Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction

Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the sp...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage Vol. 46; no. 1; pp. 105 - 114
Main Authors Sato, João Ricardo, Fujita, André, Thomaz, Carlos Eduardo, Martin, Maria da Graça Morais, Mourão-Miranda, Janaina, Brammer, Michael John, Junior, Edson Amaro
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.05.2009
Elsevier BV
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual–auditory stimulation and the other based on bi-manual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification.
AbstractList Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual–auditory stimulation and the other based on bi-manual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification.
Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual-auditory stimulation and the other based on bi-manual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification.
Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual-auditory stimulation and the other based on bi-manual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification.Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual-auditory stimulation and the other based on bi-manual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification.
Author Mourão-Miranda, Janaina
Fujita, André
Sato, João Ricardo
Thomaz, Carlos Eduardo
Junior, Edson Amaro
Martin, Maria da Graça Morais
Brammer, Michael John
Author_xml – sequence: 1
  givenname: João Ricardo
  surname: Sato
  fullname: Sato, João Ricardo
  email: jrsatobr@gmail.com, jsato@ime.usp.br
  organization: NIF/LIM44, Institute of Radiology, Hospital das Clínicas, University of São Paulo, Brazil
– sequence: 2
  givenname: André
  surname: Fujita
  fullname: Fujita, André
  organization: Institute of Medical Sciences, University of Tokyo, Japan
– sequence: 3
  givenname: Carlos Eduardo
  surname: Thomaz
  fullname: Thomaz, Carlos Eduardo
  organization: Centro Universitário da FEI, São Paulo, Brazil
– sequence: 4
  givenname: Maria da Graça Morais
  surname: Martin
  fullname: Martin, Maria da Graça Morais
  organization: NIF/LIM44, Institute of Radiology, Hospital das Clínicas, University of São Paulo, Brazil
– sequence: 5
  givenname: Janaina
  surname: Mourão-Miranda
  fullname: Mourão-Miranda, Janaina
  organization: Brain Image Analysis Unit, Institute of Psychiatry, Kings College London, UK
– sequence: 6
  givenname: Michael John
  surname: Brammer
  fullname: Brammer, Michael John
  organization: Brain Image Analysis Unit, Institute of Psychiatry, Kings College London, UK
– sequence: 7
  givenname: Edson Amaro
  surname: Junior
  fullname: Junior, Edson Amaro
  organization: NIF/LIM44, Institute of Radiology, Hospital das Clínicas, University of São Paulo, Brazil
BackLink https://cir.nii.ac.jp/crid/1870302167612674688$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/19457392$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhUeoiD7gLyBLIFgl-NozfmxQSykPKRULHjtkOc51cJh4gu2p6L_HaQpIWUC9sC3ru-den3PcHMQhYtMQoFOgIF6sphHHNIS1XeKUUaqnFKaUs3vNEVDdTXQn2cH23vGJAtCHzXHOK1pBaNWD5hB020mu2VHz9eLK9qMtIS7Jxy-XxMYFuZy9PiMhkvINCf4syboShkgGTxYhuxTWIdpYSMJlfc7ED4msMRbbk1xsQbJJuAg3NQ-b-972GR_dnifN5zcXn87fTWYf3r4_P5tNnOBtmXR1CQ-eCalc5zgCs561Qmo_Z6Ck4NA5TznVFLxWyvO21aBaanHOmdf8pHm-092k4ceIuZh1nRT73kYcxmxkK6iUjLNKPvsnKSTTVEmo4JM9cDWMKdZfGOhoHbQDsZV7fEuN8zUuzKa6Y9O1-W1wBV7uAJeGnBN640I1qXpTfQ29AWq2iZqV-Zuo2SZqKBh6M7DaE_jT4_-lT3elMYTadrtXM6uNDIQUUN1uhVIVe7XDsCZ0FTCZ7AJGV0NM6IpZDOEuvU73RFxfOzrbf8fru0n8Aj4E31E
CitedBy_id crossref_primary_10_1371_journal_pone_0081658
crossref_primary_10_3390_foods12030541
crossref_primary_10_1371_journal_pone_0244840
crossref_primary_10_5155_eurjchem_1_1_54_60_2
crossref_primary_10_1016_j_neuroimage_2010_05_081
crossref_primary_10_1007_s12021_014_9223_8
crossref_primary_10_1109_TMI_2009_2037756
crossref_primary_10_1093_braincomms_fcad234
crossref_primary_10_1016_j_patcog_2011_04_005
crossref_primary_10_1016_j_pscychresns_2015_03_004
crossref_primary_10_1016_j_pscychresns_2010_09_016
crossref_primary_10_1016_j_neuroimage_2011_10_003
crossref_primary_10_1155_2019_4259369
crossref_primary_10_1016_j_neuroimage_2011_12_053
crossref_primary_10_1155_2014_380531
crossref_primary_10_1002_brb3_292
crossref_primary_10_1111_cns_13048
crossref_primary_10_1016_j_neuroimage_2010_07_044
crossref_primary_10_1016_j_patcog_2011_09_011
crossref_primary_10_1016_j_jpsychires_2016_03_001
crossref_primary_10_1016_j_neuroimage_2011_11_002
crossref_primary_10_1038_s41598_018_23747_y
crossref_primary_10_1016_j_neuroimage_2010_12_035
crossref_primary_10_1371_journal_pone_0015065
crossref_primary_10_1016_j_artmed_2010_03_003
crossref_primary_10_1016_j_media_2011_05_007
Cites_doi 10.1006/nimg.1998.0425
10.1016/S0933-3657(02)00009-X
10.1002/hbm.20243
10.1162/089976600300015565
10.1214/aos/1176344552
10.1098/rstb.2002.1114
10.1002/hbm.1058
10.1016/j.neuroimage.2005.06.070
10.1016/S1053-8119(03)00049-1
10.1002/hbm.460020402
10.1146/annurev.physiol.66.082602.092845
10.1023/B:MACH.0000035475.85309.1b
10.1038/nature06713
10.1007/978-3-540-30135-6_36
10.1016/j.jneumeth.2008.04.008
10.1007/s10851-007-0033-6
10.1016/j.neuroimage.2008.06.024
10.1038/nn1445
10.1109/TCSVT.2003.821984
10.1111/j.1469-1809.1936.tb02137.x
10.1162/089976601750264965
10.1016/j.imavis.2006.07.011
ContentType Journal Article
Copyright 2009 Elsevier Inc.
Copyright Elsevier Limited May 15, 2009
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: Copyright Elsevier Limited May 15, 2009
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2009.01.032
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
ProQuest Psychology Database (NC LIVE)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList

ProQuest One Psychology
MEDLINE
MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 114
ExternalDocumentID 3244666511
19457392
10_1016_j_neuroimage_2009_01_032
S1053811909000962
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AGRNS
ALIPV
RYH
AAYXX
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c634t-55556f1f2678c5c3e12af24679fb21876315cf030901f988f34491840aeb32f93
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 07:38:27 EDT 2025
Thu Aug 07 15:00:38 EDT 2025
Wed Aug 13 06:10:59 EDT 2025
Wed Feb 19 01:49:41 EST 2025
Tue Jul 01 02:14:23 EDT 2025
Thu Apr 24 22:51:04 EDT 2025
Thu Jun 26 22:04:22 EDT 2025
Fri Feb 23 02:30:10 EST 2024
Tue Aug 26 18:05:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-55556f1f2678c5c3e12af24679fb21876315cf030901f988f34491840aeb32f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5566-1963
OpenAccessLink https://cir.nii.ac.jp/crid/1870302167612674688
PMID 19457392
PQID 1506785162
PQPubID 2031077
PageCount 10
ParticipantIDs proquest_miscellaneous_746077232
proquest_miscellaneous_67290871
proquest_journals_1506785162
pubmed_primary_19457392
crossref_citationtrail_10_1016_j_neuroimage_2009_01_032
crossref_primary_10_1016_j_neuroimage_2009_01_032
nii_cinii_1870302167612674688
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_01_032
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_01_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-05-15
PublicationDateYYYYMMDD 2009-05-15
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage
PublicationTitleAlternate Neuroimage
PublicationYear 2009
Publisher Elsevier Inc
Elsevier BV
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
– name: Elsevier Limited
References Thomaz, Duran, Busatto, Gillies, Rueckert (bib27) 2007; 29
Kay, Naselaris, Prenger, Gallant (bib11) 2008; 20
Hansen, Larsen, Nielsen, Strother, Rostrup, Savoy, Lange, Sidtis, Svarer, Paulson (bib7) 1999; 9
Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just, Newman (bib15) 2004; 57
Mourão-Miranda, Bokde, Born, Hampel, Stetter (bib16) 2005; 28
Cox, Savoy (bib2) 2003; 19
Thomaz, Gillies, Feitosa (bib24) 2004; 14
Logothetis (bib12) 2002; 357
Lukic, Wernick, Strother (bib14) 2002; 25
Haynes, Rees (bib9) 2005; 8
Nichols, Holmes (bib17) 2002; 15
Thomaz, Kitani, Gillies (bib26) 2006; 12
Efron, Tibshirani (bib4) 1993
Sato, Mourão-Miranda, Morais-Martin, Amaro, Morettin, Brammer (bib18) 2008; 172
Thomaz, Boardman, Hill, Hajnal, Edwards, Rutherford, Gillies, Rueckert (bib25) 2004; 3216
Logothetis, Wandell (bib13) 2004; 66
Efron (bib3) 1979; 7
Fisher (bib5) 1936; 7
Sato, Thomaz, Cardoso, Fujita, Martin, Amaro (bib19) 2008; 42
Scholkopf, Platt, Shawe-Taylor, Smola, Williamson (bib21) 2001; 13
Chen, Pereira, Lee, Strother, Mitchell (bib1) 2006; 27
Vapnik (bib29) 1988
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bib6) 1995; 2
Talairach, Tournoux (bib23) 1988
Thomaz, Boardman, Counsell, Hill, Hajnal, Edwards, Rutherford, Gillies, Rueckert (bib28) 2007; 25
Shawe-Taylor, Cristianini (bib22) 2000
Jollife (bib10) 1986
Hastie, Tibshirani, Friedman (bib8) 2001
Scholkopf, Smola, Williamson, Barlett (bib20) 2000; 12
Chen (10.1016/j.neuroimage.2009.01.032_bib1) 2006; 27
Lukic (10.1016/j.neuroimage.2009.01.032_bib14) 2002; 25
Cox (10.1016/j.neuroimage.2009.01.032_bib2) 2003; 19
Hastie (10.1016/j.neuroimage.2009.01.032_bib8) 2001
Logothetis (10.1016/j.neuroimage.2009.01.032_bib13) 2004; 66
Mourão-Miranda (10.1016/j.neuroimage.2009.01.032_bib16) 2005; 28
Thomaz (10.1016/j.neuroimage.2009.01.032_bib28) 2007; 25
Thomaz (10.1016/j.neuroimage.2009.01.032_bib24) 2004; 14
Thomaz (10.1016/j.neuroimage.2009.01.032_bib25) 2004; 3216
Sato (10.1016/j.neuroimage.2009.01.032_bib19) 2008; 42
Mitchell (10.1016/j.neuroimage.2009.01.032_bib15) 2004; 57
Jollife (10.1016/j.neuroimage.2009.01.032_bib10) 1986
Talairach (10.1016/j.neuroimage.2009.01.032_bib23) 1988
Scholkopf (10.1016/j.neuroimage.2009.01.032_bib21) 2001; 13
Kay (10.1016/j.neuroimage.2009.01.032_bib11) 2008; 20
Scholkopf (10.1016/j.neuroimage.2009.01.032_bib20) 2000; 12
Hansen (10.1016/j.neuroimage.2009.01.032_bib7) 1999; 9
Logothetis (10.1016/j.neuroimage.2009.01.032_bib12) 2002; 357
Thomaz (10.1016/j.neuroimage.2009.01.032_bib26) 2006; 12
Sato (10.1016/j.neuroimage.2009.01.032_bib18) 2008; 172
Haynes (10.1016/j.neuroimage.2009.01.032_bib9) 2005; 8
Thomaz (10.1016/j.neuroimage.2009.01.032_bib27) 2007; 29
Vapnik (10.1016/j.neuroimage.2009.01.032_bib29) 1988
Efron (10.1016/j.neuroimage.2009.01.032_bib4) 1993
Fisher (10.1016/j.neuroimage.2009.01.032_bib5) 1936; 7
Friston (10.1016/j.neuroimage.2009.01.032_bib6) 1995; 2
Efron (10.1016/j.neuroimage.2009.01.032_bib3) 1979; 7
Nichols (10.1016/j.neuroimage.2009.01.032_bib17) 2002; 15
Shawe-Taylor (10.1016/j.neuroimage.2009.01.032_bib22) 2000
Neuroimage. 2009 Aug 1;47(1):423-5
References_xml – volume: 25
  start-page: 981
  year: 2007
  end-page: 994
  ident: bib28
  article-title: A multivariate statistical analysis of the developing human brain in preterm infants
  publication-title: Image Vis. Comput.
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: bib21
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
– volume: 19
  start-page: 261
  year: 2003
  end-page: 270
  ident: bib2
  article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: Neuroimage,
– volume: 28
  start-page: 980
  year: 2005
  end-page: 995
  ident: bib16
  article-title: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
  publication-title: NeuroImage
– year: 2000
  ident: bib22
  article-title: Support vector machines and other kernel-based learning methods
– volume: 27
  start-page: 452
  year: 2006
  end-page: 461
  ident: bib1
  article-title: Exploring predictive and reproducible modeling with the single-subject FIAC dataset
  publication-title: Hum. Brain Mapp.
– volume: 9
  start-page: 534
  year: 1999
  end-page: 544
  ident: bib7
  article-title: Generalizable patterns in neuroimaging: how many principal components?
  publication-title: NeuroImage
– volume: 3216
  start-page: 291
  year: 2004
  end-page: 300
  ident: bib25
  article-title: Using a maximum uncertainty LDA-based approach to classify and analyse MR brain images
  publication-title: Lect. Notes Comput. Sci.
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  ident: bib6
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– year: 1988
  ident: bib23
  article-title: Co-planar stereotaxic atlas of the human brain
– year: 2001
  ident: bib8
  article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction
– volume: 15
  start-page: 1
  year: 2002
  end-page: 25
  ident: bib17
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
– volume: 57
  start-page: 145
  year: 2004
  end-page: 175
  ident: bib15
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach. Learn.
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: bib5
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
– volume: 29
  start-page: 95
  year: 2007
  end-page: 106
  ident: bib27
  article-title: Multivariate statistical differences of MRI samples of the human brain
  publication-title: J. Math. Imaging Vis.
– volume: 12
  start-page: 7
  year: 2006
  end-page: 18
  ident: bib26
  article-title: A maximum uncertainty LDA-based approach for limited sample size problems — with application to face recognition
  publication-title: J. Braz. Comput. Soc.
– volume: 25
  start-page: 69
  year: 2002
  end-page: 88
  ident: bib14
  article-title: An evaluation of methods for detecting brain activations from functional neuroimages
  publication-title: Artif. Intell. Med.
– volume: 357
  start-page: 1003
  year: 2002
  end-page: 1037
  ident: bib12
  article-title: The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal
  publication-title: Philos. Trans. R. Soc. Lond., B Biol. Sci.
– volume: 8
  start-page: 686
  year: 2005
  end-page: 691
  ident: bib9
  article-title: Predicting the orientation of invisible stimuli from activity in human primary visual cortex
  publication-title: Nat. Neurosci.
– volume: 12
  start-page: 1207
  year: 2000
  end-page: 1245
  ident: bib20
  article-title: New support vector algorithms
  publication-title: Neural Comput.
– volume: 66
  start-page: 735
  year: 2004
  end-page: 769
  ident: bib13
  article-title: Interpreting the BOLD signal
  publication-title: Annu. Rev. Physiol.
– year: 1986
  ident: bib10
  article-title: Principal components analysis
– volume: 42
  start-page: 1473
  year: 2008
  end-page: 1480
  ident: bib19
  article-title: Hyperplane navigation: a method to set individual scores in fMRI group datasets
  publication-title: NeuroImage.
– year: 1993
  ident: bib4
  article-title: An introduction to the bootstrap
– volume: 14
  start-page: 214
  year: 2004
  end-page: 223
  ident: bib24
  article-title: A new covariance estimate for Bayesian classifiers in biometric recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 172
  start-page: 94
  year: 2008
  end-page: 104
  ident: bib18
  article-title: The impact of functional connectivity changes on support vector machines mapping of fMRI data
  publication-title: J. Neurosci. Methods
– volume: 20
  start-page: 352
  year: 2008
  end-page: 355
  ident: bib11
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
– volume: 7
  start-page: 1
  year: 1979
  end-page: 26
  ident: bib3
  article-title: Bootstrap methods: another look at the jackknife
  publication-title: Ann. Stat.
– year: 1988
  ident: bib29
  article-title: Statistical learning theory
– volume: 9
  start-page: 534
  issue: 5
  year: 1999
  ident: 10.1016/j.neuroimage.2009.01.032_bib7
  article-title: Generalizable patterns in neuroimaging: how many principal components?
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0425
– volume: 25
  start-page: 69
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2009.01.032_bib14
  article-title: An evaluation of methods for detecting brain activations from functional neuroimages
  publication-title: Artif. Intell. Med.
  doi: 10.1016/S0933-3657(02)00009-X
– volume: 27
  start-page: 452
  issue: 5
  year: 2006
  ident: 10.1016/j.neuroimage.2009.01.032_bib1
  article-title: Exploring predictive and reproducible modeling with the single-subject FIAC dataset
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20243
– year: 1993
  ident: 10.1016/j.neuroimage.2009.01.032_bib4
– volume: 12
  start-page: 1207
  year: 2000
  ident: 10.1016/j.neuroimage.2009.01.032_bib20
  article-title: New support vector algorithms
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015565
– volume: 7
  start-page: 1
  year: 1979
  ident: 10.1016/j.neuroimage.2009.01.032_bib3
  article-title: Bootstrap methods: another look at the jackknife
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344552
– volume: 12
  start-page: 7
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2009.01.032_bib26
  article-title: A maximum uncertainty LDA-based approach for limited sample size problems — with application to face recognition
  publication-title: J. Braz. Comput. Soc.
– year: 2001
  ident: 10.1016/j.neuroimage.2009.01.032_bib8
– volume: 357
  start-page: 1003
  issue: 1424
  year: 2002
  ident: 10.1016/j.neuroimage.2009.01.032_bib12
  article-title: The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal
  publication-title: Philos. Trans. R. Soc. Lond., B Biol. Sci.
  doi: 10.1098/rstb.2002.1114
– volume: 15
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2009.01.032_bib17
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1058
– volume: 28
  start-page: 980
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2009.01.032_bib16
  article-title: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.06.070
– year: 2000
  ident: 10.1016/j.neuroimage.2009.01.032_bib22
– volume: 19
  start-page: 261
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2009.01.032_bib2
  article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: Neuroimage,
  doi: 10.1016/S1053-8119(03)00049-1
– volume: 2
  start-page: 189
  year: 1995
  ident: 10.1016/j.neuroimage.2009.01.032_bib6
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– volume: 66
  start-page: 735
  year: 2004
  ident: 10.1016/j.neuroimage.2009.01.032_bib13
  article-title: Interpreting the BOLD signal
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.66.082602.092845
– volume: 57
  start-page: 145
  year: 2004
  ident: 10.1016/j.neuroimage.2009.01.032_bib15
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 20
  start-page: 352
  issue: 452(7185)
  year: 2008
  ident: 10.1016/j.neuroimage.2009.01.032_bib11
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
  doi: 10.1038/nature06713
– volume: 3216
  start-page: 291
  year: 2004
  ident: 10.1016/j.neuroimage.2009.01.032_bib25
  article-title: Using a maximum uncertainty LDA-based approach to classify and analyse MR brain images
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-30135-6_36
– year: 1986
  ident: 10.1016/j.neuroimage.2009.01.032_bib10
– year: 1988
  ident: 10.1016/j.neuroimage.2009.01.032_bib23
– volume: 172
  start-page: 94
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2009.01.032_bib18
  article-title: The impact of functional connectivity changes on support vector machines mapping of fMRI data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.04.008
– volume: 29
  start-page: 95
  year: 2007
  ident: 10.1016/j.neuroimage.2009.01.032_bib27
  article-title: Multivariate statistical differences of MRI samples of the human brain
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-007-0033-6
– volume: 42
  start-page: 1473
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2009.01.032_bib19
  article-title: Hyperplane navigation: a method to set individual scores in fMRI group datasets
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2008.06.024
– volume: 8
  start-page: 686
  issue: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2009.01.032_bib9
  article-title: Predicting the orientation of invisible stimuli from activity in human primary visual cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1445
– volume: 14
  start-page: 214
  year: 2004
  ident: 10.1016/j.neuroimage.2009.01.032_bib24
  article-title: A new covariance estimate for Bayesian classifiers in biometric recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2003.821984
– volume: 7
  start-page: 179
  year: 1936
  ident: 10.1016/j.neuroimage.2009.01.032_bib5
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 13
  start-page: 1443
  year: 2001
  ident: 10.1016/j.neuroimage.2009.01.032_bib21
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– volume: 25
  start-page: 981
  issue: 6
  year: 2007
  ident: 10.1016/j.neuroimage.2009.01.032_bib28
  article-title: A multivariate statistical analysis of the developing human brain in preterm infants
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2006.07.011
– year: 1988
  ident: 10.1016/j.neuroimage.2009.01.032_bib29
– reference: - Neuroimage. 2009 Aug 1;47(1):423-5
SSID ssj0009148
ssib001088192
ssib057766155
ssib044495972
ssib042110531
ssib001197117
Score 2.1349735
Snippet Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states,...
SourceID proquest
pubmed
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105
SubjectTerms Acoustic Stimulation
Adolescent
Adult
Brain
Brain - physiology
Data compression
Female
Humans
Image Interpretation, Computer-Assisted
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging
Male
Medical imaging
Middle Aged
Pattern recognition
Pattern Recognition, Automated
Pattern Recognition, Automated - methods
Photic Stimulation
Principal Component Analysis
Principal components analysis
Psychomotor Performance
Psychomotor Performance - physiology
Studies
Young Adult
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbGDogLgvGrsA0fuGaNYzuJxWkamyZEuYyhXZDlJDbKBG7VdVf-dj7HTqsdKlVaDz20eVHy_Py978nvByGfrGWIdUqVtXCfmeCVzIwJMY9rVKeqruRDLczse3l5Lb7eyJs9cjbWwoS0yoT9EdMHtE6_TJM2p4u-n16BGcDdwKGpgYgHHBaiClZ-8m-T5qGYiOVwkmfh6pTNE3O8hp6R_V_s3NS5kp3kvNjmop74vt9ORAeHdPGCPE9Mkp7Gh31J9qw_IE9n6az8Ffl1nhp5-9_06ueMGt_R2bcvp7T3FKyPApWXsaqBzh0N1blxwpdf0TCtAdZIQWhpbP5Ph8IjuliG2weZ1-T64vzH2WWWhilgFbhYZRKf0jFXwDu1suVYI-MKwKRyDdw8YIbJ1oUDl5w5VdeOC6FC-GcQbhdO8Tdk38-9fUeotU468BJhRCdk2xnT1Ty3phFloURTT0g16k-3qdN4GHjxR48pZbd6o_kwCFPpnGlofkLYWnIRu23sIKPGJdJjNSnwT8Ml7CD7eS37wOp2lD6CReAVwzdUCOUVrKxg9CXMv4YeDkdb0QkZ7nTo6FiB5pYQ_7j-G3s6HNQYb-f3d7pExJMjkp0QuuUK3D9HXBSe4W00wo2-lJAVWO_7R73bB_IsnpvJjMlDsr9a3tsj0K9Vczzsr_9-PSpq
  priority: 102
  providerName: Elsevier
Title Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811909000962
https://dx.doi.org/10.1016/j.neuroimage.2009.01.032
https://cir.nii.ac.jp/crid/1870302167612674688
https://www.ncbi.nlm.nih.gov/pubmed/19457392
https://www.proquest.com/docview/1506785162
https://www.proquest.com/docview/67290871
https://www.proquest.com/docview/746077232
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfoJiFeEN_r2IofeM2IE9uJtYepQKfykQoBQ31BlpPYqIilXdu97m_fXey0T0XNQyI1uTQ5n-8j5_sdIW-tZRDrSBVVYD4jnmYiMgZjHleqWmW1TNtamGIix1f881RMwwe3VVhW2enEVlHX8wq_kb9DJDxsJC-Ti8VNhF2jMLsaWmj0yCFCl6FUZ9NsC7rLuC-FE2mUwwVhJY9f39XiRc6uYdYG1Ep2FqfJLvPUa2az3U5oa4wun5DHwYukQz_sT8kD2zwjD4uQJ39Ofo8CiHfzh_74VVDT1LT4-nFIZw0Fj4-CRl76igY6dxQrc313r2ZNsVMDSCIFZ5Z64H_aFh3RxRJvjzQvyNXl6OeHcRQaKcAIpHwdCdikYy4BDlaiSmF8jEtARSpXgokHFcNE5TDZEjOn8tylnCsM_QyE2olT6Uty0Mwbe0SotU448Em44TUXVW1MnaexNSWXieJl3idZxz9dBZRxbHbxT3fLyf7qLeexCabSMdPA-T5hG8qFR9rYg0Z1Q6S7SlLQfRrMwR605xva4G14L2JP6lOQCHhF3AMLgXkJkxkIvATRz4EPJ52s6KAVVnorw33yZnMa5jMmaUxj57crLSHaiSGK7RO64wq4fwwxET7DKy-EW34pLjLweI___--vySOfFBMREyfkYL28tafgW63LAemd3bFBO40G5HD46ct4Asf3o8m37_BrcTe6B_fDJGU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXxDeFjfkBHgOxYzuxEEIT29SxZi9sqC_IOImNisAtbSfEP8XfyF2ctE9FfVkf8tKe417u43c53x0hL51jEOsondTgPhOR5TKxFmMeX-lG543K2lqY8lwNL8XHsRzvkL99LQweq-xtYmuom2mN78jfYCc8HCSv-PvZrwSnRmF2tR-hEcXizP35DSHb4t3pETzfV5yfHF98GCbdVAHYTiaWiYSP8sxzWK6WdQabtZ6DvdC-An8H-sZk7THzkDKvi8JnQmiMgyzEndxj8yUw-TfB8aYY7OXjfN3kl4lYeiezpGBMdyeH4nmytj_l5CdYia5LJnudZnyTO7wRJpPNoLd1fif3yN0OtdLDKGb3yY4LD8itssvLPyRfjrum4eEb_fS5pDY0tBwdHdJJoIAwKXiAeaygoFNPsRI4ThMLS4qTIUDyKYBnGgcN0LbIic7muDzSPCKX18Lix2Q3TIN7SqhzXnrAQMKKRsi6sbYpstTZSiiuRVUMSN7zz9RdV3McrvHD9MfXvps153HopjYpM8D5AWErylns7LEFje4fkekrV8HWGnA_W9C-XdF26Caili2p90Ei4C_iFVgIzONM5aBgClStAD7s9bJiOiu0MGudGZCD1ddgPzApZIObXi2Mgugqhah5QOiGX8D6KcRguIcnUQjX_NJC5oCwn_3_7gfk9vCiHJnR6fnZc3InJuRkwuQe2V3Or9w-4Lpl9aJVJkq-Xrf2_gMJglk1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1BqdNHFBfNOxMR_gGBY7dhILITRoq42t1QQM7YI8J7FR0UhL2wnx1_h1vBc77amol-WQS_Ic5-V95n0R8tJaBr5OqqIS1GckkkxGxqDP4wpVqaxKk6YWZjhKjy_Ex0t5uUX-trUwmFbZysRGUFeTEv-RH2InPBwkn_JDF9IiznuDd9NfEU6QwkhrO07Dk8ip_fMb3Lf525MefOtXnA_6Xz4cR2HCAGwtEYtIwpE65jgsXcoygY0bx0F2KFeA7gPeY7J0GIWImVN57hIhFPpEBnxQ7rARE4j_7Qy9og7Zft8fnX9atfxlwhfiySTKGVMhj8hnlzXdKsc_QWaEnpnsdZzwdcrxTj0erzeBG1U4uE_uBRuWHnmie0C2bP2Q7AxDlP4R-dYPLcTr7_Tz1yE1dUWHZ70jOq4p2JsUkDrz9RR04ijWBfvZYvWC4pwI4AMKpjT1YwdoU_JEpzNcHmEek4tbQfIT0qkntX1GqLVOOrCIhBGVkGVlTJUnsTWFSLkSRd4lWYs_XYYe5zhq41q3yWw_9ArzOIJT6ZhpwHyXsCXk1Pf52ABGtZ9It3WsIHk1KKMNYN8sYYOt422YDaH3gSLgFfEMKATkcZZmwG4pMF4OeNhraUUHmTTXKw7qkoPlZZAmGCIytZ3czHUKvlYMPnSX0DV3wPoxeGS4h6eeCFf4UkJmYG_v_v_pB2QHOFefnYxOn5O7PjonIyb3SGcxu7H7YOQtiheBmyi5um0G_gdkH17Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+SVM+and+MLDA+in+the+extraction+of+discriminant+regions+for+mental+state+prediction&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sato%2C+Jo%C3%A3o+Ricardo&rft.au=Fujita%2C+Andr%C3%A9&rft.au=Thomaz%2C+Carlos+Eduardo&rft.au=Martin%2C+Maria+da+Gra%C3%A7a+Morais&rft.date=2009-05-15&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=46&rft.issue=1&rft.spage=105&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.01.032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon