Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data
Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS...
Saved in:
Published in | Nature communications Vol. 12; no. 1; p. 2078 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.04.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials.
Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis subtypes, progression, and response to potential therapeutic treatments based on neuroimaging data. |
---|---|
AbstractList | Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials. Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis subtypes, progression, and response to potential therapeutic treatments based on neuroimaging data. Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials.Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis subtypes, progression, and response to potential therapeutic treatments based on neuroimaging data. Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials. Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis subtypes, progression, and response to potential therapeutic treatments based on neuroimaging data. Abstract Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials. |
ArticleNumber | 2078 |
Author | Ciccarelli, Olga Arnold, Douglas L. Guttmann, Charles R. G. Eshaghi, Arman Chard, Declan Wijeratne, Peter A. Narayanan, Sridar Young, Alexandra L. Alexander, Daniel C. Barkhof, Frederik Prados, Ferran Thompson, Alan J. |
Author_xml | – sequence: 1 givenname: Arman orcidid: 0000-0002-6652-3512 surname: Eshaghi fullname: Eshaghi, Arman email: a.eshaghi@ucl.ac.uk organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London – sequence: 2 givenname: Alexandra L. surname: Young fullname: Young, Alexandra L. organization: Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London – sequence: 3 givenname: Peter A. orcidid: 0000-0002-4885-6241 surname: Wijeratne fullname: Wijeratne, Peter A. organization: Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London – sequence: 4 givenname: Ferran orcidid: 0000-0002-7872-0142 surname: Prados fullname: Prados, Ferran organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London, e-Health Centre, Universitat Oberta de Catalunya – sequence: 5 givenname: Douglas L. surname: Arnold fullname: Arnold, Douglas L. organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University – sequence: 6 givenname: Sridar surname: Narayanan fullname: Narayanan, Sridar organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University – sequence: 7 givenname: Charles R. G. surname: Guttmann fullname: Guttmann, Charles R. G. organization: Center for Neurological Imaging, Brigham and Women’s Hospital, Harvard Medical School – sequence: 8 givenname: Frederik orcidid: 0000-0003-3543-3706 surname: Barkhof fullname: Barkhof, Frederik organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London, VU University Medical Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London – sequence: 9 givenname: Daniel C. orcidid: 0000-0003-2439-350X surname: Alexander fullname: Alexander, Daniel C. organization: Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London – sequence: 10 givenname: Alan J. orcidid: 0000-0002-4333-8496 surname: Thompson fullname: Thompson, Alan J. organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London – sequence: 11 givenname: Declan orcidid: 0000-0003-3076-2682 surname: Chard fullname: Chard, Declan organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, National Institute for Health Research University College London Hospitals, Biomedical Research Centre – sequence: 12 givenname: Olga surname: Ciccarelli fullname: Ciccarelli, Olga organization: Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, National Institute for Health Research University College London Hospitals, Biomedical Research Centre |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33824310$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhi1URC_0BVigSGzYBHyLHW-QUAXlSEVICCR2li-TUx8lTrCTSuft8WlKaVnUG1ueb_7xjP9TdBTHCAi9Ivgdwax9nznhQtaYkppSKpqaPkMnFHNSE0nZ0YPzMTrPeYfLYoq0nL9Ax4y1lDOCT9CvjYc4h24f4rYaln4OUw9Vdj2kMYdc5cXO-wlyteQDscS8TJBuQgZfDcZdhwhVDybFQ9REX339vqm8mc1L9LwzfYbzu_0M_fz86cfFl_rq2-Xm4uNV7QTjc02oYiB8g70FZrFVyjaGS8-gBQmCNkpa64Ep3wD3jnYYQDXQgRJUCabYGdqsun40Oz2lMJi016MJ-vZiTFtt0hxKQ9oq2oApmqDK7DrXOsUl92BaZ0QrbdH6sGpNix3AuzKZZPpHoo8jMVzr7XijW1zGKWUReHsnkMbfC-RZDyE76HsTYVyypg1WAgsiRUHf_IfuxiXFMqpCUdUoobB6msKKEMLUoSxdKVc-LSfo7p9MsD64Ra9u0cUt-tYtmpak1w-bvU_5640CsBXIJRS3kP7VfkL2D3CSzN4 |
CitedBy_id | crossref_primary_10_1136_jnnp_2022_330726 crossref_primary_10_1016_j_biopsych_2024_04_017 crossref_primary_10_1038_s41583_023_00779_6 crossref_primary_10_1212_NXI_0000000000200025 crossref_primary_10_3389_fimmu_2022_933415 crossref_primary_10_1177_13524585231189673 crossref_primary_10_1007_s11910_024_01354_x crossref_primary_10_1007_s41870_024_01735_y crossref_primary_10_1212_NXI_0000000000200064 crossref_primary_10_1097_01_NT_0000946568_63518_95 crossref_primary_10_3390_s22207856 crossref_primary_10_1212_WNL_0000000000209524 crossref_primary_10_1093_braincomms_fcac005 crossref_primary_10_1177_13524585241249422 crossref_primary_10_1109_ACCESS_2023_3260982 crossref_primary_10_1093_brain_awad284 crossref_primary_10_1098_rsif_2022_0406 crossref_primary_10_3389_frai_2023_1227091 crossref_primary_10_1177_20552173221104009 crossref_primary_10_1186_s13073_022_01044_8 crossref_primary_10_1148_radiol_221512 crossref_primary_10_1016_j_rcsop_2023_100307 crossref_primary_10_1002_alz_13428 crossref_primary_10_1016_j_msard_2023_104869 crossref_primary_10_1212_WNL_0000000000012833 crossref_primary_10_3389_fonc_2022_861412 crossref_primary_10_1007_s00415_024_12281_9 crossref_primary_10_1002_ana_26281 crossref_primary_10_1186_s12974_022_02408_y crossref_primary_10_1093_schbul_sbad164 crossref_primary_10_3389_fimmu_2024_1356436 crossref_primary_10_7759_cureus_45412 crossref_primary_10_1515_revneuro_2021_0101 crossref_primary_10_1007_s15202_021_4776_5 crossref_primary_10_3390_jcm11082265 crossref_primary_10_1162_imag_a_00010 crossref_primary_10_5812_ans_133607 crossref_primary_10_1186_s40537_023_00751_2 crossref_primary_10_1002_acn3_51601 crossref_primary_10_1007_s40263_024_01074_3 crossref_primary_10_1016_j_mjafi_2021_06_003 crossref_primary_10_1007_s00330_022_08610_z crossref_primary_10_1016_j_neurad_2023_11_007 crossref_primary_10_1016_j_parkreldis_2021_08_017 crossref_primary_10_1177_13524585221133537 crossref_primary_10_3389_fcvm_2022_962992 crossref_primary_10_1111_ejn_15854 crossref_primary_10_1007_s00117_022_01051_1 crossref_primary_10_3390_neurosci4030019 crossref_primary_10_1111_ene_15593 crossref_primary_10_1038_s41593_022_01074_w crossref_primary_10_1007_s42451_021_00385_9 crossref_primary_10_1016_j_nicl_2022_103137 crossref_primary_10_1007_s00415_023_12132_z crossref_primary_10_1055_s_0041_1742180 crossref_primary_10_1016_j_nicl_2022_103065 crossref_primary_10_1016_S1474_4422_22_00469_0 crossref_primary_10_1177_11795735241249693 crossref_primary_10_1109_TIT_2022_3215496 crossref_primary_10_3389_fnhum_2023_1151531 crossref_primary_10_1177_17085381241262575 crossref_primary_10_1016_j_neuroimage_2023_120005 crossref_primary_10_1186_s13244_021_01101_7 crossref_primary_10_1093_brain_awad145 crossref_primary_10_1016_j_msard_2024_105512 crossref_primary_10_1007_s00401_024_02742_w crossref_primary_10_1016_j_msard_2022_104065 crossref_primary_10_1038_s41433_024_03132_y crossref_primary_10_1016_j_msard_2022_103734 crossref_primary_10_1016_j_cell_2023_03_008 crossref_primary_10_1016_S1474_4422_22_00289_7 crossref_primary_10_1080_13543784_2021_1942840 crossref_primary_10_1007_s11604_024_01535_1 crossref_primary_10_3390_nano13132003 crossref_primary_10_1126_scitranslmed_ade8560 crossref_primary_10_1148_radiol_212830 crossref_primary_10_3390_jcm13061813 crossref_primary_10_1007_s00415_022_11021_1 crossref_primary_10_1038_s41531_023_00556_3 crossref_primary_10_3390_ijms231810651 crossref_primary_10_1002_ima_22908 crossref_primary_10_1002_pep2_24262 crossref_primary_10_3389_frai_2021_613261 crossref_primary_10_1001_jamapsychiatry_2022_0020 crossref_primary_10_1016_j_msard_2022_104183 crossref_primary_10_1080_14737175_2024_2304116 crossref_primary_10_1186_s13019_024_02913_6 |
Cites_doi | 10.1056/NEJMra1615014 10.1016/S0140-6736(15)01314-8 10.1016/S1474-4422(18)30451-4 10.1038/nrn3900 10.1212/WNL.33.11.1444 10.1212/WNL.0000000000000560 10.1016/S1474-4422(10)70131-9 10.1016/j.neuroimage.2013.05.041 10.1016/S1474-4422(19)30485-5 10.1002/hbm.21279 10.1212/WNL.0000000000002237 10.1212/WNL.0b013e318233b240 10.1002/ana.25313 10.1056/NEJMra1401483 10.1002/ana.25019 10.1016/S1474-4422(12)70230-2 10.1002/ana.21867 10.1093/brain/awl007 10.1056/NEJMoa1606468 10.1056/NEJMoa1601277 10.1002/ana.25145 10.1001/jamaneurol.2014.3537 10.1002/ana.21079 10.1016/S1474-4422(18)30069-3 10.1038/s41467-018-05892-0 10.1016/S1474-4422(17)30076-5 10.1038/nn.4393 10.1016/S0140-6736(18)30481-1 10.1056/NEJMoa1114287 10.1016/S0140-6736(13)62242-4 10.1093/brain/aws242 10.1093/brain/awy088 10.1007/s00415-014-7264-4 10.1212/NXI.0000000000000374 10.1093/brain/awv353 10.1038/nrn3275 10.1002/ana.25020 10.1001/archneurol.2008.562 10.5281/zenodo.1475297 10.3389/fnhum.2014.00671 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. corrected publication 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021, corrected publication 2021 |
Copyright_xml | – notice: The Author(s) 2021. corrected publication 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021, corrected publication 2021 |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-22265-2 |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 2078 |
ExternalDocumentID | oai_doaj_org_article_b925ea625e9146fc8c9474dea8ca687b 10_1038_s41467_021_22265_2 33824310 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Multiple Sclerosis Society (National MS Society) grantid: PA-1603-08175 funderid: https://doi.org/10.13039/100000890 – fundername: Medical Research Council grantid: MR/T027770/1 – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: Medical Research Council grantid: MR/T027800/1 – fundername: Department of Health grantid: RP-2017-08-ST2-004 – fundername: ; grantid: PA-1603-08175 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PQEST PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c634t-1293e6d50dbe3b0b99b5a47d3e8e7e62597bbde39d5e4dc2f0ee95efe96296393 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 14:59:35 EDT 2024 Tue Sep 17 20:52:27 EDT 2024 Tue Aug 27 04:26:52 EDT 2024 Thu Oct 10 16:22:45 EDT 2024 Thu Oct 10 15:58:48 EDT 2024 Fri Aug 23 01:13:17 EDT 2024 Sat Sep 28 08:20:41 EDT 2024 Fri Oct 11 20:51:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c634t-1293e6d50dbe3b0b99b5a47d3e8e7e62597bbde39d5e4dc2f0ee95efe96296393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6652-3512 0000-0003-3543-3706 0000-0002-4885-6241 0000-0003-2439-350X 0000-0003-3076-2682 0000-0002-7872-0142 0000-0002-4333-8496 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024377/ |
PMID | 33824310 |
PQID | 2509111397 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b925ea625e9146fc8c9474dea8ca687b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8024377 proquest_miscellaneous_2509606176 proquest_journals_2529596909 proquest_journals_2509111397 crossref_primary_10_1038_s41467_021_22265_2 pubmed_primary_33824310 springer_journals_10_1038_s41467_021_22265_2 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-06 |
PublicationDateYYYYMMDD | 2021-04-06 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Eshaghi (CR19) 2018; 83 Gold (CR31) 2012; 367 Confavreux, Vukusic (CR16) 2006; 129 Wolinsky (CR44) 2018; 84 Reich, Lucchinetti, Calabresi (CR21) 2018; 378 Calabrese (CR8) 2015; 16 Eshaghi (CR20) 2018; 141 Kapoor (CR27) 2010; 9 Hauser (CR32) 2017; 376 Chataway (CR30) 2020; 19 Kurtzke (CR39) 1983; 33 CR14 Hawker (CR22) 2009; 66 CR36 CR13 (CR1) 2018; 391 Geurts, Calabrese, Fisher, Rudick (CR9) 2012; 11 Bodini (CR10) 2016; 86 Wijnands (CR15) 2017; 16 Vollmer (CR33) 2014; 261 Bhattacharyya (CR43) 1946; 7 Haendel, Chute, Robinson (CR7) 2018; 379 Thompson, Baranzini, Geurts, Hemmer, Ciccarelli (CR2) 2018; 391 Lublin (CR3) 2014; 83 Young (CR6) 2018; 9 Van Essen (CR35) 2013; 80 Stys, Zamponi, van Minnen, Geurts (CR4) 2012; 13 Spain (CR28) 2017; 4 Bendfeldt (CR37) 2012; 33 Rotstein, Healy, Malik, Chitnis, Weiner (CR38) 2015; 72 Montalban (CR17) 2017; 376 CR46 Wolinsky (CR23) 2007; 61 CR45 Lublin (CR24) 2016; 387 Miller (CR34) 2016; 19 CR42 CR41 Freedman (CR29) 2011; 77 CR40 Kapoor (CR25) 2018; 17 Kolasinski (CR11) 2012; 135 Jürgens (CR12) 2016; 139 Chataway (CR26) 2014; 383 Filippi (CR5) 2019; 18 Nakamura, Chen, Ontaneda, Fox, Trapp (CR18) 2017; 82 34016975 - Nat Commun. 2021 May 20;12(1):3169 R Kapoor (22265_CR27) 2010; 9 PK Stys (22265_CR4) 2012; 13 C Confavreux (22265_CR16) 2006; 129 JS Wolinsky (22265_CR23) 2007; 61 J Chataway (22265_CR26) 2014; 383 MA Haendel (22265_CR7) 2018; 379 M Filippi (22265_CR5) 2019; 18 JMA Wijnands (22265_CR15) 2017; 16 R Gold (22265_CR31) 2012; 367 DL Rotstein (22265_CR38) 2015; 72 F Lublin (22265_CR24) 2016; 387 MS Freedman (22265_CR29) 2011; 77 JJG Geurts (22265_CR9) 2012; 11 22265_CR13 M Calabrese (22265_CR8) 2015; 16 K Hawker (22265_CR22) 2009; 66 KL Miller (22265_CR34) 2016; 19 R Kapoor (22265_CR25) 2018; 17 K Nakamura (22265_CR18) 2017; 82 TL Vollmer (22265_CR33) 2014; 261 K Bendfeldt (22265_CR37) 2012; 33 FD Lublin (22265_CR3) 2014; 83 X Montalban (22265_CR17) 2017; 376 DS Reich (22265_CR21) 2018; 378 J Chataway (22265_CR30) 2020; 19 DC Van Essen (22265_CR35) 2013; 80 A Bhattacharyya (22265_CR43) 1946; 7 AL Young (22265_CR6) 2018; 9 T Jürgens (22265_CR12) 2016; 139 22265_CR14 R Spain (22265_CR28) 2017; 4 22265_CR36 JS Wolinsky (22265_CR44) 2018; 84 B Bodini (22265_CR10) 2016; 86 The Lancet. (22265_CR1) 2018; 391 J Kolasinski (22265_CR11) 2012; 135 JF Kurtzke (22265_CR39) 1983; 33 22265_CR45 22265_CR46 A Eshaghi (22265_CR20) 2018; 141 22265_CR40 22265_CR41 22265_CR42 A Eshaghi (22265_CR19) 2018; 83 SL Hauser (22265_CR32) 2017; 376 AJ Thompson (22265_CR2) 2018; 391 |
References_xml | – ident: CR45 – volume: 379 start-page: 1452 year: 2018 end-page: 1462 ident: CR7 article-title: Classification, ontology, and precision publication-title: Med. N. Engl. J. Med. doi: 10.1056/NEJMra1615014 contributor: fullname: Robinson – volume: 387 start-page: 1075 year: 2016 end-page: 1084 ident: CR24 article-title: Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(15)01314-8 contributor: fullname: Lublin – volume: 18 start-page: 198 year: 2019 end-page: 210 ident: CR5 article-title: Association between pathological and MRI findings in multiple sclerosis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30451-4 contributor: fullname: Filippi – volume: 16 start-page: 147 year: 2015 end-page: 158 ident: CR8 article-title: Exploring the origins of grey matter damage in multiple sclerosis publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3900 contributor: fullname: Calabrese – volume: 33 start-page: 1444 year: 1983 end-page: 1452 ident: CR39 article-title: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) publication-title: Neurology doi: 10.1212/WNL.33.11.1444 contributor: fullname: Kurtzke – volume: 83 start-page: 278 year: 2014 end-page: 286 ident: CR3 article-title: Defining the clinical course of multiple sclerosis: the 2013 revisions publication-title: Neurology doi: 10.1212/WNL.0000000000000560 contributor: fullname: Lublin – volume: 9 start-page: 681 year: 2010 end-page: 688 ident: CR27 article-title: Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(10)70131-9 contributor: fullname: Kapoor – ident: CR14 – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: CR35 article-title: The WU-Minn Human Connectome Project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 contributor: fullname: Van Essen – volume: 391 start-page: 2476 year: 2018 ident: CR1 article-title: ICD-11: a brave attempt at classifying a new world publication-title: Lancet – volume: 19 start-page: 214 year: 2020 end-page: 225 ident: CR30 article-title: Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(19)30485-5 contributor: fullname: Chataway – volume: 33 start-page: 1225 year: 2012 end-page: 1245 ident: CR37 article-title: Longitudinal gray matter changes in multiple sclerosis-differential scanner and overall disease-related effects publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21279 contributor: fullname: Bendfeldt – volume: 86 start-page: 170 year: 2016 end-page: 176 ident: CR10 article-title: White and gray matter damage in primary progressive MS: the chicken or the egg? publication-title: Neurology doi: 10.1212/WNL.0000000000002237 contributor: fullname: Bodini – volume: 77 start-page: 1551 year: 2011 end-page: 1560 ident: CR29 article-title: A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS publication-title: Neurology doi: 10.1212/WNL.0b013e318233b240 contributor: fullname: Freedman – volume: 84 start-page: 527 year: 2018 end-page: 536 ident: CR44 article-title: Evaluation of no evidence of progression or active disease (NEPAD) in patients with primary progressive multiple sclerosis in the ORATORIO trial publication-title: Ann. Neurol. doi: 10.1002/ana.25313 contributor: fullname: Wolinsky – volume: 378 start-page: 169 year: 2018 end-page: 180 ident: CR21 article-title: Multiple sclerosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1401483 contributor: fullname: Calabresi – volume: 82 start-page: 635 year: 2017 end-page: 639 ident: CR18 article-title: T1-/T2-weighted ratio differs in demyelinated cortex in multiple sclerosis publication-title: Ann. Neurol. doi: 10.1002/ana.25019 contributor: fullname: Trapp – volume: 7 start-page: 401 year: 1946 end-page: 406 ident: CR43 article-title: On a Measure of Divergence between Two Multinomial Populations publication-title: Sankhyā: Indian J. Stat. (1933–1960) contributor: fullname: Bhattacharyya – volume: 11 start-page: 1082 year: 2012 end-page: 1092 ident: CR9 article-title: Measurement and clinical effect of grey matter pathology in multiple sclerosis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(12)70230-2 contributor: fullname: Rudick – ident: CR40 – volume: 66 start-page: 460 year: 2009 end-page: 471 ident: CR22 article-title: Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial publication-title: Ann. Neurol. doi: 10.1002/ana.21867 contributor: fullname: Hawker – volume: 129 start-page: 606 year: 2006 end-page: 616 ident: CR16 article-title: Natural history of multiple sclerosis: a unifying concept publication-title: Brain doi: 10.1093/brain/awl007 contributor: fullname: Vukusic – volume: 376 start-page: 209 year: 2017 end-page: 220 ident: CR17 article-title: Ocrelizumab versus placebo in primary progressive multiple sclerosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1606468 contributor: fullname: Montalban – volume: 376 start-page: 221 year: 2017 end-page: 234 ident: CR32 article-title: Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1601277 contributor: fullname: Hauser – ident: CR42 – volume: 83 start-page: 210 year: 2018 end-page: 222 ident: CR19 article-title: Deep gray matter volume loss drives disability worsening in multiple sclerosis publication-title: Ann. Neurol. doi: 10.1002/ana.25145 contributor: fullname: Eshaghi – volume: 72 start-page: 152 year: 2015 end-page: 158 ident: CR38 article-title: Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2014.3537 contributor: fullname: Weiner – volume: 61 start-page: 14 year: 2007 end-page: 24 ident: CR23 article-title: Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial publication-title: Ann. Neurol. doi: 10.1002/ana.21079 contributor: fullname: Wolinsky – volume: 17 start-page: 405 year: 2018 end-page: 415 ident: CR25 article-title: Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30069-3 contributor: fullname: Kapoor – volume: 9 year: 2018 ident: CR6 article-title: Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference publication-title: Nat. Commun. doi: 10.1038/s41467-018-05892-0 contributor: fullname: Young – ident: CR46 – volume: 16 start-page: 445 year: 2017 end-page: 451 ident: CR15 article-title: Health-care use before a first demyelinating event suggestive of a multiple sclerosis prodrome: a matched cohort study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(17)30076-5 contributor: fullname: Wijnands – volume: 19 start-page: 1523 year: 2016 end-page: 1536 ident: CR34 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat. Neurosci. doi: 10.1038/nn.4393 contributor: fullname: Miller – volume: 391 start-page: 1622 year: 2018 end-page: 1636 ident: CR2 article-title: Multiple sclerosis publication-title: Lancet doi: 10.1016/S0140-6736(18)30481-1 contributor: fullname: Ciccarelli – ident: CR13 – volume: 367 start-page: 1098 year: 2012 end-page: 1107 ident: CR31 article-title: Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1114287 contributor: fullname: Gold – volume: 383 start-page: 2213 year: 2014 end-page: 2221 ident: CR26 article-title: Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial publication-title: Lancet doi: 10.1016/S0140-6736(13)62242-4 contributor: fullname: Chataway – volume: 135 start-page: 2938 year: 2012 end-page: 2951 ident: CR11 article-title: A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology publication-title: Brain doi: 10.1093/brain/aws242 contributor: fullname: Kolasinski – ident: CR36 – volume: 141 start-page: 1665 year: 2018 end-page: 1677 ident: CR20 article-title: Progression of regional grey matter atrophy in multiple sclerosis publication-title: Brain doi: 10.1093/brain/awy088 contributor: fullname: Eshaghi – volume: 261 start-page: 773 year: 2014 end-page: 783 ident: CR33 article-title: A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis publication-title: J. Neurol. doi: 10.1007/s00415-014-7264-4 contributor: fullname: Vollmer – ident: CR41 – volume: 4 start-page: e374 year: 2017 ident: CR28 article-title: Lipoic acid in secondary progressive MS: a randomized controlled pilot trial publication-title: Neurol. Neuroimmunol. Neuroinflamm. doi: 10.1212/NXI.0000000000000374 contributor: fullname: Spain – volume: 139 start-page: 39 year: 2016 end-page: 46 ident: CR12 article-title: Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis publication-title: Brain doi: 10.1093/brain/awv353 contributor: fullname: Jürgens – volume: 13 start-page: 507 year: 2012 end-page: 514 ident: CR4 article-title: Will the real multiple sclerosis please stand up? publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3275 contributor: fullname: Geurts – volume: 86 start-page: 170 year: 2016 ident: 22265_CR10 publication-title: Neurology doi: 10.1212/WNL.0000000000002237 contributor: fullname: B Bodini – volume: 4 start-page: e374 year: 2017 ident: 22265_CR28 publication-title: Neurol. Neuroimmunol. Neuroinflamm. doi: 10.1212/NXI.0000000000000374 contributor: fullname: R Spain – ident: 22265_CR45 – volume: 18 start-page: 198 year: 2019 ident: 22265_CR5 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30451-4 contributor: fullname: M Filippi – volume: 391 start-page: 2476 year: 2018 ident: 22265_CR1 publication-title: Lancet contributor: fullname: The Lancet. – volume: 261 start-page: 773 year: 2014 ident: 22265_CR33 publication-title: J. Neurol. doi: 10.1007/s00415-014-7264-4 contributor: fullname: TL Vollmer – volume: 9 start-page: 681 year: 2010 ident: 22265_CR27 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(10)70131-9 contributor: fullname: R Kapoor – volume: 80 start-page: 62 year: 2013 ident: 22265_CR35 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 contributor: fullname: DC Van Essen – volume: 135 start-page: 2938 year: 2012 ident: 22265_CR11 publication-title: Brain doi: 10.1093/brain/aws242 contributor: fullname: J Kolasinski – volume: 61 start-page: 14 year: 2007 ident: 22265_CR23 publication-title: Ann. Neurol. doi: 10.1002/ana.21079 contributor: fullname: JS Wolinsky – volume: 7 start-page: 401 year: 1946 ident: 22265_CR43 publication-title: Sankhyā: Indian J. Stat. (1933–1960) contributor: fullname: A Bhattacharyya – volume: 391 start-page: 1622 year: 2018 ident: 22265_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(18)30481-1 contributor: fullname: AJ Thompson – ident: 22265_CR13 doi: 10.1002/ana.25020 – volume: 19 start-page: 1523 year: 2016 ident: 22265_CR34 publication-title: Nat. Neurosci. doi: 10.1038/nn.4393 contributor: fullname: KL Miller – volume: 11 start-page: 1082 year: 2012 ident: 22265_CR9 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(12)70230-2 contributor: fullname: JJG Geurts – volume: 82 start-page: 635 year: 2017 ident: 22265_CR18 publication-title: Ann. Neurol. doi: 10.1002/ana.25019 contributor: fullname: K Nakamura – volume: 139 start-page: 39 year: 2016 ident: 22265_CR12 publication-title: Brain doi: 10.1093/brain/awv353 contributor: fullname: T Jürgens – ident: 22265_CR14 doi: 10.1001/archneurol.2008.562 – volume: 13 start-page: 507 year: 2012 ident: 22265_CR4 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3275 contributor: fullname: PK Stys – volume: 17 start-page: 405 year: 2018 ident: 22265_CR25 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30069-3 contributor: fullname: R Kapoor – volume: 72 start-page: 152 year: 2015 ident: 22265_CR38 publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2014.3537 contributor: fullname: DL Rotstein – volume: 378 start-page: 169 year: 2018 ident: 22265_CR21 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1401483 contributor: fullname: DS Reich – volume: 379 start-page: 1452 year: 2018 ident: 22265_CR7 publication-title: Med. N. Engl. J. Med. doi: 10.1056/NEJMra1615014 contributor: fullname: MA Haendel – volume: 83 start-page: 278 year: 2014 ident: 22265_CR3 publication-title: Neurology doi: 10.1212/WNL.0000000000000560 contributor: fullname: FD Lublin – ident: 22265_CR46 – volume: 367 start-page: 1098 year: 2012 ident: 22265_CR31 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1114287 contributor: fullname: R Gold – volume: 16 start-page: 445 year: 2017 ident: 22265_CR15 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(17)30076-5 contributor: fullname: JMA Wijnands – volume: 129 start-page: 606 year: 2006 ident: 22265_CR16 publication-title: Brain doi: 10.1093/brain/awl007 contributor: fullname: C Confavreux – volume: 387 start-page: 1075 year: 2016 ident: 22265_CR24 publication-title: Lancet doi: 10.1016/S0140-6736(15)01314-8 contributor: fullname: F Lublin – volume: 33 start-page: 1225 year: 2012 ident: 22265_CR37 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21279 contributor: fullname: K Bendfeldt – ident: 22265_CR41 doi: 10.5281/zenodo.1475297 – volume: 19 start-page: 214 year: 2020 ident: 22265_CR30 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(19)30485-5 contributor: fullname: J Chataway – ident: 22265_CR36 – volume: 16 start-page: 147 year: 2015 ident: 22265_CR8 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3900 contributor: fullname: M Calabrese – volume: 383 start-page: 2213 year: 2014 ident: 22265_CR26 publication-title: Lancet doi: 10.1016/S0140-6736(13)62242-4 contributor: fullname: J Chataway – volume: 376 start-page: 221 year: 2017 ident: 22265_CR32 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1601277 contributor: fullname: SL Hauser – volume: 33 start-page: 1444 year: 1983 ident: 22265_CR39 publication-title: Neurology doi: 10.1212/WNL.33.11.1444 contributor: fullname: JF Kurtzke – volume: 9 year: 2018 ident: 22265_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05892-0 contributor: fullname: AL Young – volume: 84 start-page: 527 year: 2018 ident: 22265_CR44 publication-title: Ann. Neurol. doi: 10.1002/ana.25313 contributor: fullname: JS Wolinsky – volume: 66 start-page: 460 year: 2009 ident: 22265_CR22 publication-title: Ann. Neurol. doi: 10.1002/ana.21867 contributor: fullname: K Hawker – volume: 83 start-page: 210 year: 2018 ident: 22265_CR19 publication-title: Ann. Neurol. doi: 10.1002/ana.25145 contributor: fullname: A Eshaghi – ident: 22265_CR40 doi: 10.3389/fnhum.2014.00671 – volume: 376 start-page: 209 year: 2017 ident: 22265_CR17 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1606468 contributor: fullname: X Montalban – volume: 141 start-page: 1665 year: 2018 ident: 22265_CR20 publication-title: Brain doi: 10.1093/brain/awy088 contributor: fullname: A Eshaghi – volume: 77 start-page: 1551 year: 2011 ident: 22265_CR29 publication-title: Neurology doi: 10.1212/WNL.0b013e318233b240 contributor: fullname: MS Freedman – ident: 22265_CR42 |
SSID | ssj0000391844 |
Score | 2.6787665 |
Snippet | Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear,... Abstract Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are... Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2078 |
SubjectTerms | 631/114/116/2396 631/1647/245/1627 631/378/1689/1666 692/699/375/1411/1666 Abnormalities Adult Algorithms Clinical trials Databases as Topic Disease Progression Female Health services Humanities and Social Sciences Humans Learning algorithms Lesions Machine learning Magnetic Resonance Imaging Male Medical imaging Middle Aged Models, Biological Multidimensional data multidisciplinary Multiple sclerosis Multiple Sclerosis - diagnosis Multiple Sclerosis - diagnostic imaging Neuroimaging Patients Phenotypes Placebos Randomized Controlled Trials as Topic Recurrence Reproducibility of Results Science Science (multidisciplinary) Substantia alba Unsupervised learning Unsupervised Machine Learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiFIeoQUZiRtEzfoV-wiIqiCVA6LS3qw4HpceSCuyOfTfd8bOLl2g4tJrbEWTeXi-iT-PGXuj0DFkG2QtgoFaKZlqRK2mliAWQcSkoaWDwidfzfGp-rLUyxtXfREnrLQHLoo7DE5o6BClg8OgTr3tnWpVhM72nbFtyKtv424UU3kNlg5LFzWfkmmkPRxVXhOIkYApkahdW5koN-z_F8r8myz5x45pTkRHj9jDGUHy90XyXXYPhsfsfrlT8mqPLcvR23x8ia_pgnzEqSjF-cjHKdBv15ET4_2MT8M4XdJ6MULkPzOzEvh8lcQZ74bIT7595sQjfcJOjz59_3hcz9cn1L2RalVTJgcTdRMDyNAE54LuVBslWDQA1T1tCBGkixpU7EVqAJyGBM4IDEsnn7Kd4WKA54wn2_VCB8R2ySithQ0p2H4horUptX1bsbdrVfrL0iXD591taX1RvEfF-6x4Lyr2gbS9mUkdrvMDtLuf7e7_Z_eKHaxt5eewG70g-LMgUHvLsHDaGde4ir3eDGM80SZJN8DFVF5hCNeZij0rlt8IiuW8QMDVVKzd8omtL9keGc5_5J7dNnd-RLHerb3nt1i3a-rFXWhqnz0Q5PZENzIHbGf1a4KXiKRW4VUOmmsECBtA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyQuFW8CBRmJG0TN-hX7hChqVZBaoYpKe7PieLz0QHZpNof-ezyOs2iBco2TaDyesT97Ps8Q8lZEw-C14yVzCkoheCgjalUlBzZ3zAcJNV4UPjtXp5fiy0Iu8oFbn2mV05yYJmq_avGM_JBhRMrEvZz5sP5ZYtUojK7mEhp3yR6LO4VqRvaOjs-_XmxPWTD_uRYi35apuD7sRZobkJkQl0akeO2sSClx_7_Q5t-kyT8ip2lBOnlA9jOSpB_HoX9I7kD3iNwba0vePCaL8QpuusZEJ9og7eOrUYqrnvaDw-PXniLzfUmHrh_WOG_04OmPxLAEmktKLGnTeXp28Zkin_QJuTw5_vbptMxlFMpWcbEpcUUH5WXlHXBXOWOcbETtOeg4ELj_qZ3zwI2XIHzLQgVgJAQwikX3NPwpmXWrDp4TGnTTMukixgtKSMm0C063c-a1DqFu64K8m1Rp12O2DJui3FzbUfE2Kt4mxVtWkCPU9vZNzHSdHqyulzY7jnWGSWiilGDi96HVrRG18NDotlG6dgU5mMbKZvfrLUMYNEdwe0vzZEsFebNtjn6FwZKmg9Uw_kIhvlMFeTaO_FbQuK1nEXhVBal3bGKnJ7st3dX3lLtbpwyQUaz3k_X8Fut2Tb34fy9ekvsMDRoJReqAzDbXA7yKWGnjXmeH-AXAchOS priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dvqKRF802o333kQUfE4hfNBXNi30DST9UC753YL3n9vkrYrq3sPvjZpmU5mmt80v5kBeMajYTDlWEmdxJJzFsqIWmXJkM4c9UGgSonCp5_lyZx_WojFAUztjkYFdntDu9RPar7-_vLXz4s30eFfDynj-lXHs7snskHc7RJr6wpcpTxG6onKN8L9_GVmJgY0fMyd2X_rzv6Uy_jvw57_Uij_OkfN29PxTbgx4krydjCEW3CA7W24NnSavLgDiyEhNyc1kYlESLo4NUpx1pGud-lnbEcSD35J-rbrz9NXpENPfmS-JZKxwcSS1K0np18-ksQuvQvz4w9f35-UY1OFspGMb8q0v6P0ovIOmaucMU7UXHmGOi5LioaUcx6Z8QK5b2ioEI3AgEbS6KyG3YPDdtXiAyBB1w0VLiK-ILkQVLvgdDOjXusQVKMKeD6p0p4PtTNsPvNm2g6Kt1HxNive0gLeJW1vZ6a61_nCar20oxtZZ6jAOkqJJt4fGt0YrrjHWje11MoVcDStlZ1sydIEimYJ6l4yTI0w0lSmgKfb4ehl6eikbnHVD4-QCe3JAu4PK78VNAb50dhmVQFqxyZ23mR3pD37lit561wPMor1YrKeP2JdrqmH_zf9EVynycAT3UgeweFm3ePjiKQ27kl2j98nAxl0 priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERIXxJtAQUbiBhFZv32EFVVBKgdEpb1ZcTwuPZBWZHPg3-NxsosC7YFrbEeTsSfz2fPNGOC1zAtDmCBqHjTWUopUZ9Sqa4F8FXhMCg0lCp980cen8vNGbeYyOZQLs4jfC_tukMWUiUiQPRkxsm7CreyDLdG31nq9P0-hSudWyjkv5uqhC99TSvRfhSv_pUf-FSMtrufoHtydMSN7P03yfbiB_QO4Pd0i-eshbKZk25KwxHYEQTbkrlmK84ENY6CD1oERx_2Mjf0wXtIfYsDIfhQuJbL58ogz1vaRnXz9xIg5-ghOjz5-Wx_X84UJdaeF3Nbku1FH1cSAIjTBuaBaaaJAm1VOOx0TQkThokIZO54aRKcwodM8G6ITj-Ggv-jxKbBk246rkNFc0lIpbkMKtlvxaG1KpjMVvNmp0l9OdTF8iWcL6yfF-6x4XxTveQUfSNv7nlTTujzIU-1nE_HBcYVtlhJdHp862zlpZMTWdq22JlRwuJsrPxva4DkBnhXB2GuauVNOu8ZV8GrfnC2IwiJtjxfj9ApNSE5X8GSa-b2geQPPM8RqKjCLNbH4kmVLf_69VOm2pdZjFuvtbvX8Eet6TT37v-7P4Q6nBU5UIn0IB9ufI77IKGkbXhbz-A30LQr2 priority: 102 providerName: Springer Nature |
Title | Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data |
URI | https://link.springer.com/article/10.1038/s41467-021-22265-2 https://www.ncbi.nlm.nih.gov/pubmed/33824310 https://www.proquest.com/docview/2509111397 https://www.proquest.com/docview/2529596909 https://search.proquest.com/docview/2509606176 https://pubmed.ncbi.nlm.nih.gov/PMC8024377 https://doaj.org/article/b925ea625e9146fc8c9474dea8ca687b |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ6C9IL4JjMpIvEHW1F-xH7tqZVTqNA0m9S2KY6dUomm1tA_895ydpKzAXnhxJNtxLr47-2z_7gzwgaNgsNSwmBrpYs5ZGaPVKmPm6MBQWwqXekfh6aW8uOGTmZgdgOh8YQJovzCL0-rH8rRafA_YyvWy6Hc4sf7VdKRCGL20fwiHKKB3luhh-GUaVy28dZBJmOrXPAwHHoyAs6FHdR3DI1yaYSPecfbOfBTC9v_L1vwbMvnHuWmYjsZP4HFrR5JhQ-9TOHDVM3jY3Cz58znMGgfc4MREOtAgqbEqUrGoSb01fvO1Jh73Pifbqt6u_ahRO0uWAV_pSHuhxJzklSXT6y_Eo0lfwM34_NvoIm4vUYgLyfgm9vO5k1Yk1jhmEqO1ETlPLXMK2eBXP6kx1jFtheO2oGXinBaudFpSVE7NXsJRtarcayClygsqDFp4peRCUGVKo4oBtUqVZVqkEXzsujJbN7EysnDGzVTW8CBDHmSBBxmN4Mz39q6mj3MdMla386zldmY0FS5HKp3G98tCFZqn3LpcFblUqYngpONV1ipfnVFvBA28aXtPMdVCS53oCN7vilGr_FFJXrnVtmlCeutORvCq4fyO0E5yIkj3ZGLvT_ZLUJBD5O5WcCP41EnPb7Lu76k3__2ht3BMvdh7pJE8gaPN7da9QyNqY3qoOrMUUzX-3IMHw-Hk6wSfZ-eXV9eYO5KjXtiewHTKVS-o2C_xaSKk |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74073,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SyBAkbiBlGzfsU-IUAsW-j2gFppb1Ycj5ceyG6bzaH_Ho-TLFqgXOMkGo9nPGPPNzOEvBFRMHjpeM6cglwIHvLotaqcA5s45oOEEhOF5ydqdia-LuRiuHBrB1jluCemjdqvarwjP2QYkTLxLGfery9y7BqF0dWhhcZNckvwaKsxU3z6ZXvHgtXPtRBDrkzB9WEr0s6AuIRoGBHgtWOPUtn-f_maf0Mm_4ibJnM0vU_uDX4k_dAv_ANyA5qH5HbfWfLqEVn0CbgpiYmOoEHaxlcjFectbTuHl68tRdz7knZN261x12jB058JXwl0aCixpFXj6fz7EUU06WNyNv18-mmWD00U8lpxscnRnoPysvAOuCucMU5WovQcdFwGPP2UznngxksQvmahADASAhjFonIa_oTsNasGnhIadFUz6aKHF5SQkmkXnK4nzGsdQlmXGXk7stKu-1oZNsW4ubY9421kvE2MtywjH5Hb2zexznV6sLpc2kFtrDNMQhWpBBO_D7WujSiFh0rXldKly8jBuFZ2UL7WMnSCJujaXjM8SlJGXm-Ho1ZhqKRqYNX1v1Do3amM7PcrvyU0HupZdLuKjJQ7MrEzk92R5vxHqtytU_3HSNa7UXp-k3U9p579fxavyJ3Z6fzYHh-dfHtO7jIUboQWqQOyt7ns4EX0mjbuZVKNX0EAFR0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgEYgL4rkEFjASN4ia-hX7hHiVXWBXCLFSb1Ycj8seSMumPfDv8ThOUYHlWifVZDzj-ez5PEPIMxENg9eOl8wpKIXgoYyoVZUc2NQxHyTUeFH4-EQdnooPcznP_Kc-0yrHNTEt1H7Z4hn5hGFGysS9nJmETIv4_Hb2cvWjxA5SmGnN7TQukysxKiq0eT17vz1vwUroWoh8b6bietKLtEogRyEGSSR77cSmVML_X7jzb_rkHznUFJpmN8mNjCnpq8EIbpFL0N0mV4cukz_vkPlwGTddaKIjgZD28dEoxVlP-43Dg9ieIgd-QTddv1nhCtKDp98T1xJobi6xoE3n6fGXI4rM0rvkdPbu65vDMjdUKFvFxbrE2A7Ky8o74K5yxjjZiNpz0HFKcCdUO-eBGy9B-JaFCsBICGAUi45q-D2y1y07uE9o0E3LpItoLyghJdMuON1Omdc6hLqtC_J8VKVdDXUzbMp3c20HxduoeJsUb1lBXqO2t09izev0w_J8YbMLWWeYhCZKCSa-H1rdGlELD41uG6VrV5CDca5sdsTeMgREU4S5FwyPVlWQp9vh6GGYNmk6WG6Gv1CI9FRB9oeZ3woaN_gsQrCqIPWOTex8ye5Id_YtVfHWqRZkFOvFaD2_xbpYUw_-_xVPyLXoFfbT0cnHh-Q6Q9tGlpE6IHvr8w08igBq7R4nz_gFVZAZVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+multiple+sclerosis+subtypes+using+unsupervised+machine+learning+and+MRI+data&rft.jtitle=Nature+communications&rft.au=Eshaghi%2C+Arman&rft.au=Young%2C+Alexandra+L.&rft.au=Wijeratne%2C+Peter+A.&rft.au=Prados%2C+Ferran&rft.date=2021-04-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-22265-2&rft.externalDocID=10_1038_s41467_021_22265_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |