Marzena Wątek
Pedro Sánchez Rovira
Juan Sainz
Niels Abildgaard
Artur Jurczyszyn
Juan José Rodríguez Sevilla
Aleksandra Butrym
Ma
AuthorAffiliation 40 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; m.dasilvafilho@dkfz-heidelberg.de
52 Department of Hematology and Transplantology, Medical University of Gdansk, 80-210 Gdansk, Poland; jzaucha@gumed.edu.pl
46 Cancer Control Research, BC Cancer, Vancouver, BC V5Z 4E6, Canada; pbhatti@bccrc.ca
50 Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
11 Department of Lymphoma–Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; mhildebr@mdanderson.org
27 Alfred Sokolowski Specialist Hospital in Walbrzych Oncology Support Centre for Clinical Trials, 58-309 Walbrzych, Poland
71 Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
13 Department of Internal Medicine V, University of Heidelberg, 691
AuthorAffiliation_xml – name: 68 Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; elizabethbrown@uabmc.edu
– name: 72 Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
– name: 23 Department of Biology, University of Pisa, 56126 Pisa, Italy; stefano.landi@unipi.it (S.L.); daniele.campa@unipi.it (D.C.)
– name: 25 School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– name: 29 Manipal Academy of Higher Education (MAHE), Manipal 576104, India
– name: 12 Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; niels.weinhold@med.uni-heidelberg.de
– name: 30 Hospital 12 de Octubre, Complutense University, CNIO, CIBERONC, 28041 Madrid, Spain; jmarti01@ucm.es
– name: 51 Genetic Epidemiology and Risk Assessment Program, Mayo Clinic Comprehensive Cancer Center, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
– name: 14 Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy; ga.buda@libero.it (G.B.); sara.galimberti@med.unipi.it (S.G.); e.orciuolo@ao-pisa.toscana.it (E.O.)
– name: 66 Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA; elad.ziv@ucsf.edu
– name: 1 Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain; eclaverosa@hotmail.com (E.C.); manuel.jurado.sspa@juntadeandalucia.es (M.J.)
– name: 16 Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland; waldemar.tomczak@umlub.pl
– name: 27 Alfred Sokolowski Specialist Hospital in Walbrzych Oncology Support Centre for Clinical Trials, 58-309 Walbrzych, Poland
– name: 41 St Johns Hospital, 62769 Budapest, Hungary; kadarkataeszter@gmail.com
– name: 60 Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA; rajkumar.vincent@mayo.edu (V.R.); kumar.shaji@mayo.edu (S.K.K.)
– name: 7 Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; mbmarques@med.uminho.pt (B.S.-M.); pludovico@med.uminho.pt (P.L.)
– name: 8 Plasma Cell Dyscrasias Center, Department of Hematology, Jagiellonian University Medical College, 31-066 Kraków, Poland; mmjurczy@cyf-kr.edu.pl
– name: 11 Department of Lymphoma–Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; mhildebr@mdanderson.org
– name: 44 U.O. Dipartimento di Ematologia, Azienda USL Toscana Nord Ovest, 57124 Livorno, Italy; matteo.pelosini@ao-pisa.toscana.it
– name: 20 Holycross Medical Oncology Center, 25-735 Kielce, Poland; marzena.watek@wp.pl
– name: 53 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal and ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; rreis@med.uminho.pt
– name: 17 National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; ubv@nfa.dk
– name: 4 Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; angelicamacauda@gmail.com (A.M.); a.stein@dkfz.de (A.S.); f.canzian@dkfz.de (F.C.)
– name: 71 Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
– name: 59 Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
– name: 69 Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
– name: 39 Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; francisco.garcia.verdejo.sspa@juntadeandalucia.es (F.G.V.); oncopsr@yahoo.es (P.S.R.)
– name: 70 Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; a.foersti@kitz-heidelberg.de
– name: 37 Department of Hematology, University Hospital No. 2, 85-168 Bydgoszcz, Poland; marcin.kruszewski5@wp.pl
– name: 35 Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
– name: 52 Department of Hematology and Transplantology, Medical University of Gdansk, 80-210 Gdansk, Poland; jzaucha@gumed.edu.pl
– name: 50 Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
– name: 64 Semmelweis University, 1083 Budapest, Hungary; varkonyi.judit@med.semmelweis-univ.hu
– name: 3 Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
– name: 26 Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland; aleksandra.butrym@gmail.com
– name: 36 Department of Hematology, Specialist Hospital No. 1 in Bytom, Academy of Silesia, Faculty of Medicine, 40-055 Katowice, Poland; malwina.rybicka@gmail.com
– name: 43 Division of Hematology/Oncology, Department of Medicine, School of Medicine, Department of Pathology, School of Medicine, Susan and Henry Samueli College of Health Sciences, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, CA 92697, USA; wcozen@hs.uci.edu
– name: 46 Cancer Control Research, BC Cancer, Vancouver, BC V5Z 4E6, Canada; pbhatti@bccrc.ca
– name: 5 Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; rob.terhorst@radboudumc.nl (R.T.H.); yang.li@helmholtz-hzi.de (Y.L.); mihai.netea@radboudumc.nl (M.G.N.)
– name: 42 Department of Hematology, Rydygier Hospital, 31-826 Cracow, Poland; m.razny@wp.pl
– name: 22 Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; hofmannjn@mail.nih.gov (J.N.H.); berndts@mail.nih.gov (S.I.B.); chanocks@mail.nih.gov (S.J.C.); machielamj@mail.nih.gov (M.J.M.)
– name: 13 Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
– name: 24 Division of Population Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada; jspinelli@bccrc.ca
– name: 63 UMR INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, 69008 Lyon, France; charles.dumontet@chu-lyon.fr
– name: 61 Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-368 Wroclaw, Poland; grzegorzmaz@yahoo.com
– name: 34 Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
– name: 67 Department of Hematology, Rigshospitalet, Copenhagen University, DK-2100 Copenhagen, Denmark; annette.juul.vangsted@regionh.dk
– name: 49 Department of Lymphoproliferative Diseases, Maria Skłodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; adruzd@coi.waw.pl
– name: 56 Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, DK-6200 Aabenraa, Denmark; vibeke.andersen1@rsyd.dk
– name: 19 Department of Hematology, University Hospital, 30-688 Kraków, Poland; dariafm@poczta.fm
– name: 45 Department of Medicine, University of Granada, 18012 Granada, Spain
– name: 57 Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland; krzysztof.jamroziak@wp.pl
– name: 28 Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; abhishek@ibioinformatics.org
– name: 38 Department of Hematology, Odense University Hospital, DK-5000 Odense, Denmark; niels.abildgaard@rsyd.dk
– name: 62 Hematology Division, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel; a.nagler@sheba.health.gov.il
– name: 33 Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; graham.giles@cancervic.org.au
– name: 54 Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
– name: 15 Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; rgarcia@usal.es (R.G.-S.); a9136@usal.es (M.E.S.)
– name: 58 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; k.hemminki@dkfz-heidelberg.de
– name: 47 Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
– name: 32 Department of Hematology, Medical University of Lodz, 90-419 Lodz, Poland; elzbieta.iskierka-jazdzewska@umed.lodz.pl
– name: 55 Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; jrodsevilla@gmail.com
– name: 21 Institute of Hematology and Transfusion Medicine, 00-791 Warsaw, Poland
– name: 48 Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; marekdudzi@gmail.com (M.D.); mir.markiewicz@wp.pl (M.M.)
– name: 6 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
– name: 9 Department of Biostatistics and Epidemiology, Arnold School of Public Health, University of South Carolina, Greenville, SC 29208, USA; claygila@mailbox.sc.edu
– name: 31 Department of Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland; suboczka@poczta.onet.pl
– name: 40 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; m.dasilvafilho@dkfz-heidelberg.de
– name: 65 Division of Hematology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; nicki.camp@hci.utah.edu
– name: 18 Department of Hematology, Experimental Hematology Unit, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, 08035 Barcelona, Spain; anjecayu@gmail.com
– name: 10 Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA; aarondeannorman@gmail.com (A.D.N.); vachon.celine@mayo.edu (C.M.V.)
– name: 2 Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; josemanuel.sanchez@genyo.es
Author_xml – sequence: 1
  fullname: Clavero, Esther
– sequence: 2
  fullname: Sanchez-Maldonado, José Manuel
– sequence: 3
  fullname: Macauda, Angelica
– sequence: 4
  fullname: Ter Horst, Rob
– sequence: 5
  fullname: Marques, Maria Belém Sousa Sampaio
– sequence: 6
  fullname: Jurczyszyn, Artur
– sequence: 7
  fullname: Clay-Gilmour, Alyssa
– sequence: 8
  fullname: Stein, Angelika
– sequence: 9
  fullname: Hildebrandt, Michelle A. T.
– sequence: 10
  fullname: Weinhold, Niels
– sequence: 11
  fullname: Buda, Gabriele
– sequence: 12
  fullname: García-Sanz, Ramón
– sequence: 13
  fullname: Tomczak, Waldemar
– sequence: 14
  fullname: Vogel, Ulla
– sequence: 15
  fullname: Jerez, Andrés
– sequence: 16
  fullname: Zawirska, Daria
– sequence: 17
  fullname: Wątek, Marzena
– sequence: 18
  fullname: Hofmann, Jonathan N.
– sequence: 19
  fullname: Landi, Stefano
– sequence: 20
  fullname: Spinelli, John J.
– sequence: 21
  fullname: Butrym, Aleksandra
– sequence: 22
  fullname: Kumar, Abhishek
– sequence: 23
  fullname: Martínez-López, Joaquín
– sequence: 24
  fullname: Galimberti, Sara
– sequence: 25
  fullname: Sarasquete, María Eugenia
– sequence: 26
  fullname: Subocz, Edyta
– sequence: 27
  fullname: Iskierka-Jażdżewska, Elzbieta
– sequence: 28
  fullname: Giles, Graham G.
– sequence: 29
  fullname: Rybicka-Ramos, Malwina
– sequence: 30
  fullname: Kruszewski, Marcin
– sequence: 31
  fullname: Abildgaard, Niels
– sequence: 32
  fullname: Verdejo, Francisco García
– sequence: 33
  fullname: Sánchez Rovira, Pedro
– sequence: 34
  fullname: da Silva Filho, Miguel Inacio
– sequence: 35
  fullname: Kadar, Katalin
– sequence: 36
  fullname: Razny, Małgorzata
– sequence: 37
  fullname: Cozen, Wendy
– sequence: 38
  fullname: Pelosini, Matteo
– sequence: 39
  fullname: Jurado, Manuel
– sequence: 40
  fullname: Bhatti, Parveen
– sequence: 41
  fullname: Dudzinski, Marek
– sequence: 42
  fullname: Druzd-Sitek, Agnieszka
– sequence: 43
  fullname: Orciuolo, Enrico
– sequence: 44
  fullname: Li, Yang
– sequence: 45
  fullname: Norman, Aaron D.
– sequence: 46
  fullname: Zaucha, Jan Maciej
– sequence: 47
  fullname: Reis, R. M.
– sequence: 48
  fullname: Markiewicz, Miroslaw
– sequence: 49
  fullname: Rodríguez Sevilla, Juan José
– sequence: 50
  fullname: Andersen, Vibeke
– sequence: 51
  fullname: Jamroziak, Krzysztof
– sequence: 52
  fullname: Hemminki, Kari
– sequence: 53
  fullname: Berndt, Sonja I.
– sequence: 54
  fullname: Rajkumar, Vicent
– sequence: 55
  fullname: Mazur, Grzegorz
– sequence: 56
  fullname: Kumar, Shaji K.
– sequence: 57
  fullname: Ludovico, Paula
– sequence: 58
  fullname: Nagler, Arnon
– sequence: 59
  fullname: Chanock, Stephen J.
– sequence: 60
  fullname: Dumontet, Charles
– sequence: 61
  fullname: Machiela, Mitchell J.
– sequence: 62
  fullname: Varkonyi, Judit
– sequence: 63
  fullname: Camp, Nicola J.
– sequence: 64
  fullname: Ziv, Elad
– sequence: 65
  fullname: Vangsted, Annette Juul
– sequence: 66
  fullname: Brown, Elizabeth E.
– sequence: 67
  fullname: Campa, Daniele
– sequence: 68
  fullname: Vachon, Celine M.
– sequence: 69
  fullname: Netea, Mihai G.
– sequence: 70
  fullname: Canzian, Federico
– sequence: 71
  fullname: Försti, Asta
– sequence: 72
  fullname: Sainz, Juan
BackLink https://cir.nii.ac.jp/crid/1871991017700473856$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/37239846$$D View this record in MEDLINE/PubMed
https://cnrs.hal.science/hal-04914042$$DView record in HAL
BookMark eNp1ktFuFCEUhiemxtbaO68NiV5o4lZgmGHojVk3tjXZRqP1mjDsmR0qM4zA1KwP5HPKuK3ZNhoSIIfv_Ad-zuNsr3c9ZNlTgo_zXOA35qoLlBFcFRg_yA4Io3SGccn3dvb72VEIpsasyCmjpXiU7eec5qJi5UH265Ozm875oTWhC-iHia3p0XyMbmjVejP7DFZFWKEz6CEgFdCXMWgYoqmNNXGD3hnXKf8NfECN8-hitNEMFtDFBmw6OUFzdAFRzea9sptgAnINumw9AFoqvwa0cK3zMSn3K3Q69joal0i0aJVXOoI3P9UUepI9bJQNcHSzHmZfT99fLs5ny49nHxbz5UyXOYsz1fCKYc5wUQpeKAoaeA1c6BqgwpQVKmeY1ITqmpUYBKWNFo0malUWXBRNfpi93eoOY93BSkMfvbJy8Ca9ciOdMvLuSW9auXbXkmBKqoLRpPBqq9DeyzufL-UUw0wQhhm9Jol9eVPNu-8jhCg7k9y1VvXgxiBpRfGky0VCn99Dr9zok1UTRQQrOBc71FpZkKZvXLqknkTlnBfp91lRTWWP_0GlsYLO6NRgjUnxOwnPdl35-6zbNkoA3QLauxA8NFKb-OfjkrKxyR05tavcbdeU9Ppe0q3uf3C0xb1WapAerk2IKkhSUSqroqRVQl5skd6YdINpTuYRIQgmnGPMeJ7A_DcddAEc
CitedBy_id crossref_primary_10_1002_ijc_35196
crossref_primary_10_1016_j_cancergen_2024_11_001
crossref_primary_10_3390_ijms241713566
crossref_primary_10_1038_s41572_024_00529_7
crossref_primary_10_1016_j_bbadis_2024_167098
crossref_primary_10_62347_CYJR7599
crossref_primary_10_20517_cdr_2023_108
crossref_primary_10_1016_j_heliyon_2024_e30123
crossref_primary_10_1016_j_freeradbiomed_2024_12_052
Cites_doi 10.1016/j.ceb.2009.11.003
10.1038/ncb1482
10.1046/j.1365-2141.2003.04355.x
10.1126/science.1262110
10.1016/j.tibs.2008.01.002
10.1093/jn/136.3.561
10.18632/oncotarget.10665
10.4049/jimmunol.1002404
10.1038/ng.2756
10.1038/ng.384
10.1016/j.biopha.2019.109434
10.4049/jimmunol.1102108
10.1016/S1470-2045(14)70442-5
10.1016/j.cell.2016.10.017
10.1038/nature07208
10.1155/2016/7870590
10.4049/jimmunol.1202493
10.1038/nrm2529
10.1126/science.1096645
10.1016/j.exphem.2014.06.005
10.1016/j.jbo.2019.100253
10.15252/embj.2021108863
10.3390/cancers13102326
10.1007/s00280-013-2156-3
10.1182/blood.V95.5.1869.005k09_1869_1871
10.1016/j.leukres.2017.06.002
10.1038/s41598-020-61331-5
10.1016/j.celrep.2016.10.053
10.1161/CIRCGENETICS.110.948935
10.1158/0008-5472.CAN-04-3684
10.1182/bloodadvances.2020001435
10.1093/bioinformatics/btq340
10.1158/1535-7163.MCT-08-1177
10.1182/blood-2005-03-1158
10.1038/sj.bjc.6600833
10.1016/j.tranon.2018.08.014
10.21037/atm-22-70
10.1146/annurev-immunol-020711-074948
10.1016/j.coi.2011.10.006
10.1038/ng.2981
10.1080/10428190310001625836
10.1038/nature12531
10.1038/s41375-018-0036-x
10.1046/j.1365-2141.1998.00609.x
10.1186/s12885-017-3715-5
10.18632/oncotarget.6365
10.4049/jimmunol.1002223
10.21037/tau-20-498
10.1038/ng.993
10.1371/journal.pgen.1000529
10.1212/WNL.0b013e3181f4d832
10.1007/s12032-015-0488-z
10.1038/leu.2014.110
10.3390/jcm11102913
10.1056/NEJMra1011442
10.1073/pnas.0610299104
10.1073/pnas.1334037100
10.1016/j.febslet.2010.02.060
10.3389/fimmu.2019.02759
10.4049/jimmunol.170.6.3125
10.1038/s41419-022-04629-8
10.1210/en.2008-1395
10.4065/78.1.21
10.1038/s41467-018-04989-w
10.4161/auto.5.5.8494
10.1016/j.immuni.2013.03.003
10.1038/leu.2012.159
10.1182/blood-2005-08-3531
10.1182/blood-2006-04-016055
10.1038/ncb1192
10.1371/journal.pone.0010693
10.1038/ncomms12050
10.1038/bcj.2012.47
10.1038/bjc.2016.20
10.3390/jcm9020552
10.1073/pnas.0501190102
10.4161/auto.29264
10.18632/oncotarget.2590
10.1038/ni921
10.1016/j.immuni.2013.07.017
10.18632/oncotarget.27190
ContentType Journal Article
Contributor NIH - National Cancer Institute (NCI) (Estados Unidos)
Fundacao para a Ciencia e a Tecnologia (FCT)
Dietmar Hopp Foundation
Unión Europea. Comisión Europea. Horizonte Europa
Institut Català de la Salut
[Clavero E] Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain. [Sanchez-Maldonado JM] Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain. Instituto de Investigación Biosanataria IBs, Granada, Granada, Spain. [Macauda A] Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. [Ter Horst R] Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. [Sampaio-Marques B] Life and Health Sciences Research Institute (ICVS), School of Medicine, University of M
Contributor_xml – sequence: 1
  fullname: European Commission
– sequence: 2
  fullname: Instituto de Salud Carlos III
– sequence: 3
  fullname: Fundación CRIS contra el Cáncer
– sequence: 4
  fullname: Dietmar Hopp Foundation
– sequence: 5
  fullname: Federal Ministry of Education and Research (Germany)
– sequence: 6
  fullname: Fundação para a Ciência e a Tecnologia (Portugal)
– sequence: 7
  fullname: Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
– sequence: 8
  fullname: Unión Europea. Comisión Europea. Horizonte Europa
– sequence: 9
  fullname: Marie Curie
– sequence: 10
  fullname: CRIS contra el Cáncer
– sequence: 11
  fullname: Federal Ministry of Education & Research (BMBF)
– sequence: 12
  fullname: Cancer Network of Excellence
– sequence: 13
  fullname: NIH - National Cancer Institute (NCI) (Estados Unidos)
– sequence: 14
  fullname: Fundacao para a Ciencia e a Tecnologia (FCT)
– sequence: 15
  fullname: Institut Català de la Salut
– sequence: 16
  fullname: [Clavero E] Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain. [Sanchez-Maldonado JM] Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain. Instituto de Investigación Biosanataria IBs, Granada, Granada, Spain. [Macauda A] Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. [Ter Horst R] Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. [Sampaio-Marques B] Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. [Jurczyszyn A] Plasma Cell Dyscrasias Center, Department of Hematology, Jagiellonian University Medical College, Kraków, Poland. [Jerez A] Experimental Hematology Unit, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. Servei d’Hematologia, Vall d’Hebron Hospital Universitari, Barcelona, Spain
– sequence: 17
  fullname: Vall d'Hebron Barcelona Hospital Campus
– sequence: 18
  fullname: Universidade do Minho
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2023 by the authors. 2023
DBID RYH
RCLKO
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOI 10.3390/ijms24108500
DatabaseName CiNii Complete
RCAAP open access repository
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Proquest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DissertationSchool Universidade do Minho
DocumentTitleAlternate A Meta-Analysis of Three Large Cohorts and Functional Characterization
EISSN 1422-0067
1661-6596
EndPage 20
ExternalDocumentID PMC10218542
oai_HAL_hal_04914042v1
A752424581
37239846
10_3390_ijms24108500
1822_85628
Genre Meta-Analysis
Journal Article
GeographicLocations Denmark
Poland
Canada
Australia
Germany
Spain
GeographicLocations_xml – name: Denmark
– name: Canada
– name: Spain
– name: Poland
– name: Germany
– name: Australia
GrantInformation_xml – fundername: Instituto de Salud Carlos III
  grantid: PI20/01845
– fundername: the Dietmar Hopp Foundation and the German Ministry of Education and Science
  grantid: BMBF: CLIOMMICS [01ZX1309]
– fundername: National Cancer Institute of the National Institutes of Health
  grantid: U01CA249955 (EEB)
– fundername: National Cancer Institute of the National Institutes of Health
  grantid: R01CA186646
– fundername: NCI NIH HHS
  grantid: U01 CA249955
– fundername: the CRIS foundation against cancer, from the Cancer Network of Excellence
  grantid: RD12/10 Red de Cáncer
– fundername: NCI NIH HHS
  grantid: R01 CA186646
– fundername: Instituto de Salud Carlos III
  grantid: PI17/02256
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
RYH
TR2
TUS
UKHRP
~8M
PJZUB
PPXIY
RCLKO
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c634t-af784074056975a2ece7be79cbee80245a3401b12cb460e922fc9fc1ad65795f3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:37:38 EDT 2025
Tue Aug 05 06:53:23 EDT 2025
Mon Jul 21 11:40:20 EDT 2025
Fri Jul 25 20:23:29 EDT 2025
Tue Jun 17 21:33:35 EDT 2025
Tue Jun 10 20:16:42 EDT 2025
Mon Jul 21 05:57:15 EDT 2025
Tue Jul 01 02:04:10 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
Fri Aug 01 16:27:48 EDT 2025
Thu Jun 26 23:43:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords genetic variants
multiple myeloma
autophagy
genetic susceptibility
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-af784074056975a2ece7be79cbee80245a3401b12cb460e922fc9fc1ad65795f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-8364-6357
0000-0002-4261-4583
0000-0002-8550-8908
0000-0003-4130-7167
0009-0004-0863-016x
0000-0003-2658-1467
0000-0001-5225-3921
0000-0001-6610-2008
0000-0002-2769-3316
0000-0002-9857-4728
0000-0002-3996-200x
0000-0001-6580-0971
0000-0002-9639-7940
0000-0003-4022-7341
0000-0001-6807-1524
0009-0008-3445-1981
0000-0003-4946-9099
0000-0002-3205-5781
0000-0001-9998-4879
0000-0002-0127-2863
0000-0002-8199-2018
0000-0001-9796-8365
0000-0002-0986-8936
0000-0002-2079-6638
0000-0001-7899-5966
0000-0002-4741-7925
0000-0002-4651-3675
0000-0002-9355-2423
0000-0003-2772-8870
0000-0003-1875-134X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms24108500
PMID 37239846
PQID 2819457799
PQPubID 2032341
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10218542
hal_primary_oai_HAL_hal_04914042v1
proquest_miscellaneous_2820021879
proquest_journals_2819457799
gale_infotracmisc_A752424581
gale_infotracacademiconefile_A752424581
pubmed_primary_37239846
crossref_citationtrail_10_3390_ijms24108500
crossref_primary_10_3390_ijms24108500
rcaap_revistas_1822_85628
nii_cinii_1871991017700473856
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-09
PublicationDateYYYYMMDD 2023-05-09
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International Journal of Molecular Sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2023
Publisher MDPI AG
Multidisciplinary Digital Publishing Institute
MDPI
Publisher_xml – name: MDPI AG
– name: Multidisciplinary Digital Publishing Institute
– name: MDPI
References Went (ref_38) 2018; 9
ref_50
Hildebrandt (ref_69) 2020; 4
Li (ref_83) 2016; 167
Fitzgerald (ref_45) 2003; 4
Tucci (ref_29) 2014; 42
ref_56
Rajkumar (ref_78) 2014; 15
Yu (ref_14) 2004; 304
Dykstra (ref_25) 2015; 6
Desantis (ref_26) 2018; 11
Ullah (ref_49) 2019; 17
Joosten (ref_84) 2016; 17
Canhao (ref_82) 2020; 10
Nedjic (ref_23) 2008; 455
Kuballa (ref_17) 2012; 30
Obeng (ref_6) 2006; 107
Escalante (ref_27) 2013; 71
Gschwandtner (ref_51) 2019; 10
Kay (ref_74) 1998; 100
Landowski (ref_8) 2005; 65
Kyle (ref_2) 2003; 78
Valkovic (ref_52) 2016; 2016
Aguilera (ref_67) 2008; 28
Catley (ref_10) 2006; 108
Broderick (ref_63) 2011; 44
Ma (ref_20) 2013; 38
Alexandrakis (ref_42) 2015; 32
Jin (ref_58) 2019; 119
Kay (ref_62) 2010; 75
Yousefi (ref_70) 2006; 8
Westra (ref_43) 2013; 45
Dilworth (ref_72) 2000; 95
Hudlebusch (ref_44) 2004; 45
Willer (ref_80) 2010; 26
Hoang (ref_5) 2009; 8
Tanaka (ref_61) 2010; 584
Chau (ref_46) 2008; 33
Lupianez (ref_76) 2016; 7
Heuck (ref_71) 2013; 190
Liang (ref_31) 2010; 22
Huang (ref_32) 2022; 13
Rohan (ref_68) 2009; 150
Consortium (ref_40) 2015; 348
Mitchell (ref_39) 2016; 7
ref_79
Martino (ref_81) 2012; 40
ref_34
ref_77
Mitsiades (ref_9) 2006; 107
Shimizu (ref_12) 2004; 6
ref_75
Yun (ref_24) 2017; 59
ref_73
Viziteu (ref_59) 2016; 114
Folkersen (ref_65) 2010; 3
Leich (ref_47) 2013; 3
Sukhdeo (ref_54) 2007; 104
Vogl (ref_28) 2014; 10
Kastritis (ref_3) 2014; 28
Jovanovic (ref_57) 2018; 32
Dengjel (ref_21) 2005; 102
Gilad (ref_48) 2019; 10
Bradwell (ref_4) 2013; 27
Gyory (ref_55) 2003; 170
Gong (ref_60) 2014; 46
Schwarten (ref_15) 2009; 5
Wang (ref_36) 2022; 10
Palumbo (ref_1) 2011; 364
Cross (ref_66) 2006; 136
Lee (ref_7) 2003; 100
Arsov (ref_11) 2011; 186
Cheng (ref_35) 2020; 9
Ma (ref_16) 2013; 39
Levy (ref_64) 2009; 41
Zhu (ref_37) 2019; 18
Broek (ref_53) 2003; 88
Klionsky (ref_30) 2021; 40
Kroemer (ref_13) 2008; 9
Deretic (ref_19) 2012; 189
Deretic (ref_18) 2012; 24
Jaganathan (ref_33) 2014; 5
Jia (ref_22) 2011; 186
Lappalainen (ref_41) 2013; 501
References_xml – volume: 22
  start-page: 226
  year: 2010
  ident: ref_31
  article-title: Autophagy genes as tumor suppressors
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.11.003
– volume: 40
  start-page: 625
  year: 2012
  ident: ref_81
  article-title: Genetics and molecular epidemiology of multiple myeloma: The rationale for the IMMEnSE consortium (review)
  publication-title: Int. J. Oncol.
– volume: 8
  start-page: 1124
  year: 2006
  ident: ref_70
  article-title: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1482
– ident: ref_77
  doi: 10.1046/j.1365-2141.2003.04355.x
– volume: 348
  start-page: 648
  year: 2015
  ident: ref_40
  article-title: Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans
  publication-title: Science
  doi: 10.1126/science.1262110
– volume: 33
  start-page: 171
  year: 2008
  ident: ref_46
  article-title: Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2008.01.002
– volume: 136
  start-page: 561
  year: 2006
  ident: ref_66
  article-title: Nutrients regulate the colonic vitamin D system in mice: Relevance for human colon malignancy
  publication-title: J. Nutr.
  doi: 10.1093/jn/136.3.561
– volume: 7
  start-page: 59029
  year: 2016
  ident: ref_76
  article-title: A common variant within the HNF1B gene is associated with overall survival of multiple myeloma patients: Results from the IMMEnSE consortium and meta-analysis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10665
– volume: 186
  start-page: 5313
  year: 2011
  ident: ref_22
  article-title: Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1002404
– volume: 45
  start-page: 1238
  year: 2013
  ident: ref_43
  article-title: Systematic identification of trans eQTLs as putative drivers of known disease associations
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2756
– volume: 41
  start-page: 677
  year: 2009
  ident: ref_64
  article-title: Genome-wide association study of blood pressure and hypertension
  publication-title: Nat. Genet.
  doi: 10.1038/ng.384
– volume: 119
  start-page: 109434
  year: 2019
  ident: ref_58
  article-title: The mechanism of SP1/p300 complex promotes proliferation of multiple myeloma cells through regulating IQGAP1 transcription
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.109434
– volume: 189
  start-page: 15
  year: 2012
  ident: ref_19
  article-title: Autophagy: An emerging immunological paradigm
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1102108
– volume: 15
  start-page: e538
  year: 2014
  ident: ref_78
  article-title: International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(14)70442-5
– volume: 167
  start-page: 1099
  year: 2016
  ident: ref_83
  article-title: A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.017
– volume: 455
  start-page: 396
  year: 2008
  ident: ref_23
  article-title: Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance
  publication-title: Nature
  doi: 10.1038/nature07208
– volume: 2016
  start-page: 7870590
  year: 2016
  ident: ref_52
  article-title: Plasma Levels of Monocyte Chemotactic Protein-1 Are Associated with Clinical Features and Angiogenesis in Patients with Multiple Myeloma
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2016/7870590
– volume: 190
  start-page: 2966
  year: 2013
  ident: ref_71
  article-title: Myeloma is characterized by stage-specific alterations in DNA methylation that occur early during myelomagenesis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202493
– volume: 9
  start-page: 1004
  year: 2008
  ident: ref_13
  article-title: Autophagic cell death: The story of a misnomer
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2529
– volume: 304
  start-page: 1500
  year: 2004
  ident: ref_14
  article-title: Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8
  publication-title: Science
  doi: 10.1126/science.1096645
– volume: 42
  start-page: 897
  year: 2014
  ident: ref_29
  article-title: An imbalance between Beclin-1 and p62 expression promotes the proliferation of myeloma cells through autophagy regulation
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2014.06.005
– volume: 17
  start-page: 100253
  year: 2019
  ident: ref_49
  article-title: The role of CXCR4 in multiple myeloma: Cells’ journey from bone marrow to beyond
  publication-title: J. Bone Oncol.
  doi: 10.1016/j.jbo.2019.100253
– volume: 40
  start-page: e108863
  year: 2021
  ident: ref_30
  article-title: Autophagy in major human diseases
  publication-title: EMBO J.
  doi: 10.15252/embj.2021108863
– volume: 28
  start-page: 2613
  year: 2008
  ident: ref_67
  article-title: Vitamin D and Wnt/beta-catenin pathway in colon cancer: Role and regulation of DICKKOPF genes
  publication-title: Anticancer Res.
– ident: ref_56
  doi: 10.3390/cancers13102326
– volume: 71
  start-page: 1567
  year: 2013
  ident: ref_27
  article-title: Preventing the autophagic survival response by inhibition of calpain enhances the cytotoxic activity of bortezomib in vitro and in vivo
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-013-2156-3
– volume: 95
  start-page: 1869
  year: 2000
  ident: ref_72
  article-title: Germline CDKN2A mutation implicated in predisposition to multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood.V95.5.1869.005k09_1869_1871
– volume: 59
  start-page: 97
  year: 2017
  ident: ref_24
  article-title: Targeting autophagy in multiple myeloma
  publication-title: Leuk. Res.
  doi: 10.1016/j.leukres.2017.06.002
– volume: 10
  start-page: 4316
  year: 2020
  ident: ref_82
  article-title: NFKB2 polymorphisms associate with the risk of developing rheumatoid arthritis and response to TNF inhibitors: Results from the REPAIR consortium
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61331-5
– volume: 17
  start-page: 2474
  year: 2016
  ident: ref_84
  article-title: Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.10.053
– volume: 18
  start-page: 5310
  year: 2019
  ident: ref_37
  article-title: A predicted risk score based on the expression of 16 autophagy-related genes for multiple myeloma survival
  publication-title: Oncol. Lett.
– volume: 3
  start-page: 365
  year: 2010
  ident: ref_65
  article-title: Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease
  publication-title: Circ. Cardiovasc. Genet.
  doi: 10.1161/CIRCGENETICS.110.948935
– volume: 65
  start-page: 3828
  year: 2005
  ident: ref_8
  article-title: Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-3684
– volume: 4
  start-page: 2789
  year: 2020
  ident: ref_69
  article-title: Coinherited genetics of multiple myeloma and its precursor, monoclonal gammopathy of undetermined significance
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2020001435
– volume: 26
  start-page: 2190
  year: 2010
  ident: ref_80
  article-title: METAL: Fast and efficient meta-analysis of genomewide association scans
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq340
– volume: 8
  start-page: 1974
  year: 2009
  ident: ref_5
  article-title: Effect of autophagy on multiple myeloma cell viability
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-08-1177
– volume: 107
  start-page: 1092
  year: 2006
  ident: ref_9
  article-title: Antimyeloma activity of heat shock protein-90 inhibition
  publication-title: Blood
  doi: 10.1182/blood-2005-03-1158
– volume: 88
  start-page: 855
  year: 2003
  ident: ref_53
  article-title: Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6600833
– volume: 11
  start-page: 1350
  year: 2018
  ident: ref_26
  article-title: Autophagy: A New Mechanism of Prosurvival and Drug Resistance in Multiple Myeloma
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2018.08.014
– volume: 10
  start-page: 228
  year: 2022
  ident: ref_36
  article-title: Autophagy-related genes are potential diagnostic biomarkers for dermatomyositis
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-22-70
– volume: 30
  start-page: 611
  year: 2012
  ident: ref_17
  article-title: Autophagy and the immune system
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-020711-074948
– volume: 24
  start-page: 21
  year: 2012
  ident: ref_18
  article-title: Autophagy as an innate immunity paradigm: Expanding the scope and repertoire of pattern recognition receptors
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2011.10.006
– volume: 46
  start-page: 588
  year: 2014
  ident: ref_60
  article-title: Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2981
– volume: 45
  start-page: 1215
  year: 2004
  ident: ref_44
  article-title: Expression of HOXA genes in patients with multiple myeloma
  publication-title: Leuk. Lymphoma
  doi: 10.1080/10428190310001625836
– volume: 501
  start-page: 506
  year: 2013
  ident: ref_41
  article-title: Transcriptome and genome sequencing uncovers functional variation in humans
  publication-title: Nature
  doi: 10.1038/nature12531
– volume: 32
  start-page: 1295
  year: 2018
  ident: ref_57
  article-title: Targeting MYC in multiple myeloma
  publication-title: Leukemia
  doi: 10.1038/s41375-018-0036-x
– volume: 100
  start-page: 459
  year: 1998
  ident: ref_74
  article-title: T-helper phenotypes in the blood of myeloma patients on ECOG phase III trials E9486/E3A93
  publication-title: Br. J. Haematol.
  doi: 10.1046/j.1365-2141.1998.00609.x
– ident: ref_73
  doi: 10.1186/s12885-017-3715-5
– volume: 6
  start-page: 41535
  year: 2015
  ident: ref_25
  article-title: Mechanisms for autophagy modulation by isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6365
– volume: 186
  start-page: 2201
  year: 2011
  ident: ref_11
  article-title: A role for autophagic protein beclin 1 early in lymphocyte development
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1002223
– volume: 9
  start-page: 2616
  year: 2020
  ident: ref_35
  article-title: Autophagy-related genes are potential diagnostic and prognostic biomarkers in prostate cancer
  publication-title: Transl. Androl. Urol.
  doi: 10.21037/tau-20-498
– volume: 44
  start-page: 58
  year: 2011
  ident: ref_63
  article-title: Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk
  publication-title: Nat. Genet.
  doi: 10.1038/ng.993
– ident: ref_79
  doi: 10.1371/journal.pgen.1000529
– volume: 75
  start-page: 1189
  year: 2010
  ident: ref_62
  article-title: A comprehensive analysis of deletions, multiplications, and copy number variations in PARK2
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181f4d832
– volume: 32
  start-page: 42
  year: 2015
  ident: ref_42
  article-title: Circulating serum levels of IL-20 in multiple myeloma patients: Its significance in angiogenesis and disease activity
  publication-title: Med. Oncol.
  doi: 10.1007/s12032-015-0488-z
– volume: 28
  start-page: 2075
  year: 2014
  ident: ref_3
  article-title: Preserved levels of uninvolved immunoglobulins are independently associated with favorable outcome in patients with symptomatic multiple myeloma
  publication-title: Leukemia
  doi: 10.1038/leu.2014.110
– ident: ref_50
  doi: 10.3390/jcm11102913
– volume: 364
  start-page: 1046
  year: 2011
  ident: ref_1
  article-title: Multiple myeloma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1011442
– volume: 104
  start-page: 7516
  year: 2007
  ident: ref_54
  article-title: Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0610299104
– volume: 100
  start-page: 9946
  year: 2003
  ident: ref_7
  article-title: Proteasome inhibitors disrupt the unfolded protein response in myeloma cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1334037100
– volume: 584
  start-page: 1386
  year: 2010
  ident: ref_61
  article-title: Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.02.060
– volume: 10
  start-page: 2759
  year: 2019
  ident: ref_51
  article-title: More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02759
– volume: 170
  start-page: 3125
  year: 2003
  ident: ref_55
  article-title: Identification of a functionally impaired positive regulatory domain I binding factor 1 transcription repressor in myeloma cell lines
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.6.3125
– volume: 13
  start-page: 197
  year: 2022
  ident: ref_32
  article-title: NEDD4L binds the proteasome and promotes autophagy and bortezomib sensitivity in multiple myeloma
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-022-04629-8
– volume: 150
  start-page: 2046
  year: 2009
  ident: ref_68
  article-title: 1Alpha,25-dihydroxyvitamin D3 reduces c-Myc expression, inhibiting proliferation and causing G1 accumulation in C4-2 prostate cancer cells
  publication-title: Endocrinology
  doi: 10.1210/en.2008-1395
– volume: 78
  start-page: 21
  year: 2003
  ident: ref_2
  article-title: Review of 1027 patients with newly diagnosed multiple myeloma
  publication-title: Mayo Clin. Proc.
  doi: 10.4065/78.1.21
– volume: 9
  start-page: 3707
  year: 2018
  ident: ref_38
  article-title: Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04989-w
– volume: 5
  start-page: 690
  year: 2009
  ident: ref_15
  article-title: Nix directly binds to GABARAP: A possible crosstalk between apoptosis and autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.5.5.8494
– volume: 38
  start-page: 729
  year: 2013
  ident: ref_20
  article-title: Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.03.003
– volume: 27
  start-page: 202
  year: 2013
  ident: ref_4
  article-title: Prognostic utility of intact immunoglobulin Ig’kappa/Ig’lambda ratios in multiple myeloma patients
  publication-title: Leukemia
  doi: 10.1038/leu.2012.159
– volume: 107
  start-page: 4907
  year: 2006
  ident: ref_6
  article-title: Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells
  publication-title: Blood
  doi: 10.1182/blood-2005-08-3531
– volume: 108
  start-page: 3441
  year: 2006
  ident: ref_10
  article-title: Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells
  publication-title: Blood
  doi: 10.1182/blood-2006-04-016055
– volume: 6
  start-page: 1221
  year: 2004
  ident: ref_12
  article-title: Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1192
– ident: ref_75
  doi: 10.1371/journal.pone.0010693
– volume: 7
  start-page: 12050
  year: 2016
  ident: ref_39
  article-title: Genome-wide association study identifies multiple susceptibility loci for multiple myeloma
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12050
– volume: 3
  start-page: e102
  year: 2013
  ident: ref_47
  article-title: Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signaling molecules
  publication-title: Blood Cancer J.
  doi: 10.1038/bcj.2012.47
– volume: 114
  start-page: 519
  year: 2016
  ident: ref_59
  article-title: Chetomin, targeting HIF-1alpha/p300 complex, exhibits antitumour activity in multiple myeloma
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2016.20
– ident: ref_34
  doi: 10.3390/jcm9020552
– volume: 102
  start-page: 7922
  year: 2005
  ident: ref_21
  article-title: Autophagy promotes MHC class II presentation of peptides from intracellular source proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0501190102
– volume: 10
  start-page: 1380
  year: 2014
  ident: ref_28
  article-title: Combined autophagy and proteasome inhibition: A phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma
  publication-title: Autophagy
  doi: 10.4161/auto.29264
– volume: 5
  start-page: 12358
  year: 2014
  ident: ref_33
  article-title: Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2590
– volume: 4
  start-page: 491
  year: 2003
  ident: ref_45
  article-title: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway
  publication-title: Nat. Immunol.
  doi: 10.1038/ni921
– volume: 39
  start-page: 211
  year: 2013
  ident: ref_16
  article-title: Autophagy and cellular immune responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.07.017
– volume: 10
  start-page: 5480
  year: 2019
  ident: ref_48
  article-title: The role of CD24 in multiple myeloma tumorigenicity and effects of the microenvironment on its expression
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.27190
SSID ssib045324269
ssib045324863
ssib045324744
ssib045324715
ssib045324737
ssib045324935
ssj0023259
ssib045323856
ssib045318922
ssib045323854
ssib045318936
ssib045318912
ssib045318923
ssib045318934
ssib045324190
Score 2.430743
SecondaryResourceType review_article
Snippet Functional data used in this project have been meticulously catalogued and archived in the BBMRI-NL data infrastructure (https://hfgp.bbmri.nl/, accessed on 12...
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal...
We investigated the influence of autophagy-related variants in modulating Multiple Myeloma (MM) risk through a meta-analysis of germline genetic data on 234...
Simple SummaryWe investigated the influence of autophagy-related variants in modulating Multiple Myeloma (MM) risk through a meta-analysis of germline genetic...
SourceID pubmedcentral
hal
proquest
gale
pubmed
crossref
rcaap
nii
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8500
SubjectTerms Analysis
Apoptosis
Autofàgia
Autophagy
autophagy; genetic susceptibility; genetic variants; multiple myeloma
B cells
Biological Factors::Biomarkers [CHEMICALS AND DRUGS]
Biomarkers
Bone marrow
Cancer
Cells
Cell Physiological Phenomena::Cell Death::Autophagy [PHENOMENA AND PROCESSES]
Development and progression
Disease susceptibility
enfermedades hematológicas y linfáticas::enfermedades hematológicas::trastornos de las proteínas sanguíneas::paraproteinemias::enfermedades hematológicas y linfáticas::enfermedades hematológicas::mieloma múltiple [ENFERMEDADES]
factores biológicos::biomarcadores [COMPUESTOS QUÍMICOS Y DROGAS]
fenómenos fisiológicos celulares::muerte celular::autofagia [FENÓMENOS Y PROCESOS]
Genes
Genetic aspects
Genetic polymorphisms
Genetic susceptibility
Genetic variants
Hemic and Lymphatic Diseases::Hematologic Diseases::Blood Protein Disorders::Paraproteinemias::Hemic and Lymphatic Diseases::Hematologic Diseases::Multiple Myeloma [DISEASES]
Humans
Immune response
Immunoglobulin M
Immunoglobulins
Independent study
Leukocytes
Leukocytes, Mononuclear
Leukocytes, Mononuclear - pathology
Life Sciences
Marcadors bioquímics
Medical prognosis
Meta-analysis
Mieloma múltiple - Aspectes genètics
Mononuclear/pathology
Multiple myeloma
Multiple Myeloma - genetics
Multiple Myeloma - pathology
multiple myeloma; autophagy; genetic variants; genetic susceptibility
Other subheadings::Other subheadings::/genetics [Other subheadings]
Otros calificadores::Otros calificadores::/genética [Otros calificadores]
Proteins
Radboud University Medical Center
Radboudumc 4: lnfectious Diseases and Global Health Internal Medicine
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELborpC4IN4EdpFBIA7I2sSJ7ZgLqipKhbYIiV1pb5HjODSoTUrTIvUP8TuZSdKwEY9LVdUje1SPPTP2528IeZn5Mue-MkxnSrFI5QHTMdfMxs6Xjmsr0wbl-0nOLqOPV-KqO3CrO1jlYU9sNuqssnhGfoYXPpFQSut36-8Mq0bh7WpXQmNEjgPwNGjh8fRDn3CFvCmWFoAPYlJo2QLfQ0jzz4pvqxqcFxK2-QOX1G3MowXiIkdlUfwt9PwTQXm8scasr7mm6R1yu4sp6bg1grvkhivvkZttlcn9ffLzc7WEDB_-0KJe1RRPXouSjndIKWC-7lmDh3MZRQbqmpqaftnVDdilwc3uKXS0QhDPpqYQ4dJ5B0Gk871bQstbOqZztzXswG9Cq5xegIk4eo4wczqpFngtQU2Z0Sm40fb0kU56quj2JegDcjl9fzGZsa48A7MyjLbM5AqyQwURn9RKGO6sU6lT2qbOxXija0JI3tKA2zSSvtOc51bnNjCZFEqLPHxIjsqqdI8JzZ3IFQ-dDE0cGcjKuQniVMA3GCRPlUfeHGYosR13OZbQWCaQw-B8Jtfn0yOveul1y9nxD7nXONkJLmXozZruRQLohKRYyVgJfDwj4sAjJwNJWIJ20PwCzKUfCxm7Z-PzBH-DBAwJjPgPEDoFawL18TOAPBUic9gOsbwAMgpJGONgZ0m3j9TJb6v3yPO-GYdHbFzpqh3KNECbWIHMo9Yse1VChfyOEXQeDwx2oOuwpSwWDcs41nyPRcQ94jW2nSDsHDKWGpTnPAGNefzk_zo_Jbc4rMIGH6pPyNF2s3OnEMNt02fNQv0FZRVDag
  priority: 102
  providerName: ProQuest
Title Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization
URI https://cir.nii.ac.jp/crid/1871991017700473856
http://hdl.handle.net/1822/85628
https://www.ncbi.nlm.nih.gov/pubmed/37239846
https://www.proquest.com/docview/2819457799
https://www.proquest.com/docview/2820021879
https://cnrs.hal.science/hal-04914042
https://pubmed.ncbi.nlm.nih.gov/PMC10218542
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbWVUi8IH4T2CqDQDygQOPEsY2EUKlWKrROE6xS3yLHdWhQm4ymRfQf4u_kLkmjRRsSL1FUX-OTfbbv7M_fEfJy3g8T1hfaVXMh3EAknqskU66Rth9apkwYlyjfs3A8Db7M-OyA7LON1g1Y3BjaYT6p6Xr59vfP3UcY8B8w4oSQ_V36Y1XAQoTkaxC8d-FVYBKHSdCcJ4DbUKZNww0PFyfoCgJ_7d-txameojsLREh2sjS9yQm9jqXsro3Wl1cWqdFdcqf2LumgMod75MBm98mtKt_k7gH5c54vIdaHpk2LVUFxDzbN6GCL5AL6-84tkXF2TpGLuqC6oN-2RQl7KRG0OwofWiGcZ11Q8HXppAYj0snOLqHkPR3Qid1od890QvOEXoCxWHqKgHM6zBd4QEF1NqcjWFCrfUg6bEijqzuhD8l0dHIxHLt1ogbXhH6wcXUiIE4U4PuFSnDNrLEitkKZ2FqJZ7vahzAu9piJg7BvFWOJUYnx9DzkQvHEf0QOszyzTwhNLE8E823oaxloiM-Z9mTM4Q0qSWLhkDf7HopMzWKOyTSWEUQz2J_R1f50yKtG-rJi7_iH3Gvs7AjNDL5mdH03AXRCeqxoIDheo-HSc8hRSxIGo2kVvwBzaepC7u7x4DTC3yAUQyoj9guEjsGaQH18ehCxgo8OEyMmGkBuoRDq2NtZtB8QER54BlwIpRzyvCnG6hEll9l8izIl5EYKkHlcmWWjii-Q6TGAj8uWwbZ0bZdk6aLkG8fs75IHzCFOadsRAtAhdilAecYi0JjJp__dgs_IbQYDsgSNqiNyuFlv7TE4dpu4RzpiJuApR597pPvp5Oz8aw-XWt4rR_NfkdFOQg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfWTQheEN8ENjCIiQcULXE-HCMhVBWqjrUTEp20t-A4Dg1qk9K0oPxDPPI3cpePbhEfb3upovpkn3Rnn8_--XeEvIgtP2EWl6aIOTddntimCJgwVaAtXzOh_KhC-Z76ozP3w7l3vkN-tW9hEFbZronVQh3nCs_Ij_DCx_U4F-Lt8puJVaPwdrUtoVG7xYkuf0DKVrw5fgf2PWRs-H46GJlNVQFT-Y67NmXCIanhsFHxBfck00rzSHOhIq0DvIiUDuQckc1U5PqWFowlSiTKlrHvceElDvTbI3sQeC2EEPLziwTPYVVxNhtinul7wq-B9o4jrKP066KAYIkEcVYnBDaBoDdDHGYvS9O_bXX_RGzurZSUy0uhcHiL3Gz2sLRfO91tsqOzO-RaXdWyvEt-fszn5SIHA6bFoqB40ptmtL9BCgP5pTQr_J2OKTJeF1QW9NOmqMA1FU63pNDRAkFDq4LCjppOGsgjnZR6Di2vaZ9O9FqaLZ8KzRM6BZfUdIywdjrIZ3gNQmUW0yGE7fq0kw621NT1y9N75OxKDHef7GZ5ph8Smmgv4czRviMDV3LIMqQdRB58wSBJxA3yqrVQqBqudCzZMQ8hZ0J7hpftaZDDrfSy5gj5h9xLNHaISwf0pmTzAgJ0QhKusM89fKzjBbZB9juSMOVVp_k5uMt2LGQIH_XHIf4HCR8SJrHvIHQA3gTq468NeTFkArD8YjkDZDDyYYzWz8Jm3SrCi1lmkGfbZhwesXiZzjcoUwF7Ag4yD2q33KricOSTdKHzoOOwHV27LVk6q1jNscZ84LnMIEbl2yHC3CFDKkB5xkLQmAWP_q_zU3J9NJ2Mw_Hx6cljcoPBjKywqWKf7K5XG30A-8d19KSatJR8vupV4jcbBYAb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbWTSBeEHcCGxjExAOKmjgXx0gIVR1Vx9ppEpvUt-A4Di1qk9K0oPwhfgS_jnNy6RZxedtLFdWWfaRzfI6P_fk7hLyKLT9hFpemiDk3XZ7YpgiYMFWgLV8zofyoRPme-sML9-PEm-yQX81bGIRVNj6xdNRxpvCMvIsXPq7HuRDdpIZFnB0N3i-_mVhBCm9am3IalYmc6OIHpG_5u-Mj0PUhY4MP5_2hWVcYMJXvuGtTJhwSHA6bFl9wTzKtNI80FyrSOsBLSelA_hHZTEWub2nBWKJEomwZ-x4XXuLAuB2yxx0Im7CW-OQy2XNYWajNhvhn-p7wK9C94wirO_u6yCFwIlmc1QqHdVDoTBGT2Ulns79te_9Eb-6tlJTLK2FxcIfcrveztFcZ4F2yo9N75EZV4bK4T36eZfNikYEyZ_kip3jqO0tpb4N0BvJLYZZYPB1TZL_Oqczpp01eAm1KzG5BYaAFAohWOYXdNR3X8Ec6LvQcWt7SHh3rtTQbbhWaJfQczFPTEULcaT-b4pUIlWlMBxDCq5NP2t_SVFevUB-Qi2tR3EOym2apfkxoor2EM0f7jgxcySHjkHYQefAFkyQRN8ibRkOhqnnTsXzHPIT8CfUZXtWnQQ63vZcVX8g_-r1GZYfoRmA0JevXECATEnKFPe7hwx0vsA2y3-oJy1-1ml-CuWznQrbwYW8U4n-Q_CF5EvsOnQ7AmkB8_LUhR4asAFwxljZANiMf5mjsLKx9WB5erjiDvNg24_SIy0t1tsE-Jcgn4NDnUWWWW1EcjtySLgwetAy2JWu7JZ1NS4ZzrDcfeC4ziFHadoiQd8iWchCesRAkZsGT_8v8nNwE_xCOjk9PnpJbDBZkCVMV-2R3vdroA9hKrqNn5Zql5PN1O4nfPaGEUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymorphisms+within+Autophagy-Related+Genes+as+Susceptibility+Biomarkers+for+Multiple+Myeloma%3A+A+Meta-Analysis+of+Three+Large+Cohorts+and+Functional+Characterization&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Clavero%2C+Esther&rft.au=Sanchez-Maldonado%2C+Jos%C3%A9+Manuel&rft.au=Macauda%2C+Angelica&rft.au=Ter+Horst%2C+Rob&rft.date=2023-05-09&rft.pub=MDPI+AG&rft.issn=1422-0067&rft.volume=24&rft.issue=10&rft_id=info:doi/10.3390%2Fijms24108500&rft.externalDocID=A752424581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon