SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells
Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA s...
Saved in:
Published in | Leukemia Vol. 32; no. 12; pp. 2659 - 2671 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recurrent mutations in the splicing factor
SRSF2
are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear.
SRSF2
mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how
SRSF2
mutations globally affect RNA binding and splicing
in vivo
using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2
P95H
binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2
P95H
targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a “splicing-cascade” phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2
P95H
, impairs hematopoietic differentiation
in vivo
. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer. |
---|---|
AbstractList | Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a “splicing-cascade” phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2P95H, impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer. Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a “splicing-cascade” phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 P95H , impairs hematopoietic differentiation in vivo . Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer. Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a “splicing-cascade” phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 P95H , impairs hematopoietic differentiation in vivo . Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer. Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2.sup.P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2.sup.P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2.sup.P95H, impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer. Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2P95H, impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2P95H, impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer. Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 , impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer. |
Audience | Academic |
Author | Song, Yuanbin Maziarz, Jamie Balasubramanian, Kunthavai Joshi, Poorval Liang, Yang Ardasheva, Anastasia Rejeski, Kai Ding, Alicia Tebaldi, Toma Stefani, Giovanni Vasic, Radovan Halene, Stephanie Taylor, Ashley Quattrone, Alessandro |
AuthorAffiliation | 4 Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy 3 Division of Hematology, Oncology and Stem Cell Transplantation, Department of Internal Medicine, University of Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany 5 Department of Ecology and Evolutionary Biology, Yale University School of Medicine, New Haven, 06511, CT, USA 2 Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy 1 Section of Hematology, Section of Hematology/Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, 06511, CT, USA |
AuthorAffiliation_xml | – name: 3 Division of Hematology, Oncology and Stem Cell Transplantation, Department of Internal Medicine, University of Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany – name: 4 Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy – name: 2 Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy – name: 1 Section of Hematology, Section of Hematology/Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, 06511, CT, USA – name: 5 Department of Ecology and Evolutionary Biology, Yale University School of Medicine, New Haven, 06511, CT, USA |
Author_xml | – sequence: 1 givenname: Yang surname: Liang fullname: Liang, Yang organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine – sequence: 2 givenname: Toma surname: Tebaldi fullname: Tebaldi, Toma organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento – sequence: 3 givenname: Kai surname: Rejeski fullname: Rejeski, Kai organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, Division of Hematology, Oncology and Stem Cell Transplantation, Department of Internal Medicine, University of Freiburg Medical Center – sequence: 4 givenname: Poorval surname: Joshi fullname: Joshi, Poorval organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine – sequence: 5 givenname: Giovanni surname: Stefani fullname: Stefani, Giovanni organization: Centre for Integrative Biology (CIBIO), University of Trento – sequence: 6 givenname: Ashley surname: Taylor fullname: Taylor, Ashley organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine – sequence: 7 givenname: Yuanbin surname: Song fullname: Song, Yuanbin organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine – sequence: 8 givenname: Radovan surname: Vasic fullname: Vasic, Radovan organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine – sequence: 9 givenname: Jamie surname: Maziarz fullname: Maziarz, Jamie organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, Department of Ecology and Evolutionary Biology, Yale University School of Medicine – sequence: 10 givenname: Kunthavai surname: Balasubramanian fullname: Balasubramanian, Kunthavai organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine – sequence: 11 givenname: Anastasia surname: Ardasheva fullname: Ardasheva, Anastasia organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine – sequence: 12 givenname: Alicia surname: Ding fullname: Ding, Alicia organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine – sequence: 13 givenname: Alessandro surname: Quattrone fullname: Quattrone, Alessandro organization: Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento – sequence: 14 givenname: Stephanie orcidid: 0000-0002-2737-9810 surname: Halene fullname: Halene, Stephanie email: stephanie.halene@yale.edu organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29858584$$D View this record in MEDLINE/PubMed |
BookMark | eNp9klFrHCEUhYeS0mzS_oC-FKFQ8jKpOuo4L4UQmrYQKDTts6ijswZHtzqzNP--TjZNsqEtIoJ-56j3nqPqIMRgquo1gqcINvx9JqhpaQ0RL5Piun1WrRBpWU0pRQfVCnLe1qzD5LA6yvkawuWQvagOccdpGWRV_br6dnWBwThPcnIxZNAntzUgBh0HE0x2GagbIPXktgUIA5Bg8FFJDzYpDkmOIFoglUlJhglIP5kUClgs8sY7vShcAGszyiluojOT00Ab7_PL6rmVPptXd-tx9ePi4_fzz_Xl109fzs8ua80aMtUNplarTltJCWMdk7C3pm8Uxa2CPcE9Z5ZrLFWvNLSEYqVka3gHO97bjvTNcfVh57uZ1Wh6bcKUpBeb5EaZbkSUTuyfBLcWQ9wKhlvCMCwGJ3cGKf6cTZ7E6PLyBRlMnLPAkHSUId6wgr59gl7HudTDFwpR1BJeuvRADdIb4YKN5V69mIoz2ja4_JMv1OlfqDJ6MzpdcmBd2d8TvHskWJvSi3WOfr5t6z745nFF7kvxJxQFQDtAp5hzMvYeQVAswRO74IkSPLEET7RF0z7RaLeLVHm28_9V4p0yl1vCYNJD0f4t-g2lj-0w |
CitedBy_id | crossref_primary_10_1016_j_ygeno_2020_06_002 crossref_primary_10_1158_1078_0432_CCR_20_0834 crossref_primary_10_1186_s12885_020_07331_0 crossref_primary_10_1186_s13046_024_03030_x crossref_primary_10_1002_ajh_25673 crossref_primary_10_1186_s10020_024_00839_2 crossref_primary_10_1007_s11899_022_00685_1 crossref_primary_10_1186_s13690_022_00894_3 crossref_primary_10_1016_j_molcel_2020_10_019 crossref_primary_10_1002_bies_202000242 crossref_primary_10_1016_j_exphem_2024_104655 crossref_primary_10_1016_j_drup_2020_100728 crossref_primary_10_1093_jleuko_qiac015 crossref_primary_10_3390_genes11050499 crossref_primary_10_1182_blood_2018_10_839985 crossref_primary_10_1038_s41568_021_00411_8 crossref_primary_10_3390_cancers13081968 crossref_primary_10_1038_s41421_021_00337_3 crossref_primary_10_1042_BST20210325 crossref_primary_10_1038_s41572_022_00402_5 crossref_primary_10_1038_s41576_022_00514_4 crossref_primary_10_3390_cancers14020415 crossref_primary_10_1016_j_celrep_2023_113264 crossref_primary_10_1038_s41467_023_38515_4 crossref_primary_10_1053_j_seminhematol_2024_10_005 crossref_primary_10_1158_1078_0432_CCR_20_0184 crossref_primary_10_1186_s12859_023_05521_8 crossref_primary_10_1016_j_molcel_2023_11_003 crossref_primary_10_1002_1878_0261_12768 crossref_primary_10_1002_cam4_3859 crossref_primary_10_1038_s41392_021_00486_7 crossref_primary_10_3748_wjg_v27_i21_2871 crossref_primary_10_1038_s41375_020_0839_4 crossref_primary_10_1038_s41375_019_0567_9 crossref_primary_10_3390_ijms231810918 crossref_primary_10_1016_j_yamp_2020_07_004 crossref_primary_10_1093_nar_gkz1141 crossref_primary_10_3389_fonc_2023_1196817 crossref_primary_10_3390_cancers11121844 crossref_primary_10_3390_cancers12082216 crossref_primary_10_3390_hematolrep16040066 crossref_primary_10_1016_j_leukres_2020_106349 crossref_primary_10_12688_f1000research_15442_1 crossref_primary_10_1158_2159_8290_CD_21_0508 crossref_primary_10_3389_fgene_2020_00560 crossref_primary_10_1186_s12935_024_03438_7 crossref_primary_10_3390_cancers15133292 crossref_primary_10_1093_nar_gkae557 crossref_primary_10_1200_JCO_20_01659 crossref_primary_10_3389_fcimb_2021_799024 crossref_primary_10_18632_aging_101753 crossref_primary_10_3390_life13030604 crossref_primary_10_1016_j_cmpb_2024_108432 crossref_primary_10_3389_frhem_2023_1297657 crossref_primary_10_1080_10428194_2021_2008381 crossref_primary_10_3389_fcell_2020_00474 crossref_primary_10_1016_j_bcp_2023_115848 crossref_primary_10_3390_cells9112512 crossref_primary_10_3390_ijms222111618 |
Cites_doi | 10.1111/j.1600-0854.2010.01072.x 10.1016/j.semcdb.2014.03.011 10.1261/rna.045542.114 10.1182/blood-2012-06-440347 10.1016/0092-8674(93)90316-I 10.1016/j.celrep.2012.02.001 10.1038/emboj.2011.367 10.1261/rna.056101.116 10.1182/blood-2017-01-762393 10.1038/nsmb.1461 10.1002/wrna.100 10.1016/j.ccell.2015.04.006 10.1261/rna.043893.113 10.1016/S1097-2765(00)80076-3 10.1128/MCB.01117-10 10.1016/j.ccell.2015.04.008 10.1128/MCB.23.8.2927-2941.2003 10.1038/nmeth.1608 10.1182/blood-2013-08-518886 10.1016/j.ymeth.2005.07.018 10.1128/MCB.19.3.1853 10.1073/pnas.1514105112 10.1186/1471-2164-11-565 10.1128/MCB.00202-15 10.1042/BJ20081501 10.1016/j.molcel.2013.03.001 10.1016/S1097-2765(01)00409-9 10.1101/gad.276477.115 10.1016/j.ccell.2016.08.006 10.1016/j.neuron.2016.09.050 10.1038/nature10496 10.1073/pnas.1419161111 10.1016/j.cell.2015.09.015 10.1186/gb-2012-13-8-r67 10.1128/MCB.20.3.1063-1071.2000 10.1186/gb-2012-13-3-r17 10.1093/emboj/20.7.1785 10.1038/nrg2111 10.1074/jbc.M405377200 10.1016/j.cell.2015.08.011 10.1128/MCB.23.6.1874-1884.2003 10.1093/nar/gkp1086 10.1128/MCB.00070-15 10.1073/pnas.0901997106 10.1016/j.tibs.2012.02.005 10.1038/ng.3415 10.1126/science.1090095 10.1002/wrna.1260 10.1101/gr.082503.108 10.1073/pnas.94.8.3596 10.1182/blood-2012-01-404863 10.1038/nbt.1873 10.1074/jbc.M312743200 10.1038/nm.4097 10.3791/2195 10.1016/j.cell.2010.07.039 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited, part of Springer Nature 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Dec 2018 |
Copyright_xml | – notice: Macmillan Publishers Limited, part of Springer Nature 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Dec 2018 |
DBID | AAYXX CITATION NPM 3V. 7QL 7RV 7T5 7T7 7TM 7TO 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7N M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41375-018-0152-7 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nursing & Allied Health Database Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1476-5551 |
EndPage | 2671 |
ExternalDocumentID | PMC6274620 A573246682 29858584 10_1038_s41375_018_0152_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: U54 DK106857 – fundername: NIDDK NIH HHS grantid: R01 DK102792 |
GroupedDBID | --- -Q- .55 .XZ 0R~ 29L 2WC 36B 39C 3V. 4.4 406 53G 5GY 5RE 70F 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8R4 8R5 AACDK AANZL AAQQT AASDW AASML AATNV AAWTL AAYZH AAZLF ABAKF ABAWZ ABDBF ABJNI ABLJU ABOCM ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACMJI ACPRK ACRQY ACUHS ACZOJ ADBBV ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF ASPBG AVWKF AXYYD AZFZN B0M BAWUL BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DIK DNIVK DPUIP DU5 E3Z EAD EAP EBC EBD EBLON EBS EBX EE. EIOEI EJD EMB EMK EMOBN EPL ESX EX3 F5P FDQFY FEDTE FERAY FIGPU FIZPM FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR IHW INH INR ITC IWAJR JSO JZLTJ KQ8 LGEZI LOTEE M1P M7P N9A NADUK NAO NAPCQ NQJWS NXXTH O9- OK1 OVD P2P P6G PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT ROL SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TEORI TR2 TSG TUS UDS UKHRP WOW X7M Y6R ZGI ZXP ~8M AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QL 7T5 7T7 7TM 7TO 7U9 7XB 8FD 8FE 8FH 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. LK8 M7N P64 PKEHL PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c634t-325fcb9cfa546696a0dfed3b527b0d42d86f8c2abdbc0f452bba7e89098df94d3 |
IEDL.DBID | 7X7 |
ISSN | 0887-6924 1476-5551 |
IngestDate | Thu Aug 21 13:20:22 EDT 2025 Mon Jul 21 10:29:29 EDT 2025 Sat Aug 23 12:23:37 EDT 2025 Tue Jun 17 21:38:34 EDT 2025 Tue Jun 10 20:41:35 EDT 2025 Thu May 22 21:22:29 EDT 2025 Mon Jul 21 06:18:09 EDT 2025 Tue Jul 01 01:08:03 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Fri Feb 21 02:37:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c634t-325fcb9cfa546696a0dfed3b527b0d42d86f8c2abdbc0f452bba7e89098df94d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. Current affiliation: Department of Hematology/Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China, 510060 |
ORCID | 0000-0002-2737-9810 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6274620 |
PMID | 29858584 |
PQID | 2151748152 |
PQPubID | 30521 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6274620 proquest_miscellaneous_2049561836 proquest_journals_2151748152 gale_infotracmisc_A573246682 gale_infotracacademiconefile_A573246682 gale_healthsolutions_A573246682 pubmed_primary_29858584 crossref_primary_10_1038_s41375_018_0152_7 crossref_citationtrail_10_1038_s41375_018_0152_7 springer_journals_10_1038_s41375_018_0152_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Leukemia |
PublicationTitleAbbrev | Leukemia |
PublicationTitleAlternate | Leukemia |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Meggendorfer, Roller, Haferlach, Eder, Dicker, Grossmann (CR2) 2012; 120 Shen, Park, Lu, Lin, Henry, Wu (CR26) 2014; 111 Änkö (CR17) 2014; 32 Stefani, Chen, Zhao, Slack (CR25) 2015; 21 Itzykson, Kosmider, Renneville, Morabito, Preudhomme, Berthon (CR28) 2013; 121 Dreumont, Hardy, Behm-Ansmant, Kister, Branlant, Stévenin (CR34) 2010; 38 Shirai, Ley, White, Kim, Tibbitts, Shao (CR52) 2015; 27 Lin, Coutinho-Mansfield, Wang, Pandit, Fu (CR14) 2008; 15 Graveley, Maniatis (CR6) 1998; 1 Han, Ding, Byeon, Kim, Hertel, Jeong (CR42) 2011; 31 Ule, Jensen, Mele, Darnell (CR23) 2005; 37 Zhu, Mayeda, Krainer (CR21) 2001; 8 Lee, Dvinge, Kim, Cho, Micol, Chung (CR4) 2016; 22 Molliex, Temirov, Lee, Coughlin, Kanagaraj, Kim (CR53) 2015; 163 Long, Caceres (CR9) 2009; 417 Zhang, Lieu, Ali, Penson, Reggio, Rabadan (CR12) 2015; 112 Howard, Sanford (CR5) 2015; 6 Keene (CR35) 2007; 8 Han, Friend, Carson, Korza, Barbarese, Maggipinto (CR46) 2010; 11 Komeno, Huang, Qiu, Lin, Xu, Zhou (CR43) 2015; 35 Wu, Maniatis (CR7) 1993; 75 Kishore, Jaskiewicz, Burger, Hausser, Khorshid, Zavolan (CR29) 2011; 8 Pandit, Zhou, Shiue, Coutinho-Mansfield, Li, Qiu (CR20) 2013; 50 Obeng, Chappell, Seiler, Chen, Campagna, Schmidt (CR51) 2016; 30 Busch, Hertel (CR45) 2012; 3 Ule, Jensen, Ruggiu, Mele, Ule, Darnell (CR24) 2003; 302 McGlincy, Tan, Paul, Zavolan, Lilley, Smith (CR47) 2010; 11 Liu, Chew, Cartegni, Zhang, Krainer (CR18) 2000; 20 Sureau, Gattoni, Dooghe, Stévenin, Soret (CR33) 2001; 20 Bergeron, Pal, Beaulieu, Chabot, Bachand (CR49) 2015; 35 Alarcón, Goodarzi, Lee, Liu, Tavazoie, Tavazoie (CR54) 2015; 162 Yoshida, Sanada, Shiraishi, Nowak, Nagata, Yamamoto (CR1) 2011; 478 Kim, Ilagan, Liang, Daubner, Lee, Ramakrishnan (CR10) 2015; 27 CR56 Müller-McNicoll, Botti, de Jesus Domingues, Brandl, Schwich, Steiner (CR15) 2016; 30 Bradley, Cook, Blanchette (CR22) 2015; 21 Rooke, Markovtsov, Cagavi, Black (CR39) 2003; 23 Huelga, Vu, Arnold, Liang, Liu, Yan (CR48) 2012; 1 Chandler, Mayeda, Yeakley, Krainer, Fu (CR19) 1997; 94 Änkö, Müller-McNicoll, Brandl, Curk, Gorup, Henry (CR16) 2012; 13 Granneman, Kudla, Petfalski, Tollervey (CR30) 2009; 106 Zhang, Darnell (CR31) 2011; 29 Daubner, Cléry, Jayne, Stevenin (CR11) 2012; 31 Kataoka, Nagata, Kitanaka, Shiraishi, Shimamura, Yasunaga (CR55) 2015; 47 Ankö, Neugebauer (CR37) 2012; 37 Zahler, Damgaard, Kjems, Caputi (CR41) 2004; 279 Expert-Bezançon, Sureau, Durosay, Salesse, Groeneveld, Lecaer (CR40) 2004; 279 CR27 Guil, Gattoni, Carrascal, Abián, Stévenin, Bach-Elias (CR38) 2003; 23 Martinez, Pratt, Van Nostrand, Batra, Huelga, Kapeli (CR50) 2016; 92 Kon, Yamazaki, Nannya, Kataoka, Ota, Nakagawa (CR13) 2018; 131 Sugimoto, König, Hussain, Zupan, Curk, Frye (CR32) 2012; 13 Papaemmanuil, Gerstung, Malcovati, Tauro, Gundem, Van Loo (CR3) 2013; 122 Qiu, Zhou, Thol, Zhou, Chen, Shao (CR44) 2016; 22 Mayeda, Screaton, Chandler, Fu, Krainer (CR8) 1999; 19 Sanford, Wang, Mort, Vanduyn, Cooper, Mooney (CR36) 2009; 19 A Mayeda (152_CR8) 1999; 19 SCW Lee (152_CR4) 2016; 22 JC Long (152_CR9) 2009; 417 NJ McGlincy (152_CR47) 2010; 11 SP Han (152_CR46) 2010; 11 S Kishore (152_CR29) 2011; 8 M Müller-McNicoll (152_CR15) 2016; 30 A Busch (152_CR45) 2012; 3 152_CR56 A Expert-Bezançon (152_CR40) 2004; 279 S Granneman (152_CR30) 2009; 106 J Ule (152_CR24) 2003; 302 JR Sanford (152_CR36) 2009; 19 JM Howard (152_CR5) 2015; 6 N Dreumont (152_CR34) 2010; 38 JY Wu (152_CR7) 1993; 75 ML Änkö (152_CR16) 2012; 13 ML Änkö (152_CR17) 2014; 32 C Zhang (152_CR31) 2011; 29 JD Keene (152_CR35) 2007; 8 GM Daubner (152_CR11) 2012; 31 S Shen (152_CR26) 2014; 111 A Molliex (152_CR53) 2015; 163 E Kim (152_CR10) 2015; 27 K Yoshida (152_CR1) 2011; 478 J Ule (152_CR23) 2005; 37 SC Huelga (152_CR48) 2012; 1 CL Shirai (152_CR52) 2015; 27 E Papaemmanuil (152_CR3) 2013; 122 N Rooke (152_CR39) 2003; 23 J Han (152_CR42) 2011; 31 A Sureau (152_CR33) 2001; 20 D Bergeron (152_CR49) 2015; 35 S Pandit (152_CR20) 2013; 50 R Itzykson (152_CR28) 2013; 121 ML Ankö (152_CR37) 2012; 37 FJ Martinez (152_CR50) 2016; 92 J Qiu (152_CR44) 2016; 22 HX Liu (152_CR18) 2000; 20 K Kataoka (152_CR55) 2015; 47 J Zhang (152_CR12) 2015; 112 G Stefani (152_CR25) 2015; 21 AM Zahler (152_CR41) 2004; 279 M Meggendorfer (152_CR2) 2012; 120 SD Chandler (152_CR19) 1997; 94 S Lin (152_CR14) 2008; 15 CR Alarcón (152_CR54) 2015; 162 S Guil (152_CR38) 2003; 23 T Bradley (152_CR22) 2015; 21 Y Sugimoto (152_CR32) 2012; 13 Y Komeno (152_CR43) 2015; 35 152_CR27 A Kon (152_CR13) 2018; 131 BR Graveley (152_CR6) 1998; 1 J Zhu (152_CR21) 2001; 8 EA Obeng (152_CR51) 2016; 30 22574288 - Cell Rep. 2012 Feb 23;1(2):167-78 10022872 - Mol Cell Biol. 1999 Mar;19(3):1853-63 25414008 - RNA. 2015 Jan;21(1):75-92 27492256 - RNA. 2016 Oct;22(10):1535-49 22436691 - Genome Biol. 2012;13(3):R17 14615540 - Science. 2003 Nov 14;302(5648):1212-5 14703516 - J Biol Chem. 2004 Mar 12;279(11):10077-84 21252854 - J Vis Exp. 2010 Dec 18;(46):null 12612063 - Mol Cell Biol. 2003 Mar;23(6):1874-84 12665590 - Mol Cell Biol. 2003 Apr;23(8):2927-41 25805859 - RNA. 2015 May;21(5):985-96 26321680 - Cell. 2015 Sep 10;162(6):1299-308 22002536 - EMBO J. 2012 Jan 4;31(1):162-74 24030381 - Blood. 2013 Nov 21;122(22):3616-27; quiz 3699 25480548 - Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601 22425269 - Trends Biochem Sci. 2012 Jul;37(7):255-62 10629063 - Mol Cell Biol. 2000 Feb;20(3):1063-71 24657192 - Semin Cell Dev Biol. 2014 Aug;32:11-21 21898828 - Wiley Interdiscip Rev RNA. 2012 Jan-Feb;3(1):1-12 29146882 - Blood. 2018 Feb 8;131(6):621-635 9660960 - Mol Cell. 1998 Apr;1(5):765-71 15208309 - J Biol Chem. 2004 Sep 10;279(37):38249-59 9108022 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3596-601 19965769 - Nucleic Acids Res. 2010 Mar;38(4):1353-66 27622333 - Cancer Cell. 2016 Sep 12;30(3):404-417 20946641 - BMC Genomics. 2010 Oct 14;11:565 19482942 - Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9613-8 25963658 - Mol Cell Biol. 2015 Jul;35(14):2503-17 18641664 - Nat Struct Mol Biol. 2008 Aug;15(8):819-26 25965570 - Cancer Cell. 2015 May 11;27(5):631-43 8261509 - Cell. 1993 Dec 17;75(6):1061-70 23319568 - Blood. 2013 Mar 21;121(12):2186-98 26124281 - Mol Cell Biol. 2015 Sep 1;35(17):3071-82 27773581 - Neuron. 2016 Nov 23;92(4):780-795 16314267 - Methods. 2005 Dec;37(4):376-86 22919025 - Blood. 2012 Oct 11;120(15):3080-8 19061484 - Biochem J. 2009 Jan 1;417(1):15-27 21135118 - Mol Cell Biol. 2011 Feb;31(4):793-802 21572407 - Nat Methods. 2011 May 15;8(7):559-64 19116412 - Genome Res. 2009 Mar;19(3):381-94 21633356 - Nat Biotechnol. 2011 Jun 01;29(7):607-14 22863408 - Genome Biol. 2012 Aug 03;13(8):R67 26944680 - Genes Dev. 2016 Mar 1;30(5):553-66 26261309 - Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4726-34 23562324 - Mol Cell. 2013 Apr 25;50(2):223-35 11779509 - Mol Cell. 2001 Dec;8(6):1351-61 25965569 - Cancer Cell. 2015 May 11;27(5):617-30 27135740 - Nat Med. 2016 Jun;22(6):672-8 20406423 - Traffic. 2010 Jul 1;11(7):886-98 26406374 - Cell. 2015 Sep 24;163(1):123-33 17572691 - Nat Rev Genet. 2007 Jul;8(7):533-43 21909114 - Nature. 2011 Sep 11;478(7367):64-9 25155147 - Wiley Interdiscip Rev RNA. 2015 Jan-Feb;6(1):93-110 26437031 - Nat Genet. 2015 Nov;47(11):1304-15 11285241 - EMBO J. 2001 Apr 2;20(7):1785-96 |
References_xml | – volume: 11 start-page: 886 year: 2010 end-page: 98 ident: CR46 article-title: Differential subcellular distributions and trafficking functions of hnRNP A2/B1 spliceoforms publication-title: Traffic doi: 10.1111/j.1600-0854.2010.01072.x – volume: 32 start-page: 11 year: 2014 end-page: 21 ident: CR17 article-title: Regulation of gene expression programmes by serine–arginine rich splicing factors publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2014.03.011 – volume: 21 start-page: 985 year: 2015 end-page: 96 ident: CR25 article-title: A novel mechanism of LIN-28 regulation of let-7 microRNA expression revealed by in vivo HITS-CLIP in C. elegans publication-title: RNA doi: 10.1261/rna.045542.114 – volume: 121 start-page: 2186 year: 2013 end-page: 98 ident: CR28 article-title: Clonal architecture of chronic myelomonocytic leukemias publication-title: Blood doi: 10.1182/blood-2012-06-440347 – volume: 75 start-page: 1061 year: 1993 end-page: 70 ident: CR7 article-title: Specific interactions between proteins implicated in splice site selection and regulated alternative splicing publication-title: Cell doi: 10.1016/0092-8674(93)90316-I – volume: 1 start-page: 167 year: 2012 end-page: 78 ident: CR48 article-title: Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins publication-title: Cell Rep doi: 10.1016/j.celrep.2012.02.001 – volume: 31 start-page: 162 year: 2012 end-page: 74 ident: CR11 article-title: Allain FH-T. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well publication-title: EMBO J doi: 10.1038/emboj.2011.367 – volume: 22 start-page: 1535 year: 2016 end-page: 49 ident: CR44 article-title: Distinct splicing signatures affect converged pathways in myelodysplastic syndrome patients carrying mutations in different splicing regulators publication-title: RNA doi: 10.1261/rna.056101.116 – volume: 131 start-page: 621 year: 2018 end-page: 35 ident: CR13 article-title: Physiological Srsf2 P95H expression causes impaired hematopoietic stem cell functions and aberrant RNA splicing in mice publication-title: Blood doi: 10.1182/blood-2017-01-762393 – volume: 15 start-page: 819 year: 2008 end-page: 26 ident: CR14 article-title: The splicing factor SC35 has an active role in transcriptional elongation publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1461 – volume: 3 start-page: 1 year: 2012 end-page: 12 ident: CR45 article-title: Evolution of SR protein and hnRNP splicing regulatory factors publication-title: Wiley Interdiscip Rev Rna doi: 10.1002/wrna.100 – volume: 27 start-page: 617 year: 2015 end-page: 30 ident: CR10 article-title: SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.04.006 – volume: 21 start-page: 75 year: 2015 end-page: 92 ident: CR22 article-title: SR proteins control a complex network of RNA-processing events publication-title: RNA doi: 10.1261/rna.043893.113 – volume: 1 start-page: 765 year: 1998 end-page: 71 ident: CR6 article-title: Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80076-3 – volume: 31 start-page: 793 year: 2011 end-page: 802 ident: CR42 article-title: SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons publication-title: Mol Cell Biol doi: 10.1128/MCB.01117-10 – volume: 27 start-page: 631 year: 2015 end-page: 43 ident: CR52 article-title: Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.04.008 – volume: 23 start-page: 2927 year: 2003 end-page: 41 ident: CR38 article-title: Roles of hnRNP A1, SR proteins, and p68 helicase in c-H-ras alternative splicing regulation publication-title: Mol Cell Biol doi: 10.1128/MCB.23.8.2927-2941.2003 – volume: 8 start-page: 559 year: 2011 end-page: 64 ident: CR29 article-title: A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins publication-title: Nat Methods doi: 10.1038/nmeth.1608 – volume: 122 start-page: 3616 year: 2013 end-page: 27 ident: CR3 article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes publication-title: Blood doi: 10.1182/blood-2013-08-518886 – volume: 37 start-page: 376 year: 2005 end-page: 86 ident: CR23 article-title: CLIP: a method for identifying protein-RNA interaction sites in living cells publication-title: Methods doi: 10.1016/j.ymeth.2005.07.018 – volume: 19 start-page: 1853 year: 1999 end-page: 63 ident: CR8 article-title: Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements publication-title: Mol Cell Biol doi: 10.1128/MCB.19.3.1853 – volume: 112 start-page: E4726 year: 2015 end-page: 34 ident: CR12 article-title: Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1514105112 – volume: 11 year: 2010 ident: CR47 article-title: Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay publication-title: BMC Genom doi: 10.1186/1471-2164-11-565 – volume: 35 start-page: 3071 year: 2015 end-page: 82 ident: CR43 article-title: SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing publication-title: Mol Cell Biol doi: 10.1128/MCB.00202-15 – volume: 417 start-page: 15 year: 2009 end-page: 27 ident: CR9 article-title: The SR protein family of splicing factors: master regulators of gene expression publication-title: Biochem J doi: 10.1042/BJ20081501 – volume: 50 start-page: 223 year: 2013 end-page: 35 ident: CR20 article-title: Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing publication-title: Mol Cell doi: 10.1016/j.molcel.2013.03.001 – volume: 8 start-page: 1351 year: 2001 end-page: 61 ident: CR21 article-title: Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00409-9 – volume: 30 start-page: 553 year: 2016 end-page: 66 ident: CR15 article-title: SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export publication-title: Genes Dev doi: 10.1101/gad.276477.115 – volume: 30 start-page: 404 year: 2016 end-page: 17 ident: CR51 article-title: Physiologic Expression of Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.08.006 – volume: 92 start-page: 780 year: 2016 end-page: 95 ident: CR50 article-title: Protein-RNA networks regulated by normal and ALS-associated mutant HNRNPA2B1 in the nervous system publication-title: Neuron doi: 10.1016/j.neuron.2016.09.050 – volume: 478 start-page: 64 year: 2011 end-page: 9 ident: CR1 article-title: Frequent pathway mutations of splicing machinery in myelodysplasia publication-title: Nature doi: 10.1038/nature10496 – ident: CR56 – volume: 111 start-page: E5593 year: 2014 end-page: 601 ident: CR26 article-title: rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1419161111 – volume: 163 start-page: 123 year: 2015 end-page: 33 ident: CR53 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell doi: 10.1016/j.cell.2015.09.015 – ident: CR27 – volume: 13 year: 2012 ident: CR32 article-title: Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions publication-title: Genome Biol doi: 10.1186/gb-2012-13-8-r67 – volume: 20 start-page: 1063 year: 2000 end-page: 71 ident: CR18 article-title: Exonic splicing enhancer motif recognized by human SC35 under splicing conditions publication-title: Mol Cell Biol doi: 10.1128/MCB.20.3.1063-1071.2000 – volume: 13 year: 2012 ident: CR16 article-title: The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes publication-title: Genome Biol doi: 10.1186/gb-2012-13-3-r17 – volume: 20 start-page: 1785 year: 2001 end-page: 96 ident: CR33 article-title: SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs publication-title: EMBO J doi: 10.1093/emboj/20.7.1785 – volume: 8 start-page: 533 year: 2007 end-page: 43 ident: CR35 article-title: RNA regulons: coordination of post-transcriptional events publication-title: Nat Rev Genet doi: 10.1038/nrg2111 – volume: 279 start-page: 38249 year: 2004 end-page: 59 ident: CR40 article-title: hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B publication-title: J Biol Chem doi: 10.1074/jbc.M405377200 – volume: 162 start-page: 1299 year: 2015 end-page: 308 ident: CR54 article-title: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events publication-title: Cell doi: 10.1016/j.cell.2015.08.011 – volume: 23 start-page: 1874 year: 2003 end-page: 84 ident: CR39 article-title: Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1 publication-title: Mol Cell Biol doi: 10.1128/MCB.23.6.1874-1884.2003 – volume: 38 start-page: 1353 year: 2010 end-page: 66 ident: CR34 article-title: Antagonistic factors control the unproductive splicing of SC35 terminal intron publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp1086 – volume: 35 start-page: 2503 year: 2015 end-page: 17 ident: CR49 article-title: Regulated intron retention and nuclear Pre-mRNA decay contribute to PABPN1 autoregulation publication-title: Mol Cell Biol doi: 10.1128/MCB.00070-15 – volume: 106 start-page: 9613 year: 2009 end-page: 8 ident: CR30 article-title: Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0901997106 – volume: 37 start-page: 255 year: 2012 end-page: 62 ident: CR37 article-title: RNA-protein interactions in vivo: global gets specific publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2012.02.005 – volume: 47 start-page: 1304 year: 2015 end-page: 15 ident: CR55 article-title: Integrated molecular analysis of adult T cell leukemia/lymphoma publication-title: Nat Genet doi: 10.1038/ng.3415 – volume: 302 start-page: 1212 year: 2003 end-page: 5 ident: CR24 article-title: CLIP identifies Nova-regulated RNA networks in the brain publication-title: Science doi: 10.1126/science.1090095 – volume: 6 start-page: 93 year: 2015 end-page: 110 ident: CR5 article-title: The RNAissance family: SR proteins as multifaceted regulators of gene expression publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.1260 – volume: 19 start-page: 381 year: 2009 end-page: 94 ident: CR36 article-title: Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts publication-title: Genome Res doi: 10.1101/gr.082503.108 – volume: 94 start-page: 3596 year: 1997 end-page: 601 ident: CR19 article-title: RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.8.3596 – volume: 120 start-page: 3080 year: 2012 end-page: 8 ident: CR2 article-title: SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML) publication-title: Blood doi: 10.1182/blood-2012-01-404863 – volume: 29 start-page: 607 year: 2011 end-page: 14 ident: CR31 article-title: Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data publication-title: Nat Biotechnol doi: 10.1038/nbt.1873 – volume: 279 start-page: 10077 year: 2004 end-page: 84 ident: CR41 article-title: SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicing publication-title: J Biol Chem doi: 10.1074/jbc.M312743200 – volume: 22 start-page: 672 year: 2016 end-page: 8 ident: CR4 article-title: Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins publication-title: Nat Med doi: 10.1038/nm.4097 – volume: 35 start-page: 3071 year: 2015 ident: 152_CR43 publication-title: Mol Cell Biol doi: 10.1128/MCB.00202-15 – volume: 302 start-page: 1212 year: 2003 ident: 152_CR24 publication-title: Science doi: 10.1126/science.1090095 – volume: 94 start-page: 3596 year: 1997 ident: 152_CR19 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.8.3596 – volume: 6 start-page: 93 year: 2015 ident: 152_CR5 publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.1260 – volume: 50 start-page: 223 year: 2013 ident: 152_CR20 publication-title: Mol Cell doi: 10.1016/j.molcel.2013.03.001 – volume: 122 start-page: 3616 year: 2013 ident: 152_CR3 publication-title: Blood doi: 10.1182/blood-2013-08-518886 – volume: 15 start-page: 819 year: 2008 ident: 152_CR14 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1461 – ident: 152_CR27 doi: 10.3791/2195 – volume: 1 start-page: 765 year: 1998 ident: 152_CR6 publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80076-3 – volume: 163 start-page: 123 year: 2015 ident: 152_CR53 publication-title: Cell doi: 10.1016/j.cell.2015.09.015 – volume: 20 start-page: 1785 year: 2001 ident: 152_CR33 publication-title: EMBO J doi: 10.1093/emboj/20.7.1785 – volume: 106 start-page: 9613 year: 2009 ident: 152_CR30 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0901997106 – volume: 8 start-page: 1351 year: 2001 ident: 152_CR21 publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00409-9 – volume: 13 year: 2012 ident: 152_CR16 publication-title: Genome Biol doi: 10.1186/gb-2012-13-3-r17 – volume: 30 start-page: 553 year: 2016 ident: 152_CR15 publication-title: Genes Dev doi: 10.1101/gad.276477.115 – volume: 20 start-page: 1063 year: 2000 ident: 152_CR18 publication-title: Mol Cell Biol doi: 10.1128/MCB.20.3.1063-1071.2000 – volume: 92 start-page: 780 year: 2016 ident: 152_CR50 publication-title: Neuron doi: 10.1016/j.neuron.2016.09.050 – volume: 23 start-page: 1874 year: 2003 ident: 152_CR39 publication-title: Mol Cell Biol doi: 10.1128/MCB.23.6.1874-1884.2003 – volume: 8 start-page: 533 year: 2007 ident: 152_CR35 publication-title: Nat Rev Genet doi: 10.1038/nrg2111 – volume: 27 start-page: 631 year: 2015 ident: 152_CR52 publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.04.008 – volume: 121 start-page: 2186 year: 2013 ident: 152_CR28 publication-title: Blood doi: 10.1182/blood-2012-06-440347 – volume: 32 start-page: 11 year: 2014 ident: 152_CR17 publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2014.03.011 – volume: 478 start-page: 64 year: 2011 ident: 152_CR1 publication-title: Nature doi: 10.1038/nature10496 – volume: 37 start-page: 376 year: 2005 ident: 152_CR23 publication-title: Methods doi: 10.1016/j.ymeth.2005.07.018 – volume: 29 start-page: 607 year: 2011 ident: 152_CR31 publication-title: Nat Biotechnol doi: 10.1038/nbt.1873 – volume: 22 start-page: 672 year: 2016 ident: 152_CR4 publication-title: Nat Med doi: 10.1038/nm.4097 – volume: 21 start-page: 75 year: 2015 ident: 152_CR22 publication-title: RNA doi: 10.1261/rna.043893.113 – volume: 131 start-page: 621 year: 2018 ident: 152_CR13 publication-title: Blood doi: 10.1182/blood-2017-01-762393 – volume: 30 start-page: 404 year: 2016 ident: 152_CR51 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.08.006 – volume: 19 start-page: 1853 year: 1999 ident: 152_CR8 publication-title: Mol Cell Biol doi: 10.1128/MCB.19.3.1853 – volume: 37 start-page: 255 year: 2012 ident: 152_CR37 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2012.02.005 – volume: 31 start-page: 162 year: 2012 ident: 152_CR11 publication-title: EMBO J doi: 10.1038/emboj.2011.367 – volume: 47 start-page: 1304 year: 2015 ident: 152_CR55 publication-title: Nat Genet doi: 10.1038/ng.3415 – volume: 162 start-page: 1299 year: 2015 ident: 152_CR54 publication-title: Cell doi: 10.1016/j.cell.2015.08.011 – ident: 152_CR56 doi: 10.1016/j.cell.2010.07.039 – volume: 120 start-page: 3080 year: 2012 ident: 152_CR2 publication-title: Blood doi: 10.1182/blood-2012-01-404863 – volume: 112 start-page: E4726 year: 2015 ident: 152_CR12 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1514105112 – volume: 38 start-page: 1353 year: 2010 ident: 152_CR34 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp1086 – volume: 11 year: 2010 ident: 152_CR47 publication-title: BMC Genom doi: 10.1186/1471-2164-11-565 – volume: 1 start-page: 167 year: 2012 ident: 152_CR48 publication-title: Cell Rep doi: 10.1016/j.celrep.2012.02.001 – volume: 8 start-page: 559 year: 2011 ident: 152_CR29 publication-title: Nat Methods doi: 10.1038/nmeth.1608 – volume: 22 start-page: 1535 year: 2016 ident: 152_CR44 publication-title: RNA doi: 10.1261/rna.056101.116 – volume: 3 start-page: 1 year: 2012 ident: 152_CR45 publication-title: Wiley Interdiscip Rev Rna doi: 10.1002/wrna.100 – volume: 111 start-page: E5593 year: 2014 ident: 152_CR26 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1419161111 – volume: 27 start-page: 617 year: 2015 ident: 152_CR10 publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.04.006 – volume: 279 start-page: 10077 year: 2004 ident: 152_CR41 publication-title: J Biol Chem doi: 10.1074/jbc.M312743200 – volume: 75 start-page: 1061 year: 1993 ident: 152_CR7 publication-title: Cell doi: 10.1016/0092-8674(93)90316-I – volume: 21 start-page: 985 year: 2015 ident: 152_CR25 publication-title: RNA doi: 10.1261/rna.045542.114 – volume: 31 start-page: 793 year: 2011 ident: 152_CR42 publication-title: Mol Cell Biol doi: 10.1128/MCB.01117-10 – volume: 13 year: 2012 ident: 152_CR32 publication-title: Genome Biol doi: 10.1186/gb-2012-13-8-r67 – volume: 19 start-page: 381 year: 2009 ident: 152_CR36 publication-title: Genome Res doi: 10.1101/gr.082503.108 – volume: 417 start-page: 15 year: 2009 ident: 152_CR9 publication-title: Biochem J doi: 10.1042/BJ20081501 – volume: 279 start-page: 38249 year: 2004 ident: 152_CR40 publication-title: J Biol Chem doi: 10.1074/jbc.M405377200 – volume: 23 start-page: 2927 year: 2003 ident: 152_CR38 publication-title: Mol Cell Biol doi: 10.1128/MCB.23.8.2927-2941.2003 – volume: 11 start-page: 886 year: 2010 ident: 152_CR46 publication-title: Traffic doi: 10.1111/j.1600-0854.2010.01072.x – volume: 35 start-page: 2503 year: 2015 ident: 152_CR49 publication-title: Mol Cell Biol doi: 10.1128/MCB.00070-15 – reference: 22919025 - Blood. 2012 Oct 11;120(15):3080-8 – reference: 25155147 - Wiley Interdiscip Rev RNA. 2015 Jan-Feb;6(1):93-110 – reference: 21135118 - Mol Cell Biol. 2011 Feb;31(4):793-802 – reference: 23319568 - Blood. 2013 Mar 21;121(12):2186-98 – reference: 8261509 - Cell. 1993 Dec 17;75(6):1061-70 – reference: 11285241 - EMBO J. 2001 Apr 2;20(7):1785-96 – reference: 27773581 - Neuron. 2016 Nov 23;92(4):780-795 – reference: 14703516 - J Biol Chem. 2004 Mar 12;279(11):10077-84 – reference: 22002536 - EMBO J. 2012 Jan 4;31(1):162-74 – reference: 19965769 - Nucleic Acids Res. 2010 Mar;38(4):1353-66 – reference: 29146882 - Blood. 2018 Feb 8;131(6):621-635 – reference: 18641664 - Nat Struct Mol Biol. 2008 Aug;15(8):819-26 – reference: 20406423 - Traffic. 2010 Jul 1;11(7):886-98 – reference: 27492256 - RNA. 2016 Oct;22(10):1535-49 – reference: 27135740 - Nat Med. 2016 Jun;22(6):672-8 – reference: 12612063 - Mol Cell Biol. 2003 Mar;23(6):1874-84 – reference: 21633356 - Nat Biotechnol. 2011 Jun 01;29(7):607-14 – reference: 20946641 - BMC Genomics. 2010 Oct 14;11:565 – reference: 25414008 - RNA. 2015 Jan;21(1):75-92 – reference: 25965569 - Cancer Cell. 2015 May 11;27(5):617-30 – reference: 21252854 - J Vis Exp. 2010 Dec 18;(46):null – reference: 11779509 - Mol Cell. 2001 Dec;8(6):1351-61 – reference: 22436691 - Genome Biol. 2012;13(3):R17 – reference: 22863408 - Genome Biol. 2012 Aug 03;13(8):R67 – reference: 25965570 - Cancer Cell. 2015 May 11;27(5):631-43 – reference: 24030381 - Blood. 2013 Nov 21;122(22):3616-27; quiz 3699 – reference: 25480548 - Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601 – reference: 22574288 - Cell Rep. 2012 Feb 23;1(2):167-78 – reference: 24657192 - Semin Cell Dev Biol. 2014 Aug;32:11-21 – reference: 26124281 - Mol Cell Biol. 2015 Sep 1;35(17):3071-82 – reference: 27622333 - Cancer Cell. 2016 Sep 12;30(3):404-417 – reference: 26261309 - Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4726-34 – reference: 10022872 - Mol Cell Biol. 1999 Mar;19(3):1853-63 – reference: 25963658 - Mol Cell Biol. 2015 Jul;35(14):2503-17 – reference: 26406374 - Cell. 2015 Sep 24;163(1):123-33 – reference: 10629063 - Mol Cell Biol. 2000 Feb;20(3):1063-71 – reference: 26437031 - Nat Genet. 2015 Nov;47(11):1304-15 – reference: 21898828 - Wiley Interdiscip Rev RNA. 2012 Jan-Feb;3(1):1-12 – reference: 19061484 - Biochem J. 2009 Jan 1;417(1):15-27 – reference: 14615540 - Science. 2003 Nov 14;302(5648):1212-5 – reference: 23562324 - Mol Cell. 2013 Apr 25;50(2):223-35 – reference: 21572407 - Nat Methods. 2011 May 15;8(7):559-64 – reference: 15208309 - J Biol Chem. 2004 Sep 10;279(37):38249-59 – reference: 12665590 - Mol Cell Biol. 2003 Apr;23(8):2927-41 – reference: 21909114 - Nature. 2011 Sep 11;478(7367):64-9 – reference: 9660960 - Mol Cell. 1998 Apr;1(5):765-71 – reference: 25805859 - RNA. 2015 May;21(5):985-96 – reference: 22425269 - Trends Biochem Sci. 2012 Jul;37(7):255-62 – reference: 26944680 - Genes Dev. 2016 Mar 1;30(5):553-66 – reference: 9108022 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3596-601 – reference: 17572691 - Nat Rev Genet. 2007 Jul;8(7):533-43 – reference: 16314267 - Methods. 2005 Dec;37(4):376-86 – reference: 19482942 - Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9613-8 – reference: 26321680 - Cell. 2015 Sep 10;162(6):1299-308 – reference: 19116412 - Genome Res. 2009 Mar;19(3):381-94 |
SSID | ssj0014766 |
Score | 2.5062337 |
Snippet | Recurrent mutations in the splicing factor
SRSF2
are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests... Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2659 |
SubjectTerms | 38 38/39 38/90 38/91 45 631/80 692/699/1541/1990/1673 Alternative splicing Backup software Binding sites Cancer Cancer Research Carcinogenesis Care and treatment Critical Care Medicine Development and progression Exons Gene mutation Genetic aspects Health aspects Hematology Hematopoiesis In vivo methods and tests Intensive Internal Medicine Medical schools Medicine Medicine & Public Health Messenger RNA mRNA Mutation Myelodysplastic syndrome Myelodysplastic syndromes Oncology Phenotypes Proteins Ribonucleic acid RNA RNA processing RNA splicing Splicing factors Tumorigenesis |
Title | SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells |
URI | https://link.springer.com/article/10.1038/s41375-018-0152-7 https://www.ncbi.nlm.nih.gov/pubmed/29858584 https://www.proquest.com/docview/2151748152 https://www.proquest.com/docview/2049561836 https://pubmed.ncbi.nlm.nih.gov/PMC6274620 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZbC2MvY_e56zoNBoMNU0eWJflpdKWhDFZGu0LehC52G9jsNE5g-_c7R1bcObC-hBAfEds6N-k7-g4h7znERFVD5qZK57CFWZkaWYoUvjj4KZ94H9g-z8TpJf86K2Zxw62LZZUbnxgctW8d7pEfYmiSyCzCPi9uUuwahehqbKFxn-widRlqtZwNC64Jlz1WiYYkYKGxQTVzddiB85ZYtoalXAUkmaO4tO2d_wlP26WTW_hpCEvTx-RRzCfpUa8AT8i9qnlKHnyLiPkz8vvi_GLK6K91D7l31C_Bv9G2ce0Vurl5R-0fiqcbcG-2uaKG9hwhNFZu0bamxlZLiGkrGrD1JnCF0w6Rbxwxb2hgfm0X7RyPRFIEA7rn5HJ68uP4NI3dFlIncr5Kc1bUzpauNgUXohQm83Xlc1swaTPPmVeiVo4Z663Lal4wa42sVJmVytcl9_kLstO0TfWKUAtBz_u8LJwUfOKNgTSzYFklpFOFEjIh2eZdaxepyLEjxk8dIPFc6X56NEyPxunRMOTjMGTR83DcJfwWJ1D3R0kHG9ZHhYT8UQjFEvIhSKAVwz87Ew8jwP0jH9ZIcn8kCdbnxpc3SqKj9Xf6VlcT8m64jCOxoq2p2jXIZLg0BYcqEvKy16nhwViJaK3iCZEjbRsEkBN8fKWZXwducGylJFiWkE8bvby9rf--r727H-I1ecjQUEIRzz7ZWS3X1RtIxVb2INgbfKrjyQHZ_XJy9v38LxCxMkg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkIAXxJ3AYEYCIYGipY5jOw8ITYOqY5cHtkl782I7GZUgKU0r2J_iN3KOcxmpxN72VtXHbZJzdb5zIeQ1B5-oCojcVGotjjBLw0ymIoQPFr6KR875bp-HYnLCv5wmp2vkT1cLg2mVnU30htpVFt-Rb6FrkthZhH2c_QxxahSiq90IjUYs9vKLX3Bkqz_sfgL-vmFs_Pl4ZxK2UwVCK2K-CGOWFNaktsgSLkQqssgVuYtNwqSJHGdOiUJZlhlnbFTwhBmTyVylUapckXIXw-_eIDd5DKqJlek7fUrJiMsGG0XFFXCw6VDUWG3V4Cwkpslh6lgCQe3AD656g3_c4Wqq5gpe693g-B6528avdLsRuPtkLS8fkFsHLUL_kPw--no0ZvTHsoH4a-rmYE9pVdrqHM3qtKbmgmI1Bb4LLs9pRpueJLTNFKNVQTOTz8GHLqjH8kvfm5zWiLTjjmlJfafZalZNsQSTIvhQPyIn18KHx2S9rMr8KaEGnKxzcZpYKfjIZRmEtQmLciGtSpSQAYm6Z61t2_ocJ3B81x6Cj5Vu2KOBPRrZo2HLu37LrOn7cRXxJjJQN6Wrvc3Q24mEeFUIxQLy1lOg1YB_tllb_ADXj_23BpQbA0rQdjtc7oREt9am1pe6EZBX_TLuxAy6Mq-WQBPhURgMuAjIk0am-htjKaLDigdEDqStJ8Ae5MOVcvrN9yLH0U2CRQF538nl5WX993k9u_omNsntyfHBvt7fPdx7Tu4wVBqfQLRB1hfzZf4CwsCFeel1j5Kz61b2v9nXbqo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qheKLeDda7QiKoITNTpK5PIiU1qW1WsRa6NuYmUnqQpusm120f81f5zmTS82CfevbsnNmN8m5Tr5zIeRlAj5RFhC5SWUtjjBTYSYUD-GDha_isXO-2-ch3ztOPp6kJ2vkT1cLg2mVnU30htpVFt-Rj9A1CewswkZFmxbxZXfyfvYzxAlSiLR24zQaETnIL37B8a1-t78LvH7F2OTDt529sJ0wEFoeJ4swZmlhjbJFliacK55FrshdbFImTOQS5iQvpGWZccZGRZIyYzKRSxUp6QqVuBh-9wa5KWIhUcfkTp9eMk5Eg5OiEnM45HSIaixHNTgOgSlzmEaWQoA78ImrnuEf17iatrmC3XqXOLlDbrexLN1uhO8uWcvLe2Tjc4vW3ye_j74eTRg9XzZwf03dHGwrrUpbnaKJndbUXFCsrMD3wuUpzWjTn4S2WWO0Kmhm8jn40wX1uH7p-5TTGlF33DEtqe86W82qKZZjUgQi6gfk-Fr48JCsl1WZPybUgMN1LlapFTwZuyyDEDdlUc6FlankIiBR96y1bdug4zSOM-3h-Fjqhj0a2KORPRq2vOm3zJoeIFcRbyEDdVPG2tsPvZ0KiF05lywgrz0FWhD4Z5u1hRBw_diLa0C5OaAEzbfD5U5IdGt5an2pJwF50S_jTsymK_NqCTQRHovBmPOAPGpkqr8xphAplklAxEDaegLsRz5cKac_fF9yHOPEWRSQt51cXl7Wf5_Xk6tvYotsgJrrT_uHB0_JLYY643OJNsn6Yr7Mn0FEuDDPvepR8v26df0vBjpy4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SRSF2+mutations+drive+oncogenesis+by+activating+a+global+program+of+aberrant+alternative+splicing+in+hematopoietic+cells&rft.jtitle=Leukemia&rft.au=Liang%2C+Yang&rft.au=Tebaldi%2C+Toma&rft.au=Rejeski%2C+Kai&rft.au=Joshi%2C+Poorval&rft.date=2018-12-01&rft.issn=0887-6924&rft.eissn=1476-5551&rft.volume=32&rft.issue=12&rft.spage=2659&rft.epage=2671&rft_id=info:doi/10.1038%2Fs41375-018-0152-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41375_018_0152_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6924&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6924&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6924&client=summon |