Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data

Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; p. 2078
Main Authors Eshaghi, Arman, Young, Alexandra L., Wijeratne, Peter A., Prados, Ferran, Arnold, Douglas L., Narayanan, Sridar, Guttmann, Charles R. G., Barkhof, Frederik, Alexander, Daniel C., Thompson, Alan J., Chard, Declan, Ciccarelli, Olga
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.04.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials. Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis subtypes, progression, and response to potential therapeutic treatments based on neuroimaging data.
AbstractList Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials.
Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis subtypes, progression, and response to potential therapeutic treatments based on neuroimaging data.
Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials.Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis subtypes, progression, and response to potential therapeutic treatments based on neuroimaging data.
Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials. Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis subtypes, progression, and response to potential therapeutic treatments based on neuroimaging data.
Abstract Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials.
ArticleNumber 2078
Author Ciccarelli, Olga
Arnold, Douglas L.
Guttmann, Charles R. G.
Eshaghi, Arman
Chard, Declan
Wijeratne, Peter A.
Narayanan, Sridar
Young, Alexandra L.
Alexander, Daniel C.
Barkhof, Frederik
Prados, Ferran
Thompson, Alan J.
Author_xml – sequence: 1
  givenname: Arman
  orcidid: 0000-0002-6652-3512
  surname: Eshaghi
  fullname: Eshaghi, Arman
  email: a.eshaghi@ucl.ac.uk
  organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London
– sequence: 2
  givenname: Alexandra L.
  surname: Young
  fullname: Young, Alexandra L.
  organization: Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London
– sequence: 3
  givenname: Peter A.
  orcidid: 0000-0002-4885-6241
  surname: Wijeratne
  fullname: Wijeratne, Peter A.
  organization: Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London
– sequence: 4
  givenname: Ferran
  orcidid: 0000-0002-7872-0142
  surname: Prados
  fullname: Prados, Ferran
  organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London, e-Health Centre, Universitat Oberta de Catalunya
– sequence: 5
  givenname: Douglas L.
  surname: Arnold
  fullname: Arnold, Douglas L.
  organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University
– sequence: 6
  givenname: Sridar
  surname: Narayanan
  fullname: Narayanan, Sridar
  organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University
– sequence: 7
  givenname: Charles R. G.
  surname: Guttmann
  fullname: Guttmann, Charles R. G.
  organization: Center for Neurological Imaging, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 8
  givenname: Frederik
  orcidid: 0000-0003-3543-3706
  surname: Barkhof
  fullname: Barkhof, Frederik
  organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London, VU University Medical Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London
– sequence: 9
  givenname: Daniel C.
  orcidid: 0000-0003-2439-350X
  surname: Alexander
  fullname: Alexander, Daniel C.
  organization: Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London
– sequence: 10
  givenname: Alan J.
  orcidid: 0000-0002-4333-8496
  surname: Thompson
  fullname: Thompson, Alan J.
  organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London
– sequence: 11
  givenname: Declan
  orcidid: 0000-0003-3076-2682
  surname: Chard
  fullname: Chard, Declan
  organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, National Institute for Health Research University College London Hospitals, Biomedical Research Centre
– sequence: 12
  givenname: Olga
  surname: Ciccarelli
  fullname: Ciccarelli, Olga
  organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, National Institute for Health Research University College London Hospitals, Biomedical Research Centre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33824310$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhi1URC_0BVigSGzYBHyLHW-QUAXlSEVICCR2li-TUx8lTrCTSuft8WlKaVnUG1ueb_7xjP9TdBTHCAi9Ivgdwax9nznhQtaYkppSKpqaPkMnFHNSE0nZ0YPzMTrPeYfLYoq0nL9Ax4y1lDOCT9CvjYc4h24f4rYaln4OUw9Vdj2kMYdc5cXO-wlyteQDscS8TJBuQgZfDcZdhwhVDybFQ9REX339vqm8mc1L9LwzfYbzu_0M_fz86cfFl_rq2-Xm4uNV7QTjc02oYiB8g70FZrFVyjaGS8-gBQmCNkpa64Ep3wD3jnYYQDXQgRJUCabYGdqsun40Oz2lMJi016MJ-vZiTFtt0hxKQ9oq2oApmqDK7DrXOsUl92BaZ0QrbdH6sGpNix3AuzKZZPpHoo8jMVzr7XijW1zGKWUReHsnkMbfC-RZDyE76HsTYVyypg1WAgsiRUHf_IfuxiXFMqpCUdUoobB6msKKEMLUoSxdKVc-LSfo7p9MsD64Ra9u0cUt-tYtmpak1w-bvU_5640CsBXIJRS3kP7VfkL2D3CSzN4
CitedBy_id crossref_primary_10_1136_jnnp_2022_330726
crossref_primary_10_1016_j_biopsych_2024_04_017
crossref_primary_10_1038_s41583_023_00779_6
crossref_primary_10_1212_NXI_0000000000200025
crossref_primary_10_3389_fimmu_2022_933415
crossref_primary_10_1177_13524585231189673
crossref_primary_10_1007_s11910_024_01354_x
crossref_primary_10_1007_s41870_024_01735_y
crossref_primary_10_1212_NXI_0000000000200064
crossref_primary_10_1097_01_NT_0000946568_63518_95
crossref_primary_10_3390_s22207856
crossref_primary_10_1212_WNL_0000000000209524
crossref_primary_10_1093_braincomms_fcac005
crossref_primary_10_1177_13524585241249422
crossref_primary_10_1109_ACCESS_2023_3260982
crossref_primary_10_1093_brain_awad284
crossref_primary_10_1098_rsif_2022_0406
crossref_primary_10_3389_frai_2023_1227091
crossref_primary_10_1177_20552173221104009
crossref_primary_10_1186_s13073_022_01044_8
crossref_primary_10_1148_radiol_221512
crossref_primary_10_1016_j_rcsop_2023_100307
crossref_primary_10_1002_alz_13428
crossref_primary_10_1016_j_msard_2023_104869
crossref_primary_10_1212_WNL_0000000000012833
crossref_primary_10_3389_fonc_2022_861412
crossref_primary_10_1007_s00415_024_12281_9
crossref_primary_10_1002_ana_26281
crossref_primary_10_1186_s12974_022_02408_y
crossref_primary_10_1093_schbul_sbad164
crossref_primary_10_3389_fimmu_2024_1356436
crossref_primary_10_7759_cureus_45412
crossref_primary_10_1515_revneuro_2021_0101
crossref_primary_10_1007_s15202_021_4776_5
crossref_primary_10_3390_jcm11082265
crossref_primary_10_1162_imag_a_00010
crossref_primary_10_5812_ans_133607
crossref_primary_10_1186_s40537_023_00751_2
crossref_primary_10_1002_acn3_51601
crossref_primary_10_1007_s40263_024_01074_3
crossref_primary_10_1016_j_mjafi_2021_06_003
crossref_primary_10_1007_s00330_022_08610_z
crossref_primary_10_1016_j_neurad_2023_11_007
crossref_primary_10_1016_j_parkreldis_2021_08_017
crossref_primary_10_1177_13524585221133537
crossref_primary_10_3389_fcvm_2022_962992
crossref_primary_10_1111_ejn_15854
crossref_primary_10_1007_s00117_022_01051_1
crossref_primary_10_3390_neurosci4030019
crossref_primary_10_1111_ene_15593
crossref_primary_10_1038_s41593_022_01074_w
crossref_primary_10_1007_s42451_021_00385_9
crossref_primary_10_1016_j_nicl_2022_103137
crossref_primary_10_1007_s00415_023_12132_z
crossref_primary_10_1055_s_0041_1742180
crossref_primary_10_1016_j_nicl_2022_103065
crossref_primary_10_1016_S1474_4422_22_00469_0
crossref_primary_10_1177_11795735241249693
crossref_primary_10_1109_TIT_2022_3215496
crossref_primary_10_3389_fnhum_2023_1151531
crossref_primary_10_1177_17085381241262575
crossref_primary_10_1016_j_neuroimage_2023_120005
crossref_primary_10_1186_s13244_021_01101_7
crossref_primary_10_1093_brain_awad145
crossref_primary_10_1016_j_msard_2024_105512
crossref_primary_10_1007_s00401_024_02742_w
crossref_primary_10_1016_j_msard_2022_104065
crossref_primary_10_1038_s41433_024_03132_y
crossref_primary_10_1016_j_msard_2022_103734
crossref_primary_10_1016_j_cell_2023_03_008
crossref_primary_10_1016_S1474_4422_22_00289_7
crossref_primary_10_1080_13543784_2021_1942840
crossref_primary_10_1007_s11604_024_01535_1
crossref_primary_10_3390_nano13132003
crossref_primary_10_1126_scitranslmed_ade8560
crossref_primary_10_1148_radiol_212830
crossref_primary_10_3390_jcm13061813
crossref_primary_10_1007_s00415_022_11021_1
crossref_primary_10_1038_s41531_023_00556_3
crossref_primary_10_3390_ijms231810651
crossref_primary_10_1002_ima_22908
crossref_primary_10_1002_pep2_24262
crossref_primary_10_3389_frai_2021_613261
crossref_primary_10_1001_jamapsychiatry_2022_0020
crossref_primary_10_1016_j_msard_2022_104183
crossref_primary_10_1080_14737175_2024_2304116
crossref_primary_10_1186_s13019_024_02913_6
Cites_doi 10.1056/NEJMra1615014
10.1016/S0140-6736(15)01314-8
10.1016/S1474-4422(18)30451-4
10.1038/nrn3900
10.1212/WNL.33.11.1444
10.1212/WNL.0000000000000560
10.1016/S1474-4422(10)70131-9
10.1016/j.neuroimage.2013.05.041
10.1016/S1474-4422(19)30485-5
10.1002/hbm.21279
10.1212/WNL.0000000000002237
10.1212/WNL.0b013e318233b240
10.1002/ana.25313
10.1056/NEJMra1401483
10.1002/ana.25019
10.1016/S1474-4422(12)70230-2
10.1002/ana.21867
10.1093/brain/awl007
10.1056/NEJMoa1606468
10.1056/NEJMoa1601277
10.1002/ana.25145
10.1001/jamaneurol.2014.3537
10.1002/ana.21079
10.1016/S1474-4422(18)30069-3
10.1038/s41467-018-05892-0
10.1016/S1474-4422(17)30076-5
10.1038/nn.4393
10.1016/S0140-6736(18)30481-1
10.1056/NEJMoa1114287
10.1016/S0140-6736(13)62242-4
10.1093/brain/aws242
10.1093/brain/awy088
10.1007/s00415-014-7264-4
10.1212/NXI.0000000000000374
10.1093/brain/awv353
10.1038/nrn3275
10.1002/ana.25020
10.1001/archneurol.2008.562
10.5281/zenodo.1475297
10.3389/fnhum.2014.00671
ContentType Journal Article
Copyright The Author(s) 2021. corrected publication 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021, corrected publication 2021
Copyright_xml – notice: The Author(s) 2021. corrected publication 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021, corrected publication 2021
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-22265-2
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 2078
ExternalDocumentID oai_doaj_org_article_b925ea625e9146fc8c9474dea8ca687b
10_1038_s41467_021_22265_2
33824310
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Multiple Sclerosis Society (National MS Society)
  grantid: PA-1603-08175
  funderid: https://doi.org/10.13039/100000890
– fundername: Medical Research Council
  grantid: MR/T027770/1
– fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: Medical Research Council
  grantid: MR/T027800/1
– fundername: Department of Health
  grantid: RP-2017-08-ST2-004
– fundername: ;
  grantid: PA-1603-08175
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c634t-1293e6d50dbe3b0b99b5a47d3e8e7e62597bbde39d5e4dc2f0ee95efe96296393
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Tue Oct 22 14:59:35 EDT 2024
Tue Sep 17 20:52:27 EDT 2024
Tue Aug 27 04:26:52 EDT 2024
Thu Oct 10 16:22:45 EDT 2024
Thu Oct 10 15:58:48 EDT 2024
Fri Aug 23 01:13:17 EDT 2024
Sat Sep 28 08:20:41 EDT 2024
Fri Oct 11 20:51:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-1293e6d50dbe3b0b99b5a47d3e8e7e62597bbde39d5e4dc2f0ee95efe96296393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6652-3512
0000-0003-3543-3706
0000-0002-4885-6241
0000-0003-2439-350X
0000-0003-3076-2682
0000-0002-7872-0142
0000-0002-4333-8496
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024377/
PMID 33824310
PQID 2509111397
PQPubID 546298
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_b925ea625e9146fc8c9474dea8ca687b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8024377
proquest_miscellaneous_2509606176
proquest_journals_2529596909
proquest_journals_2509111397
crossref_primary_10_1038_s41467_021_22265_2
pubmed_primary_33824310
springer_journals_10_1038_s41467_021_22265_2
PublicationCentury 2000
PublicationDate 2021-04-06
PublicationDateYYYYMMDD 2021-04-06
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Eshaghi (CR19) 2018; 83
Gold (CR31) 2012; 367
Confavreux, Vukusic (CR16) 2006; 129
Wolinsky (CR44) 2018; 84
Reich, Lucchinetti, Calabresi (CR21) 2018; 378
Calabrese (CR8) 2015; 16
Eshaghi (CR20) 2018; 141
Kapoor (CR27) 2010; 9
Hauser (CR32) 2017; 376
Chataway (CR30) 2020; 19
Kurtzke (CR39) 1983; 33
CR14
Hawker (CR22) 2009; 66
CR36
CR13
(CR1) 2018; 391
Geurts, Calabrese, Fisher, Rudick (CR9) 2012; 11
Bodini (CR10) 2016; 86
Wijnands (CR15) 2017; 16
Vollmer (CR33) 2014; 261
Bhattacharyya (CR43) 1946; 7
Haendel, Chute, Robinson (CR7) 2018; 379
Thompson, Baranzini, Geurts, Hemmer, Ciccarelli (CR2) 2018; 391
Lublin (CR3) 2014; 83
Young (CR6) 2018; 9
Van Essen (CR35) 2013; 80
Stys, Zamponi, van Minnen, Geurts (CR4) 2012; 13
Spain (CR28) 2017; 4
Bendfeldt (CR37) 2012; 33
Rotstein, Healy, Malik, Chitnis, Weiner (CR38) 2015; 72
Montalban (CR17) 2017; 376
CR46
Wolinsky (CR23) 2007; 61
CR45
Lublin (CR24) 2016; 387
Miller (CR34) 2016; 19
CR42
CR41
Freedman (CR29) 2011; 77
CR40
Kapoor (CR25) 2018; 17
Kolasinski (CR11) 2012; 135
Jürgens (CR12) 2016; 139
Chataway (CR26) 2014; 383
Filippi (CR5) 2019; 18
Nakamura, Chen, Ontaneda, Fox, Trapp (CR18) 2017; 82
34016975 - Nat Commun. 2021 May 20;12(1):3169
R Kapoor (22265_CR27) 2010; 9
PK Stys (22265_CR4) 2012; 13
C Confavreux (22265_CR16) 2006; 129
JS Wolinsky (22265_CR23) 2007; 61
J Chataway (22265_CR26) 2014; 383
MA Haendel (22265_CR7) 2018; 379
M Filippi (22265_CR5) 2019; 18
JMA Wijnands (22265_CR15) 2017; 16
R Gold (22265_CR31) 2012; 367
DL Rotstein (22265_CR38) 2015; 72
F Lublin (22265_CR24) 2016; 387
MS Freedman (22265_CR29) 2011; 77
JJG Geurts (22265_CR9) 2012; 11
22265_CR13
M Calabrese (22265_CR8) 2015; 16
K Hawker (22265_CR22) 2009; 66
KL Miller (22265_CR34) 2016; 19
R Kapoor (22265_CR25) 2018; 17
K Nakamura (22265_CR18) 2017; 82
TL Vollmer (22265_CR33) 2014; 261
K Bendfeldt (22265_CR37) 2012; 33
FD Lublin (22265_CR3) 2014; 83
X Montalban (22265_CR17) 2017; 376
DS Reich (22265_CR21) 2018; 378
J Chataway (22265_CR30) 2020; 19
DC Van Essen (22265_CR35) 2013; 80
A Bhattacharyya (22265_CR43) 1946; 7
AL Young (22265_CR6) 2018; 9
T Jürgens (22265_CR12) 2016; 139
22265_CR14
R Spain (22265_CR28) 2017; 4
22265_CR36
JS Wolinsky (22265_CR44) 2018; 84
B Bodini (22265_CR10) 2016; 86
The Lancet. (22265_CR1) 2018; 391
J Kolasinski (22265_CR11) 2012; 135
JF Kurtzke (22265_CR39) 1983; 33
22265_CR45
22265_CR46
A Eshaghi (22265_CR20) 2018; 141
22265_CR40
22265_CR41
22265_CR42
A Eshaghi (22265_CR19) 2018; 83
SL Hauser (22265_CR32) 2017; 376
AJ Thompson (22265_CR2) 2018; 391
References_xml – ident: CR45
– volume: 379
  start-page: 1452
  year: 2018
  end-page: 1462
  ident: CR7
  article-title: Classification, ontology, and precision
  publication-title: Med. N. Engl. J. Med.
  doi: 10.1056/NEJMra1615014
  contributor:
    fullname: Robinson
– volume: 387
  start-page: 1075
  year: 2016
  end-page: 1084
  ident: CR24
  article-title: Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)01314-8
  contributor:
    fullname: Lublin
– volume: 18
  start-page: 198
  year: 2019
  end-page: 210
  ident: CR5
  article-title: Association between pathological and MRI findings in multiple sclerosis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30451-4
  contributor:
    fullname: Filippi
– volume: 16
  start-page: 147
  year: 2015
  end-page: 158
  ident: CR8
  article-title: Exploring the origins of grey matter damage in multiple sclerosis
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3900
  contributor:
    fullname: Calabrese
– volume: 33
  start-page: 1444
  year: 1983
  end-page: 1452
  ident: CR39
  article-title: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS)
  publication-title: Neurology
  doi: 10.1212/WNL.33.11.1444
  contributor:
    fullname: Kurtzke
– volume: 83
  start-page: 278
  year: 2014
  end-page: 286
  ident: CR3
  article-title: Defining the clinical course of multiple sclerosis: the 2013 revisions
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000560
  contributor:
    fullname: Lublin
– volume: 9
  start-page: 681
  year: 2010
  end-page: 688
  ident: CR27
  article-title: Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(10)70131-9
  contributor:
    fullname: Kapoor
– ident: CR14
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: CR35
  article-title: The WU-Minn Human Connectome Project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
  contributor:
    fullname: Van Essen
– volume: 391
  start-page: 2476
  year: 2018
  ident: CR1
  article-title: ICD-11: a brave attempt at classifying a new world
  publication-title: Lancet
– volume: 19
  start-page: 214
  year: 2020
  end-page: 225
  ident: CR30
  article-title: Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(19)30485-5
  contributor:
    fullname: Chataway
– volume: 33
  start-page: 1225
  year: 2012
  end-page: 1245
  ident: CR37
  article-title: Longitudinal gray matter changes in multiple sclerosis-differential scanner and overall disease-related effects
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21279
  contributor:
    fullname: Bendfeldt
– volume: 86
  start-page: 170
  year: 2016
  end-page: 176
  ident: CR10
  article-title: White and gray matter damage in primary progressive MS: the chicken or the egg?
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002237
  contributor:
    fullname: Bodini
– volume: 77
  start-page: 1551
  year: 2011
  end-page: 1560
  ident: CR29
  article-title: A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318233b240
  contributor:
    fullname: Freedman
– volume: 84
  start-page: 527
  year: 2018
  end-page: 536
  ident: CR44
  article-title: Evaluation of no evidence of progression or active disease (NEPAD) in patients with primary progressive multiple sclerosis in the ORATORIO trial
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25313
  contributor:
    fullname: Wolinsky
– volume: 378
  start-page: 169
  year: 2018
  end-page: 180
  ident: CR21
  article-title: Multiple sclerosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1401483
  contributor:
    fullname: Calabresi
– volume: 82
  start-page: 635
  year: 2017
  end-page: 639
  ident: CR18
  article-title: T1-/T2-weighted ratio differs in demyelinated cortex in multiple sclerosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25019
  contributor:
    fullname: Trapp
– volume: 7
  start-page: 401
  year: 1946
  end-page: 406
  ident: CR43
  article-title: On a Measure of Divergence between Two Multinomial Populations
  publication-title: Sankhyā: Indian J. Stat. (1933–1960)
  contributor:
    fullname: Bhattacharyya
– volume: 11
  start-page: 1082
  year: 2012
  end-page: 1092
  ident: CR9
  article-title: Measurement and clinical effect of grey matter pathology in multiple sclerosis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(12)70230-2
  contributor:
    fullname: Rudick
– ident: CR40
– volume: 66
  start-page: 460
  year: 2009
  end-page: 471
  ident: CR22
  article-title: Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21867
  contributor:
    fullname: Hawker
– volume: 129
  start-page: 606
  year: 2006
  end-page: 616
  ident: CR16
  article-title: Natural history of multiple sclerosis: a unifying concept
  publication-title: Brain
  doi: 10.1093/brain/awl007
  contributor:
    fullname: Vukusic
– volume: 376
  start-page: 209
  year: 2017
  end-page: 220
  ident: CR17
  article-title: Ocrelizumab versus placebo in primary progressive multiple sclerosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1606468
  contributor:
    fullname: Montalban
– volume: 376
  start-page: 221
  year: 2017
  end-page: 234
  ident: CR32
  article-title: Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1601277
  contributor:
    fullname: Hauser
– ident: CR42
– volume: 83
  start-page: 210
  year: 2018
  end-page: 222
  ident: CR19
  article-title: Deep gray matter volume loss drives disability worsening in multiple sclerosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25145
  contributor:
    fullname: Eshaghi
– volume: 72
  start-page: 152
  year: 2015
  end-page: 158
  ident: CR38
  article-title: Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2014.3537
  contributor:
    fullname: Weiner
– volume: 61
  start-page: 14
  year: 2007
  end-page: 24
  ident: CR23
  article-title: Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21079
  contributor:
    fullname: Wolinsky
– volume: 17
  start-page: 405
  year: 2018
  end-page: 415
  ident: CR25
  article-title: Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30069-3
  contributor:
    fullname: Kapoor
– volume: 9
  year: 2018
  ident: CR6
  article-title: Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05892-0
  contributor:
    fullname: Young
– ident: CR46
– volume: 16
  start-page: 445
  year: 2017
  end-page: 451
  ident: CR15
  article-title: Health-care use before a first demyelinating event suggestive of a multiple sclerosis prodrome: a matched cohort study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(17)30076-5
  contributor:
    fullname: Wijnands
– volume: 19
  start-page: 1523
  year: 2016
  end-page: 1536
  ident: CR34
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
  contributor:
    fullname: Miller
– volume: 391
  start-page: 1622
  year: 2018
  end-page: 1636
  ident: CR2
  article-title: Multiple sclerosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30481-1
  contributor:
    fullname: Ciccarelli
– ident: CR13
– volume: 367
  start-page: 1098
  year: 2012
  end-page: 1107
  ident: CR31
  article-title: Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1114287
  contributor:
    fullname: Gold
– volume: 383
  start-page: 2213
  year: 2014
  end-page: 2221
  ident: CR26
  article-title: Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62242-4
  contributor:
    fullname: Chataway
– volume: 135
  start-page: 2938
  year: 2012
  end-page: 2951
  ident: CR11
  article-title: A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology
  publication-title: Brain
  doi: 10.1093/brain/aws242
  contributor:
    fullname: Kolasinski
– ident: CR36
– volume: 141
  start-page: 1665
  year: 2018
  end-page: 1677
  ident: CR20
  article-title: Progression of regional grey matter atrophy in multiple sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awy088
  contributor:
    fullname: Eshaghi
– volume: 261
  start-page: 773
  year: 2014
  end-page: 783
  ident: CR33
  article-title: A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis
  publication-title: J. Neurol.
  doi: 10.1007/s00415-014-7264-4
  contributor:
    fullname: Vollmer
– ident: CR41
– volume: 4
  start-page: e374
  year: 2017
  ident: CR28
  article-title: Lipoic acid in secondary progressive MS: a randomized controlled pilot trial
  publication-title: Neurol. Neuroimmunol. Neuroinflamm.
  doi: 10.1212/NXI.0000000000000374
  contributor:
    fullname: Spain
– volume: 139
  start-page: 39
  year: 2016
  end-page: 46
  ident: CR12
  article-title: Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awv353
  contributor:
    fullname: Jürgens
– volume: 13
  start-page: 507
  year: 2012
  end-page: 514
  ident: CR4
  article-title: Will the real multiple sclerosis please stand up?
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3275
  contributor:
    fullname: Geurts
– volume: 86
  start-page: 170
  year: 2016
  ident: 22265_CR10
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002237
  contributor:
    fullname: B Bodini
– volume: 4
  start-page: e374
  year: 2017
  ident: 22265_CR28
  publication-title: Neurol. Neuroimmunol. Neuroinflamm.
  doi: 10.1212/NXI.0000000000000374
  contributor:
    fullname: R Spain
– ident: 22265_CR45
– volume: 18
  start-page: 198
  year: 2019
  ident: 22265_CR5
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30451-4
  contributor:
    fullname: M Filippi
– volume: 391
  start-page: 2476
  year: 2018
  ident: 22265_CR1
  publication-title: Lancet
  contributor:
    fullname: The Lancet.
– volume: 261
  start-page: 773
  year: 2014
  ident: 22265_CR33
  publication-title: J. Neurol.
  doi: 10.1007/s00415-014-7264-4
  contributor:
    fullname: TL Vollmer
– volume: 9
  start-page: 681
  year: 2010
  ident: 22265_CR27
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(10)70131-9
  contributor:
    fullname: R Kapoor
– volume: 80
  start-page: 62
  year: 2013
  ident: 22265_CR35
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
  contributor:
    fullname: DC Van Essen
– volume: 135
  start-page: 2938
  year: 2012
  ident: 22265_CR11
  publication-title: Brain
  doi: 10.1093/brain/aws242
  contributor:
    fullname: J Kolasinski
– volume: 61
  start-page: 14
  year: 2007
  ident: 22265_CR23
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21079
  contributor:
    fullname: JS Wolinsky
– volume: 7
  start-page: 401
  year: 1946
  ident: 22265_CR43
  publication-title: Sankhyā: Indian J. Stat. (1933–1960)
  contributor:
    fullname: A Bhattacharyya
– volume: 391
  start-page: 1622
  year: 2018
  ident: 22265_CR2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30481-1
  contributor:
    fullname: AJ Thompson
– ident: 22265_CR13
  doi: 10.1002/ana.25020
– volume: 19
  start-page: 1523
  year: 2016
  ident: 22265_CR34
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
  contributor:
    fullname: KL Miller
– volume: 11
  start-page: 1082
  year: 2012
  ident: 22265_CR9
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(12)70230-2
  contributor:
    fullname: JJG Geurts
– volume: 82
  start-page: 635
  year: 2017
  ident: 22265_CR18
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25019
  contributor:
    fullname: K Nakamura
– volume: 139
  start-page: 39
  year: 2016
  ident: 22265_CR12
  publication-title: Brain
  doi: 10.1093/brain/awv353
  contributor:
    fullname: T Jürgens
– ident: 22265_CR14
  doi: 10.1001/archneurol.2008.562
– volume: 13
  start-page: 507
  year: 2012
  ident: 22265_CR4
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3275
  contributor:
    fullname: PK Stys
– volume: 17
  start-page: 405
  year: 2018
  ident: 22265_CR25
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30069-3
  contributor:
    fullname: R Kapoor
– volume: 72
  start-page: 152
  year: 2015
  ident: 22265_CR38
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2014.3537
  contributor:
    fullname: DL Rotstein
– volume: 378
  start-page: 169
  year: 2018
  ident: 22265_CR21
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1401483
  contributor:
    fullname: DS Reich
– volume: 379
  start-page: 1452
  year: 2018
  ident: 22265_CR7
  publication-title: Med. N. Engl. J. Med.
  doi: 10.1056/NEJMra1615014
  contributor:
    fullname: MA Haendel
– volume: 83
  start-page: 278
  year: 2014
  ident: 22265_CR3
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000560
  contributor:
    fullname: FD Lublin
– ident: 22265_CR46
– volume: 367
  start-page: 1098
  year: 2012
  ident: 22265_CR31
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1114287
  contributor:
    fullname: R Gold
– volume: 16
  start-page: 445
  year: 2017
  ident: 22265_CR15
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(17)30076-5
  contributor:
    fullname: JMA Wijnands
– volume: 129
  start-page: 606
  year: 2006
  ident: 22265_CR16
  publication-title: Brain
  doi: 10.1093/brain/awl007
  contributor:
    fullname: C Confavreux
– volume: 387
  start-page: 1075
  year: 2016
  ident: 22265_CR24
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)01314-8
  contributor:
    fullname: F Lublin
– volume: 33
  start-page: 1225
  year: 2012
  ident: 22265_CR37
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21279
  contributor:
    fullname: K Bendfeldt
– ident: 22265_CR41
  doi: 10.5281/zenodo.1475297
– volume: 19
  start-page: 214
  year: 2020
  ident: 22265_CR30
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(19)30485-5
  contributor:
    fullname: J Chataway
– ident: 22265_CR36
– volume: 16
  start-page: 147
  year: 2015
  ident: 22265_CR8
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3900
  contributor:
    fullname: M Calabrese
– volume: 383
  start-page: 2213
  year: 2014
  ident: 22265_CR26
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62242-4
  contributor:
    fullname: J Chataway
– volume: 376
  start-page: 221
  year: 2017
  ident: 22265_CR32
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1601277
  contributor:
    fullname: SL Hauser
– volume: 33
  start-page: 1444
  year: 1983
  ident: 22265_CR39
  publication-title: Neurology
  doi: 10.1212/WNL.33.11.1444
  contributor:
    fullname: JF Kurtzke
– volume: 9
  year: 2018
  ident: 22265_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05892-0
  contributor:
    fullname: AL Young
– volume: 84
  start-page: 527
  year: 2018
  ident: 22265_CR44
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25313
  contributor:
    fullname: JS Wolinsky
– volume: 66
  start-page: 460
  year: 2009
  ident: 22265_CR22
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21867
  contributor:
    fullname: K Hawker
– volume: 83
  start-page: 210
  year: 2018
  ident: 22265_CR19
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25145
  contributor:
    fullname: A Eshaghi
– ident: 22265_CR40
  doi: 10.3389/fnhum.2014.00671
– volume: 376
  start-page: 209
  year: 2017
  ident: 22265_CR17
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1606468
  contributor:
    fullname: X Montalban
– volume: 141
  start-page: 1665
  year: 2018
  ident: 22265_CR20
  publication-title: Brain
  doi: 10.1093/brain/awy088
  contributor:
    fullname: A Eshaghi
– volume: 77
  start-page: 1551
  year: 2011
  ident: 22265_CR29
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318233b240
  contributor:
    fullname: MS Freedman
– ident: 22265_CR42
SSID ssj0000391844
Score 2.6787665
Snippet Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear,...
Abstract Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are...
Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2078
SubjectTerms 631/114/116/2396
631/1647/245/1627
631/378/1689/1666
692/699/375/1411/1666
Abnormalities
Adult
Algorithms
Clinical trials
Databases as Topic
Disease Progression
Female
Health services
Humanities and Social Sciences
Humans
Learning algorithms
Lesions
Machine learning
Magnetic Resonance Imaging
Male
Medical imaging
Middle Aged
Models, Biological
Multidimensional data
multidisciplinary
Multiple sclerosis
Multiple Sclerosis - diagnosis
Multiple Sclerosis - diagnostic imaging
Neuroimaging
Patients
Phenotypes
Placebos
Randomized Controlled Trials as Topic
Recurrence
Reproducibility of Results
Science
Science (multidisciplinary)
Substantia alba
Unsupervised learning
Unsupervised Machine Learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiFIeoQUZiRtEzfoV-wiIqiCVA6LS3qw4HpceSCuyOfTfd8bOLl2g4tJrbEWTeXi-iT-PGXuj0DFkG2QtgoFaKZlqRK2mliAWQcSkoaWDwidfzfGp-rLUyxtXfREnrLQHLoo7DE5o6BClg8OgTr3tnWpVhM72nbFtyKtv424UU3kNlg5LFzWfkmmkPRxVXhOIkYApkahdW5koN-z_F8r8myz5x45pTkRHj9jDGUHy90XyXXYPhsfsfrlT8mqPLcvR23x8ia_pgnzEqSjF-cjHKdBv15ET4_2MT8M4XdJ6MULkPzOzEvh8lcQZ74bIT7595sQjfcJOjz59_3hcz9cn1L2RalVTJgcTdRMDyNAE54LuVBslWDQA1T1tCBGkixpU7EVqAJyGBM4IDEsnn7Kd4WKA54wn2_VCB8R2ySithQ0p2H4horUptX1bsbdrVfrL0iXD591taX1RvEfF-6x4Lyr2gbS9mUkdrvMDtLuf7e7_Z_eKHaxt5eewG70g-LMgUHvLsHDaGde4ir3eDGM80SZJN8DFVF5hCNeZij0rlt8IiuW8QMDVVKzd8omtL9keGc5_5J7dNnd-RLHerb3nt1i3a-rFXWhqnz0Q5PZENzIHbGf1a4KXiKRW4VUOmmsECBtA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyQuFW8CBRmJG0TN-hX7hChqVZBaoYpKe7PieLz0QHZpNof-ezyOs2iBco2TaDyesT97Ps8Q8lZEw-C14yVzCkoheCgjalUlBzZ3zAcJNV4UPjtXp5fiy0Iu8oFbn2mV05yYJmq_avGM_JBhRMrEvZz5sP5ZYtUojK7mEhp3yR6LO4VqRvaOjs-_XmxPWTD_uRYi35apuD7sRZobkJkQl0akeO2sSClx_7_Q5t-kyT8ip2lBOnlA9jOSpB_HoX9I7kD3iNwba0vePCaL8QpuusZEJ9og7eOrUYqrnvaDw-PXniLzfUmHrh_WOG_04OmPxLAEmktKLGnTeXp28Zkin_QJuTw5_vbptMxlFMpWcbEpcUUH5WXlHXBXOWOcbETtOeg4ELj_qZ3zwI2XIHzLQgVgJAQwikX3NPwpmXWrDp4TGnTTMukixgtKSMm0C063c-a1DqFu64K8m1Rp12O2DJui3FzbUfE2Kt4mxVtWkCPU9vZNzHSdHqyulzY7jnWGSWiilGDi96HVrRG18NDotlG6dgU5mMbKZvfrLUMYNEdwe0vzZEsFebNtjn6FwZKmg9Uw_kIhvlMFeTaO_FbQuK1nEXhVBal3bGKnJ7st3dX3lLtbpwyQUaz3k_X8Fut2Tb34fy9ekvsMDRoJReqAzDbXA7yKWGnjXmeH-AXAchOS
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dvqKRF802o333kQUfE4hfNBXNi30DST9UC753YL3n9vkrYrq3sPvjZpmU5mmt80v5kBeMajYTDlWEmdxJJzFsqIWmXJkM4c9UGgSonCp5_lyZx_WojFAUztjkYFdntDu9RPar7-_vLXz4s30eFfDynj-lXHs7snskHc7RJr6wpcpTxG6onKN8L9_GVmJgY0fMyd2X_rzv6Uy_jvw57_Uij_OkfN29PxTbgx4krydjCEW3CA7W24NnSavLgDiyEhNyc1kYlESLo4NUpx1pGud-lnbEcSD35J-rbrz9NXpENPfmS-JZKxwcSS1K0np18-ksQuvQvz4w9f35-UY1OFspGMb8q0v6P0ovIOmaucMU7UXHmGOi5LioaUcx6Z8QK5b2ioEI3AgEbS6KyG3YPDdtXiAyBB1w0VLiK-ILkQVLvgdDOjXusQVKMKeD6p0p4PtTNsPvNm2g6Kt1HxNive0gLeJW1vZ6a61_nCar20oxtZZ6jAOkqJJt4fGt0YrrjHWje11MoVcDStlZ1sydIEimYJ6l4yTI0w0lSmgKfb4ehl6eikbnHVD4-QCe3JAu4PK78VNAb50dhmVQFqxyZ23mR3pD37lit561wPMor1YrKeP2JdrqmH_zf9EVynycAT3UgeweFm3ePjiKQ27kl2j98nAxl0
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERIXxJtAQUbiBhFZv32EFVVBKgdEpb1ZcTwuPZBWZHPg3-NxsosC7YFrbEeTsSfz2fPNGOC1zAtDmCBqHjTWUopUZ9Sqa4F8FXhMCg0lCp980cen8vNGbeYyOZQLs4jfC_tukMWUiUiQPRkxsm7CreyDLdG31nq9P0-hSudWyjkv5uqhC99TSvRfhSv_pUf-FSMtrufoHtydMSN7P03yfbiB_QO4Pd0i-eshbKZk25KwxHYEQTbkrlmK84ENY6CD1oERx_2Mjf0wXtIfYsDIfhQuJbL58ogz1vaRnXz9xIg5-ghOjz5-Wx_X84UJdaeF3Nbku1FH1cSAIjTBuaBaaaJAm1VOOx0TQkThokIZO54aRKcwodM8G6ITj-Ggv-jxKbBk246rkNFc0lIpbkMKtlvxaG1KpjMVvNmp0l9OdTF8iWcL6yfF-6x4XxTveQUfSNv7nlTTujzIU-1nE_HBcYVtlhJdHp862zlpZMTWdq22JlRwuJsrPxva4DkBnhXB2GuauVNOu8ZV8GrfnC2IwiJtjxfj9ApNSE5X8GSa-b2geQPPM8RqKjCLNbH4kmVLf_69VOm2pdZjFuvtbvX8Eet6TT37v-7P4Q6nBU5UIn0IB9ufI77IKGkbXhbz-A30LQr2
  priority: 102
  providerName: Springer Nature
Title Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data
URI https://link.springer.com/article/10.1038/s41467-021-22265-2
https://www.ncbi.nlm.nih.gov/pubmed/33824310
https://www.proquest.com/docview/2509111397
https://www.proquest.com/docview/2529596909
https://search.proquest.com/docview/2509606176
https://pubmed.ncbi.nlm.nih.gov/PMC8024377
https://doaj.org/article/b925ea625e9146fc8c9474dea8ca687b
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ6C9IL4JjMpIvEHW1F-xH7tqZVTqNA0m9S2KY6dUomm1tA_895ydpKzAXnhxJNtxLr47-2z_7gzwgaNgsNSwmBrpYs5ZGaPVKmPm6MBQWwqXekfh6aW8uOGTmZgdgOh8YQJovzCL0-rH8rRafA_YyvWy6Hc4sf7VdKRCGL20fwiHKKB3luhh-GUaVy28dZBJmOrXPAwHHoyAs6FHdR3DI1yaYSPecfbOfBTC9v_L1vwbMvnHuWmYjsZP4HFrR5JhQ-9TOHDVM3jY3Cz58znMGgfc4MREOtAgqbEqUrGoSb01fvO1Jh73Pifbqt6u_ahRO0uWAV_pSHuhxJzklSXT6y_Eo0lfwM34_NvoIm4vUYgLyfgm9vO5k1Yk1jhmEqO1ETlPLXMK2eBXP6kx1jFtheO2oGXinBaudFpSVE7NXsJRtarcayClygsqDFp4peRCUGVKo4oBtUqVZVqkEXzsujJbN7EysnDGzVTW8CBDHmSBBxmN4Mz39q6mj3MdMla386zldmY0FS5HKp3G98tCFZqn3LpcFblUqYngpONV1ipfnVFvBA28aXtPMdVCS53oCN7vilGr_FFJXrnVtmlCeutORvCq4fyO0E5yIkj3ZGLvT_ZLUJBD5O5WcCP41EnPb7Lu76k3__2ht3BMvdh7pJE8gaPN7da9QyNqY3qoOrMUUzX-3IMHw-Hk6wSfZ-eXV9eYO5KjXtiewHTKVS-o2C_xaSKk
link.rule.ids 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74073,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SyBAkbiBlGzfsU-IUAsW-j2gFppb1Ycj5ceyG6bzaH_Ho-TLFqgXOMkGo9nPGPPNzOEvBFRMHjpeM6cglwIHvLotaqcA5s45oOEEhOF5ydqdia-LuRiuHBrB1jluCemjdqvarwjP2QYkTLxLGfery9y7BqF0dWhhcZNckvwaKsxU3z6ZXvHgtXPtRBDrkzB9WEr0s6AuIRoGBHgtWOPUtn-f_maf0Mm_4ibJnM0vU_uDX4k_dAv_ANyA5qH5HbfWfLqEVn0CbgpiYmOoEHaxlcjFectbTuHl68tRdz7knZN261x12jB058JXwl0aCixpFXj6fz7EUU06WNyNv18-mmWD00U8lpxscnRnoPysvAOuCucMU5WovQcdFwGPP2UznngxksQvmahADASAhjFonIa_oTsNasGnhIadFUz6aKHF5SQkmkXnK4nzGsdQlmXGXk7stKu-1oZNsW4ubY9421kvE2MtywjH5Hb2zexznV6sLpc2kFtrDNMQhWpBBO_D7WujSiFh0rXldKly8jBuFZ2UL7WMnSCJujaXjM8SlJGXm-Ho1ZhqKRqYNX1v1Do3amM7PcrvyU0HupZdLuKjJQ7MrEzk92R5vxHqtytU_3HSNa7UXp-k3U9p579fxavyJ3Z6fzYHh-dfHtO7jIUboQWqQOyt7ns4EX0mjbuZVKNX0EAFR0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgEYgL4rkEFjASN4ia-hX7hHiVXWBXCLFSb1Ycj8seSMumPfDv8ThOUYHlWifVZDzj-ez5PEPIMxENg9eOl8wpKIXgoYyoVZUc2NQxHyTUeFH4-EQdnooPcznP_Kc-0yrHNTEt1H7Z4hn5hGFGysS9nJmETIv4_Hb2cvWjxA5SmGnN7TQukysxKiq0eT17vz1vwUroWoh8b6bietKLtEogRyEGSSR77cSmVML_X7jzb_rkHznUFJpmN8mNjCnpq8EIbpFL0N0mV4cukz_vkPlwGTddaKIjgZD28dEoxVlP-43Dg9ieIgd-QTddv1nhCtKDp98T1xJobi6xoE3n6fGXI4rM0rvkdPbu65vDMjdUKFvFxbrE2A7Ky8o74K5yxjjZiNpz0HFKcCdUO-eBGy9B-JaFCsBICGAUi45q-D2y1y07uE9o0E3LpItoLyghJdMuON1Omdc6hLqtC_J8VKVdDXUzbMp3c20HxduoeJsUb1lBXqO2t09izev0w_J8YbMLWWeYhCZKCSa-H1rdGlELD41uG6VrV5CDca5sdsTeMgREU4S5FwyPVlWQp9vh6GGYNmk6WG6Gv1CI9FRB9oeZ3woaN_gsQrCqIPWOTex8ye5Id_YtVfHWqRZkFOvFaD2_xbpYUw_-_xVPyLXoFfbT0cnHh-Q6Q9tGlpE6IHvr8w08igBq7R4nz_gFVZAZVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+multiple+sclerosis+subtypes+using+unsupervised+machine+learning+and+MRI+data&rft.jtitle=Nature+communications&rft.au=Eshaghi%2C+Arman&rft.au=Young%2C+Alexandra+L.&rft.au=Wijeratne%2C+Peter+A.&rft.au=Prados%2C+Ferran&rft.date=2021-04-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-22265-2&rft.externalDocID=10_1038_s41467_021_22265_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon