SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells

Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA s...

Full description

Saved in:
Bibliographic Details
Published inLeukemia Vol. 32; no. 12; pp. 2659 - 2671
Main Authors Liang, Yang, Tebaldi, Toma, Rejeski, Kai, Joshi, Poorval, Stefani, Giovanni, Taylor, Ashley, Song, Yuanbin, Vasic, Radovan, Maziarz, Jamie, Balasubramanian, Kunthavai, Ardasheva, Anastasia, Ding, Alicia, Quattrone, Alessandro, Halene, Stephanie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a “splicing-cascade” phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 P95H , impairs hematopoietic differentiation in vivo . Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.
AbstractList Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a “splicing-cascade” phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2P95H, impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.
Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a “splicing-cascade” phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 P95H , impairs hematopoietic differentiation in vivo . Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.
Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a “splicing-cascade” phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 P95H , impairs hematopoietic differentiation in vivo . Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.
Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2.sup.P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2.sup.P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2.sup.P95H, impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.
Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2P95H, impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2P95H, impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.
Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 , impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.
Audience Academic
Author Song, Yuanbin
Maziarz, Jamie
Balasubramanian, Kunthavai
Joshi, Poorval
Liang, Yang
Ardasheva, Anastasia
Rejeski, Kai
Ding, Alicia
Tebaldi, Toma
Stefani, Giovanni
Vasic, Radovan
Halene, Stephanie
Taylor, Ashley
Quattrone, Alessandro
AuthorAffiliation 4 Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
3 Division of Hematology, Oncology and Stem Cell Transplantation, Department of Internal Medicine, University of Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany
5 Department of Ecology and Evolutionary Biology, Yale University School of Medicine, New Haven, 06511, CT, USA
2 Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
1 Section of Hematology, Section of Hematology/Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, 06511, CT, USA
AuthorAffiliation_xml – name: 3 Division of Hematology, Oncology and Stem Cell Transplantation, Department of Internal Medicine, University of Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany
– name: 4 Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
– name: 2 Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
– name: 1 Section of Hematology, Section of Hematology/Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, 06511, CT, USA
– name: 5 Department of Ecology and Evolutionary Biology, Yale University School of Medicine, New Haven, 06511, CT, USA
Author_xml – sequence: 1
  givenname: Yang
  surname: Liang
  fullname: Liang, Yang
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
– sequence: 2
  givenname: Toma
  surname: Tebaldi
  fullname: Tebaldi, Toma
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento
– sequence: 3
  givenname: Kai
  surname: Rejeski
  fullname: Rejeski, Kai
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, Division of Hematology, Oncology and Stem Cell Transplantation, Department of Internal Medicine, University of Freiburg Medical Center
– sequence: 4
  givenname: Poorval
  surname: Joshi
  fullname: Joshi, Poorval
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine
– sequence: 5
  givenname: Giovanni
  surname: Stefani
  fullname: Stefani, Giovanni
  organization: Centre for Integrative Biology (CIBIO), University of Trento
– sequence: 6
  givenname: Ashley
  surname: Taylor
  fullname: Taylor, Ashley
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine
– sequence: 7
  givenname: Yuanbin
  surname: Song
  fullname: Song, Yuanbin
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine
– sequence: 8
  givenname: Radovan
  surname: Vasic
  fullname: Vasic, Radovan
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine
– sequence: 9
  givenname: Jamie
  surname: Maziarz
  fullname: Maziarz, Jamie
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, Department of Ecology and Evolutionary Biology, Yale University School of Medicine
– sequence: 10
  givenname: Kunthavai
  surname: Balasubramanian
  fullname: Balasubramanian, Kunthavai
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine
– sequence: 11
  givenname: Anastasia
  surname: Ardasheva
  fullname: Ardasheva, Anastasia
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine
– sequence: 12
  givenname: Alicia
  surname: Ding
  fullname: Ding, Alicia
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine
– sequence: 13
  givenname: Alessandro
  surname: Quattrone
  fullname: Quattrone, Alessandro
  organization: Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento
– sequence: 14
  givenname: Stephanie
  orcidid: 0000-0002-2737-9810
  surname: Halene
  fullname: Halene, Stephanie
  email: stephanie.halene@yale.edu
  organization: Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29858584$$D View this record in MEDLINE/PubMed
BookMark eNp9klFrHCEUhYeS0mzS_oC-FKFQ8jKpOuo4L4UQmrYQKDTts6ijswZHtzqzNP--TjZNsqEtIoJ-56j3nqPqIMRgquo1gqcINvx9JqhpaQ0RL5Piun1WrRBpWU0pRQfVCnLe1qzD5LA6yvkawuWQvagOccdpGWRV_br6dnWBwThPcnIxZNAntzUgBh0HE0x2GagbIPXktgUIA5Bg8FFJDzYpDkmOIFoglUlJhglIP5kUClgs8sY7vShcAGszyiluojOT00Ab7_PL6rmVPptXd-tx9ePi4_fzz_Xl109fzs8ua80aMtUNplarTltJCWMdk7C3pm8Uxa2CPcE9Z5ZrLFWvNLSEYqVka3gHO97bjvTNcfVh57uZ1Wh6bcKUpBeb5EaZbkSUTuyfBLcWQ9wKhlvCMCwGJ3cGKf6cTZ7E6PLyBRlMnLPAkHSUId6wgr59gl7HudTDFwpR1BJeuvRADdIb4YKN5V69mIoz2ja4_JMv1OlfqDJ6MzpdcmBd2d8TvHskWJvSi3WOfr5t6z745nFF7kvxJxQFQDtAp5hzMvYeQVAswRO74IkSPLEET7RF0z7RaLeLVHm28_9V4p0yl1vCYNJD0f4t-g2lj-0w
CitedBy_id crossref_primary_10_1016_j_ygeno_2020_06_002
crossref_primary_10_1158_1078_0432_CCR_20_0834
crossref_primary_10_1186_s12885_020_07331_0
crossref_primary_10_1186_s13046_024_03030_x
crossref_primary_10_1002_ajh_25673
crossref_primary_10_1186_s10020_024_00839_2
crossref_primary_10_1007_s11899_022_00685_1
crossref_primary_10_1186_s13690_022_00894_3
crossref_primary_10_1016_j_molcel_2020_10_019
crossref_primary_10_1002_bies_202000242
crossref_primary_10_1016_j_exphem_2024_104655
crossref_primary_10_1016_j_drup_2020_100728
crossref_primary_10_1093_jleuko_qiac015
crossref_primary_10_3390_genes11050499
crossref_primary_10_1182_blood_2018_10_839985
crossref_primary_10_1038_s41568_021_00411_8
crossref_primary_10_3390_cancers13081968
crossref_primary_10_1038_s41421_021_00337_3
crossref_primary_10_1042_BST20210325
crossref_primary_10_1038_s41572_022_00402_5
crossref_primary_10_1038_s41576_022_00514_4
crossref_primary_10_3390_cancers14020415
crossref_primary_10_1016_j_celrep_2023_113264
crossref_primary_10_1038_s41467_023_38515_4
crossref_primary_10_1053_j_seminhematol_2024_10_005
crossref_primary_10_1158_1078_0432_CCR_20_0184
crossref_primary_10_1186_s12859_023_05521_8
crossref_primary_10_1016_j_molcel_2023_11_003
crossref_primary_10_1002_1878_0261_12768
crossref_primary_10_1002_cam4_3859
crossref_primary_10_1038_s41392_021_00486_7
crossref_primary_10_3748_wjg_v27_i21_2871
crossref_primary_10_1038_s41375_020_0839_4
crossref_primary_10_1038_s41375_019_0567_9
crossref_primary_10_3390_ijms231810918
crossref_primary_10_1016_j_yamp_2020_07_004
crossref_primary_10_1093_nar_gkz1141
crossref_primary_10_3389_fonc_2023_1196817
crossref_primary_10_3390_cancers11121844
crossref_primary_10_3390_cancers12082216
crossref_primary_10_3390_hematolrep16040066
crossref_primary_10_1016_j_leukres_2020_106349
crossref_primary_10_12688_f1000research_15442_1
crossref_primary_10_1158_2159_8290_CD_21_0508
crossref_primary_10_3389_fgene_2020_00560
crossref_primary_10_1186_s12935_024_03438_7
crossref_primary_10_3390_cancers15133292
crossref_primary_10_1093_nar_gkae557
crossref_primary_10_1200_JCO_20_01659
crossref_primary_10_3389_fcimb_2021_799024
crossref_primary_10_18632_aging_101753
crossref_primary_10_3390_life13030604
crossref_primary_10_1016_j_cmpb_2024_108432
crossref_primary_10_3389_frhem_2023_1297657
crossref_primary_10_1080_10428194_2021_2008381
crossref_primary_10_3389_fcell_2020_00474
crossref_primary_10_1016_j_bcp_2023_115848
crossref_primary_10_3390_cells9112512
crossref_primary_10_3390_ijms222111618
Cites_doi 10.1111/j.1600-0854.2010.01072.x
10.1016/j.semcdb.2014.03.011
10.1261/rna.045542.114
10.1182/blood-2012-06-440347
10.1016/0092-8674(93)90316-I
10.1016/j.celrep.2012.02.001
10.1038/emboj.2011.367
10.1261/rna.056101.116
10.1182/blood-2017-01-762393
10.1038/nsmb.1461
10.1002/wrna.100
10.1016/j.ccell.2015.04.006
10.1261/rna.043893.113
10.1016/S1097-2765(00)80076-3
10.1128/MCB.01117-10
10.1016/j.ccell.2015.04.008
10.1128/MCB.23.8.2927-2941.2003
10.1038/nmeth.1608
10.1182/blood-2013-08-518886
10.1016/j.ymeth.2005.07.018
10.1128/MCB.19.3.1853
10.1073/pnas.1514105112
10.1186/1471-2164-11-565
10.1128/MCB.00202-15
10.1042/BJ20081501
10.1016/j.molcel.2013.03.001
10.1016/S1097-2765(01)00409-9
10.1101/gad.276477.115
10.1016/j.ccell.2016.08.006
10.1016/j.neuron.2016.09.050
10.1038/nature10496
10.1073/pnas.1419161111
10.1016/j.cell.2015.09.015
10.1186/gb-2012-13-8-r67
10.1128/MCB.20.3.1063-1071.2000
10.1186/gb-2012-13-3-r17
10.1093/emboj/20.7.1785
10.1038/nrg2111
10.1074/jbc.M405377200
10.1016/j.cell.2015.08.011
10.1128/MCB.23.6.1874-1884.2003
10.1093/nar/gkp1086
10.1128/MCB.00070-15
10.1073/pnas.0901997106
10.1016/j.tibs.2012.02.005
10.1038/ng.3415
10.1126/science.1090095
10.1002/wrna.1260
10.1101/gr.082503.108
10.1073/pnas.94.8.3596
10.1182/blood-2012-01-404863
10.1038/nbt.1873
10.1074/jbc.M312743200
10.1038/nm.4097
10.3791/2195
10.1016/j.cell.2010.07.039
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Dec 2018
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Dec 2018
DBID AAYXX
CITATION
NPM
3V.
7QL
7RV
7T5
7T7
7TM
7TO
7U9
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7N
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41375-018-0152-7
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student



MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1476-5551
EndPage 2671
ExternalDocumentID PMC6274620
A573246682
29858584
10_1038_s41375_018_0152_7
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: U54 DK106857
– fundername: NIDDK NIH HHS
  grantid: R01 DK102792
GroupedDBID ---
-Q-
.55
.XZ
0R~
29L
2WC
36B
39C
3V.
4.4
406
53G
5GY
5RE
70F
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8R4
8R5
AACDK
AANZL
AAQQT
AASDW
AASML
AATNV
AAWTL
AAYZH
AAZLF
ABAKF
ABAWZ
ABDBF
ABJNI
ABLJU
ABOCM
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACMJI
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DPUIP
DU5
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EBX
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
F5P
FDQFY
FEDTE
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
IHW
INH
INR
ITC
IWAJR
JSO
JZLTJ
KQ8
LGEZI
LOTEE
M1P
M7P
N9A
NADUK
NAO
NAPCQ
NQJWS
NXXTH
O9-
OK1
OVD
P2P
P6G
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TEORI
TR2
TSG
TUS
UDS
UKHRP
WOW
X7M
Y6R
ZGI
ZXP
~8M
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QL
7T5
7T7
7TM
7TO
7U9
7XB
8FD
8FE
8FH
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
LK8
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c634t-325fcb9cfa546696a0dfed3b527b0d42d86f8c2abdbc0f452bba7e89098df94d3
IEDL.DBID 7X7
ISSN 0887-6924
1476-5551
IngestDate Thu Aug 21 13:20:22 EDT 2025
Mon Jul 21 10:29:29 EDT 2025
Sat Aug 23 12:23:37 EDT 2025
Tue Jun 17 21:38:34 EDT 2025
Tue Jun 10 20:41:35 EDT 2025
Thu May 22 21:22:29 EDT 2025
Mon Jul 21 06:18:09 EDT 2025
Tue Jul 01 01:08:03 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Fri Feb 21 02:37:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-325fcb9cfa546696a0dfed3b527b0d42d86f8c2abdbc0f452bba7e89098df94d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
Current affiliation: Department of Hematology/Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China, 510060
ORCID 0000-0002-2737-9810
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6274620
PMID 29858584
PQID 2151748152
PQPubID 30521
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6274620
proquest_miscellaneous_2049561836
proquest_journals_2151748152
gale_infotracmisc_A573246682
gale_infotracacademiconefile_A573246682
gale_healthsolutions_A573246682
pubmed_primary_29858584
crossref_primary_10_1038_s41375_018_0152_7
crossref_citationtrail_10_1038_s41375_018_0152_7
springer_journals_10_1038_s41375_018_0152_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Leukemia
PublicationTitleAbbrev Leukemia
PublicationTitleAlternate Leukemia
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Meggendorfer, Roller, Haferlach, Eder, Dicker, Grossmann (CR2) 2012; 120
Shen, Park, Lu, Lin, Henry, Wu (CR26) 2014; 111
Änkö (CR17) 2014; 32
Stefani, Chen, Zhao, Slack (CR25) 2015; 21
Itzykson, Kosmider, Renneville, Morabito, Preudhomme, Berthon (CR28) 2013; 121
Dreumont, Hardy, Behm-Ansmant, Kister, Branlant, Stévenin (CR34) 2010; 38
Shirai, Ley, White, Kim, Tibbitts, Shao (CR52) 2015; 27
Lin, Coutinho-Mansfield, Wang, Pandit, Fu (CR14) 2008; 15
Graveley, Maniatis (CR6) 1998; 1
Han, Ding, Byeon, Kim, Hertel, Jeong (CR42) 2011; 31
Ule, Jensen, Mele, Darnell (CR23) 2005; 37
Zhu, Mayeda, Krainer (CR21) 2001; 8
Lee, Dvinge, Kim, Cho, Micol, Chung (CR4) 2016; 22
Molliex, Temirov, Lee, Coughlin, Kanagaraj, Kim (CR53) 2015; 163
Long, Caceres (CR9) 2009; 417
Zhang, Lieu, Ali, Penson, Reggio, Rabadan (CR12) 2015; 112
Howard, Sanford (CR5) 2015; 6
Keene (CR35) 2007; 8
Han, Friend, Carson, Korza, Barbarese, Maggipinto (CR46) 2010; 11
Komeno, Huang, Qiu, Lin, Xu, Zhou (CR43) 2015; 35
Wu, Maniatis (CR7) 1993; 75
Kishore, Jaskiewicz, Burger, Hausser, Khorshid, Zavolan (CR29) 2011; 8
Pandit, Zhou, Shiue, Coutinho-Mansfield, Li, Qiu (CR20) 2013; 50
Obeng, Chappell, Seiler, Chen, Campagna, Schmidt (CR51) 2016; 30
Busch, Hertel (CR45) 2012; 3
Ule, Jensen, Ruggiu, Mele, Ule, Darnell (CR24) 2003; 302
McGlincy, Tan, Paul, Zavolan, Lilley, Smith (CR47) 2010; 11
Liu, Chew, Cartegni, Zhang, Krainer (CR18) 2000; 20
Sureau, Gattoni, Dooghe, Stévenin, Soret (CR33) 2001; 20
Bergeron, Pal, Beaulieu, Chabot, Bachand (CR49) 2015; 35
Alarcón, Goodarzi, Lee, Liu, Tavazoie, Tavazoie (CR54) 2015; 162
Yoshida, Sanada, Shiraishi, Nowak, Nagata, Yamamoto (CR1) 2011; 478
Kim, Ilagan, Liang, Daubner, Lee, Ramakrishnan (CR10) 2015; 27
CR56
Müller-McNicoll, Botti, de Jesus Domingues, Brandl, Schwich, Steiner (CR15) 2016; 30
Bradley, Cook, Blanchette (CR22) 2015; 21
Rooke, Markovtsov, Cagavi, Black (CR39) 2003; 23
Huelga, Vu, Arnold, Liang, Liu, Yan (CR48) 2012; 1
Chandler, Mayeda, Yeakley, Krainer, Fu (CR19) 1997; 94
Änkö, Müller-McNicoll, Brandl, Curk, Gorup, Henry (CR16) 2012; 13
Granneman, Kudla, Petfalski, Tollervey (CR30) 2009; 106
Zhang, Darnell (CR31) 2011; 29
Daubner, Cléry, Jayne, Stevenin (CR11) 2012; 31
Kataoka, Nagata, Kitanaka, Shiraishi, Shimamura, Yasunaga (CR55) 2015; 47
Ankö, Neugebauer (CR37) 2012; 37
Zahler, Damgaard, Kjems, Caputi (CR41) 2004; 279
Expert-Bezançon, Sureau, Durosay, Salesse, Groeneveld, Lecaer (CR40) 2004; 279
CR27
Guil, Gattoni, Carrascal, Abián, Stévenin, Bach-Elias (CR38) 2003; 23
Martinez, Pratt, Van Nostrand, Batra, Huelga, Kapeli (CR50) 2016; 92
Kon, Yamazaki, Nannya, Kataoka, Ota, Nakagawa (CR13) 2018; 131
Sugimoto, König, Hussain, Zupan, Curk, Frye (CR32) 2012; 13
Papaemmanuil, Gerstung, Malcovati, Tauro, Gundem, Van Loo (CR3) 2013; 122
Qiu, Zhou, Thol, Zhou, Chen, Shao (CR44) 2016; 22
Mayeda, Screaton, Chandler, Fu, Krainer (CR8) 1999; 19
Sanford, Wang, Mort, Vanduyn, Cooper, Mooney (CR36) 2009; 19
A Mayeda (152_CR8) 1999; 19
SCW Lee (152_CR4) 2016; 22
JC Long (152_CR9) 2009; 417
NJ McGlincy (152_CR47) 2010; 11
SP Han (152_CR46) 2010; 11
S Kishore (152_CR29) 2011; 8
M Müller-McNicoll (152_CR15) 2016; 30
A Busch (152_CR45) 2012; 3
152_CR56
A Expert-Bezançon (152_CR40) 2004; 279
S Granneman (152_CR30) 2009; 106
J Ule (152_CR24) 2003; 302
JR Sanford (152_CR36) 2009; 19
JM Howard (152_CR5) 2015; 6
N Dreumont (152_CR34) 2010; 38
JY Wu (152_CR7) 1993; 75
ML Änkö (152_CR16) 2012; 13
ML Änkö (152_CR17) 2014; 32
C Zhang (152_CR31) 2011; 29
JD Keene (152_CR35) 2007; 8
GM Daubner (152_CR11) 2012; 31
S Shen (152_CR26) 2014; 111
A Molliex (152_CR53) 2015; 163
E Kim (152_CR10) 2015; 27
K Yoshida (152_CR1) 2011; 478
J Ule (152_CR23) 2005; 37
SC Huelga (152_CR48) 2012; 1
CL Shirai (152_CR52) 2015; 27
E Papaemmanuil (152_CR3) 2013; 122
N Rooke (152_CR39) 2003; 23
J Han (152_CR42) 2011; 31
A Sureau (152_CR33) 2001; 20
D Bergeron (152_CR49) 2015; 35
S Pandit (152_CR20) 2013; 50
R Itzykson (152_CR28) 2013; 121
ML Ankö (152_CR37) 2012; 37
FJ Martinez (152_CR50) 2016; 92
J Qiu (152_CR44) 2016; 22
HX Liu (152_CR18) 2000; 20
K Kataoka (152_CR55) 2015; 47
J Zhang (152_CR12) 2015; 112
G Stefani (152_CR25) 2015; 21
AM Zahler (152_CR41) 2004; 279
M Meggendorfer (152_CR2) 2012; 120
SD Chandler (152_CR19) 1997; 94
S Lin (152_CR14) 2008; 15
CR Alarcón (152_CR54) 2015; 162
S Guil (152_CR38) 2003; 23
T Bradley (152_CR22) 2015; 21
Y Sugimoto (152_CR32) 2012; 13
Y Komeno (152_CR43) 2015; 35
152_CR27
A Kon (152_CR13) 2018; 131
BR Graveley (152_CR6) 1998; 1
J Zhu (152_CR21) 2001; 8
EA Obeng (152_CR51) 2016; 30
22574288 - Cell Rep. 2012 Feb 23;1(2):167-78
10022872 - Mol Cell Biol. 1999 Mar;19(3):1853-63
25414008 - RNA. 2015 Jan;21(1):75-92
27492256 - RNA. 2016 Oct;22(10):1535-49
22436691 - Genome Biol. 2012;13(3):R17
14615540 - Science. 2003 Nov 14;302(5648):1212-5
14703516 - J Biol Chem. 2004 Mar 12;279(11):10077-84
21252854 - J Vis Exp. 2010 Dec 18;(46):null
12612063 - Mol Cell Biol. 2003 Mar;23(6):1874-84
12665590 - Mol Cell Biol. 2003 Apr;23(8):2927-41
25805859 - RNA. 2015 May;21(5):985-96
26321680 - Cell. 2015 Sep 10;162(6):1299-308
22002536 - EMBO J. 2012 Jan 4;31(1):162-74
24030381 - Blood. 2013 Nov 21;122(22):3616-27; quiz 3699
25480548 - Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601
22425269 - Trends Biochem Sci. 2012 Jul;37(7):255-62
10629063 - Mol Cell Biol. 2000 Feb;20(3):1063-71
24657192 - Semin Cell Dev Biol. 2014 Aug;32:11-21
21898828 - Wiley Interdiscip Rev RNA. 2012 Jan-Feb;3(1):1-12
29146882 - Blood. 2018 Feb 8;131(6):621-635
9660960 - Mol Cell. 1998 Apr;1(5):765-71
15208309 - J Biol Chem. 2004 Sep 10;279(37):38249-59
9108022 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3596-601
19965769 - Nucleic Acids Res. 2010 Mar;38(4):1353-66
27622333 - Cancer Cell. 2016 Sep 12;30(3):404-417
20946641 - BMC Genomics. 2010 Oct 14;11:565
19482942 - Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9613-8
25963658 - Mol Cell Biol. 2015 Jul;35(14):2503-17
18641664 - Nat Struct Mol Biol. 2008 Aug;15(8):819-26
25965570 - Cancer Cell. 2015 May 11;27(5):631-43
8261509 - Cell. 1993 Dec 17;75(6):1061-70
23319568 - Blood. 2013 Mar 21;121(12):2186-98
26124281 - Mol Cell Biol. 2015 Sep 1;35(17):3071-82
27773581 - Neuron. 2016 Nov 23;92(4):780-795
16314267 - Methods. 2005 Dec;37(4):376-86
22919025 - Blood. 2012 Oct 11;120(15):3080-8
19061484 - Biochem J. 2009 Jan 1;417(1):15-27
21135118 - Mol Cell Biol. 2011 Feb;31(4):793-802
21572407 - Nat Methods. 2011 May 15;8(7):559-64
19116412 - Genome Res. 2009 Mar;19(3):381-94
21633356 - Nat Biotechnol. 2011 Jun 01;29(7):607-14
22863408 - Genome Biol. 2012 Aug 03;13(8):R67
26944680 - Genes Dev. 2016 Mar 1;30(5):553-66
26261309 - Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4726-34
23562324 - Mol Cell. 2013 Apr 25;50(2):223-35
11779509 - Mol Cell. 2001 Dec;8(6):1351-61
25965569 - Cancer Cell. 2015 May 11;27(5):617-30
27135740 - Nat Med. 2016 Jun;22(6):672-8
20406423 - Traffic. 2010 Jul 1;11(7):886-98
26406374 - Cell. 2015 Sep 24;163(1):123-33
17572691 - Nat Rev Genet. 2007 Jul;8(7):533-43
21909114 - Nature. 2011 Sep 11;478(7367):64-9
25155147 - Wiley Interdiscip Rev RNA. 2015 Jan-Feb;6(1):93-110
26437031 - Nat Genet. 2015 Nov;47(11):1304-15
11285241 - EMBO J. 2001 Apr 2;20(7):1785-96
References_xml – volume: 11
  start-page: 886
  year: 2010
  end-page: 98
  ident: CR46
  article-title: Differential subcellular distributions and trafficking functions of hnRNP A2/B1 spliceoforms
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2010.01072.x
– volume: 32
  start-page: 11
  year: 2014
  end-page: 21
  ident: CR17
  article-title: Regulation of gene expression programmes by serine–arginine rich splicing factors
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2014.03.011
– volume: 21
  start-page: 985
  year: 2015
  end-page: 96
  ident: CR25
  article-title: A novel mechanism of LIN-28 regulation of let-7 microRNA expression revealed by in vivo HITS-CLIP in C. elegans
  publication-title: RNA
  doi: 10.1261/rna.045542.114
– volume: 121
  start-page: 2186
  year: 2013
  end-page: 98
  ident: CR28
  article-title: Clonal architecture of chronic myelomonocytic leukemias
  publication-title: Blood
  doi: 10.1182/blood-2012-06-440347
– volume: 75
  start-page: 1061
  year: 1993
  end-page: 70
  ident: CR7
  article-title: Specific interactions between proteins implicated in splice site selection and regulated alternative splicing
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90316-I
– volume: 1
  start-page: 167
  year: 2012
  end-page: 78
  ident: CR48
  article-title: Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.02.001
– volume: 31
  start-page: 162
  year: 2012
  end-page: 74
  ident: CR11
  article-title: Allain FH-T. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.367
– volume: 22
  start-page: 1535
  year: 2016
  end-page: 49
  ident: CR44
  article-title: Distinct splicing signatures affect converged pathways in myelodysplastic syndrome patients carrying mutations in different splicing regulators
  publication-title: RNA
  doi: 10.1261/rna.056101.116
– volume: 131
  start-page: 621
  year: 2018
  end-page: 35
  ident: CR13
  article-title: Physiological Srsf2 P95H expression causes impaired hematopoietic stem cell functions and aberrant RNA splicing in mice
  publication-title: Blood
  doi: 10.1182/blood-2017-01-762393
– volume: 15
  start-page: 819
  year: 2008
  end-page: 26
  ident: CR14
  article-title: The splicing factor SC35 has an active role in transcriptional elongation
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1461
– volume: 3
  start-page: 1
  year: 2012
  end-page: 12
  ident: CR45
  article-title: Evolution of SR protein and hnRNP splicing regulatory factors
  publication-title: Wiley Interdiscip Rev Rna
  doi: 10.1002/wrna.100
– volume: 27
  start-page: 617
  year: 2015
  end-page: 30
  ident: CR10
  article-title: SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.04.006
– volume: 21
  start-page: 75
  year: 2015
  end-page: 92
  ident: CR22
  article-title: SR proteins control a complex network of RNA-processing events
  publication-title: RNA
  doi: 10.1261/rna.043893.113
– volume: 1
  start-page: 765
  year: 1998
  end-page: 71
  ident: CR6
  article-title: Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80076-3
– volume: 31
  start-page: 793
  year: 2011
  end-page: 802
  ident: CR42
  article-title: SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01117-10
– volume: 27
  start-page: 631
  year: 2015
  end-page: 43
  ident: CR52
  article-title: Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.04.008
– volume: 23
  start-page: 2927
  year: 2003
  end-page: 41
  ident: CR38
  article-title: Roles of hnRNP A1, SR proteins, and p68 helicase in c-H-ras alternative splicing regulation
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.8.2927-2941.2003
– volume: 8
  start-page: 559
  year: 2011
  end-page: 64
  ident: CR29
  article-title: A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1608
– volume: 122
  start-page: 3616
  year: 2013
  end-page: 27
  ident: CR3
  article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes
  publication-title: Blood
  doi: 10.1182/blood-2013-08-518886
– volume: 37
  start-page: 376
  year: 2005
  end-page: 86
  ident: CR23
  article-title: CLIP: a method for identifying protein-RNA interaction sites in living cells
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.07.018
– volume: 19
  start-page: 1853
  year: 1999
  end-page: 63
  ident: CR8
  article-title: Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.19.3.1853
– volume: 112
  start-page: E4726
  year: 2015
  end-page: 34
  ident: CR12
  article-title: Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1514105112
– volume: 11
  year: 2010
  ident: CR47
  article-title: Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-11-565
– volume: 35
  start-page: 3071
  year: 2015
  end-page: 82
  ident: CR43
  article-title: SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00202-15
– volume: 417
  start-page: 15
  year: 2009
  end-page: 27
  ident: CR9
  article-title: The SR protein family of splicing factors: master regulators of gene expression
  publication-title: Biochem J
  doi: 10.1042/BJ20081501
– volume: 50
  start-page: 223
  year: 2013
  end-page: 35
  ident: CR20
  article-title: Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.03.001
– volume: 8
  start-page: 1351
  year: 2001
  end-page: 61
  ident: CR21
  article-title: Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(01)00409-9
– volume: 30
  start-page: 553
  year: 2016
  end-page: 66
  ident: CR15
  article-title: SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export
  publication-title: Genes Dev
  doi: 10.1101/gad.276477.115
– volume: 30
  start-page: 404
  year: 2016
  end-page: 17
  ident: CR51
  article-title: Physiologic Expression of Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.08.006
– volume: 92
  start-page: 780
  year: 2016
  end-page: 95
  ident: CR50
  article-title: Protein-RNA networks regulated by normal and ALS-associated mutant HNRNPA2B1 in the nervous system
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.09.050
– volume: 478
  start-page: 64
  year: 2011
  end-page: 9
  ident: CR1
  article-title: Frequent pathway mutations of splicing machinery in myelodysplasia
  publication-title: Nature
  doi: 10.1038/nature10496
– ident: CR56
– volume: 111
  start-page: E5593
  year: 2014
  end-page: 601
  ident: CR26
  article-title: rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1419161111
– volume: 163
  start-page: 123
  year: 2015
  end-page: 33
  ident: CR53
  article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.015
– ident: CR27
– volume: 13
  year: 2012
  ident: CR32
  article-title: Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-8-r67
– volume: 20
  start-page: 1063
  year: 2000
  end-page: 71
  ident: CR18
  article-title: Exonic splicing enhancer motif recognized by human SC35 under splicing conditions
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.3.1063-1071.2000
– volume: 13
  year: 2012
  ident: CR16
  article-title: The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-3-r17
– volume: 20
  start-page: 1785
  year: 2001
  end-page: 96
  ident: CR33
  article-title: SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs
  publication-title: EMBO J
  doi: 10.1093/emboj/20.7.1785
– volume: 8
  start-page: 533
  year: 2007
  end-page: 43
  ident: CR35
  article-title: RNA regulons: coordination of post-transcriptional events
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2111
– volume: 279
  start-page: 38249
  year: 2004
  end-page: 59
  ident: CR40
  article-title: hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M405377200
– volume: 162
  start-page: 1299
  year: 2015
  end-page: 308
  ident: CR54
  article-title: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.011
– volume: 23
  start-page: 1874
  year: 2003
  end-page: 84
  ident: CR39
  article-title: Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.6.1874-1884.2003
– volume: 38
  start-page: 1353
  year: 2010
  end-page: 66
  ident: CR34
  article-title: Antagonistic factors control the unproductive splicing of SC35 terminal intron
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp1086
– volume: 35
  start-page: 2503
  year: 2015
  end-page: 17
  ident: CR49
  article-title: Regulated intron retention and nuclear Pre-mRNA decay contribute to PABPN1 autoregulation
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00070-15
– volume: 106
  start-page: 9613
  year: 2009
  end-page: 8
  ident: CR30
  article-title: Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0901997106
– volume: 37
  start-page: 255
  year: 2012
  end-page: 62
  ident: CR37
  article-title: RNA-protein interactions in vivo: global gets specific
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2012.02.005
– volume: 47
  start-page: 1304
  year: 2015
  end-page: 15
  ident: CR55
  article-title: Integrated molecular analysis of adult T cell leukemia/lymphoma
  publication-title: Nat Genet
  doi: 10.1038/ng.3415
– volume: 302
  start-page: 1212
  year: 2003
  end-page: 5
  ident: CR24
  article-title: CLIP identifies Nova-regulated RNA networks in the brain
  publication-title: Science
  doi: 10.1126/science.1090095
– volume: 6
  start-page: 93
  year: 2015
  end-page: 110
  ident: CR5
  article-title: The RNAissance family: SR proteins as multifaceted regulators of gene expression
  publication-title: Wiley Interdiscip Rev RNA
  doi: 10.1002/wrna.1260
– volume: 19
  start-page: 381
  year: 2009
  end-page: 94
  ident: CR36
  article-title: Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts
  publication-title: Genome Res
  doi: 10.1101/gr.082503.108
– volume: 94
  start-page: 3596
  year: 1997
  end-page: 601
  ident: CR19
  article-title: RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.8.3596
– volume: 120
  start-page: 3080
  year: 2012
  end-page: 8
  ident: CR2
  article-title: SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML)
  publication-title: Blood
  doi: 10.1182/blood-2012-01-404863
– volume: 29
  start-page: 607
  year: 2011
  end-page: 14
  ident: CR31
  article-title: Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1873
– volume: 279
  start-page: 10077
  year: 2004
  end-page: 84
  ident: CR41
  article-title: SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicing
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M312743200
– volume: 22
  start-page: 672
  year: 2016
  end-page: 8
  ident: CR4
  article-title: Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins
  publication-title: Nat Med
  doi: 10.1038/nm.4097
– volume: 35
  start-page: 3071
  year: 2015
  ident: 152_CR43
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00202-15
– volume: 302
  start-page: 1212
  year: 2003
  ident: 152_CR24
  publication-title: Science
  doi: 10.1126/science.1090095
– volume: 94
  start-page: 3596
  year: 1997
  ident: 152_CR19
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.8.3596
– volume: 6
  start-page: 93
  year: 2015
  ident: 152_CR5
  publication-title: Wiley Interdiscip Rev RNA
  doi: 10.1002/wrna.1260
– volume: 50
  start-page: 223
  year: 2013
  ident: 152_CR20
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.03.001
– volume: 122
  start-page: 3616
  year: 2013
  ident: 152_CR3
  publication-title: Blood
  doi: 10.1182/blood-2013-08-518886
– volume: 15
  start-page: 819
  year: 2008
  ident: 152_CR14
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1461
– ident: 152_CR27
  doi: 10.3791/2195
– volume: 1
  start-page: 765
  year: 1998
  ident: 152_CR6
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80076-3
– volume: 163
  start-page: 123
  year: 2015
  ident: 152_CR53
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.015
– volume: 20
  start-page: 1785
  year: 2001
  ident: 152_CR33
  publication-title: EMBO J
  doi: 10.1093/emboj/20.7.1785
– volume: 106
  start-page: 9613
  year: 2009
  ident: 152_CR30
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0901997106
– volume: 8
  start-page: 1351
  year: 2001
  ident: 152_CR21
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(01)00409-9
– volume: 13
  year: 2012
  ident: 152_CR16
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-3-r17
– volume: 30
  start-page: 553
  year: 2016
  ident: 152_CR15
  publication-title: Genes Dev
  doi: 10.1101/gad.276477.115
– volume: 20
  start-page: 1063
  year: 2000
  ident: 152_CR18
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.3.1063-1071.2000
– volume: 92
  start-page: 780
  year: 2016
  ident: 152_CR50
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.09.050
– volume: 23
  start-page: 1874
  year: 2003
  ident: 152_CR39
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.6.1874-1884.2003
– volume: 8
  start-page: 533
  year: 2007
  ident: 152_CR35
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2111
– volume: 27
  start-page: 631
  year: 2015
  ident: 152_CR52
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.04.008
– volume: 121
  start-page: 2186
  year: 2013
  ident: 152_CR28
  publication-title: Blood
  doi: 10.1182/blood-2012-06-440347
– volume: 32
  start-page: 11
  year: 2014
  ident: 152_CR17
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2014.03.011
– volume: 478
  start-page: 64
  year: 2011
  ident: 152_CR1
  publication-title: Nature
  doi: 10.1038/nature10496
– volume: 37
  start-page: 376
  year: 2005
  ident: 152_CR23
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.07.018
– volume: 29
  start-page: 607
  year: 2011
  ident: 152_CR31
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1873
– volume: 22
  start-page: 672
  year: 2016
  ident: 152_CR4
  publication-title: Nat Med
  doi: 10.1038/nm.4097
– volume: 21
  start-page: 75
  year: 2015
  ident: 152_CR22
  publication-title: RNA
  doi: 10.1261/rna.043893.113
– volume: 131
  start-page: 621
  year: 2018
  ident: 152_CR13
  publication-title: Blood
  doi: 10.1182/blood-2017-01-762393
– volume: 30
  start-page: 404
  year: 2016
  ident: 152_CR51
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.08.006
– volume: 19
  start-page: 1853
  year: 1999
  ident: 152_CR8
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.19.3.1853
– volume: 37
  start-page: 255
  year: 2012
  ident: 152_CR37
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2012.02.005
– volume: 31
  start-page: 162
  year: 2012
  ident: 152_CR11
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.367
– volume: 47
  start-page: 1304
  year: 2015
  ident: 152_CR55
  publication-title: Nat Genet
  doi: 10.1038/ng.3415
– volume: 162
  start-page: 1299
  year: 2015
  ident: 152_CR54
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.011
– ident: 152_CR56
  doi: 10.1016/j.cell.2010.07.039
– volume: 120
  start-page: 3080
  year: 2012
  ident: 152_CR2
  publication-title: Blood
  doi: 10.1182/blood-2012-01-404863
– volume: 112
  start-page: E4726
  year: 2015
  ident: 152_CR12
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1514105112
– volume: 38
  start-page: 1353
  year: 2010
  ident: 152_CR34
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp1086
– volume: 11
  year: 2010
  ident: 152_CR47
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-11-565
– volume: 1
  start-page: 167
  year: 2012
  ident: 152_CR48
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.02.001
– volume: 8
  start-page: 559
  year: 2011
  ident: 152_CR29
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1608
– volume: 22
  start-page: 1535
  year: 2016
  ident: 152_CR44
  publication-title: RNA
  doi: 10.1261/rna.056101.116
– volume: 3
  start-page: 1
  year: 2012
  ident: 152_CR45
  publication-title: Wiley Interdiscip Rev Rna
  doi: 10.1002/wrna.100
– volume: 111
  start-page: E5593
  year: 2014
  ident: 152_CR26
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1419161111
– volume: 27
  start-page: 617
  year: 2015
  ident: 152_CR10
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.04.006
– volume: 279
  start-page: 10077
  year: 2004
  ident: 152_CR41
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M312743200
– volume: 75
  start-page: 1061
  year: 1993
  ident: 152_CR7
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90316-I
– volume: 21
  start-page: 985
  year: 2015
  ident: 152_CR25
  publication-title: RNA
  doi: 10.1261/rna.045542.114
– volume: 31
  start-page: 793
  year: 2011
  ident: 152_CR42
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01117-10
– volume: 13
  year: 2012
  ident: 152_CR32
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-8-r67
– volume: 19
  start-page: 381
  year: 2009
  ident: 152_CR36
  publication-title: Genome Res
  doi: 10.1101/gr.082503.108
– volume: 417
  start-page: 15
  year: 2009
  ident: 152_CR9
  publication-title: Biochem J
  doi: 10.1042/BJ20081501
– volume: 279
  start-page: 38249
  year: 2004
  ident: 152_CR40
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M405377200
– volume: 23
  start-page: 2927
  year: 2003
  ident: 152_CR38
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.8.2927-2941.2003
– volume: 11
  start-page: 886
  year: 2010
  ident: 152_CR46
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2010.01072.x
– volume: 35
  start-page: 2503
  year: 2015
  ident: 152_CR49
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00070-15
– reference: 22919025 - Blood. 2012 Oct 11;120(15):3080-8
– reference: 25155147 - Wiley Interdiscip Rev RNA. 2015 Jan-Feb;6(1):93-110
– reference: 21135118 - Mol Cell Biol. 2011 Feb;31(4):793-802
– reference: 23319568 - Blood. 2013 Mar 21;121(12):2186-98
– reference: 8261509 - Cell. 1993 Dec 17;75(6):1061-70
– reference: 11285241 - EMBO J. 2001 Apr 2;20(7):1785-96
– reference: 27773581 - Neuron. 2016 Nov 23;92(4):780-795
– reference: 14703516 - J Biol Chem. 2004 Mar 12;279(11):10077-84
– reference: 22002536 - EMBO J. 2012 Jan 4;31(1):162-74
– reference: 19965769 - Nucleic Acids Res. 2010 Mar;38(4):1353-66
– reference: 29146882 - Blood. 2018 Feb 8;131(6):621-635
– reference: 18641664 - Nat Struct Mol Biol. 2008 Aug;15(8):819-26
– reference: 20406423 - Traffic. 2010 Jul 1;11(7):886-98
– reference: 27492256 - RNA. 2016 Oct;22(10):1535-49
– reference: 27135740 - Nat Med. 2016 Jun;22(6):672-8
– reference: 12612063 - Mol Cell Biol. 2003 Mar;23(6):1874-84
– reference: 21633356 - Nat Biotechnol. 2011 Jun 01;29(7):607-14
– reference: 20946641 - BMC Genomics. 2010 Oct 14;11:565
– reference: 25414008 - RNA. 2015 Jan;21(1):75-92
– reference: 25965569 - Cancer Cell. 2015 May 11;27(5):617-30
– reference: 21252854 - J Vis Exp. 2010 Dec 18;(46):null
– reference: 11779509 - Mol Cell. 2001 Dec;8(6):1351-61
– reference: 22436691 - Genome Biol. 2012;13(3):R17
– reference: 22863408 - Genome Biol. 2012 Aug 03;13(8):R67
– reference: 25965570 - Cancer Cell. 2015 May 11;27(5):631-43
– reference: 24030381 - Blood. 2013 Nov 21;122(22):3616-27; quiz 3699
– reference: 25480548 - Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601
– reference: 22574288 - Cell Rep. 2012 Feb 23;1(2):167-78
– reference: 24657192 - Semin Cell Dev Biol. 2014 Aug;32:11-21
– reference: 26124281 - Mol Cell Biol. 2015 Sep 1;35(17):3071-82
– reference: 27622333 - Cancer Cell. 2016 Sep 12;30(3):404-417
– reference: 26261309 - Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4726-34
– reference: 10022872 - Mol Cell Biol. 1999 Mar;19(3):1853-63
– reference: 25963658 - Mol Cell Biol. 2015 Jul;35(14):2503-17
– reference: 26406374 - Cell. 2015 Sep 24;163(1):123-33
– reference: 10629063 - Mol Cell Biol. 2000 Feb;20(3):1063-71
– reference: 26437031 - Nat Genet. 2015 Nov;47(11):1304-15
– reference: 21898828 - Wiley Interdiscip Rev RNA. 2012 Jan-Feb;3(1):1-12
– reference: 19061484 - Biochem J. 2009 Jan 1;417(1):15-27
– reference: 14615540 - Science. 2003 Nov 14;302(5648):1212-5
– reference: 23562324 - Mol Cell. 2013 Apr 25;50(2):223-35
– reference: 21572407 - Nat Methods. 2011 May 15;8(7):559-64
– reference: 15208309 - J Biol Chem. 2004 Sep 10;279(37):38249-59
– reference: 12665590 - Mol Cell Biol. 2003 Apr;23(8):2927-41
– reference: 21909114 - Nature. 2011 Sep 11;478(7367):64-9
– reference: 9660960 - Mol Cell. 1998 Apr;1(5):765-71
– reference: 25805859 - RNA. 2015 May;21(5):985-96
– reference: 22425269 - Trends Biochem Sci. 2012 Jul;37(7):255-62
– reference: 26944680 - Genes Dev. 2016 Mar 1;30(5):553-66
– reference: 9108022 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3596-601
– reference: 17572691 - Nat Rev Genet. 2007 Jul;8(7):533-43
– reference: 16314267 - Methods. 2005 Dec;37(4):376-86
– reference: 19482942 - Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9613-8
– reference: 26321680 - Cell. 2015 Sep 10;162(6):1299-308
– reference: 19116412 - Genome Res. 2009 Mar;19(3):381-94
SSID ssj0014766
Score 2.5062337
Snippet Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests...
Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2659
SubjectTerms 38
38/39
38/90
38/91
45
631/80
692/699/1541/1990/1673
Alternative splicing
Backup software
Binding sites
Cancer
Cancer Research
Carcinogenesis
Care and treatment
Critical Care Medicine
Development and progression
Exons
Gene mutation
Genetic aspects
Health aspects
Hematology
Hematopoiesis
In vivo methods and tests
Intensive
Internal Medicine
Medical schools
Medicine
Medicine & Public Health
Messenger RNA
mRNA
Mutation
Myelodysplastic syndrome
Myelodysplastic syndromes
Oncology
Phenotypes
Proteins
Ribonucleic acid
RNA
RNA processing
RNA splicing
Splicing factors
Tumorigenesis
Title SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells
URI https://link.springer.com/article/10.1038/s41375-018-0152-7
https://www.ncbi.nlm.nih.gov/pubmed/29858584
https://www.proquest.com/docview/2151748152
https://www.proquest.com/docview/2049561836
https://pubmed.ncbi.nlm.nih.gov/PMC6274620
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZbC2MvY_e56zoNBoMNU0eWJflpdKWhDFZGu0LehC52G9jsNE5g-_c7R1bcObC-hBAfEds6N-k7-g4h7znERFVD5qZK57CFWZkaWYoUvjj4KZ94H9g-z8TpJf86K2Zxw62LZZUbnxgctW8d7pEfYmiSyCzCPi9uUuwahehqbKFxn-widRlqtZwNC64Jlz1WiYYkYKGxQTVzddiB85ZYtoalXAUkmaO4tO2d_wlP26WTW_hpCEvTx-RRzCfpUa8AT8i9qnlKHnyLiPkz8vvi_GLK6K91D7l31C_Bv9G2ce0Vurl5R-0fiqcbcG-2uaKG9hwhNFZu0bamxlZLiGkrGrD1JnCF0w6Rbxwxb2hgfm0X7RyPRFIEA7rn5HJ68uP4NI3dFlIncr5Kc1bUzpauNgUXohQm83Xlc1swaTPPmVeiVo4Z663Lal4wa42sVJmVytcl9_kLstO0TfWKUAtBz_u8LJwUfOKNgTSzYFklpFOFEjIh2eZdaxepyLEjxk8dIPFc6X56NEyPxunRMOTjMGTR83DcJfwWJ1D3R0kHG9ZHhYT8UQjFEvIhSKAVwz87Ew8jwP0jH9ZIcn8kCdbnxpc3SqKj9Xf6VlcT8m64jCOxoq2p2jXIZLg0BYcqEvKy16nhwViJaK3iCZEjbRsEkBN8fKWZXwducGylJFiWkE8bvby9rf--r727H-I1ecjQUEIRzz7ZWS3X1RtIxVb2INgbfKrjyQHZ_XJy9v38LxCxMkg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkIAXxJ3AYEYCIYGipY5jOw8ITYOqY5cHtkl782I7GZUgKU0r2J_iN3KOcxmpxN72VtXHbZJzdb5zIeQ1B5-oCojcVGotjjBLw0ymIoQPFr6KR875bp-HYnLCv5wmp2vkT1cLg2mVnU30htpVFt-Rb6FrkthZhH2c_QxxahSiq90IjUYs9vKLX3Bkqz_sfgL-vmFs_Pl4ZxK2UwVCK2K-CGOWFNaktsgSLkQqssgVuYtNwqSJHGdOiUJZlhlnbFTwhBmTyVylUapckXIXw-_eIDd5DKqJlek7fUrJiMsGG0XFFXCw6VDUWG3V4Cwkpslh6lgCQe3AD656g3_c4Wqq5gpe693g-B6528avdLsRuPtkLS8fkFsHLUL_kPw--no0ZvTHsoH4a-rmYE9pVdrqHM3qtKbmgmI1Bb4LLs9pRpueJLTNFKNVQTOTz8GHLqjH8kvfm5zWiLTjjmlJfafZalZNsQSTIvhQPyIn18KHx2S9rMr8KaEGnKxzcZpYKfjIZRmEtQmLciGtSpSQAYm6Z61t2_ocJ3B81x6Cj5Vu2KOBPRrZo2HLu37LrOn7cRXxJjJQN6Wrvc3Q24mEeFUIxQLy1lOg1YB_tllb_ADXj_23BpQbA0rQdjtc7oREt9am1pe6EZBX_TLuxAy6Mq-WQBPhURgMuAjIk0am-htjKaLDigdEDqStJ8Ae5MOVcvrN9yLH0U2CRQF538nl5WX993k9u_omNsntyfHBvt7fPdx7Tu4wVBqfQLRB1hfzZf4CwsCFeel1j5Kz61b2v9nXbqo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qheKLeDda7QiKoITNTpK5PIiU1qW1WsRa6NuYmUnqQpusm120f81f5zmTS82CfevbsnNmN8m5Tr5zIeRlAj5RFhC5SWUtjjBTYSYUD-GDha_isXO-2-ch3ztOPp6kJ2vkT1cLg2mVnU30htpVFt-Rj9A1CewswkZFmxbxZXfyfvYzxAlSiLR24zQaETnIL37B8a1-t78LvH7F2OTDt529sJ0wEFoeJ4swZmlhjbJFliacK55FrshdbFImTOQS5iQvpGWZccZGRZIyYzKRSxUp6QqVuBh-9wa5KWIhUcfkTp9eMk5Eg5OiEnM45HSIaixHNTgOgSlzmEaWQoA78ImrnuEf17iatrmC3XqXOLlDbrexLN1uhO8uWcvLe2Tjc4vW3ye_j74eTRg9XzZwf03dHGwrrUpbnaKJndbUXFCsrMD3wuUpzWjTn4S2WWO0Kmhm8jn40wX1uH7p-5TTGlF33DEtqe86W82qKZZjUgQi6gfk-Fr48JCsl1WZPybUgMN1LlapFTwZuyyDEDdlUc6FlankIiBR96y1bdug4zSOM-3h-Fjqhj0a2KORPRq2vOm3zJoeIFcRbyEDdVPG2tsPvZ0KiF05lywgrz0FWhD4Z5u1hRBw_diLa0C5OaAEzbfD5U5IdGt5an2pJwF50S_jTsymK_NqCTQRHovBmPOAPGpkqr8xphAplklAxEDaegLsRz5cKac_fF9yHOPEWRSQt51cXl7Wf5_Xk6tvYotsgJrrT_uHB0_JLYY643OJNsn6Yr7Mn0FEuDDPvepR8v26df0vBjpy4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SRSF2+mutations+drive+oncogenesis+by+activating+a+global+program+of+aberrant+alternative+splicing+in+hematopoietic+cells&rft.jtitle=Leukemia&rft.au=Liang%2C+Yang&rft.au=Tebaldi%2C+Toma&rft.au=Rejeski%2C+Kai&rft.au=Joshi%2C+Poorval&rft.date=2018-12-01&rft.issn=0887-6924&rft.eissn=1476-5551&rft.volume=32&rft.issue=12&rft.spage=2659&rft.epage=2671&rft_id=info:doi/10.1038%2Fs41375-018-0152-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41375_018_0152_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6924&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6924&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6924&client=summon