Strongly correlated Chern insulators in magic-angle twisted bilayer graphene

Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances in which topological phases emerge only as a result of strong interactions a...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 588; no. 7839; pp. 610 - 615
Main Authors Nuckolls, Kevin P, Oh, Myungchul, Wong, Dillon, Lian, Biao, Watanabe, Kenji, Taniguchi, Takashi, Bernevig, B Andrei, Yazdani, Ali
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 24.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields . The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases . Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers C = ±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (C = +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role . We demonstrate that strong electron-electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.
AbstractList Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields . The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases . Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers C = ±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (C = +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role . We demonstrate that strong electron-electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.
Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields.sup.1. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases.sup.2-9. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers C = [plus or minus]1, [plus or minus]2 and [plus or minus]3, which form near filling factors of [plus or minus]3, [plus or minus]2 and [plus or minus]1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (C = +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role.sup.9. We demonstrate that strong electron-electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models. Strong electron-electron interactions in magic-angle twisted bilayer graphene can fundamentally change the topology of the system's flat bands, producing a hierarchy of strongly correlated topological insulators in modest magnetic fields.
Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields.sup.1. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases.sup.2-9. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers C = [plus or minus]1, [plus or minus]2 and [plus or minus]3, which form near filling factors of [plus or minus]3, [plus or minus]2 and [plus or minus]1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (C = +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role.sup.9. We demonstrate that strong electron-electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.
Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields1. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases2-9. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence oftopological insulators in MATBG with Chern numbers C=±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (C=+1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role9. We demonstrate that strong electron-electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.
Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron–electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers C = ±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (C = +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role. We also demonstrate that strong electron–electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.
Audience Academic
Author Bernevig, B Andrei
Nuckolls, Kevin P
Oh, Myungchul
Taniguchi, Takashi
Lian, Biao
Wong, Dillon
Watanabe, Kenji
Yazdani, Ali
Author_xml – sequence: 1
  givenname: Kevin P
  orcidid: 0000-0002-1078-7113
  surname: Nuckolls
  fullname: Nuckolls, Kevin P
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
– sequence: 2
  givenname: Myungchul
  orcidid: 0000-0003-0477-1390
  surname: Oh
  fullname: Oh, Myungchul
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
– sequence: 3
  givenname: Dillon
  surname: Wong
  fullname: Wong, Dillon
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
– sequence: 4
  givenname: Biao
  orcidid: 0000-0002-8956-5619
  surname: Lian
  fullname: Lian, Biao
  organization: Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, USA
– sequence: 5
  givenname: Kenji
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
– sequence: 6
  givenname: Takashi
  orcidid: 0000-0002-1467-3105
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
– sequence: 7
  givenname: B Andrei
  orcidid: 0000-0001-6337-4024
  surname: Bernevig
  fullname: Bernevig, B Andrei
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
– sequence: 8
  givenname: Ali
  orcidid: 0000-0003-4996-8904
  surname: Yazdani
  fullname: Yazdani, Ali
  email: yazdani@princeton.edu
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA. yazdani@princeton.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33318688$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1780898$$D View this record in Osti.gov
BookMark eNp10ltr2zAUB3AxOta02wfYyzDd0xjuJOti-TGEXQphg7Vjj0KWjx0VR0olmS3ffjLpLoEMgSWL3znI8v8CnTnvAKGXBF8TTOW7yAiXosQVLimuZCmfoAVhtSiZkPUZWuB5E0sqztFFjPcYY05q9gydU0qJFFIu0Po2Be-GcV8YHwKMOkFXrDYQXGFdnPK7DzEvi60erCl1plCkHzbOrrWj3kMohqB3G3DwHD3t9RjhxeN8ib59eH-3-lSuv3y8WS3XpRGUpVJLU-eTd6JlhlUd1YZK3FLCq5rwGozmbU-l4Fz0hmrGtREdYNzyjnIgfUMv0dWhr4_JqmhsArMx3jkwSZFaYtnIjF4f0C74hwliUvd-Ci6fS1X5jgRp8uOvGvQIyrrep6DN1kajloI1gvGGzb3KE2rInxz0mP9Jb_P2kb864c3OPqh_0fUJlEcHW2tOdn1zVJBNgp9p0FOM6ub267F9-3-7vPu--nysyUGb4GMM0KtdsFsd9opgNUdNHaKmctTUHDU117x6vN-p3UL3p-J3tugv1Y7LRg
CitedBy_id crossref_primary_10_1021_acsnano_1c05986
crossref_primary_10_1103_PhysRevB_107_125112
crossref_primary_10_1103_PhysRevLett_130_196201
crossref_primary_10_1038_s41567_021_01347_4
crossref_primary_10_1103_PhysRevResearch_4_L032024
crossref_primary_10_1038_s41567_022_01557_4
crossref_primary_10_1103_PhysRevLett_129_117602
crossref_primary_10_1016_j_mtcomm_2023_107120
crossref_primary_10_1016_j_physleta_2023_129048
crossref_primary_10_1039_D3CP04656G
crossref_primary_10_1088_1361_648X_ac99ca
crossref_primary_10_1103_PhysRevLett_131_166501
crossref_primary_10_1103_PhysRevB_107_094512
crossref_primary_10_1103_PhysRevResearch_4_043151
crossref_primary_10_1016_j_mtnano_2023_100408
crossref_primary_10_1038_s41535_021_00410_w
crossref_primary_10_1103_PhysRevResearch_3_L032070
crossref_primary_10_7498_aps_71_20220347
crossref_primary_10_1002_smll_202311185
crossref_primary_10_1209_0295_5075_ac64ba
crossref_primary_10_1103_PhysRevX_11_041063
crossref_primary_10_21468_SciPostPhys_13_3_052
crossref_primary_10_1088_0256_307X_39_3_037301
crossref_primary_10_1103_PhysRevLett_131_026901
crossref_primary_10_7498_aps_70_20210476
crossref_primary_10_1103_PhysRevB_107_085127
crossref_primary_10_1103_PhysRevX_12_041005
crossref_primary_10_1103_PhysRevB_109_155430
crossref_primary_10_1103_PhysRevLett_131_256201
crossref_primary_10_1103_PhysRevResearch_5_L012015
crossref_primary_10_3762_bjnano_15_18
crossref_primary_10_1103_PhysRevB_105_075424
crossref_primary_10_1063_5_0136373
crossref_primary_10_1103_PhysRevLett_132_056601
crossref_primary_10_1038_s41565_022_01222_0
crossref_primary_10_1103_PhysRevLett_128_157201
crossref_primary_10_1038_s41586_021_03319_3
crossref_primary_10_1063_5_0191662
crossref_primary_10_1103_PhysRevB_109_155422
crossref_primary_10_1088_1367_2630_ad3000
crossref_primary_10_1103_PhysRevB_104_075144
crossref_primary_10_3390_condmat7010012
crossref_primary_10_1088_1361_648X_acd294
crossref_primary_10_1088_1674_1056_acc8c3
crossref_primary_10_1103_PhysRevB_107_165114
crossref_primary_10_1021_jacs_2c05909
crossref_primary_10_1038_s41567_023_02195_0
crossref_primary_10_1038_s41567_021_01408_8
crossref_primary_10_1021_acsnano_2c05502
crossref_primary_10_1021_jacs_2c09947
crossref_primary_10_1038_s41586_021_04121_x
crossref_primary_10_1103_PhysRevB_107_235425
crossref_primary_10_1007_JHEP05_2021_123
crossref_primary_10_1103_PhysRevB_106_155159
crossref_primary_10_1103_PhysRevLett_128_026403
crossref_primary_10_1088_1674_1056_acc805
crossref_primary_10_1039_D2TA00506A
crossref_primary_10_1103_PhysRevB_110_024401
crossref_primary_10_1103_PhysRevB_103_224436
crossref_primary_10_1021_acsnano_4c02733
crossref_primary_10_1038_s41586_021_04002_3
crossref_primary_10_1038_s41467_024_48385_z
crossref_primary_10_1038_s41567_021_01359_0
crossref_primary_10_1103_PhysRevB_103_L201118
crossref_primary_10_1021_acs_nanolett_3c03414
crossref_primary_10_1021_acs_nanolett_3c04866
crossref_primary_10_1038_s41567_021_01419_5
crossref_primary_10_1021_acs_nanolett_1c04400
crossref_primary_10_1002_advs_202204916
crossref_primary_10_1038_s42005_023_01201_4
crossref_primary_10_1103_PhysRevB_107_195434
crossref_primary_10_1002_aelm_202300733
crossref_primary_10_1038_s41467_024_49446_z
crossref_primary_10_7498_aps_72_20230079
crossref_primary_10_1038_s41467_024_49531_3
crossref_primary_10_1038_s41467_022_35213_5
crossref_primary_10_1038_s41567_022_01702_z
crossref_primary_10_1103_PhysRevB_108_075126
crossref_primary_10_1021_acs_nanolett_1c03491
crossref_primary_10_1088_2053_1583_ad2107
crossref_primary_10_1038_s41467_022_35421_z
crossref_primary_10_1038_s41535_021_00379_6
crossref_primary_10_1088_2516_1075_ac49f5
crossref_primary_10_1021_acsnano_3c03795
crossref_primary_10_1007_s11467_023_1302_6
crossref_primary_10_1038_s41467_023_42471_4
crossref_primary_10_1103_PhysRevB_107_195423
crossref_primary_10_1038_s41565_021_00896_2
crossref_primary_10_1103_PhysRevB_107_235127
crossref_primary_10_1016_j_aop_2022_168763
crossref_primary_10_1088_2515_7639_ac4ae0
crossref_primary_10_1103_PhysRevLett_128_217701
crossref_primary_10_1007_s12274_022_5007_x
crossref_primary_10_1103_PhysRevB_106_L220410
crossref_primary_10_1002_qute_202100096
crossref_primary_10_1126_science_abm3770
crossref_primary_10_1038_s42005_021_00630_3
crossref_primary_10_1103_PhysRevB_108_035129
crossref_primary_10_1103_PhysRevB_105_235418
crossref_primary_10_1021_acs_nanolett_4c00948
crossref_primary_10_1103_PhysRevB_105_L201405
crossref_primary_10_1038_s42005_023_01512_6
crossref_primary_10_1103_PhysRevMaterials_5_084008
crossref_primary_10_1103_PhysRevB_104_L121405
crossref_primary_10_1103_PhysRevB_107_L241105
crossref_primary_10_1103_PhysRevB_105_235410
crossref_primary_10_1038_s41467_024_46913_5
crossref_primary_10_1038_s41524_022_00789_5
crossref_primary_10_1103_PhysRevB_108_045138
crossref_primary_10_1038_s41567_024_02546_5
crossref_primary_10_1038_s41467_022_31851_x
crossref_primary_10_1103_PhysRevB_106_075423
crossref_primary_10_1002_adma_202300227
crossref_primary_10_1038_s41567_023_02126_z
crossref_primary_10_1103_PhysRevB_108_245109
crossref_primary_10_1103_PhysRevLett_131_266501
crossref_primary_10_1016_j_watres_2022_119076
crossref_primary_10_1063_10_0019421
crossref_primary_10_1103_PhysRevLett_127_196401
crossref_primary_10_1038_s41467_023_38005_7
crossref_primary_10_1088_1367_2630_ad2a81
crossref_primary_10_1103_PhysRevB_103_195127
crossref_primary_10_1021_acs_chemrev_3c00132
crossref_primary_10_1364_OPTICA_510789
crossref_primary_10_1088_1674_1056_ad3b8a
crossref_primary_10_1002_adma_202301790
crossref_primary_10_1021_acs_nanolett_3c01262
crossref_primary_10_1103_PhysRevResearch_5_013125
crossref_primary_10_1038_s41467_021_25044_1
crossref_primary_10_1088_2053_1583_acc671
crossref_primary_10_1103_PhysRevLett_130_143801
crossref_primary_10_1103_PhysRevB_108_064202
crossref_primary_10_1088_1361_648X_acb984
crossref_primary_10_1103_PhysRevB_104_235130
crossref_primary_10_1103_PhysRevB_108_235418
crossref_primary_10_1103_PhysRevB_109_125141
crossref_primary_10_1103_PhysRevB_109_L081114
crossref_primary_10_1038_s41467_021_21792_2
crossref_primary_10_1103_PhysRevB_107_075156
crossref_primary_10_1038_s42005_023_01480_x
crossref_primary_10_1038_s42254_023_00575_2
crossref_primary_10_1103_PhysRevLett_128_227601
crossref_primary_10_1088_0256_307X_41_3_037401
crossref_primary_10_1038_s41578_024_00682_1
crossref_primary_10_1021_acs_nanolett_2c02010
crossref_primary_10_1021_acs_nanolett_2c03220
crossref_primary_10_1088_2053_1583_ac69bb
crossref_primary_10_1103_PhysRevB_108_045117
crossref_primary_10_1038_s41563_022_01286_2
crossref_primary_10_1021_acsami_3c06949
crossref_primary_10_1103_PhysRevResearch_4_L012013
crossref_primary_10_1002_ppsc_202300125
crossref_primary_10_1038_s41467_022_30998_x
crossref_primary_10_1103_PhysRevX_12_031020
crossref_primary_10_1002_adfm_202206923
crossref_primary_10_1088_0256_307X_38_7_077305
crossref_primary_10_1103_PhysRevLett_130_016401
crossref_primary_10_7498_aps_71_20220064
crossref_primary_10_1103_PhysRevB_108_235202
crossref_primary_10_1088_1674_1056_acbd2c
crossref_primary_10_1038_s41467_021_23031_0
crossref_primary_10_1103_PhysRevB_105_L121110
crossref_primary_10_1038_s41567_022_01589_w
crossref_primary_10_1038_s41377_022_00854_0
crossref_primary_10_1103_PhysRevB_105_L241109
crossref_primary_10_1103_PhysRevB_109_155159
crossref_primary_10_1103_PhysRevLett_131_026502
crossref_primary_10_1103_PhysRevB_109_075166
crossref_primary_10_3390_nano13212881
crossref_primary_10_1103_PhysRevLett_130_216401
crossref_primary_10_1038_s42005_022_00824_3
crossref_primary_10_1088_2053_1583_ad3b11
crossref_primary_10_1103_PhysRevB_109_125404
crossref_primary_10_1103_PhysRevB_103_125406
crossref_primary_10_1038_s41467_024_46551_x
crossref_primary_10_1038_s41586_021_03409_2
crossref_primary_10_1063_5_0050532
crossref_primary_10_1103_PhysRevB_109_195173
crossref_primary_10_1103_PhysRevB_108_155106
crossref_primary_10_1063_5_0070163
crossref_primary_10_1088_0256_307X_40_11_117201
crossref_primary_10_1103_PhysRevLett_128_247402
crossref_primary_10_1103_PhysRevResearch_4_L012032
crossref_primary_10_1103_PhysRevB_109_045419
crossref_primary_10_1038_s41567_022_01635_7
crossref_primary_10_1103_PhysRevB_103_205411
crossref_primary_10_1002_adma_202205996
crossref_primary_10_1103_PhysRevB_103_205412
crossref_primary_10_1103_PhysRevB_103_205413
crossref_primary_10_1103_PhysRevLett_127_167001
crossref_primary_10_1103_PhysRevB_103_205414
crossref_primary_10_1103_PhysRevB_103_205415
crossref_primary_10_1038_s41586_023_06289_w
crossref_primary_10_1103_PhysRevB_103_205416
crossref_primary_10_1038_s41563_022_01428_6
crossref_primary_10_1021_acs_nanolett_2c03836
crossref_primary_10_1002_adfm_202402493
crossref_primary_10_1021_acsnano_3c08344
crossref_primary_10_1038_s41699_023_00403_2
crossref_primary_10_1103_PhysRevB_105_155135
crossref_primary_10_1039_D1CP03240B
crossref_primary_10_1103_PhysRevB_109_035168
crossref_primary_10_1038_s41467_023_39110_3
crossref_primary_10_1038_s41586_021_03366_w
crossref_primary_10_1103_PhysRevLett_127_197701
crossref_primary_10_1038_s41586_021_03868_7
crossref_primary_10_1103_PhysRevX_13_011026
crossref_primary_10_1126_science_abg5641
crossref_primary_10_1007_s11467_022_1185_y
crossref_primary_10_1103_PhysRevB_109_184502
crossref_primary_10_1103_PhysRevB_107_125308
crossref_primary_10_1103_PhysRevB_107_125423
crossref_primary_10_1103_PhysRevB_108_L121409
crossref_primary_10_1103_PhysRevB_108_235128
crossref_primary_10_1016_j_aop_2021_168646
crossref_primary_10_1103_RevModPhys_95_011002
crossref_primary_10_1016_j_matt_2021_08_020
crossref_primary_10_1038_s41586_022_05567_3
crossref_primary_10_1088_1361_648X_ad43a3
crossref_primary_10_1021_jacs_3c10561
crossref_primary_10_1103_PhysRevB_108_L121405
crossref_primary_10_1002_apxr_202300048
crossref_primary_10_1103_PhysRevB_103_075122
crossref_primary_10_1038_s41567_022_01574_3
crossref_primary_10_1103_PhysRevMaterials_6_L041001
crossref_primary_10_1016_j_fmre_2021_08_001
crossref_primary_10_1038_s41467_022_35316_z
crossref_primary_10_1038_s41565_024_01698_y
crossref_primary_10_1103_PhysRevB_104_035119
crossref_primary_10_1038_s41467_023_40754_4
crossref_primary_10_1007_s44214_022_00010_0
crossref_primary_10_1103_PhysRevB_106_235112
crossref_primary_10_1007_s12274_022_5025_8
crossref_primary_10_1103_PhysRevLett_129_047601
crossref_primary_10_7498_aps_72_20230120
crossref_primary_10_1038_s42005_023_01165_5
crossref_primary_10_1103_PhysRevA_108_053305
crossref_primary_10_1063_5_0084996
crossref_primary_10_1016_j_pquantelec_2024_100498
crossref_primary_10_1103_PhysRevB_104_125427
crossref_primary_10_1103_PhysRevB_103_195411
crossref_primary_10_1038_s41586_021_04173_z
crossref_primary_10_1103_PhysRevResearch_3_013153
crossref_primary_10_7498_aps_73_20240437
crossref_primary_10_1103_PhysRevB_105_235139
crossref_primary_10_1103_PhysRevB_104_125421
crossref_primary_10_1038_s41535_023_00591_6
crossref_primary_10_1103_PhysRevB_107_035109
crossref_primary_10_1126_science_ade0850
crossref_primary_10_7498_aps_72_20230497
crossref_primary_10_1103_PhysRevX_14_021042
crossref_primary_10_1038_s41567_023_02145_w
crossref_primary_10_1039_D3CP05913H
crossref_primary_10_1103_PhysRevLett_130_066402
crossref_primary_10_1103_PhysRevB_104_115167
crossref_primary_10_1038_s41567_021_01186_3
crossref_primary_10_1103_PhysRevLett_127_266601
crossref_primary_10_1016_j_commatsci_2021_110746
crossref_primary_10_1021_acs_nanolett_1c03066
crossref_primary_10_1039_D4NR01863J
crossref_primary_10_1073_pnas_2100006118
crossref_primary_10_1038_s42254_021_00297_3
crossref_primary_10_1088_1361_648X_ad4431
crossref_primary_10_1103_PhysRevB_106_L121111
crossref_primary_10_1103_PhysRevLett_129_076803
crossref_primary_10_1103_PhysRevB_109_125302
crossref_primary_10_1038_s41586_022_04520_8
crossref_primary_10_1103_PhysRevB_108_094115
crossref_primary_10_1126_science_abg0399
crossref_primary_10_1038_s41586_023_06226_x
crossref_primary_10_1038_s42254_022_00466_y
crossref_primary_10_1364_OE_445348
crossref_primary_10_1103_PhysRevB_106_115418
crossref_primary_10_1103_PhysRevLett_131_026601
crossref_primary_10_1103_PhysRevB_104_L201408
crossref_primary_10_1021_acsomega_1c01562
crossref_primary_10_1103_PhysRevB_108_L241107
crossref_primary_10_1038_s41467_021_25438_1
crossref_primary_10_1103_PhysRevB_108_L201120
crossref_primary_10_1038_s41467_023_39855_x
crossref_primary_10_1103_PhysRevB_108_125129
crossref_primary_10_1103_PhysRevLett_127_126405
Cites_doi 10.1103/PhysRevLett.109.196802
10.1038/s41586-019-0913-0
10.1038/s41586-019-1695-0
10.1103/PhysRevB.100.035448
10.1103/PhysRevLett.96.256602
10.1038/s41586-020-2373-y
10.1126/science.aax8156
10.1103/PhysRevB.90.155427
10.1038/s41567-020-01062-6
10.1038/s41586-019-1431-9
10.1103/PhysRevB.82.121407
10.1038/s41586-019-1422-x
10.1088/1361-6633/aad6a6
10.1126/science.aaw3780
10.1103/PhysRevResearch.2.023237
10.1063/1.5132872
10.1038/s41586-020-2963-8
10.1038/nature26160
10.1103/PhysRevB.102.041402
10.1126/science.aav1910
10.1103/PhysRevLett.124.106803
10.1073/pnas.1108174108
10.1103/PhysRevResearch.2.023238
10.1038/nature09330
10.1103/PhysRevLett.123.046601
10.1088/0022-3719/15/22/005
10.1038/nature26154
10.1038/nphys1463
10.1103/PhysRevLett.61.2015
10.1103/PhysRevB.92.155409
10.1038/nphys2307
10.1038/s41586-020-2339-0
10.1126/science.aay5533
10.1038/s41586-020-2459-6
10.1038/s41567-019-0606-5
10.1103/PhysRevB.99.075127
10.1038/s41586-019-1460-4
10.1126/science.aag1715
10.1103/PhysRevLett.124.166601
10.1038/s41586-020-2049-7
10.1126/science.aan8458
ContentType Journal Article
Copyright COPYRIGHT 2020 Nature Publishing Group
Copyright Nature Publishing Group Dec 24-Dec 31, 2020
Copyright_xml – notice: COPYRIGHT 2020 Nature Publishing Group
– notice: Copyright Nature Publishing Group Dec 24-Dec 31, 2020
CorporateAuthor Princeton Univ., NJ (United States)
CorporateAuthor_xml – name: Princeton Univ., NJ (United States)
DBID NPM
AAYXX
CITATION
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
OIOZB
OTOTI
DOI 10.1038/s41586-020-3028-8
DatabaseName PubMed
CrossRef
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Proquest Nursing & Allied Health Source
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health Medical collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
https://resources.nclive.org/materials
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database
ProQuest research library
Science Journals (ProQuest Database)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle PubMed
CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
University of Michigan
Technology Collection
Technology Research Database
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList PubMed


Agricultural Science Database





Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 615
ExternalDocumentID 1780898
A649645948
10_1038_s41586_020_3028_8
33318688
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.GJ
.HR
.XZ
00M
07C
08P
0B8
0R~
0WA
123
186
1CY
1OL
1VR
1VW
29M
2KS
2XV
354
39C
3EH
3O-
3V.
4.4
41X
41~
42X
4R4
53G
5RE
663
6TJ
70F
79B
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
9M8
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAJWC
AAJYS
AAKAB
AAKAS
AAMNW
AASDW
AAVBQ
AAYEP
AAYOK
AAZLF
ABAWZ
ABDBF
ABEFU
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABTAH
ABUWG
ABVXF
ABWJO
ABZEH
ACBEA
ACBNA
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACTDY
ACWUS
ADBBV
ADFRT
ADRHT
ADUKH
ADYSU
ADZCM
AENEX
AFBBN
AFFDN
AFFNX
AFHKK
AFKRA
AFLOW
AFRAH
AFRQD
AFSHS
AGAYW
AGCDD
AGEZK
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
AJUXI
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B-7
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESTFP
ESX
EX3
EXGXG
F20
F5P
FA8
FAC
FEDTE
FQGFK
FSGXE
FYUFA
G8K
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
J5H
K6-
KB.
KOO
L-9
L6V
L7B
LGEZI
LK5
LK8
LOTEE
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N4W
N9A
NADUK
NAPCQ
NEJ
NEPJS
NPM
NXXTH
O9-
OBC
ODYON
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PV9
PYCSY
Q2X
QS-
R05
R4F
RHI
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SKT
SNYQT
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUD
TUS
TWZ
U5U
UAO
UBY
UHB
UIG
UKHRP
UKR
UMD
UQL
USG
VOH
VQA
VVN
WH7
WOW
X7L
X7M
XIH
XKW
XOL
XZL
Y6R
YAE
YCJ
YFH
YJ6
YNT
YOC
YQI
YQJ
YQT
YR2
YV5
YXA
YXB
YYP
YYQ
YZZ
ZCA
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~02
~7V
~88
~8M
~G0
~KM
AAYXX
CITATION
AADEA
AAEXX
ABEEJ
ADFPY
ADZGE
AADWK
AAJMP
AAYJO
ABGIJ
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
AEDAW
AEFTE
AFNRJ
AGGBP
AGPPL
AHGBK
AJDOV
AMRJV
I-U
U1R
XFK
ZA5
AAPBV
ABGFU
ABPTK
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
OIOZB
OTOTI
ID FETCH-LOGICAL-c634t-a8c7415d6b4c42d3ac380b31527157eca5bf386556fc3a45ac6de00b5d35e1f93
IEDL.DBID 8C1
ISSN 0028-0836
IngestDate Mon Jan 22 04:57:38 EST 2024
Fri Sep 13 03:30:10 EDT 2024
Thu Feb 22 23:30:27 EST 2024
Fri Feb 02 04:56:55 EST 2024
Tue Dec 12 21:20:39 EST 2023
Fri Feb 02 04:31:18 EST 2024
Thu Aug 01 20:40:47 EDT 2024
Thu Aug 01 20:20:31 EDT 2024
Thu Sep 12 17:11:41 EDT 2024
Sat Sep 28 08:24:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7839
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-a8c7415d6b4c42d3ac380b31527157eca5bf386556fc3a45ac6de00b5d35e1f93
Notes Gordon and Betty Moore Foundation (GBMF)
National Science Foundation (NSF)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
US Department of the Navy, Office of Naval Research (ONR)
FG02-07ER46419; SC0016239; N00014-20-1-2303; GBMF4530; GBMF9469
ORCID 0000-0001-6337-4024
0000-0002-1078-7113
0000-0003-3701-8119
0000-0002-1467-3105
0000-0002-8956-5619
0000-0003-4996-8904
0000-0003-0477-1390
0000000304771390
0000000163374024
0000000210787113
0000000249314188
0000000289565619
0000000337018119
0000000349968904
0000000214673105
OpenAccessLink https://www.osti.gov/servlets/purl/1780898
PMID 33318688
PQID 2476619766
PQPubID 40569
PageCount 6
ParticipantIDs osti_scitechconnect_1780898
proquest_journals_2476619766
gale_infotracmisc_A649645948
gale_infotracgeneralonefile_A649645948
gale_infotraccpiq_649645948
gale_infotracacademiconefile_A649645948
gale_incontextgauss_ISR_A649645948
gale_incontextgauss_ATWCN_A649645948
crossref_primary_10_1038_s41586_020_3028_8
pubmed_primary_33318688
PublicationCentury 2000
PublicationDate 2020-12-24
PublicationDateYYYYMMDD 2020-12-24
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: United States
PublicationTitle Nature (London)
PublicationTitleAlternate Nature
PublicationYear 2020
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
References SL Tomarken (3028_CR37) 2019; 123
M Serlin (3028_CR9) 2020; 367
D Wong (3028_CR16) 2020; 91
Y Jiang (3028_CR25) 2019; 573
G Chen (3028_CR10) 2020; 579
U Zondiner (3028_CR22) 2020; 582
A Kerelsky (3028_CR24) 2019; 572
G Li (3028_CR17) 2010; 6
R Bistritzer (3028_CR2) 2011; 108
3028_CR11
C Repellin (3028_CR40) 2019; 2
Z Bi (3028_CR27) 2019; 100
N Bultinck (3028_CR29) 2020; 124
3028_CR13
3028_CR12
E Suárez Morell (3028_CR3) 2010; 82
I Brihuega (3028_CR18) 2012; 109
A Abouelkomsan (3028_CR38) 2020; 124
AL Sharpe (3028_CR8) 2019; 365
K Nomura (3028_CR30) 2006; 96
MT Randeria (3028_CR34) 2019; 566
Y Cao (3028_CR5) 2018; 556
P Středa (3028_CR35) 1982; 15
P Moon (3028_CR28) 2014; 90
Y Deng (3028_CR41) 2020; 367
YH Zhang (3028_CR43) 2019; 99
Y Choi (3028_CR23) 2019; 15
B Lian (3028_CR26) 2020; 102
D Wong (3028_CR21) 2020; 582
BE Feldman (3028_CR33) 2016; 354
Y Cao (3028_CR4) 2018; 556
3028_CR42
M Yankowitz (3028_CR6) 2019; 363
EM Spanton (3028_CR36) 2018; 360
S Rachel (3028_CR1) 2018; 81
AF Young (3028_CR31) 2012; 8
X Lu (3028_CR7) 2019; 574
PJ Ledwith (3028_CR39) 2020; 2
P Stepanov (3028_CR14) 2020; 583
FDM Haldane (3028_CR15) 1988; 61
D Wong (3028_CR19) 2015; 92
YJ Song (3028_CR32) 2010; 467
Y Xie (3028_CR20) 2019; 572
References_xml – ident: 3028_CR42
– volume: 109
  start-page: 196802
  year: 2012
  ident: 3028_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.196802
  contributor:
    fullname: I Brihuega
– volume: 566
  start-page: 363
  year: 2019
  ident: 3028_CR34
  publication-title: Nature
  doi: 10.1038/s41586-019-0913-0
  contributor:
    fullname: MT Randeria
– volume: 574
  start-page: 653
  year: 2019
  ident: 3028_CR7
  publication-title: Nature
  doi: 10.1038/s41586-019-1695-0
  contributor:
    fullname: X Lu
– volume: 100
  start-page: 035448
  year: 2019
  ident: 3028_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.035448
  contributor:
    fullname: Z Bi
– ident: 3028_CR13
– volume: 96
  start-page: 256602
  year: 2006
  ident: 3028_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.256602
  contributor:
    fullname: K Nomura
– volume: 582
  start-page: 203
  year: 2020
  ident: 3028_CR22
  publication-title: Nature
  doi: 10.1038/s41586-020-2373-y
  contributor:
    fullname: U Zondiner
– volume: 367
  start-page: 895
  year: 2020
  ident: 3028_CR41
  publication-title: Science
  doi: 10.1126/science.aax8156
  contributor:
    fullname: Y Deng
– volume: 90
  start-page: 155427
  year: 2014
  ident: 3028_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.155427
  contributor:
    fullname: P Moon
– ident: 3028_CR12
  doi: 10.1038/s41567-020-01062-6
– volume: 572
  start-page: 95
  year: 2019
  ident: 3028_CR24
  publication-title: Nature
  doi: 10.1038/s41586-019-1431-9
  contributor:
    fullname: A Kerelsky
– volume: 82
  start-page: 121407
  year: 2010
  ident: 3028_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.121407
  contributor:
    fullname: E Suárez Morell
– volume: 572
  start-page: 101
  year: 2019
  ident: 3028_CR20
  publication-title: Nature
  doi: 10.1038/s41586-019-1422-x
  contributor:
    fullname: Y Xie
– volume: 81
  start-page: 116501
  year: 2018
  ident: 3028_CR1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/aad6a6
  contributor:
    fullname: S Rachel
– volume: 365
  start-page: 605
  year: 2019
  ident: 3028_CR8
  publication-title: Science
  doi: 10.1126/science.aaw3780
  contributor:
    fullname: AL Sharpe
– volume: 2
  start-page: 023237
  year: 2020
  ident: 3028_CR39
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023237
  contributor:
    fullname: PJ Ledwith
– volume: 91
  start-page: 023703
  year: 2020
  ident: 3028_CR16
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5132872
  contributor:
    fullname: D Wong
– ident: 3028_CR11
  doi: 10.1038/s41586-020-2963-8
– volume: 556
  start-page: 43
  year: 2018
  ident: 3028_CR5
  publication-title: Nature
  doi: 10.1038/nature26160
  contributor:
    fullname: Y Cao
– volume: 102
  start-page: 041402
  year: 2020
  ident: 3028_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.041402
  contributor:
    fullname: B Lian
– volume: 363
  start-page: 1059
  year: 2019
  ident: 3028_CR6
  publication-title: Science
  doi: 10.1126/science.aav1910
  contributor:
    fullname: M Yankowitz
– volume: 124
  start-page: 106803
  year: 2020
  ident: 3028_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.106803
  contributor:
    fullname: A Abouelkomsan
– volume: 108
  start-page: 12233
  year: 2011
  ident: 3028_CR2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1108174108
  contributor:
    fullname: R Bistritzer
– volume: 2
  start-page: 023238
  year: 2019
  ident: 3028_CR40
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023238
  contributor:
    fullname: C Repellin
– volume: 467
  start-page: 185
  year: 2010
  ident: 3028_CR32
  publication-title: Nature
  doi: 10.1038/nature09330
  contributor:
    fullname: YJ Song
– volume: 123
  start-page: 046601
  year: 2019
  ident: 3028_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.046601
  contributor:
    fullname: SL Tomarken
– volume: 15
  start-page: L717
  year: 1982
  ident: 3028_CR35
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/15/22/005
  contributor:
    fullname: P Středa
– volume: 556
  start-page: 80
  year: 2018
  ident: 3028_CR4
  publication-title: Nature
  doi: 10.1038/nature26154
  contributor:
    fullname: Y Cao
– volume: 6
  start-page: 109
  year: 2010
  ident: 3028_CR17
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1463
  contributor:
    fullname: G Li
– volume: 61
  start-page: 2015
  year: 1988
  ident: 3028_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2015
  contributor:
    fullname: FDM Haldane
– volume: 92
  start-page: 155409
  year: 2015
  ident: 3028_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.155409
  contributor:
    fullname: D Wong
– volume: 8
  start-page: 550
  year: 2012
  ident: 3028_CR31
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2307
  contributor:
    fullname: AF Young
– volume: 582
  start-page: 198
  year: 2020
  ident: 3028_CR21
  publication-title: Nature
  doi: 10.1038/s41586-020-2339-0
  contributor:
    fullname: D Wong
– volume: 367
  start-page: 900
  year: 2020
  ident: 3028_CR9
  publication-title: Science
  doi: 10.1126/science.aay5533
  contributor:
    fullname: M Serlin
– volume: 583
  start-page: 375
  year: 2020
  ident: 3028_CR14
  publication-title: Nature
  doi: 10.1038/s41586-020-2459-6
  contributor:
    fullname: P Stepanov
– volume: 15
  start-page: 1174
  year: 2019
  ident: 3028_CR23
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0606-5
  contributor:
    fullname: Y Choi
– volume: 99
  start-page: 075127
  year: 2019
  ident: 3028_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.075127
  contributor:
    fullname: YH Zhang
– volume: 573
  start-page: 91
  year: 2019
  ident: 3028_CR25
  publication-title: Nature
  doi: 10.1038/s41586-019-1460-4
  contributor:
    fullname: Y Jiang
– volume: 354
  start-page: 316
  year: 2016
  ident: 3028_CR33
  publication-title: Science
  doi: 10.1126/science.aag1715
  contributor:
    fullname: BE Feldman
– volume: 124
  start-page: 166601
  year: 2020
  ident: 3028_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.166601
  contributor:
    fullname: N Bultinck
– volume: 579
  start-page: 56
  year: 2020
  ident: 3028_CR10
  publication-title: Nature
  doi: 10.1038/s41586-020-2049-7
  contributor:
    fullname: G Chen
– volume: 360
  start-page: 62
  year: 2018
  ident: 3028_CR36
  publication-title: Science
  doi: 10.1126/science.aan8458
  contributor:
    fullname: EM Spanton
SSID ssj0005174
Score 2.737309
Snippet Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in...
SourceID osti
proquest
gale
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 610
SubjectTerms Bilayers
Boron
Boron nitride
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Correlation
Electric insulators
Electric properties
Electronic properties and materials
Electrons
Energy bands
Ferromagnetism
Graphene
Insulators
Magnetic fields
Phases
Properties
Spectrum analysis
Substrates
Symmetry
Topological insulators
Topology
Unit cell
Title Strongly correlated Chern insulators in magic-angle twisted bilayer graphene
URI https://www.ncbi.nlm.nih.gov/pubmed/33318688
https://www.proquest.com/docview/2476619766/abstract/
https://www.osti.gov/servlets/purl/1780898
Volume 588
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swEBdtymBfxto9mrULYpS9wMS2JFv-NJLQLBtbGH2wfBN6ORQyJ51dxv773dnOVo9uX2yDTra5--nuJJ3uCDkBCGTOmiyIEm8CzmGCoiWPAsFN4gFCUlg8O_x5nswu-ceFWOyQ2fYsDIZVbnVirajd2uIa-TDmKZgSMJ7JUBtcBbDV8N3mOsD6UbjP2hbT2CV7EUAUizjIya1gj7_yMW_3N5kclmDCJAbigj7CZtmxUK2e7q1hwP3bCa2N0fQhedB6kXTUiH2f7PjigNyrozlteUD22xFb0tdtWuk3j8inc1z1Xq5-UosVOVbgZDo6AZEVtA5Ix9l3CY_0mwZtGGgg9bT6gTBw1FytNDjntM5vDa98TC6npxeTWdDWUghswngFArDoO7jEcMtjx7RlMjQMi9pGIvVWC5Nj-U-R5JZpLrRNnA9DIxwTPsoz9oT0inXhDwn1cWoyLwzMrSR32mc5N9qJTOQiC4VkffJ2yz-1aVJmqHqrm0nVMFsBsxUyW8k-OUEOK0xFUWCsy1LflKUaXXydzNUo4Rkmu-FA9uIusg_nZx2iVy1RvkaA6PaEAfw2JrnqUB51KO3m6lrdan3ZaV02krrrNccdQhiZtvsVhI0CXwYT8lqMXLKVilIZygw7b9GkWr1Rqj8o75OnDcJ-85AxhrUN5LP_dzwi92MEcxQHMT8mver7jX8OjlNlBmQ3XaSDemTgdfp-QPZG0_F4Dvfx6fzL2S9kRBZV
link.rule.ids 230,315,786,790,891,12083,12250,12792,21416,27957,27958,31754,33301,33408,33779,43345,43614,43635,43840,74102,74371,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLagCLEXxMZl3QUsNHGToiWxnTpPqKqYOuj6wDqxN8u3VJO6tFsyIf495yQuW9DgLZKPk-jcbR9_h5ADUIHcWZNHSeZNxDksULTkSSS4yTyokBQW7w6fTLPxGf96Ls7DhlsVyirXPrFx1G5pcY_8MOUDCCUQPLPPq6sIu0bh6WpoofGQPOIMAg3eFB_dKfH4C4V5farJ5GEFgUti-S14IRyWnbgUvHNvCWb279SzCUFHz8jTkDvSYSvsTfLAl1vkcVPDaastshnstKIfApj0x-dkcop73fPFL2qxD8cCUktHRyCokjZl6LjmruCRXmrwgZEGUk_rnyh8R83FQkNKThtUa3jlC3J29GU2Gkehg0JkM8ZrYLvFjMFlhlueOqYtk7Fh2Mo2EQNvtTAFNv0UWWGZ5kLbzPk4NsIx4ZMiZy9Jr1yWfptQnw5M7oWBFZXkTvu84EY7kYtC5LGQrE8-rfmnVi1QhmoOuJlULbMVMFshs5XskwPksEIAihIrXOb6pqrUcPZjNFXDjOcIccOB7O19ZMen3ztE7wNRsayvtdXhXgH8NkJbdSh3O5R2dXGl7oy-64zOW0nd95q9DiHYo-1-BdVGQQaDMLwW65VsrZKBjGWOk9fapIK3qNStbvfJq1bD_vCQMYYdDeTO_ye-IU_Gs5OJmhxPv-2SjRQVO0mjlO-RXn194_chdarN68Y-fgP_zBCo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwELegE4gvExuvbgMsNPGSoiaxnTifUCmrNhjVtIfYN8uvVJNK2y2ZEP89d4nLCBp8i-RzEt397mH7fEfILkCgcNYUUZJ5E3EOCxQteRIJbjIPEJLC4t3hr5Ns_4x_PhfnIf-pCmmVK5vYGGq3sLhHPkh5Dq4EnGc2KENaxNGn8YflZYQdpPCkNbTTuEvWcp4JQPjax73J0fFNwsdfNZlXZ5xMDipwYxKTccEm4bDseKlgq3sLULp_B6KNQxo_JOshkqTDVvQb5I6fb5J7TUanrTbJRtDair4NpaXfPSKHJ7jzPZ39pBa7cswg0HR0BGKb0yYpHVfgFTzS7xosYqSB1NP6B0LBUXMx0xCg06bGNbzyMTkb752O9qPQTyGyGeM1CMFi_OAywy1PHdOWydgwbGybiNxbLUyJLUBFVlqmudA2cz6OjXBM-KQs2BPSmy_m_hmhPs1N4YWB9ZXkTvui5EY7UYhSFLGQrE_er_inlm3ZDNUcdzOpWmYrYLZCZivZJ7vIYYXlKOYo2Km-rio1PP02mqhhxgsseMOB7NVtZAcnxx2iN4GoXNRX2upwywB-GwtddSi3O5R2eXGp_hh93RmdtpK67TU7HULQTtv9CsJGQTyDRXktZi_ZWiW5jGWBk1doUsF2VOoG6X3ytEXYbx4yxrC_gdz6_8SX5D4ohzo8mHzZJg9SxHWSRinfIb366to_hziqNi-CgvwCQwQWgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly+correlated+Chern+insulators+in+magic-angle+twisted+bilayer+graphene&rft.jtitle=Nature+%28London%29&rft.au=Nuckolls%2C+Kevin+P&rft.au=Oh%2C+Myungchul&rft.au=Wong%2C+Dillon&rft.au=Lian%2C+Biao&rft.date=2020-12-24&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=588&rft.issue=7839&rft.spage=610&rft.epage=615A&rft_id=info:doi/10.1038%2Fs41586-020-3028-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon