Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatmen...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation oncology, biology, physics Vol. 92; no. 4; pp. 779 - 786
Main Authors Sumida, Iori, Yamaguchi, Hajime, Kizaki, Hisao, Aboshi, Keiko, Tsujii, Mari, Yoshikawa, Nobuhiko, Yamada, Yuji, Suzuki, Osamu, Seo, Yuji, Isohashi, Fumiaki, Yoshioka, Yasuo, Ogawa, Kazuhiko
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.
AbstractList To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP).PURPOSETo propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP).Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates.METHODS AND MATERIALSFifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates.The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03-.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important.RESULTSThe mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03-.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important.RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.CONCLUSIONSRGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.
To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.
Purpose To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI ( P <.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI ( P <.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.
Author Tsujii, Mari
Seo, Yuji
Yoshikawa, Nobuhiko
Kizaki, Hisao
Yamaguchi, Hajime
Yoshioka, Yasuo
Ogawa, Kazuhiko
Yamada, Yuji
Isohashi, Fumiaki
Aboshi, Keiko
Suzuki, Osamu
Sumida, Iori
Author_xml – sequence: 1
  givenname: Iori
  surname: Sumida
  fullname: Sumida, Iori
  email: sumida@radonc.med.osaka-u.ac.jp
  organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
– sequence: 2
  givenname: Hajime
  surname: Yamaguchi
  fullname: Yamaguchi, Hajime
  organization: Department of Radiation Oncology, NTT West Osaka Hospital, Osaka, Japan
– sequence: 3
  givenname: Hisao
  surname: Kizaki
  fullname: Kizaki, Hisao
  organization: Department of Radiation Oncology, NTT West Osaka Hospital, Osaka, Japan
– sequence: 4
  givenname: Keiko
  surname: Aboshi
  fullname: Aboshi, Keiko
  organization: Department of Radiation Oncology, NTT West Osaka Hospital, Osaka, Japan
– sequence: 5
  givenname: Mari
  surname: Tsujii
  fullname: Tsujii, Mari
  organization: Department of Radiation Oncology, NTT West Osaka Hospital, Osaka, Japan
– sequence: 6
  givenname: Nobuhiko
  surname: Yoshikawa
  fullname: Yoshikawa, Nobuhiko
  organization: Department of Radiation Oncology, NTT West Osaka Hospital, Osaka, Japan
– sequence: 7
  givenname: Yuji
  surname: Yamada
  fullname: Yamada, Yuji
  organization: Department of Radiation Oncology, NTT West Osaka Hospital, Osaka, Japan
– sequence: 8
  givenname: Osamu
  surname: Suzuki
  fullname: Suzuki, Osamu
  organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
– sequence: 9
  givenname: Yuji
  surname: Seo
  fullname: Seo, Yuji
  organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
– sequence: 10
  givenname: Fumiaki
  surname: Isohashi
  fullname: Isohashi, Fumiaki
  organization: Department of Radiation Oncology, NTT West Osaka Hospital, Osaka, Japan
– sequence: 11
  givenname: Yasuo
  surname: Yoshioka
  fullname: Yoshioka, Yasuo
  organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
– sequence: 12
  givenname: Kazuhiko
  surname: Ogawa
  fullname: Ogawa, Kazuhiko
  organization: Department of Radiation Oncology, NTT West Osaka Hospital, Osaka, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25936816$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22462372$$D View this record in Osti.gov
BookMark eNqVkk9rFTEUxYNU7Gv1G4gMuHEz400m80-kIH1tLRQV7cKNhEzmjmacSZ7JzMN--yZOuxGkuAqB3zmXe849IgfGGiTkOYWMAi1fD5kenG13GQNaZMAy4PQR2dC6atK8KL4ekA3kJaR5gA_JkfcDAFBa8SfkkBVNXta03JBvH-wex-Sz7LRttR3td63kmFzIaZLJpenwd9Jbl5zt5bjIWVuT2D7J062e0PjwDewnh51WM3bJ1npMttrPTrdLhJ-Sx70cPT67e4_J9fnZ9en79OrjxeXpu6tUlTmfU8o4cK6ww6aTVd2zvuJQK4pN2UPFZAtV23SBkFUDUANDpIA9xl0rhPyYvFxtrZ-18ErPqH4oawyqWTDGS5ZXLFCvVmrn7K8F_Swm7RWOozRoFy9o2VDWhOii4Ys7dGkn7MTO6Um6G3GfWwDerIBy1nuHvQhD_-QzO6lHQUHEksQg1pJELEkAE6GkIOZ_ie_9H5CdrDIMSe41urgpmhCbdnHRzur_NVCjNrHvn3iDfrCLC32GIIQPAvElnk-8HloAMF7lweDtvw0enn8LDRnVtQ
CitedBy_id crossref_primary_10_1007_s13246_023_01270_3
crossref_primary_10_1002_acm2_12606
crossref_primary_10_1016_j_ejmp_2019_10_029
crossref_primary_10_1093_jrr_rraa123
crossref_primary_10_12737_1024_6177_2021_66_3_68_75
crossref_primary_10_1016_j_ejmp_2020_04_012
crossref_primary_10_1371_journal_pone_0208086
crossref_primary_10_1002_acm2_12145
crossref_primary_10_1016_j_ejmp_2017_08_004
crossref_primary_10_1002_acm2_12831
crossref_primary_10_1093_jrr_rrx017
crossref_primary_10_4103_jmp_JMP_104_19
crossref_primary_10_1002_acm2_13745
crossref_primary_10_1002_mp_15304
crossref_primary_10_1093_jrr_rrw073
crossref_primary_10_1186_s13014_019_1233_0
crossref_primary_10_1007_s13246_020_00873_4
crossref_primary_10_21294_1814_4861_2023_22_3_57_65
crossref_primary_10_1093_jrr_rry061
crossref_primary_10_1016_j_ejmp_2017_03_001
crossref_primary_10_1016_j_radphyschem_2019_04_022
Cites_doi 10.1016/0360-3016(94)00475-Z
10.1016/S0360-3016(01)02805-X
10.4103/2141-9248.129023
10.1120/jacmp.v12i4.3587
10.1088/0031-9155/58/8/2597
10.1016/S0360-3016(01)02585-8
10.1093/jrr/rrs049
10.1120/jacmp.v8i3.2448
10.4103/0971-6203.89971
10.1088/0031-9155/51/2/006
10.1118/1.3238104
10.1093/jicru_ndq008
10.3109/02841861003767539
10.1118/1.3692177
10.1118/1.598248
10.1016/j.cmpb.2014.01.005
10.1118/1.3125644
10.1120/jacmp.v15i5.4935
10.1118/1.598063
10.1016/j.ijrobp.2006.08.032
10.1118/1.4805105
10.1118/1.4767763
10.1118/1.1591194
10.1016/j.ijrobp.2004.07.723
10.1120/jacmp.v15i1.4457
10.1118/1.3544657
10.1120/jacmp.v15i5.4874
10.1118/1.3633904
10.1007/s00345-003-0356-x
10.1111/j.1617-0830.2008.00118.x
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
DOI 10.1016/j.ijrobp.2015.02.041
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-355X
EndPage 786
ExternalDocumentID 22462372
25936816
10_1016_j_ijrobp_2015_02_041
S0360301615002473
1_s2_0_S0360301615002473
Genre Journal Article
GroupedDBID ---
--K
.1-
.FO
0R~
1B1
1P~
1RT
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
AAEDT
AAEDW
AAQFI
AAQQT
AAWTL
AAXUO
ABJNI
ABLJU
ABNEU
ABOCM
ABUDA
ACGFS
ACIUM
ACVFH
ADBBV
ADCNI
ADVLN
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AGCQF
AHHHB
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BELOY
DU5
EBS
EFKBS
EJD
F5P
FDB
GBLVA
HED
HMO
IHE
J1W
KOM
LX3
M41
MO0
O9-
OC~
OO-
RNS
ROL
RPZ
SDG
SEL
SES
SSZ
UV1
XH2
Z5R
~S-
.55
.GJ
29J
AALRI
AAQXK
ABEFU
ABWVN
ACRPL
ADMUD
ADNMO
ADPAM
AFCTW
AFFNX
AFJKZ
AGRDE
ASPBG
AVWKF
AZFZN
EFJIC
FEDTE
FGOYB
FIRID
G-2
HMK
HVGLF
HX~
HZ~
NQ-
R2-
RIG
SAE
SEW
UDS
X7M
XPP
ZGI
AAIAV
AGZHU
ALXNB
ZA5
AAYWO
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABPTK
OTOTI
ID FETCH-LOGICAL-c634t-124044cede9da78f2f7408c1e96f072ab07b9d44ca7900802ee10efe18797e03
ISSN 0360-3016
1879-355X
IngestDate Fri May 19 00:38:07 EDT 2023
Fri Jul 11 11:59:02 EDT 2025
Thu Apr 03 06:58:20 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Tue Jul 01 02:22:55 EDT 2025
Fri Feb 23 02:35:31 EST 2024
Sun Feb 23 10:18:44 EST 2025
Tue Aug 26 18:33:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c634t-124044cede9da78f2f7408c1e96f072ab07b9d44ca7900802ee10efe18797e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25936816
PQID 1691293550
PQPubID 23479
PageCount 8
ParticipantIDs osti_scitechconnect_22462372
proquest_miscellaneous_1691293550
pubmed_primary_25936816
crossref_citationtrail_10_1016_j_ijrobp_2015_02_041
crossref_primary_10_1016_j_ijrobp_2015_02_041
elsevier_sciencedirect_doi_10_1016_j_ijrobp_2015_02_041
elsevier_clinicalkeyesjournals_1_s2_0_S0360301615002473
elsevier_clinicalkey_doi_10_1016_j_ijrobp_2015_02_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-15
PublicationDateYYYYMMDD 2015-07-15
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle International journal of radiation oncology, biology, physics
PublicationTitleAlternate Int J Radiat Oncol Biol Phys
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ezzell, Burmeister, Dogan (bib3) 2009; 36
Sumida, Yamaguchi, Kizaki (bib6) 2014; 15
Pulliam, Followill, Court (bib9) 2014; 15
Park, Lee, Chung (bib13) 2012; 53
Moiseenko, Lapointe, James (bib12) 2012; 39
Zhen, Nelms, Tomé (bib18) 2013; 40
Chong, Hunt (bib20) 2003
Low, Harms, Mutic (bib2) 1998; 25
Pollack, Hanlon, Horwitz (bib19) 2003; 21
Ezzell, Galvin, Low (bib1) 2003; 30
Wu, Mohan, Niemierko (bib25) 2002; 52
Oinam, Singh, Shukla (bib11) 2011; 36
Jursinic (bib33) 2009; 36
Rana, Rogers (bib14) 2012; 11
van Herk, Remeijer, Lebesque (bib32) 2002; 52
Kim, Tomé (bib10) 2006; 66
(bib21) 1993
Rana, Cheng (bib28) 2014; 4
Zhang, Moiseenko, Liu (bib34) 2006; 51
Nelms, Simon (bib4) 2007; 8
Stathakis, Mavroidis, Shi (bib17) 2014; 114
Niemierko (bib24) 1999; 26
Lee, Chao, Ting (bib29) 2011; 12
Alber, Broggi, Wagter (bib31) 2008
Kim, Tomé (bib15) 2008; 12
International Commission on Radiation Units and Measurements (bib30) 2010; 10
Keeling, Ahmad, Algan (bib22) 2014; 15
Zhen, Nelms, Tomé (bib7) 2011; 38
Nelms, Zhen, Tomé (bib5) 2011; 38
Cheung, Tucker, Lee (bib26) 2005; 61
Niemierko (bib16) 1997; 24
Stasi, Bresciani, Miranti (bib8) 2012; 39
Sa'd, Graham, Liney (bib23) 2013; 58
Okunieff, Morgan, Niemierko (bib27) 1995; 32
Kim, Tomé (bib35) 2010; 49
Stasi (10.1016/j.ijrobp.2015.02.041_bib8) 2012; 39
Cheung (10.1016/j.ijrobp.2015.02.041_bib26) 2005; 61
Jursinic (10.1016/j.ijrobp.2015.02.041_bib33) 2009; 36
Kim (10.1016/j.ijrobp.2015.02.041_bib15) 2008; 12
Zhen (10.1016/j.ijrobp.2015.02.041_bib7) 2011; 38
(10.1016/j.ijrobp.2015.02.041_bib21) 1993
Ezzell (10.1016/j.ijrobp.2015.02.041_bib1) 2003; 30
Pollack (10.1016/j.ijrobp.2015.02.041_bib19) 2003; 21
Rana (10.1016/j.ijrobp.2015.02.041_bib14) 2012; 11
Niemierko (10.1016/j.ijrobp.2015.02.041_bib16) 1997; 24
Nelms (10.1016/j.ijrobp.2015.02.041_bib5) 2011; 38
Alber (10.1016/j.ijrobp.2015.02.041_bib31) 2008
Kim (10.1016/j.ijrobp.2015.02.041_bib35) 2010; 49
Rana (10.1016/j.ijrobp.2015.02.041_bib28) 2014; 4
Lee (10.1016/j.ijrobp.2015.02.041_bib29) 2011; 12
Sumida (10.1016/j.ijrobp.2015.02.041_bib6) 2014; 15
Chong (10.1016/j.ijrobp.2015.02.041_bib20) 2003
Ezzell (10.1016/j.ijrobp.2015.02.041_bib3) 2009; 36
Pulliam (10.1016/j.ijrobp.2015.02.041_bib9) 2014; 15
Okunieff (10.1016/j.ijrobp.2015.02.041_bib27) 1995; 32
Zhen (10.1016/j.ijrobp.2015.02.041_bib18) 2013; 40
Low (10.1016/j.ijrobp.2015.02.041_bib2) 1998; 25
Keeling (10.1016/j.ijrobp.2015.02.041_bib22) 2014; 15
van Herk (10.1016/j.ijrobp.2015.02.041_bib32) 2002; 52
Stathakis (10.1016/j.ijrobp.2015.02.041_bib17) 2014; 114
Nelms (10.1016/j.ijrobp.2015.02.041_bib4) 2007; 8
Park (10.1016/j.ijrobp.2015.02.041_bib13) 2012; 53
Kim (10.1016/j.ijrobp.2015.02.041_bib10) 2006; 66
Moiseenko (10.1016/j.ijrobp.2015.02.041_bib12) 2012; 39
Oinam (10.1016/j.ijrobp.2015.02.041_bib11) 2011; 36
Wu (10.1016/j.ijrobp.2015.02.041_bib25) 2002; 52
Niemierko (10.1016/j.ijrobp.2015.02.041_bib24) 1999; 26
Sa'd (10.1016/j.ijrobp.2015.02.041_bib23) 2013; 58
International Commission on Radiation Units and Measurements (10.1016/j.ijrobp.2015.02.041_bib30) 2010; 10
Zhang (10.1016/j.ijrobp.2015.02.041_bib34) 2006; 51
References_xml – volume: 36
  start-page: 220
  year: 2011
  end-page: 229
  ident: bib11
  article-title: Dose volume histogram analysis and comparison of different radiobiological models using in-house developed software
  publication-title: J Med Phys
– volume: 39
  start-page: 7626
  year: 2012
  end-page: 7634
  ident: bib8
  article-title: Pretreatment patient-specific IMRT quality assurance: A correlation study between gamma index and patient clinical dose volume histogram
  publication-title: Med Phys
– volume: 8
  start-page: 76
  year: 2007
  end-page: 90
  ident: bib4
  article-title: A survey on IMRT QA analysis
  publication-title: J Appl Clin Med Phys
– volume: 38
  start-page: 5477
  year: 2011
  end-page: 5489
  ident: bib7
  article-title: Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA
  publication-title: Med Phys
– volume: 58
  start-page: 2597
  year: 2013
  end-page: 2608
  ident: bib23
  article-title: Quantitative comparison of 3D and 2.5D gamma analysis: Introducing gamma angle histograms
  publication-title: Phys Med Biol
– volume: 4
  start-page: 167
  year: 2014
  end-page: 172
  ident: bib28
  article-title: Radiobiological impact of planning techniques for prostate cancer in terms of tumor control probability and normal tissue complication probability
  publication-title: Ann Med Health Sci Res
– volume: 66
  start-page: 1528
  year: 2006
  end-page: 1542
  ident: bib10
  article-title: Risk-adaptive optimization: Selective boosting of high-risk tumor subvolumes
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 26
  start-page: 1100
  year: 1999
  ident: bib24
  article-title: A generalized concept of equivalent uniform dose (EUD)
  publication-title: Med Phys
– volume: 12
  start-page: 42
  year: 2008
  end-page: 50
  ident: bib15
  article-title: On voxel based iso-tumor control probability and iso-complication maps for selective boosting and selective avoidance intensity modulated radiotherapy
  publication-title: Imaging Decis (Berl)
– start-page: 191
  year: 2003
  end-page: 217
  ident: bib20
  article-title: A practical guide to intensity-modulated radiation therapy
  publication-title: IMRT for Head and Neck Cancer
– volume: 36
  start-page: 5359
  year: 2009
  end-page: 5373
  ident: bib3
  article-title: IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119
  publication-title: Med Phys
– volume: 40
  start-page: 071702
  year: 2013
  ident: bib18
  article-title: On the use of biomathematical models in patient-specific IMRT dose QA
  publication-title: Med Phys
– volume: 10
  start-page: 27
  year: 2010
  end-page: 40
  ident: bib30
  article-title: Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Special considerations regarding absorbed-dose and dose-volume prescribing and reporting in IMRT. ICRU Report 83
  publication-title: J ICRU
– volume: 51
  start-page: 269
  year: 2006
  end-page: 285
  ident: bib34
  article-title: Internal fiducial markers can assist dose escalation in treatment of prostate cancer: Result of organ motion
  publication-title: Phys Med Biol
– volume: 114
  start-page: 60
  year: 2014
  end-page: 69
  ident: bib17
  article-title: γ+ index: A new evaluation parameter for quantitative quality assurance
  publication-title: Comput Methods Programs Biomed
– volume: 52
  start-page: 224
  year: 2002
  end-page: 235
  ident: bib25
  article-title: Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 12
  start-page: 158
  year: 2011
  end-page: 174
  ident: bib29
  article-title: Comparative analysis of SmartArc-based dual arc volumetric-modulated arc radiotherapy (VMAT) versus intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma
  publication-title: J Appl Clin Med Phys
– volume: 52
  start-page: 1407
  year: 2002
  end-page: 1422
  ident: bib32
  article-title: Inclusion of geometric uncertainties in treatment plan evaluation
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 49
  start-page: 1374
  year: 2010
  end-page: 1384
  ident: bib35
  article-title: Dose-painting IMRT optimization using biological parameters
  publication-title: Acta Oncol
– volume: 25
  start-page: 656
  year: 1998
  end-page: 661
  ident: bib2
  article-title: A technique for the quantitative evaluation of dose distributions
  publication-title: Med Phys
– volume: 11
  start-page: 261
  year: 2012
  end-page: 269
  ident: bib14
  article-title: Radiobiological impact of Acuros XB dose calculation algorithm on low-risk prostate cancer treatment plans created by RapidArc technique
  publication-title: Austral-Asian Journal of Cancer
– volume: 24
  start-page: 103
  year: 1997
  end-page: 110
  ident: bib16
  article-title: Reporting and analyzing dose distributions: A concept of equivalent uniform dose
  publication-title: Med Phys
– volume: 21
  start-page: 200
  year: 2003
  end-page: 208
  ident: bib19
  article-title: Radiation therapy dose escalation for prostate cancer: A rationale for IMRT
  publication-title: World J Urol
– volume: 32
  start-page: 1227
  year: 1995
  end-page: 1237
  ident: bib27
  article-title: Radiation dose-response of human tumors
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 61
  start-page: 993
  year: 2005
  end-page: 1002
  ident: bib26
  article-title: Dose-response characteristics of low- and intermediate-risk prostate cancer treated with external beam radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 30
  start-page: 2089
  year: 2003
  end-page: 2115
  ident: bib1
  article-title: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee
  publication-title: Med Phys
– volume: 15
  start-page: 133
  year: 2014
  end-page: 146
  ident: bib6
  article-title: Three-dimensional dose prediction based on two-dimensional verification measurements for IMRT
  publication-title: J Appl Clin Med Phys
– volume: 36
  start-page: 2165
  year: 2009
  end-page: 2171
  ident: bib33
  article-title: Angular dependence of dose sensitivity of surface diodes
  publication-title: Med Phys
– volume: 38
  start-page: 1037
  year: 2011
  end-page: 1044
  ident: bib5
  article-title: Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors
  publication-title: Med Phys
– volume: 53
  start-page: 978
  year: 2012
  end-page: 988
  ident: bib13
  article-title: Radiobiological model-based bio-anatomical quality assurance in intensity-modulated radiation therapy for prostate cancer
  publication-title: J Radiat Res
– year: 1993
  ident: bib21
  publication-title: International Commission on Radiation Units and Measurements 50. Prescribing, Recording and Reporting Photon Beam Therapy
– volume: 15
  start-page: 196
  year: 2014
  end-page: 206
  ident: bib9
  article-title: A six-year review of more than 13,000 patient-specific IMRT QA results from 13 different treatment sites
  publication-title: J Appl Clin Med Phys
– volume: 15
  start-page: 100
  year: 2014
  end-page: 117
  ident: bib22
  article-title: Dependency of planned dose perturbation (PDP) on the spatial resolution of MapCHECK 2 detectors
  publication-title: J Appl Clin Med Phys
– year: 2008
  ident: bib31
  article-title: Guidelines for the verification of IMRT
– volume: 39
  start-page: 1917
  year: 2012
  end-page: 1924
  ident: bib12
  article-title: Biological consequences of MLC calibration errors in IMRT delivery and QA
  publication-title: Med Phys
– volume: 11
  start-page: 261
  year: 2012
  ident: 10.1016/j.ijrobp.2015.02.041_bib14
  article-title: Radiobiological impact of Acuros XB dose calculation algorithm on low-risk prostate cancer treatment plans created by RapidArc technique
  publication-title: Austral-Asian Journal of Cancer
– volume: 32
  start-page: 1227
  year: 1995
  ident: 10.1016/j.ijrobp.2015.02.041_bib27
  article-title: Radiation dose-response of human tumors
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(94)00475-Z
– year: 2008
  ident: 10.1016/j.ijrobp.2015.02.041_bib31
– volume: 52
  start-page: 1407
  year: 2002
  ident: 10.1016/j.ijrobp.2015.02.041_bib32
  article-title: Inclusion of geometric uncertainties in treatment plan evaluation
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(01)02805-X
– volume: 4
  start-page: 167
  year: 2014
  ident: 10.1016/j.ijrobp.2015.02.041_bib28
  article-title: Radiobiological impact of planning techniques for prostate cancer in terms of tumor control probability and normal tissue complication probability
  publication-title: Ann Med Health Sci Res
  doi: 10.4103/2141-9248.129023
– volume: 12
  start-page: 158
  year: 2011
  ident: 10.1016/j.ijrobp.2015.02.041_bib29
  article-title: Comparative analysis of SmartArc-based dual arc volumetric-modulated arc radiotherapy (VMAT) versus intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.v12i4.3587
– volume: 58
  start-page: 2597
  year: 2013
  ident: 10.1016/j.ijrobp.2015.02.041_bib23
  article-title: Quantitative comparison of 3D and 2.5D gamma analysis: Introducing gamma angle histograms
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/8/2597
– volume: 52
  start-page: 224
  year: 2002
  ident: 10.1016/j.ijrobp.2015.02.041_bib25
  article-title: Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(01)02585-8
– volume: 53
  start-page: 978
  year: 2012
  ident: 10.1016/j.ijrobp.2015.02.041_bib13
  article-title: Radiobiological model-based bio-anatomical quality assurance in intensity-modulated radiation therapy for prostate cancer
  publication-title: J Radiat Res
  doi: 10.1093/jrr/rrs049
– volume: 8
  start-page: 76
  year: 2007
  ident: 10.1016/j.ijrobp.2015.02.041_bib4
  article-title: A survey on IMRT QA analysis
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.v8i3.2448
– volume: 36
  start-page: 220
  year: 2011
  ident: 10.1016/j.ijrobp.2015.02.041_bib11
  article-title: Dose volume histogram analysis and comparison of different radiobiological models using in-house developed software
  publication-title: J Med Phys
  doi: 10.4103/0971-6203.89971
– volume: 51
  start-page: 269
  year: 2006
  ident: 10.1016/j.ijrobp.2015.02.041_bib34
  article-title: Internal fiducial markers can assist dose escalation in treatment of prostate cancer: Result of organ motion
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/51/2/006
– volume: 36
  start-page: 5359
  year: 2009
  ident: 10.1016/j.ijrobp.2015.02.041_bib3
  article-title: IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119
  publication-title: Med Phys
  doi: 10.1118/1.3238104
– volume: 10
  start-page: 27
  year: 2010
  ident: 10.1016/j.ijrobp.2015.02.041_bib30
  article-title: Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Special considerations regarding absorbed-dose and dose-volume prescribing and reporting in IMRT. ICRU Report 83
  publication-title: J ICRU
  doi: 10.1093/jicru_ndq008
– volume: 49
  start-page: 1374
  year: 2010
  ident: 10.1016/j.ijrobp.2015.02.041_bib35
  article-title: Dose-painting IMRT optimization using biological parameters
  publication-title: Acta Oncol
  doi: 10.3109/02841861003767539
– volume: 39
  start-page: 1917
  year: 2012
  ident: 10.1016/j.ijrobp.2015.02.041_bib12
  article-title: Biological consequences of MLC calibration errors in IMRT delivery and QA
  publication-title: Med Phys
  doi: 10.1118/1.3692177
– volume: 25
  start-page: 656
  year: 1998
  ident: 10.1016/j.ijrobp.2015.02.041_bib2
  article-title: A technique for the quantitative evaluation of dose distributions
  publication-title: Med Phys
  doi: 10.1118/1.598248
– volume: 114
  start-page: 60
  year: 2014
  ident: 10.1016/j.ijrobp.2015.02.041_bib17
  article-title: γ+ index: A new evaluation parameter for quantitative quality assurance
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2014.01.005
– volume: 36
  start-page: 2165
  year: 2009
  ident: 10.1016/j.ijrobp.2015.02.041_bib33
  article-title: Angular dependence of dose sensitivity of surface diodes
  publication-title: Med Phys
  doi: 10.1118/1.3125644
– volume: 15
  start-page: 196
  year: 2014
  ident: 10.1016/j.ijrobp.2015.02.041_bib9
  article-title: A six-year review of more than 13,000 patient-specific IMRT QA results from 13 different treatment sites
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.v15i5.4935
– volume: 24
  start-page: 103
  year: 1997
  ident: 10.1016/j.ijrobp.2015.02.041_bib16
  article-title: Reporting and analyzing dose distributions: A concept of equivalent uniform dose
  publication-title: Med Phys
  doi: 10.1118/1.598063
– volume: 66
  start-page: 1528
  year: 2006
  ident: 10.1016/j.ijrobp.2015.02.041_bib10
  article-title: Risk-adaptive optimization: Selective boosting of high-risk tumor subvolumes
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2006.08.032
– volume: 40
  start-page: 071702
  year: 2013
  ident: 10.1016/j.ijrobp.2015.02.041_bib18
  article-title: On the use of biomathematical models in patient-specific IMRT dose QA
  publication-title: Med Phys
  doi: 10.1118/1.4805105
– start-page: 191
  year: 2003
  ident: 10.1016/j.ijrobp.2015.02.041_bib20
  article-title: A practical guide to intensity-modulated radiation therapy
– volume: 39
  start-page: 7626
  year: 2012
  ident: 10.1016/j.ijrobp.2015.02.041_bib8
  article-title: Pretreatment patient-specific IMRT quality assurance: A correlation study between gamma index and patient clinical dose volume histogram
  publication-title: Med Phys
  doi: 10.1118/1.4767763
– volume: 30
  start-page: 2089
  year: 2003
  ident: 10.1016/j.ijrobp.2015.02.041_bib1
  article-title: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee
  publication-title: Med Phys
  doi: 10.1118/1.1591194
– volume: 26
  start-page: 1100
  year: 1999
  ident: 10.1016/j.ijrobp.2015.02.041_bib24
  article-title: A generalized concept of equivalent uniform dose (EUD)
  publication-title: Med Phys
– volume: 61
  start-page: 993
  year: 2005
  ident: 10.1016/j.ijrobp.2015.02.041_bib26
  article-title: Dose-response characteristics of low- and intermediate-risk prostate cancer treated with external beam radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2004.07.723
– volume: 15
  start-page: 100
  year: 2014
  ident: 10.1016/j.ijrobp.2015.02.041_bib22
  article-title: Dependency of planned dose perturbation (PDP) on the spatial resolution of MapCHECK 2 detectors
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.v15i1.4457
– volume: 38
  start-page: 1037
  year: 2011
  ident: 10.1016/j.ijrobp.2015.02.041_bib5
  article-title: Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors
  publication-title: Med Phys
  doi: 10.1118/1.3544657
– volume: 15
  start-page: 133
  year: 2014
  ident: 10.1016/j.ijrobp.2015.02.041_bib6
  article-title: Three-dimensional dose prediction based on two-dimensional verification measurements for IMRT
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.v15i5.4874
– volume: 38
  start-page: 5477
  year: 2011
  ident: 10.1016/j.ijrobp.2015.02.041_bib7
  article-title: Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA
  publication-title: Med Phys
  doi: 10.1118/1.3633904
– year: 1993
  ident: 10.1016/j.ijrobp.2015.02.041_bib21
– volume: 21
  start-page: 200
  year: 2003
  ident: 10.1016/j.ijrobp.2015.02.041_bib19
  article-title: Radiation therapy dose escalation for prostate cancer: A rationale for IMRT
  publication-title: World J Urol
  doi: 10.1007/s00345-003-0356-x
– volume: 12
  start-page: 42
  year: 2008
  ident: 10.1016/j.ijrobp.2015.02.041_bib15
  article-title: On voxel based iso-tumor control probability and iso-complication maps for selective boosting and selective avoidance intensity modulated radiotherapy
  publication-title: Imaging Decis (Berl)
  doi: 10.1111/j.1617-0830.2008.00118.x
SSID ssj0001174
Score 2.2946641
Snippet To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication...
Purpose To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue...
Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue...
SourceID osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 779
SubjectTerms ACCURACY
Algorithms
ANIMAL TISSUES
BIOLOGICAL RADIATION EFFECTS
BLADDER
BRAIN
COMPARATIVE EVALUATIONS
ERRORS
Femur Head - radiation effects
HEAD
Head and Neck Neoplasms - radiotherapy
Hematology, Oncology and Palliative Medicine
Humans
Male
NECK
NEOPLASMS
Organs at Risk - diagnostic imaging
Organs at Risk - radiation effects
Parotid Gland - radiation effects
PATIENTS
PROBABILITY
PROSTATE
Prostate - radiation effects
Prostatic Neoplasms - radiotherapy
QUALITY ASSURANCE
Quality Assurance, Health Care
RADIATION DOSE DISTRIBUTIONS
RADIATION DOSES
Radiography
Radiology
RADIOLOGY AND NUCLEAR MEDICINE
RADIOTHERAPY
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy Planning, Computer-Assisted - standards
Radiotherapy, Intensity-Modulated - methods
Radiotherapy, Intensity-Modulated - standards
RECTUM
Rectum - radiation effects
SPINAL CORD
Urinary Bladder - radiation effects
Title Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0360301615002473
https://www.clinicalkey.es/playcontent/1-s2.0-S0360301615002473
https://dx.doi.org/10.1016/j.ijrobp.2015.02.041
https://www.ncbi.nlm.nih.gov/pubmed/25936816
https://www.proquest.com/docview/1691293550
https://www.osti.gov/biblio/22462372
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyFeEN8UBjISbyhTnC8nj9VaGFSb0FbEeECRkzgjZW1Q0yK0_8n_4V7bSdN11cZeoqqJ08T32PfYvfdcQt5GImVJkLsWE0FieUzCmIu4a6V-FoBHyWAGxK2Bw6Pg4Iv36dQ_7XT-tqKWlotkL724Mq_kNlaF78CumCX7H5ZtbgpfwGewLxzBwnC8kY2Pyt_y_N2xyAojpqR6_IOYTgUM_Ez-UUGEw0bQG5mhaw1Q0F-LcWAERlakyDoHGLg-QBldUwGrTVvX9w1bahNzlDbQt56lTeJLssqB0TsnDXE_WU6LTPHVj6XOcf_8o4k5_iam4gyLsyh_KCaFruC-0pEcFRfClNkuKlGun-wnZaWbjmTxs33SbGowH3dLdVpnk8wF7sHWaZj1RB05LUB6rVmX63o0xoFzra294Rv0NsVkr5jMywSlSpmv5Fq18Na6FPdwf8SsCk5aJ_goriLGyGd03ZVLEt0srpzYjjcuvUN2HFi9wPS70x8dfx01FIEZefD6LeucThV4uPl82zhTtwQ3sH1ppCjS-AG5b9Y2tK-B-pB05OwRuXtoojcek-8Kr_QSXqnCK1V4pYBXusIrLXO6hlfa4JUiXmkbr0_I-P1wvH9gmfIeVhq43sICZml7XiozGWWCh7mTc88OUyajILe5IxKbJ1EGVwgeqZRwKZktc8lCHnFpu09Jd1bO5HNCM9SRlA4KRzmecN0QVx1u5qQw30RhInrErfsvTo30PVZgOY_rGMdJrHs9xl6PbbCmx3rEalr90tIv11zv16aJ67RmcMQx4O-advyqdrIyo7mKt-Gr3dIQZk2Eb_Cbu4gdbIVa0SkG1UEzVJd0XO70yJsaUzG4G_wPUcxkuYRHCSJcIfi-3SPPNNiaznGwOmjIghe3fqGX5N5qNtgl3cV8KV8B6V8kr80Q-gdrdfzc
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Radiobiological+Gamma+Index+for+Evaluation+of+3-Dimensional+Predicted+Dose+Distribution&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Sumida%2C+Iori%2C+PhD&rft.au=Yamaguchi%2C+Hajime%2C+RT&rft.au=Kizaki%2C+Hisao%2C+RT&rft.au=Aboshi%2C+Keiko%2C+RT&rft.date=2015-07-15&rft.issn=0360-3016&rft.volume=92&rft.issue=4&rft.spage=779&rft.epage=786&rft_id=info:doi/10.1016%2Fj.ijrobp.2015.02.041&rft.externalDBID=ECK1-s2.0-S0360301615002473&rft.externalDocID=1_s2_0_S0360301615002473
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03603016%2FS0360301615X00083%2Fcov150h.gif