Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction
Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the sp...
Saved in:
Published in | NeuroImage Vol. 46; no. 1; pp. 105 - 114 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.05.2009
Elsevier BV Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis.
The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual–auditory stimulation and the other based on bi-manual fingertapping sequences.
The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification. |
---|---|
AbstractList | Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis.
The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual–auditory stimulation and the other based on bi-manual fingertapping sequences.
The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification. Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual-auditory stimulation and the other based on bi-manual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification. Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual-auditory stimulation and the other based on bi-manual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification.Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual-auditory stimulation and the other based on bi-manual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification. |
Author | Mourão-Miranda, Janaina Fujita, André Sato, João Ricardo Thomaz, Carlos Eduardo Junior, Edson Amaro Martin, Maria da Graça Morais Brammer, Michael John |
Author_xml | – sequence: 1 givenname: João Ricardo surname: Sato fullname: Sato, João Ricardo email: jrsatobr@gmail.com, jsato@ime.usp.br organization: NIF/LIM44, Institute of Radiology, Hospital das Clínicas, University of São Paulo, Brazil – sequence: 2 givenname: André surname: Fujita fullname: Fujita, André organization: Institute of Medical Sciences, University of Tokyo, Japan – sequence: 3 givenname: Carlos Eduardo surname: Thomaz fullname: Thomaz, Carlos Eduardo organization: Centro Universitário da FEI, São Paulo, Brazil – sequence: 4 givenname: Maria da Graça Morais surname: Martin fullname: Martin, Maria da Graça Morais organization: NIF/LIM44, Institute of Radiology, Hospital das Clínicas, University of São Paulo, Brazil – sequence: 5 givenname: Janaina surname: Mourão-Miranda fullname: Mourão-Miranda, Janaina organization: Brain Image Analysis Unit, Institute of Psychiatry, Kings College London, UK – sequence: 6 givenname: Michael John surname: Brammer fullname: Brammer, Michael John organization: Brain Image Analysis Unit, Institute of Psychiatry, Kings College London, UK – sequence: 7 givenname: Edson Amaro surname: Junior fullname: Junior, Edson Amaro organization: NIF/LIM44, Institute of Radiology, Hospital das Clínicas, University of São Paulo, Brazil |
BackLink | https://cir.nii.ac.jp/crid/1870302167612674688$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/19457392$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEUhUeoiD7gLyBLIFgl-NozfmxQSykPKRULHjtkOc51cJh4gu2p6L_HaQpIWUC9sC3ru-den3PcHMQhYtMQoFOgIF6sphHHNIS1XeKUUaqnFKaUs3vNEVDdTXQn2cH23vGJAtCHzXHOK1pBaNWD5hB020mu2VHz9eLK9qMtIS7Jxy-XxMYFuZy9PiMhkvINCf4syboShkgGTxYhuxTWIdpYSMJlfc7ED4msMRbbk1xsQbJJuAg3NQ-b-972GR_dnifN5zcXn87fTWYf3r4_P5tNnOBtmXR1CQ-eCalc5zgCs561Qmo_Z6Ck4NA5TznVFLxWyvO21aBaanHOmdf8pHm-092k4ceIuZh1nRT73kYcxmxkK6iUjLNKPvsnKSTTVEmo4JM9cDWMKdZfGOhoHbQDsZV7fEuN8zUuzKa6Y9O1-W1wBV7uAJeGnBN640I1qXpTfQ29AWq2iZqV-Zuo2SZqKBh6M7DaE_jT4_-lT3elMYTadrtXM6uNDIQUUN1uhVIVe7XDsCZ0FTCZ7AJGV0NM6IpZDOEuvU73RFxfOzrbf8fru0n8Aj4E31E |
CitedBy_id | crossref_primary_10_1371_journal_pone_0081658 crossref_primary_10_3390_foods12030541 crossref_primary_10_1371_journal_pone_0244840 crossref_primary_10_5155_eurjchem_1_1_54_60_2 crossref_primary_10_1016_j_neuroimage_2010_05_081 crossref_primary_10_1007_s12021_014_9223_8 crossref_primary_10_1109_TMI_2009_2037756 crossref_primary_10_1093_braincomms_fcad234 crossref_primary_10_1016_j_patcog_2011_04_005 crossref_primary_10_1016_j_pscychresns_2015_03_004 crossref_primary_10_1016_j_pscychresns_2010_09_016 crossref_primary_10_1016_j_neuroimage_2011_10_003 crossref_primary_10_1155_2019_4259369 crossref_primary_10_1016_j_neuroimage_2011_12_053 crossref_primary_10_1155_2014_380531 crossref_primary_10_1002_brb3_292 crossref_primary_10_1111_cns_13048 crossref_primary_10_1016_j_neuroimage_2010_07_044 crossref_primary_10_1016_j_patcog_2011_09_011 crossref_primary_10_1016_j_jpsychires_2016_03_001 crossref_primary_10_1016_j_neuroimage_2011_11_002 crossref_primary_10_1038_s41598_018_23747_y crossref_primary_10_1016_j_neuroimage_2010_12_035 crossref_primary_10_1371_journal_pone_0015065 crossref_primary_10_1016_j_artmed_2010_03_003 crossref_primary_10_1016_j_media_2011_05_007 |
Cites_doi | 10.1006/nimg.1998.0425 10.1016/S0933-3657(02)00009-X 10.1002/hbm.20243 10.1162/089976600300015565 10.1214/aos/1176344552 10.1098/rstb.2002.1114 10.1002/hbm.1058 10.1016/j.neuroimage.2005.06.070 10.1016/S1053-8119(03)00049-1 10.1002/hbm.460020402 10.1146/annurev.physiol.66.082602.092845 10.1023/B:MACH.0000035475.85309.1b 10.1038/nature06713 10.1007/978-3-540-30135-6_36 10.1016/j.jneumeth.2008.04.008 10.1007/s10851-007-0033-6 10.1016/j.neuroimage.2008.06.024 10.1038/nn1445 10.1109/TCSVT.2003.821984 10.1111/j.1469-1809.1936.tb02137.x 10.1162/089976601750264965 10.1016/j.imavis.2006.07.011 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. Copyright Elsevier Limited May 15, 2009 |
Copyright_xml | – notice: 2009 Elsevier Inc. – notice: Copyright Elsevier Limited May 15, 2009 |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2009.01.032 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database (NC LIVE) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 114 |
ExternalDocumentID | 3244666511 19457392 10_1016_j_neuroimage_2009_01_032 S1053811909000962 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AGRNS ALIPV RYH AAYXX CITATION 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c634t-55556f1f2678c5c3e12af24679fb21876315cf030901f988f34491840aeb32f93 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 07:38:27 EDT 2025 Thu Aug 07 15:00:38 EDT 2025 Wed Aug 13 06:10:59 EDT 2025 Wed Feb 19 01:49:41 EST 2025 Tue Jul 01 02:14:23 EDT 2025 Thu Apr 24 22:51:04 EDT 2025 Thu Jun 26 22:04:22 EDT 2025 Fri Feb 23 02:30:10 EST 2024 Tue Aug 26 18:05:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c634t-55556f1f2678c5c3e12af24679fb21876315cf030901f988f34491840aeb32f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5566-1963 |
OpenAccessLink | https://cir.nii.ac.jp/crid/1870302167612674688 |
PMID | 19457392 |
PQID | 1506785162 |
PQPubID | 2031077 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_746077232 proquest_miscellaneous_67290871 proquest_journals_1506785162 pubmed_primary_19457392 crossref_citationtrail_10_1016_j_neuroimage_2009_01_032 crossref_primary_10_1016_j_neuroimage_2009_01_032 nii_cinii_1870302167612674688 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_01_032 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_01_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-05-15 |
PublicationDateYYYYMMDD | 2009-05-15 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2009 |
Publisher | Elsevier Inc Elsevier BV Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV – name: Elsevier Limited |
References | Thomaz, Duran, Busatto, Gillies, Rueckert (bib27) 2007; 29 Kay, Naselaris, Prenger, Gallant (bib11) 2008; 20 Hansen, Larsen, Nielsen, Strother, Rostrup, Savoy, Lange, Sidtis, Svarer, Paulson (bib7) 1999; 9 Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just, Newman (bib15) 2004; 57 Mourão-Miranda, Bokde, Born, Hampel, Stetter (bib16) 2005; 28 Cox, Savoy (bib2) 2003; 19 Thomaz, Gillies, Feitosa (bib24) 2004; 14 Logothetis (bib12) 2002; 357 Lukic, Wernick, Strother (bib14) 2002; 25 Haynes, Rees (bib9) 2005; 8 Nichols, Holmes (bib17) 2002; 15 Thomaz, Kitani, Gillies (bib26) 2006; 12 Efron, Tibshirani (bib4) 1993 Sato, Mourão-Miranda, Morais-Martin, Amaro, Morettin, Brammer (bib18) 2008; 172 Thomaz, Boardman, Hill, Hajnal, Edwards, Rutherford, Gillies, Rueckert (bib25) 2004; 3216 Logothetis, Wandell (bib13) 2004; 66 Efron (bib3) 1979; 7 Fisher (bib5) 1936; 7 Sato, Thomaz, Cardoso, Fujita, Martin, Amaro (bib19) 2008; 42 Scholkopf, Platt, Shawe-Taylor, Smola, Williamson (bib21) 2001; 13 Chen, Pereira, Lee, Strother, Mitchell (bib1) 2006; 27 Vapnik (bib29) 1988 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bib6) 1995; 2 Talairach, Tournoux (bib23) 1988 Thomaz, Boardman, Counsell, Hill, Hajnal, Edwards, Rutherford, Gillies, Rueckert (bib28) 2007; 25 Shawe-Taylor, Cristianini (bib22) 2000 Jollife (bib10) 1986 Hastie, Tibshirani, Friedman (bib8) 2001 Scholkopf, Smola, Williamson, Barlett (bib20) 2000; 12 Chen (10.1016/j.neuroimage.2009.01.032_bib1) 2006; 27 Lukic (10.1016/j.neuroimage.2009.01.032_bib14) 2002; 25 Cox (10.1016/j.neuroimage.2009.01.032_bib2) 2003; 19 Hastie (10.1016/j.neuroimage.2009.01.032_bib8) 2001 Logothetis (10.1016/j.neuroimage.2009.01.032_bib13) 2004; 66 Mourão-Miranda (10.1016/j.neuroimage.2009.01.032_bib16) 2005; 28 Thomaz (10.1016/j.neuroimage.2009.01.032_bib28) 2007; 25 Thomaz (10.1016/j.neuroimage.2009.01.032_bib24) 2004; 14 Thomaz (10.1016/j.neuroimage.2009.01.032_bib25) 2004; 3216 Sato (10.1016/j.neuroimage.2009.01.032_bib19) 2008; 42 Mitchell (10.1016/j.neuroimage.2009.01.032_bib15) 2004; 57 Jollife (10.1016/j.neuroimage.2009.01.032_bib10) 1986 Talairach (10.1016/j.neuroimage.2009.01.032_bib23) 1988 Scholkopf (10.1016/j.neuroimage.2009.01.032_bib21) 2001; 13 Kay (10.1016/j.neuroimage.2009.01.032_bib11) 2008; 20 Scholkopf (10.1016/j.neuroimage.2009.01.032_bib20) 2000; 12 Hansen (10.1016/j.neuroimage.2009.01.032_bib7) 1999; 9 Logothetis (10.1016/j.neuroimage.2009.01.032_bib12) 2002; 357 Thomaz (10.1016/j.neuroimage.2009.01.032_bib26) 2006; 12 Sato (10.1016/j.neuroimage.2009.01.032_bib18) 2008; 172 Haynes (10.1016/j.neuroimage.2009.01.032_bib9) 2005; 8 Thomaz (10.1016/j.neuroimage.2009.01.032_bib27) 2007; 29 Vapnik (10.1016/j.neuroimage.2009.01.032_bib29) 1988 Efron (10.1016/j.neuroimage.2009.01.032_bib4) 1993 Fisher (10.1016/j.neuroimage.2009.01.032_bib5) 1936; 7 Friston (10.1016/j.neuroimage.2009.01.032_bib6) 1995; 2 Efron (10.1016/j.neuroimage.2009.01.032_bib3) 1979; 7 Nichols (10.1016/j.neuroimage.2009.01.032_bib17) 2002; 15 Shawe-Taylor (10.1016/j.neuroimage.2009.01.032_bib22) 2000 Neuroimage. 2009 Aug 1;47(1):423-5 |
References_xml | – volume: 25 start-page: 981 year: 2007 end-page: 994 ident: bib28 article-title: A multivariate statistical analysis of the developing human brain in preterm infants publication-title: Image Vis. Comput. – volume: 13 start-page: 1443 year: 2001 end-page: 1471 ident: bib21 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput. – volume: 19 start-page: 261 year: 2003 end-page: 270 ident: bib2 article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: Neuroimage, – volume: 28 start-page: 980 year: 2005 end-page: 995 ident: bib16 article-title: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data publication-title: NeuroImage – year: 2000 ident: bib22 article-title: Support vector machines and other kernel-based learning methods – volume: 27 start-page: 452 year: 2006 end-page: 461 ident: bib1 article-title: Exploring predictive and reproducible modeling with the single-subject FIAC dataset publication-title: Hum. Brain Mapp. – volume: 9 start-page: 534 year: 1999 end-page: 544 ident: bib7 article-title: Generalizable patterns in neuroimaging: how many principal components? publication-title: NeuroImage – volume: 3216 start-page: 291 year: 2004 end-page: 300 ident: bib25 article-title: Using a maximum uncertainty LDA-based approach to classify and analyse MR brain images publication-title: Lect. Notes Comput. Sci. – volume: 2 start-page: 189 year: 1995 end-page: 210 ident: bib6 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – year: 1988 ident: bib23 article-title: Co-planar stereotaxic atlas of the human brain – year: 2001 ident: bib8 article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction – volume: 15 start-page: 1 year: 2002 end-page: 25 ident: bib17 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. – volume: 57 start-page: 145 year: 2004 end-page: 175 ident: bib15 article-title: Learning to decode cognitive states from brain images publication-title: Mach. Learn. – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: bib5 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. – volume: 29 start-page: 95 year: 2007 end-page: 106 ident: bib27 article-title: Multivariate statistical differences of MRI samples of the human brain publication-title: J. Math. Imaging Vis. – volume: 12 start-page: 7 year: 2006 end-page: 18 ident: bib26 article-title: A maximum uncertainty LDA-based approach for limited sample size problems — with application to face recognition publication-title: J. Braz. Comput. Soc. – volume: 25 start-page: 69 year: 2002 end-page: 88 ident: bib14 article-title: An evaluation of methods for detecting brain activations from functional neuroimages publication-title: Artif. Intell. Med. – volume: 357 start-page: 1003 year: 2002 end-page: 1037 ident: bib12 article-title: The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal publication-title: Philos. Trans. R. Soc. Lond., B Biol. Sci. – volume: 8 start-page: 686 year: 2005 end-page: 691 ident: bib9 article-title: Predicting the orientation of invisible stimuli from activity in human primary visual cortex publication-title: Nat. Neurosci. – volume: 12 start-page: 1207 year: 2000 end-page: 1245 ident: bib20 article-title: New support vector algorithms publication-title: Neural Comput. – volume: 66 start-page: 735 year: 2004 end-page: 769 ident: bib13 article-title: Interpreting the BOLD signal publication-title: Annu. Rev. Physiol. – year: 1986 ident: bib10 article-title: Principal components analysis – volume: 42 start-page: 1473 year: 2008 end-page: 1480 ident: bib19 article-title: Hyperplane navigation: a method to set individual scores in fMRI group datasets publication-title: NeuroImage. – year: 1993 ident: bib4 article-title: An introduction to the bootstrap – volume: 14 start-page: 214 year: 2004 end-page: 223 ident: bib24 article-title: A new covariance estimate for Bayesian classifiers in biometric recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 172 start-page: 94 year: 2008 end-page: 104 ident: bib18 article-title: The impact of functional connectivity changes on support vector machines mapping of fMRI data publication-title: J. Neurosci. Methods – volume: 20 start-page: 352 year: 2008 end-page: 355 ident: bib11 article-title: Identifying natural images from human brain activity publication-title: Nature – volume: 7 start-page: 1 year: 1979 end-page: 26 ident: bib3 article-title: Bootstrap methods: another look at the jackknife publication-title: Ann. Stat. – year: 1988 ident: bib29 article-title: Statistical learning theory – volume: 9 start-page: 534 issue: 5 year: 1999 ident: 10.1016/j.neuroimage.2009.01.032_bib7 article-title: Generalizable patterns in neuroimaging: how many principal components? publication-title: NeuroImage doi: 10.1006/nimg.1998.0425 – volume: 25 start-page: 69 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2009.01.032_bib14 article-title: An evaluation of methods for detecting brain activations from functional neuroimages publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(02)00009-X – volume: 27 start-page: 452 issue: 5 year: 2006 ident: 10.1016/j.neuroimage.2009.01.032_bib1 article-title: Exploring predictive and reproducible modeling with the single-subject FIAC dataset publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20243 – year: 1993 ident: 10.1016/j.neuroimage.2009.01.032_bib4 – volume: 12 start-page: 1207 year: 2000 ident: 10.1016/j.neuroimage.2009.01.032_bib20 article-title: New support vector algorithms publication-title: Neural Comput. doi: 10.1162/089976600300015565 – volume: 7 start-page: 1 year: 1979 ident: 10.1016/j.neuroimage.2009.01.032_bib3 article-title: Bootstrap methods: another look at the jackknife publication-title: Ann. Stat. doi: 10.1214/aos/1176344552 – volume: 12 start-page: 7 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2009.01.032_bib26 article-title: A maximum uncertainty LDA-based approach for limited sample size problems — with application to face recognition publication-title: J. Braz. Comput. Soc. – year: 2001 ident: 10.1016/j.neuroimage.2009.01.032_bib8 – volume: 357 start-page: 1003 issue: 1424 year: 2002 ident: 10.1016/j.neuroimage.2009.01.032_bib12 article-title: The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal publication-title: Philos. Trans. R. Soc. Lond., B Biol. Sci. doi: 10.1098/rstb.2002.1114 – volume: 15 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2009.01.032_bib17 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1058 – volume: 28 start-page: 980 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2009.01.032_bib16 article-title: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.06.070 – year: 2000 ident: 10.1016/j.neuroimage.2009.01.032_bib22 – volume: 19 start-page: 261 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2009.01.032_bib2 article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: Neuroimage, doi: 10.1016/S1053-8119(03)00049-1 – volume: 2 start-page: 189 year: 1995 ident: 10.1016/j.neuroimage.2009.01.032_bib6 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 – volume: 66 start-page: 735 year: 2004 ident: 10.1016/j.neuroimage.2009.01.032_bib13 article-title: Interpreting the BOLD signal publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.66.082602.092845 – volume: 57 start-page: 145 year: 2004 ident: 10.1016/j.neuroimage.2009.01.032_bib15 article-title: Learning to decode cognitive states from brain images publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 20 start-page: 352 issue: 452(7185) year: 2008 ident: 10.1016/j.neuroimage.2009.01.032_bib11 article-title: Identifying natural images from human brain activity publication-title: Nature doi: 10.1038/nature06713 – volume: 3216 start-page: 291 year: 2004 ident: 10.1016/j.neuroimage.2009.01.032_bib25 article-title: Using a maximum uncertainty LDA-based approach to classify and analyse MR brain images publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-30135-6_36 – year: 1986 ident: 10.1016/j.neuroimage.2009.01.032_bib10 – year: 1988 ident: 10.1016/j.neuroimage.2009.01.032_bib23 – volume: 172 start-page: 94 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2009.01.032_bib18 article-title: The impact of functional connectivity changes on support vector machines mapping of fMRI data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2008.04.008 – volume: 29 start-page: 95 year: 2007 ident: 10.1016/j.neuroimage.2009.01.032_bib27 article-title: Multivariate statistical differences of MRI samples of the human brain publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-007-0033-6 – volume: 42 start-page: 1473 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2009.01.032_bib19 article-title: Hyperplane navigation: a method to set individual scores in fMRI group datasets publication-title: NeuroImage. doi: 10.1016/j.neuroimage.2008.06.024 – volume: 8 start-page: 686 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2009.01.032_bib9 article-title: Predicting the orientation of invisible stimuli from activity in human primary visual cortex publication-title: Nat. Neurosci. doi: 10.1038/nn1445 – volume: 14 start-page: 214 year: 2004 ident: 10.1016/j.neuroimage.2009.01.032_bib24 article-title: A new covariance estimate for Bayesian classifiers in biometric recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2003.821984 – volume: 7 start-page: 179 year: 1936 ident: 10.1016/j.neuroimage.2009.01.032_bib5 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 13 start-page: 1443 year: 2001 ident: 10.1016/j.neuroimage.2009.01.032_bib21 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput. doi: 10.1162/089976601750264965 – volume: 25 start-page: 981 issue: 6 year: 2007 ident: 10.1016/j.neuroimage.2009.01.032_bib28 article-title: A multivariate statistical analysis of the developing human brain in preterm infants publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2006.07.011 – year: 1988 ident: 10.1016/j.neuroimage.2009.01.032_bib29 – reference: - Neuroimage. 2009 Aug 1;47(1):423-5 |
SSID | ssj0009148 ssib001088192 ssib057766155 ssib044495972 ssib042110531 ssib001197117 |
Score | 2.1349735 |
Snippet | Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states,... |
SourceID | proquest pubmed crossref nii elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105 |
SubjectTerms | Acoustic Stimulation Adolescent Adult Brain Brain - physiology Data compression Female Humans Image Interpretation, Computer-Assisted Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging Male Medical imaging Middle Aged Pattern recognition Pattern Recognition, Automated Pattern Recognition, Automated - methods Photic Stimulation Principal Component Analysis Principal components analysis Psychomotor Performance Psychomotor Performance - physiology Studies Young Adult |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbGDogLgvGrsA0fuGaNYzuJxWkamyZEuYyhXZDlJDbKBG7VdVf-dj7HTqsdKlVaDz20eVHy_Py978nvByGfrGWIdUqVtXCfmeCVzIwJMY9rVKeqruRDLczse3l5Lb7eyJs9cjbWwoS0yoT9EdMHtE6_TJM2p4u-n16BGcDdwKGpgYgHHBaiClZ-8m-T5qGYiOVwkmfh6pTNE3O8hp6R_V_s3NS5kp3kvNjmop74vt9ORAeHdPGCPE9Mkp7Gh31J9qw_IE9n6az8Ffl1nhp5-9_06ueMGt_R2bcvp7T3FKyPApWXsaqBzh0N1blxwpdf0TCtAdZIQWhpbP5Ph8IjuliG2weZ1-T64vzH2WWWhilgFbhYZRKf0jFXwDu1suVYI-MKwKRyDdw8YIbJ1oUDl5w5VdeOC6FC-GcQbhdO8Tdk38-9fUeotU468BJhRCdk2xnT1Ty3phFloURTT0g16k-3qdN4GHjxR48pZbd6o_kwCFPpnGlofkLYWnIRu23sIKPGJdJjNSnwT8Ml7CD7eS37wOp2lD6CReAVwzdUCOUVrKxg9CXMv4YeDkdb0QkZ7nTo6FiB5pYQ_7j-G3s6HNQYb-f3d7pExJMjkp0QuuUK3D9HXBSe4W00wo2-lJAVWO_7R73bB_IsnpvJjMlDsr9a3tsj0K9Vczzsr_9-PSpq priority: 102 providerName: Elsevier |
Title | Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811909000962 https://dx.doi.org/10.1016/j.neuroimage.2009.01.032 https://cir.nii.ac.jp/crid/1870302167612674688 https://www.ncbi.nlm.nih.gov/pubmed/19457392 https://www.proquest.com/docview/1506785162 https://www.proquest.com/docview/67290871 https://www.proquest.com/docview/746077232 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfoJiFeEN_r2IofeM2IE9uJtYepQKfykQoBQ31BlpPYqIilXdu97m_fXey0T0XNQyI1uTQ5n-8j5_sdIW-tZRDrSBVVYD4jnmYiMgZjHleqWmW1TNtamGIix1f881RMwwe3VVhW2enEVlHX8wq_kb9DJDxsJC-Ti8VNhF2jMLsaWmj0yCFCl6FUZ9NsC7rLuC-FE2mUwwVhJY9f39XiRc6uYdYG1Ep2FqfJLvPUa2az3U5oa4wun5DHwYukQz_sT8kD2zwjD4uQJ39Ofo8CiHfzh_74VVDT1LT4-nFIZw0Fj4-CRl76igY6dxQrc313r2ZNsVMDSCIFZ5Z64H_aFh3RxRJvjzQvyNXl6OeHcRQaKcAIpHwdCdikYy4BDlaiSmF8jEtARSpXgokHFcNE5TDZEjOn8tylnCsM_QyE2olT6Uty0Mwbe0SotU448Em44TUXVW1MnaexNSWXieJl3idZxz9dBZRxbHbxT3fLyf7qLeexCabSMdPA-T5hG8qFR9rYg0Z1Q6S7SlLQfRrMwR605xva4G14L2JP6lOQCHhF3AMLgXkJkxkIvATRz4EPJ52s6KAVVnorw33yZnMa5jMmaUxj57crLSHaiSGK7RO64wq4fwwxET7DKy-EW34pLjLweI___--vySOfFBMREyfkYL28tafgW63LAemd3bFBO40G5HD46ct4Asf3o8m37_BrcTe6B_fDJGU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXxDeFjfkBHgOxYzuxEEIT29SxZi9sqC_IOImNisAtbSfEP8XfyF2ctE9FfVkf8tKe417u43c53x0hL51jEOsondTgPhOR5TKxFmMeX-lG543K2lqY8lwNL8XHsRzvkL99LQweq-xtYmuom2mN78jfYCc8HCSv-PvZrwSnRmF2tR-hEcXizP35DSHb4t3pETzfV5yfHF98GCbdVAHYTiaWiYSP8sxzWK6WdQabtZ6DvdC-An8H-sZk7THzkDKvi8JnQmiMgyzEndxj8yUw-TfB8aYY7OXjfN3kl4lYeiezpGBMdyeH4nmytj_l5CdYia5LJnudZnyTO7wRJpPNoLd1fif3yN0OtdLDKGb3yY4LD8itssvLPyRfjrum4eEb_fS5pDY0tBwdHdJJoIAwKXiAeaygoFNPsRI4ThMLS4qTIUDyKYBnGgcN0LbIic7muDzSPCKX18Lix2Q3TIN7SqhzXnrAQMKKRsi6sbYpstTZSiiuRVUMSN7zz9RdV3McrvHD9MfXvps153HopjYpM8D5AWErylns7LEFje4fkekrV8HWGnA_W9C-XdF26Caili2p90Ei4C_iFVgIzONM5aBgClStAD7s9bJiOiu0MGudGZCD1ddgPzApZIObXi2Mgugqhah5QOiGX8D6KcRguIcnUQjX_NJC5oCwn_3_7gfk9vCiHJnR6fnZc3InJuRkwuQe2V3Or9w-4Lpl9aJVJkq-Xrf2_gMJglk1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1BqdNHFBfNOxMR_gGBY7dhILITRoq42t1QQM7YI8J7FR0UhL2wnx1_h1vBc77amol-WQS_Ic5-V95n0R8tJaBr5OqqIS1GckkkxGxqDP4wpVqaxKk6YWZjhKjy_Ex0t5uUX-trUwmFbZysRGUFeTEv-RH2InPBwkn_JDF9IiznuDd9NfEU6QwkhrO07Dk8ip_fMb3Lf525MefOtXnA_6Xz4cR2HCAGwtEYtIwpE65jgsXcoygY0bx0F2KFeA7gPeY7J0GIWImVN57hIhFPpEBnxQ7rARE4j_7Qy9og7Zft8fnX9atfxlwhfiySTKGVMhj8hnlzXdKsc_QWaEnpnsdZzwdcrxTj0erzeBG1U4uE_uBRuWHnmie0C2bP2Q7AxDlP4R-dYPLcTr7_Tz1yE1dUWHZ70jOq4p2JsUkDrz9RR04ijWBfvZYvWC4pwI4AMKpjT1YwdoU_JEpzNcHmEek4tbQfIT0qkntX1GqLVOOrCIhBGVkGVlTJUnsTWFSLkSRd4lWYs_XYYe5zhq41q3yWw_9ArzOIJT6ZhpwHyXsCXk1Pf52ABGtZ9It3WsIHk1KKMNYN8sYYOt422YDaH3gSLgFfEMKATkcZZmwG4pMF4OeNhraUUHmTTXKw7qkoPlZZAmGCIytZ3czHUKvlYMPnSX0DV3wPoxeGS4h6eeCFf4UkJmYG_v_v_pB2QHOFefnYxOn5O7PjonIyb3SGcxu7H7YOQtiheBmyi5um0G_gdkH17Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+SVM+and+MLDA+in+the+extraction+of+discriminant+regions+for+mental+state+prediction&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sato%2C+Jo%C3%A3o+Ricardo&rft.au=Fujita%2C+Andr%C3%A9&rft.au=Thomaz%2C+Carlos+Eduardo&rft.au=Martin%2C+Maria+da+Gra%C3%A7a+Morais&rft.date=2009-05-15&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=46&rft.issue=1&rft.spage=105&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.01.032&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |