TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection
HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection...
Saved in:
Published in | PLoS pathogens Vol. 12; no. 1; p. e1005349 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.01.2016
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion. |
---|---|
AbstractList |
HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion. HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion. HIV infection induces phenotypic and functional changes to CD8 + T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8 + T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT + and TIGIT + PD-1 + CD8 + T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8 + T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8 + T cell effector responses. The frequency of TIGIT + CD4 + T cells correlated with the CD4 + T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion. HIV-1 infection contributes substantially to global morbidity and mortality, with no immediate promise of an effective vaccine. One major obstacle to vaccine development and therapy is to understand why HIV-1 replication persists in a person despite the presence of viral specific immune responses. The emerging consensus has been that these immune cells are functionally ‘exhausted’ or anergic, and thus, although they can recognize HIV-1 specific target cells, they are unable to effectively keep up with rapid and dynamic viral replication in an individual. We have identified a novel combination pathway that can be targeted, TIGIT and PD-L1which may be responsible, at least in part, for making these immune cells dysfunctional and exhausted and thus unable to control the virus. We show that by blocking the TIGIT and PD-L1 pathway, we can reverse the defects of these viral specific immune cells. Our findings will give new directions to vaccines and therapies that will potentially reverse these dysfunctional cells and allow them to control HIV-1 replication, but also serve in “Shock and Kill” HIV curative strategies. HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion. HIV infection induces phenotypic and functional changes to [CD8.sup.+] T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector [CD8.sup.+] T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of [TIGIT.sup.+] and [TIGIT.sup.+] [PD-1.sup.+] [CD8.sup.+] T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific [CD8.sup.+] T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific [CD8.sup.+] T cell effector responses. The frequency of [TIGIT.sup.+] [CD4.sup.+] T cells correlated with the [CD4.sup.+] T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion. |
Audience | Academic |
Author | Mitchell, Brooks I. Sacha, Jonah B. Webb, Gabriela M. Hansen, Scott G. Maurer, Mark Deeks, Steven G. Ostrowski, Mario Ndhlovu, Lishomwa C. Ishii, Naoto Hecht, Frederick M. Chew, Glen M. Abdel-Mohsen, Mohamed Shikuma, Cecilia M. Fujita, Tsuyoshi Burwitz, Benjamin J. Reed, Jason S. Clayton, Kiera L. Liegler, Teri Hammond, Katherine B. Wu, Helen L. Korman, Alan J. |
AuthorAffiliation | Emory University, UNITED STATES 1 Hawaii Center for HIV/AIDS, Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America 7 HIV/AIDS Division, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America 5 Department of Immunology, University of Toronto, Toronto, Ontario, Canada 4 Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America 6 Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America 8 Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California, United States of America 2 Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan 3 Vaccine and Gene Therapy Institute, Oregon |
AuthorAffiliation_xml | – name: 8 Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California, United States of America – name: 3 Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America – name: Emory University, UNITED STATES – name: 5 Department of Immunology, University of Toronto, Toronto, Ontario, Canada – name: 6 Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America – name: 1 Hawaii Center for HIV/AIDS, Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America – name: 4 Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America – name: 7 HIV/AIDS Division, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America – name: 2 Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan |
Author_xml | – sequence: 1 givenname: Glen M. surname: Chew fullname: Chew, Glen M. – sequence: 2 givenname: Tsuyoshi surname: Fujita fullname: Fujita, Tsuyoshi – sequence: 3 givenname: Gabriela M. surname: Webb fullname: Webb, Gabriela M. – sequence: 4 givenname: Benjamin J. surname: Burwitz fullname: Burwitz, Benjamin J. – sequence: 5 givenname: Helen L. surname: Wu fullname: Wu, Helen L. – sequence: 6 givenname: Jason S. surname: Reed fullname: Reed, Jason S. – sequence: 7 givenname: Katherine B. surname: Hammond fullname: Hammond, Katherine B. – sequence: 8 givenname: Kiera L. surname: Clayton fullname: Clayton, Kiera L. – sequence: 9 givenname: Naoto surname: Ishii fullname: Ishii, Naoto – sequence: 10 givenname: Mohamed surname: Abdel-Mohsen fullname: Abdel-Mohsen, Mohamed – sequence: 11 givenname: Teri surname: Liegler fullname: Liegler, Teri – sequence: 12 givenname: Brooks I. surname: Mitchell fullname: Mitchell, Brooks I. – sequence: 13 givenname: Frederick M. surname: Hecht fullname: Hecht, Frederick M. – sequence: 14 givenname: Mario surname: Ostrowski fullname: Ostrowski, Mario – sequence: 15 givenname: Cecilia M. surname: Shikuma fullname: Shikuma, Cecilia M. – sequence: 16 givenname: Scott G. surname: Hansen fullname: Hansen, Scott G. – sequence: 17 givenname: Mark surname: Maurer fullname: Maurer, Mark – sequence: 18 givenname: Alan J. surname: Korman fullname: Korman, Alan J. – sequence: 19 givenname: Steven G. surname: Deeks fullname: Deeks, Steven G. – sequence: 20 givenname: Jonah B. surname: Sacha fullname: Sacha, Jonah B. – sequence: 21 givenname: Lishomwa C. surname: Ndhlovu fullname: Ndhlovu, Lishomwa C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26741490$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk9lu1DAUhiNURNuBN0BgiRuQOoMdOxsXSNVQ2khlUTtwaznOScbTxB5sp5RX4KnxbKiDEBJKJFv29_85OctxdKCNhih6SvCE0Iy8XpjBatFNlkvhJwTjhLLiQXREkoSOM5qxg3v7w-jYuQXGjFCSPooO4zRjhBX4KPo5K8_LGfog7I1DZ3dzMTgPNZqhKXSdO0FTYy10woND35Wfo3fKgXCAPlvTWnBOGX2ChK7RNdjbAInwopmwLXjUGIvKvh80oCtw3ljhA46URhfl140orKVuQK4uHkcPG9E5eLJdR9GX92ez6cX48tN5OT29HMuUUj-GKk7zImNAG2iSOq_qIpVFwZosx4AZjWVOYkzqpsJ1DKRJEikBxzEhRQo0BjqKnm98l51xfJtGx0mWMprjNGGBKDdEbcSCL63qhf3BjVB8fWBsy4X1SnbAi7wmFS4IgSpjmMWC0CqHnDFW1ABYBq-3268NVQ-1BO2t6PZM92-0mvPW3HKWYRZqFwxebg2s-TaEPPJeORmqIzSYYR03zpMswau4X2zQVoTQlG5McJQrnJ-yJKXh_0IKR9HkL1R4auiVDE3WqHC-J3i1JwiMhzvfhl5xvLy--g_24z777H5qfudk150BeLMBpDXOWWi4VH7dRCFi1XGC-WoUdjXkq1Hg21EIYvaHeOf_T9kv2fUNZA |
CitedBy_id | crossref_primary_10_3389_fimmu_2023_1070779 crossref_primary_10_1136_jitc_2022_004564 crossref_primary_10_3390_biomedicines9091277 crossref_primary_10_1371_journal_ppat_1007970 crossref_primary_10_3389_fimmu_2019_02251 crossref_primary_10_1097_QAI_0000000000002121 crossref_primary_10_3390_vaccines8010027 crossref_primary_10_1097_CM9_0000000000002926 crossref_primary_10_3389_fimmu_2022_833531 crossref_primary_10_3390_vaccines12060578 crossref_primary_10_1093_infdis_jiz485 crossref_primary_10_1038_s41590_023_01741_5 crossref_primary_10_14336_AD_2023_0705 crossref_primary_10_4049_jimmunol_2000131 crossref_primary_10_1097_QAD_0000000000002465 crossref_primary_10_1097_QAI_0000000000002001 crossref_primary_10_1016_j_smim_2020_101412 crossref_primary_10_1080_22221751_2020_1826361 crossref_primary_10_1016_j_eng_2018_11_015 crossref_primary_10_1089_aid_2019_0135 crossref_primary_10_1128_jvi_00273_24 crossref_primary_10_1038_s41586_019_1841_8 crossref_primary_10_3389_fimmu_2018_01855 crossref_primary_10_3390_vaccines11020211 crossref_primary_10_1016_j_kint_2019_01_040 crossref_primary_10_3389_fcimb_2021_668637 crossref_primary_10_4049_jimmunol_1901481 crossref_primary_10_1002_eji_201646875 crossref_primary_10_1038_s41467_018_08096_8 crossref_primary_10_1038_s41598_022_23228_3 crossref_primary_10_1111_imm_12715 crossref_primary_10_1158_1535_7163_MCT_20_0464 crossref_primary_10_1371_journal_pone_0231761 crossref_primary_10_3390_cells10102563 crossref_primary_10_1111_imr_13388 crossref_primary_10_3389_fimmu_2021_638010 crossref_primary_10_1097_COH_0000000000000328 crossref_primary_10_3389_fimmu_2017_00572 crossref_primary_10_1097_COH_0000000000000444 crossref_primary_10_1038_s41467_020_15025_1 crossref_primary_10_1111_odi_13703 crossref_primary_10_3389_fimmu_2020_00868 crossref_primary_10_1038_nri_2017_112 crossref_primary_10_1002_cti2_1348 crossref_primary_10_1080_25787489_2023_2261753 crossref_primary_10_1038_s41598_019_39875_y crossref_primary_10_3389_fimmu_2019_03005 crossref_primary_10_3389_fonc_2018_00086 crossref_primary_10_1016_j_biopha_2023_114913 crossref_primary_10_1016_j_smim_2021_101478 crossref_primary_10_3389_fimmu_2023_1270881 crossref_primary_10_1080_15284336_2018_1514821 crossref_primary_10_1097_QAD_0000000000002488 crossref_primary_10_1111_jvh_13277 crossref_primary_10_1080_08923973_2021_1891247 crossref_primary_10_1097_QAD_0000000000003331 crossref_primary_10_1016_j_molimm_2018_03_027 crossref_primary_10_1155_2022_6952286 crossref_primary_10_1016_j_isci_2023_108165 crossref_primary_10_1016_j_jaut_2020_102504 crossref_primary_10_7554_eLife_83737 crossref_primary_10_3389_fcimb_2021_658848 crossref_primary_10_1126_scitranslmed_adk6152 crossref_primary_10_1371_journal_ppat_1010673 crossref_primary_10_1371_journal_pone_0211112 crossref_primary_10_3389_fonc_2022_872438 crossref_primary_10_1097_CM9_0000000000002458 crossref_primary_10_1002_JLB_3HI1217_500R crossref_primary_10_3389_fcimb_2020_00175 crossref_primary_10_1089_aid_2018_0184 crossref_primary_10_1371_journal_ppat_1005761 crossref_primary_10_1016_j_immuni_2016_04_022 crossref_primary_10_1080_17512433_2019_1561272 crossref_primary_10_1126_science_aaf6517 crossref_primary_10_1016_j_cellimm_2019_103958 crossref_primary_10_1016_j_ebiom_2022_103840 crossref_primary_10_1371_journal_ppat_1009674 crossref_primary_10_3389_fimmu_2021_647688 crossref_primary_10_3233_HAB_160307 crossref_primary_10_1038_srep40354 crossref_primary_10_1007_s11904_019_00438_5 crossref_primary_10_3390_biomedicines10112809 crossref_primary_10_1007_s13365_024_01223_w crossref_primary_10_1097_QAD_0000000000003111 crossref_primary_10_3390_v16020219 crossref_primary_10_1016_j_coi_2017_07_016 crossref_primary_10_1007_s11030_022_10452_2 crossref_primary_10_1016_j_ebiom_2022_104254 crossref_primary_10_1038_s41598_021_88965_3 crossref_primary_10_1111_acel_13372 crossref_primary_10_3390_v14030581 crossref_primary_10_1016_j_coviro_2020_02_005 crossref_primary_10_15789_1563_0625_FEO_2734 crossref_primary_10_1093_infdis_jiaa269 crossref_primary_10_1016_j_antiviral_2023_105788 crossref_primary_10_1093_immadv_ltaa004 crossref_primary_10_1186_s13027_023_00512_z crossref_primary_10_3389_fimmu_2018_02341 crossref_primary_10_1111_acel_12716 crossref_primary_10_4155_fdd_2019_0031 crossref_primary_10_1111_febs_15756 crossref_primary_10_1002_med_21638 crossref_primary_10_1002_cyto_b_21502 crossref_primary_10_1128_JVI_01999_19 crossref_primary_10_3389_fimmu_2022_833310 crossref_primary_10_1093_annonc_mdx686 crossref_primary_10_1089_aid_2020_0172 crossref_primary_10_2217_imt_2020_0273 crossref_primary_10_1128_JVI_00278_17 crossref_primary_10_1016_j_imbio_2020_151915 crossref_primary_10_1097_QAD_0000000000001997 crossref_primary_10_1038_s41577_021_00649_1 crossref_primary_10_1016_j_intimp_2024_112419 crossref_primary_10_6061_clinics_2021_e2902 crossref_primary_10_1038_s42003_024_06225_2 crossref_primary_10_3389_fimmu_2020_01748 crossref_primary_10_3389_fimmu_2018_00746 crossref_primary_10_1002_cyto_a_23357 crossref_primary_10_1016_j_jid_2016_08_016 crossref_primary_10_3389_fmicb_2021_700892 crossref_primary_10_1158_0008_5472_CAN_22_2155 crossref_primary_10_1186_s12974_022_02398_x crossref_primary_10_3389_fcimb_2023_1074847 crossref_primary_10_3390_v12091051 crossref_primary_10_1097_COH_0000000000000863 crossref_primary_10_1158_2159_8290_CD_21_1586 crossref_primary_10_3389_fimmu_2018_00019 crossref_primary_10_1016_j_biopha_2023_115750 crossref_primary_10_3389_fimmu_2019_00111 crossref_primary_10_1111_imcb_12794 crossref_primary_10_3389_fimmu_2022_908697 crossref_primary_10_4049_jimmunol_2200436 crossref_primary_10_1016_j_actatropica_2023_106871 crossref_primary_10_1128_JVI_02165_20 crossref_primary_10_20411_pai_v8i2_638 crossref_primary_10_3389_fmicb_2018_03158 crossref_primary_10_3389_fonc_2023_1060112 crossref_primary_10_1016_j_xcrm_2022_100766 crossref_primary_10_1136_jclinpath_2021_207789 crossref_primary_10_3389_fimmu_2018_00928 crossref_primary_10_1038_s41467_017_01631_z crossref_primary_10_1080_13543784_2020_1724281 crossref_primary_10_1097_COH_0000000000000283 crossref_primary_10_1038_s41598_019_47024_8 crossref_primary_10_3389_fphar_2024_1341612 crossref_primary_10_3390_ijms22137016 crossref_primary_10_1002_rmv_2094 crossref_primary_10_1093_infdis_jiab155 crossref_primary_10_3389_fimmu_2018_02783 crossref_primary_10_3390_ijms21249690 crossref_primary_10_1111_cei_13412 crossref_primary_10_1089_aid_2016_0324 crossref_primary_10_1016_j_chom_2017_12_004 crossref_primary_10_1038_s41591_020_1022_1 crossref_primary_10_1016_j_trsl_2017_07_002 crossref_primary_10_1016_j_chom_2020_03_014 crossref_primary_10_3389_fimmu_2019_02310 crossref_primary_10_1097_QAD_0000000000003857 crossref_primary_10_1128_jvi_01424_22 crossref_primary_10_1128_iai_00558_22 crossref_primary_10_1097_QAI_0000000000003399 crossref_primary_10_1097_COH_0000000000000812 crossref_primary_10_1128_jvi_01670_22 crossref_primary_10_3390_vaccines9030271 crossref_primary_10_1093_jimmun_vkae014 crossref_primary_10_1111_cei_13407 crossref_primary_10_1002_cyto_a_22983 crossref_primary_10_12677_PI_2021_103015 crossref_primary_10_3389_fimmu_2021_608890 crossref_primary_10_1016_S2055_6640_20_30463_5 crossref_primary_10_3390_cells8040317 crossref_primary_10_1097_ID9_0000000000000025 crossref_primary_10_1016_j_critrevonc_2019_102836 crossref_primary_10_1172_jci_insight_141245 crossref_primary_10_1172_jci_insight_136648 crossref_primary_10_3389_fimmu_2022_949928 crossref_primary_10_1371_journal_pbio_3002943 crossref_primary_10_2147_IJGM_S407725 crossref_primary_10_1002_mog2_18 crossref_primary_10_1093_infdis_jiz563 crossref_primary_10_1186_s40364_024_00580_2 crossref_primary_10_1146_annurev_cancerbio_060920_084910 crossref_primary_10_1016_S2352_3018_18_30039_0 crossref_primary_10_1002_eji_202451046 crossref_primary_10_1111_imr_12823 crossref_primary_10_17650_1726_9776_2019_15_4_30_38 crossref_primary_10_3390_v15010155 crossref_primary_10_3389_fimmu_2018_02755 crossref_primary_10_1128_JVI_00375_19 crossref_primary_10_1016_j_fitote_2025_106401 crossref_primary_10_1007_s40257_019_00452_8 crossref_primary_10_1371_journal_pone_0311731 crossref_primary_10_3389_fimmu_2017_01215 crossref_primary_10_1016_j_heliyon_2024_e35856 crossref_primary_10_1038_s41467_019_08798_7 crossref_primary_10_3389_fimmu_2024_1505864 crossref_primary_10_1080_14787210_2023_2273919 crossref_primary_10_1371_journal_ppat_1009825 crossref_primary_10_1007_s11481_021_10018_3 crossref_primary_10_2174_1874613601711010091 crossref_primary_10_1007_s00428_019_02538_4 crossref_primary_10_1016_j_isci_2021_103588 crossref_primary_10_1016_j_chom_2017_05_012 crossref_primary_10_1097_QAD_0000000000002557 crossref_primary_10_3389_fimmu_2022_914406 crossref_primary_10_1172_JCI136227 crossref_primary_10_1186_s13045_018_0629_x crossref_primary_10_2174_0929867330666230324152532 crossref_primary_10_3390_cells10092227 crossref_primary_10_1016_j_virs_2023_01_003 crossref_primary_10_3390_v16040514 crossref_primary_10_1137_22M1485255 crossref_primary_10_3390_pathogens13121137 crossref_primary_10_1136_jitc_2019_000323 crossref_primary_10_1016_j_ebiom_2023_104954 crossref_primary_10_1016_j_jve_2023_100329 crossref_primary_10_1016_j_coviro_2019_03_004 crossref_primary_10_1016_S0140_6736_18_31311_4 crossref_primary_10_1128_JVI_01263_17 crossref_primary_10_1128_mbio_02496_22 crossref_primary_10_1016_j_neo_2024_101086 crossref_primary_10_2147_HIV_S374369 crossref_primary_10_1134_S1607672922050027 crossref_primary_10_1016_j_clim_2017_08_021 crossref_primary_10_1016_j_intimp_2021_108205 crossref_primary_10_4049_jimmunol_2100367 crossref_primary_10_1038_s41590_024_01875_0 crossref_primary_10_3389_fimmu_2017_01311 crossref_primary_10_4049_jimmunol_1701474 crossref_primary_10_1080_08916934_2019_1630064 crossref_primary_10_3390_v14112523 crossref_primary_10_1016_j_xcrm_2024_101591 crossref_primary_10_1128_MMBR_00155_20 crossref_primary_10_3389_fimmu_2020_01223 crossref_primary_10_1016_j_intimp_2024_113341 crossref_primary_10_1186_s12981_020_00315_x crossref_primary_10_1007_s00203_023_03623_8 crossref_primary_10_3389_fimmu_2020_01350 crossref_primary_10_4102_sajhivmed_v21i1_1089 crossref_primary_10_1093_infdis_jiab291 crossref_primary_10_1089_aid_2019_0078 crossref_primary_10_1158_1078_0432_CCR_16_0933 crossref_primary_10_3390_v14010135 |
Cites_doi | 10.1086/605446 10.1038/nbt0796-845 10.1089/aid.2010.0107 10.1038/nature14001 10.1038/ni.1674 10.1084/jem.20081398 10.1086/433188 10.1056/NEJMoa1305133 10.1080/13550280701327038 10.1007/s11904-011-0106-4 10.4049/jimmunol.174.8.4753 10.1016/j.immuni.2013.07.012 10.1038/nm0402-379 10.1038/nature14053 10.1073/pnas.1120606109 10.1002/eji.200839116 10.1371/journal.pbio.0020020 10.1038/nature07662 10.1016/j.immuni.2012.01.014 10.1093/infdis/jit581 10.1056/NEJMoa1200690 10.4049/jimmunol.1400961 10.1038/nm1482 10.4049/jimmunol.0803771 10.1158/0008-5472.CAN-12-4100 10.1371/journal.ppat.1004380 10.1038/487439a 10.1038/368856a0 10.4049/jimmunol.1102609 10.1371/journal.pone.0004408 10.4049/jimmunol.1300920 10.1016/j.ccell.2014.10.018 10.1128/JVI.00006-15 10.1371/journal.ppat.1004071 10.1182/blood-2010-11-317297 10.1038/nature05115 10.1038/nri3799 10.4049/jimmunol.1402176 10.1182/blood-2007-01-069112 10.4049/jimmunol.181.10.6738 10.4161/hv.23800 10.1086/524143 10.1097/COH.0b013e328344f35e 10.1371/journal.pone.0083134 10.1084/jem.20031598 10.1128/JVI.01763-08 10.1038/ni.2035 10.1038/nature11286 10.1172/JCI60612 10.1371/journal.pone.0063818 10.1038/ni.1679 10.1073/pnas.0903474106 10.1186/1742-4690-10-41 10.1016/S1074-7613(01)00183-2 10.1016/j.immuni.2014.02.012 10.4049/jimmunol.1103627 10.1038/nature13904 10.4049/jimmunol.1003081 10.1212/01.WNL.0000120622.91018.EA 10.1002/eji.201040340 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 Public Library of Science 2016 Chew et al 2016 Chew et al 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, et al. (2016) TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection. PLoS Pathog 12(1): e1005349. doi:10.1371/journal.ppat.1005349 |
Copyright_xml | – notice: COPYRIGHT 2016 Public Library of Science – notice: 2016 Chew et al 2016 Chew et al – notice: 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, et al. (2016) TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection. PLoS Pathog 12(1): e1005349. doi:10.1371/journal.ppat.1005349 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1005349 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Targeting TIGIT Enhances HIV/SIV T Cell Immunity |
EISSN | 1553-7374 |
ExternalDocumentID | 1764380654 oai_doaj_org_article_98d1b0911eb74042a13b8e84449dee0c PMC4704737 A456343863 26741490 10_1371_journal_ppat_1005349 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R24 AI067039 – fundername: NIAID NIH HHS grantid: R01 AI087145 – fundername: NCRR NIH HHS grantid: UL1 RR024131 – fundername: NIAID NIH HHS grantid: P30 AI027763 – fundername: NIGMS NIH HHS grantid: P30 GM103341 – fundername: NIAID NIH HHS grantid: N0I-AI-85341 – fundername: NIMHD NIH HHS grantid: U54 MD007584 – fundername: NIAID NIH HHS grantid: K24 AI069994 – fundername: NIH HHS grantid: P51 OD011092 – fundername: NIAID NIH HHS grantid: N01 AI085341 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 7X8 5PM PUEGO 3V. AAPBV ABPTK M~E PQEST PQUKI |
ID | FETCH-LOGICAL-c633t-eb268974e3fef5d8bd96c994f780e0432c81201dfb0d2e1f55cce0221196e32e3 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Jul 02 11:03:26 EDT 2023 Wed Aug 27 01:08:33 EDT 2025 Thu Aug 21 18:04:50 EDT 2025 Tue Aug 05 10:05:51 EDT 2025 Tue Jun 17 21:40:31 EDT 2025 Tue Jun 10 20:22:06 EDT 2025 Fri Jun 27 04:32:27 EDT 2025 Fri Jun 27 04:38:05 EDT 2025 Mon Jul 21 05:50:50 EDT 2025 Thu Apr 24 22:55:06 EDT 2025 Tue Jul 01 02:20:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-eb268974e3fef5d8bd96c994f780e0432c81201dfb0d2e1f55cce0221196e32e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: GMC LCN JBS. Performed the experiments: GMC GMW TF BJB JSR HLW KBH BIM LCN JBS. Analyzed the data: GMC CMS KLC MO NI TL FMH MAM SGH MM AJK SGD JBS. Contributed reagents/materials/analysis tools: GMW BJB MM AJK KLC TF MAM. Wrote the paper: GMC CMS KLC MO NI TL FMH MAM SGH MM AJK SGD JBS LCN. I hereby declare that MM (Scientist, Immuno-Oncology) and AJK (Vice president, Immuno-Oncology) are employed by Bristol-Myers Squibb, and have no significant competing financial, professional or personal interests that might have influenced the performance or presentation of the work described in this manuscript. This does not alter our adherence to all PLOS Pathogens policies on sharing data and materials. JBS and LCN share equal co-senior authorship. |
OpenAccessLink | https://doaj.org/article/98d1b0911eb74042a13b8e84449dee0c |
PMID | 26741490 |
PQID | 1760857504 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1764380654 doaj_primary_oai_doaj_org_article_98d1b0911eb74042a13b8e84449dee0c pubmedcentral_primary_oai_pubmedcentral_nih_gov_4704737 proquest_miscellaneous_1760857504 gale_infotracmisc_A456343863 gale_infotracacademiconefile_A456343863 gale_incontextgauss_ISR_A456343863 gale_incontextgauss_ISN_A456343863 pubmed_primary_26741490 crossref_citationtrail_10_1371_journal_ppat_1005349 crossref_primary_10_1371_journal_ppat_1005349 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2016 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | X Yu (ref23) 2009; 10 KL Clayton (ref58) 2015; 89 EJ Wherry (ref1) 2011; 12 O Hamid (ref16) 2013; 369 AO Pasternak (ref51) 2013; 10 N Joller (ref30) 2014; 40 DM Fishwild (ref62) 1996; 14 D Gardiner (ref13) 2013; 8 V Velu (ref7) 2009; 458 L Shan (ref55) 2012; 36 AC Foks (ref29) 2013; 8 B Vali (ref9) 2010; 40 K Deng (ref56) 2015; 517 AM Kumar (ref60) 2007; 13 SG Deeks (ref57) 2012; 487 JF Okulicz (ref44) 2011; 6 E Lozano (ref31) 2012; 188 J Duraiswamy (ref21) 2013; 73 V Appay (ref32) 2002; 8 DE Kaufmann (ref10) 2009; 182 AL Kinter (ref41) 2008; 181 DG Wei (ref53) 2014; 10 X Tian (ref12) 2015; 194 S Krishnan (ref43) 2014; 209 SD Blackburn (ref22) 2009; 10 JM Chauvin (ref19) 2015 RB Jones (ref8) 2008; 205 L Martinet (ref28) 2015; 15 CL Day (ref2) 2006; 443 KS Boles (ref27) 2009; 39 O Lambotte (ref42) 2005; 41 S Vigano (ref11) 2014; 10 L Trautmann (ref6) 2006; 12 C Petrovas (ref4) 2007; 110 S Mujib (ref35) 2012; 188 Y Sun (ref36) 2005; 174 F Pereyra (ref47) 2009; 200 MP Hosking (ref39) 2013; 191 N Lonberg (ref61) 1994; 368 H Hatano (ref48) 2009; 83 N Joller (ref25) 2011; 186 JA Gross (ref63) 2001; 15 N Stanietsky (ref26) 2009; 106 SA Younes (ref37) 2003; 198 TA Crowell (ref49) 2014 R Rekik (ref40) 2014 TA Rasmussen (ref54) 2013; 9 NM Archin (ref52) 2012; 487 MR Watters (ref59) 2004; 62 L Papagno (ref33) 2004; 2 PW Hunt (ref45) 2008; 197 DS Chen (ref17) 2013; 39 T Powles (ref15) 2014; 515 F Porichis (ref5) 2012; 9 RJ Johnston (ref18) 2014; 26 T Yamamoto (ref20) 2011; 117 T Fujita (ref38) 2014; 193 R Dyavar Shetty (ref3) 2012; 122 M Yadav (ref14) 2014; 515 JD Barbour (ref34) 2009; 4 KF Stengel (ref24) 2012; 109 SL Topalian (ref50) 2012; 366 M Lopez (ref46) 2011; 27 |
References_xml | – volume: 200 start-page: 984 year: 2009 ident: ref47 article-title: Persistent low-level viremia in HIV-1 elite controllers and relationship to immunologic parameters publication-title: J Infect Dis doi: 10.1086/605446 – volume: 14 start-page: 845 year: 1996 ident: ref62 article-title: High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice publication-title: Nat Biotechnol doi: 10.1038/nbt0796-845 – volume: 27 start-page: 157 year: 2011 ident: ref46 article-title: Elite controllers display higher activation on central memory CD8 T cells than HIV patients successfully on HAART publication-title: AIDS Res Hum Retroviruses doi: 10.1089/aid.2010.0107 – volume: 515 start-page: 572 year: 2014 ident: ref14 article-title: Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing publication-title: Nature doi: 10.1038/nature14001 – volume: 10 start-page: 48 year: 2009 ident: ref23 article-title: The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells publication-title: Nat Immunol doi: 10.1038/ni.1674 – volume: 205 start-page: 2763 year: 2008 ident: ref8 article-title: Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection publication-title: J Exp Med doi: 10.1084/jem.20081398 – volume: 41 start-page: 1053 year: 2005 ident: ref42 article-title: HIV controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication publication-title: Clin Infect Dis doi: 10.1086/433188 – volume: 369 start-page: 134 year: 2013 ident: ref16 article-title: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1305133 – volume: 13 start-page: 210 year: 2007 ident: ref60 article-title: Human immunodeficiency virus type 1 RNA Levels in different regions of human brain: quantification using real-time reverse transcriptase-polymerase chain reaction publication-title: J Neurovirol doi: 10.1080/13550280701327038 – year: 2015 ident: ref19 article-title: TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients publication-title: J Clin Invest – volume: 9 start-page: 81 year: 2012 ident: ref5 article-title: Role of PD-1 in HIV pathogenesis and as target for therapy publication-title: Curr HIV/AIDS Rep doi: 10.1007/s11904-011-0106-4 – volume: 174 start-page: 4753 year: 2005 ident: ref36 article-title: Dysfunction of simian immunodeficiency virus/simian human immunodeficiency virus-induced IL-2 expression by central memory CD4+ T lymphocytes publication-title: J Immunol doi: 10.4049/jimmunol.174.8.4753 – volume: 39 start-page: 1 year: 2013 ident: ref17 article-title: Oncology meets immunology: the cancer-immunity cycle publication-title: Immunity doi: 10.1016/j.immuni.2013.07.012 – volume: 8 start-page: 379 year: 2002 ident: ref32 article-title: Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections publication-title: Nat Med doi: 10.1038/nm0402-379 – volume: 517 start-page: 381 year: 2015 ident: ref56 article-title: Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations publication-title: Nature doi: 10.1038/nature14053 – volume: 109 start-page: 5399 year: 2012 ident: ref24 article-title: Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1120606109 – volume: 39 start-page: 695 year: 2009 ident: ref27 article-title: A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC publication-title: Eur J Immunol doi: 10.1002/eji.200839116 – volume: 2 start-page: E20 year: 2004 ident: ref33 article-title: Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020020 – volume: 458 start-page: 206 year: 2009 ident: ref7 article-title: Enhancing SIV-specific immunity in vivo by PD-1 blockade publication-title: Nature doi: 10.1038/nature07662 – volume: 36 start-page: 491 year: 2012 ident: ref55 article-title: Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation publication-title: Immunity doi: 10.1016/j.immuni.2012.01.014 – volume: 209 start-page: 931 year: 2014 ident: ref43 article-title: Evidence for innate immune system activation in HIV type 1-infected elite controllers publication-title: J Infect Dis doi: 10.1093/infdis/jit581 – volume: 366 start-page: 2443 year: 2012 ident: ref50 article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1200690 – volume: 193 start-page: 5576 year: 2014 ident: ref38 article-title: Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques publication-title: J Immunol doi: 10.4049/jimmunol.1400961 – volume: 12 start-page: 1198 year: 2006 ident: ref6 article-title: Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction publication-title: Nat Med doi: 10.1038/nm1482 – volume: 182 start-page: 5891 year: 2009 ident: ref10 article-title: PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention publication-title: J Immunol doi: 10.4049/jimmunol.0803771 – volume: 73 start-page: 3591 year: 2013 ident: ref21 article-title: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-4100 – volume: 10 start-page: e1004380 year: 2014 ident: ref11 article-title: CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004380 – volume: 487 start-page: 439 year: 2012 ident: ref57 article-title: HIV: Shock and kill publication-title: Nature doi: 10.1038/487439a – volume: 368 start-page: 856 year: 1994 ident: ref61 article-title: Antigen-specific human antibodies from mice comprising four distinct genetic modifications publication-title: Nature doi: 10.1038/368856a0 – volume: 188 start-page: 3745 year: 2012 ident: ref35 article-title: Antigen-independent induction of Tim-3 expression on human T cells by the common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 is associated with proliferation and is dependent on the phosphoinositide 3-kinase pathway publication-title: J Immunol doi: 10.4049/jimmunol.1102609 – volume: 4 start-page: e4408 year: 2009 ident: ref34 article-title: High CD8+ T cell activation marks a less differentiated HIV-1 specific CD8+ T cell response that is not altered by suppression of viral replication publication-title: PLoS One doi: 10.1371/journal.pone.0004408 – volume: 191 start-page: 4211 year: 2013 ident: ref39 article-title: CD8+ memory T cells appear exhausted within hours of acute virus infection publication-title: J Immunol doi: 10.4049/jimmunol.1300920 – volume: 26 start-page: 923 year: 2014 ident: ref18 article-title: The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.10.018 – volume: 89 start-page: 3723 year: 2015 ident: ref58 article-title: Soluble T Cell Immunoglobulin Mucin Domain 3 Is Shed from CD8+ T Cells by the Sheddase ADAM10, Is Increased in Plasma during Untreated HIV Infection, and Correlates with HIV Disease Progression publication-title: J Virol doi: 10.1128/JVI.00006-15 – volume: 10 start-page: e1004071 year: 2014 ident: ref53 article-title: Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004071 – volume: 117 start-page: 4805 year: 2011 ident: ref20 article-title: Surface expression patterns of negative regulatory molecules identify determinants of virus-specific CD8+ T-cell exhaustion in HIV infection publication-title: Blood doi: 10.1182/blood-2010-11-317297 – volume: 443 start-page: 350 year: 2006 ident: ref2 article-title: PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression publication-title: Nature doi: 10.1038/nature05115 – volume: 15 start-page: 243 year: 2015 ident: ref28 article-title: Balancing natural killer cell activation through paired receptors publication-title: Nat Rev Immunol doi: 10.1038/nri3799 – volume: 194 start-page: 3873 year: 2015 ident: ref12 article-title: The Upregulation of LAG-3 on T Cells Defines a Subpopulation with Functional Exhaustion and Correlates with Disease Progression in HIV-Infected Subjects publication-title: J Immunol doi: 10.4049/jimmunol.1402176 – volume: 110 start-page: 928 year: 2007 ident: ref4 article-title: SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection publication-title: Blood doi: 10.1182/blood-2007-01-069112 – volume: 181 start-page: 6738 year: 2008 ident: ref41 article-title: The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands publication-title: J Immunol doi: 10.4049/jimmunol.181.10.6738 – volume: 9 start-page: 993 year: 2013 ident: ref54 article-title: Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation publication-title: Hum Vaccin Immunother doi: 10.4161/hv.23800 – volume: 197 start-page: 126 year: 2008 ident: ref45 article-title: Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy publication-title: J Infect Dis doi: 10.1086/524143 – volume: 6 start-page: 163 year: 2011 ident: ref44 article-title: Epidemiology and clinical characteristics of elite controllers publication-title: Curr Opin HIV AIDS doi: 10.1097/COH.0b013e328344f35e – year: 2014 ident: ref49 article-title: Hospitalization Rates and Reasons among HIV Elite Controllers and Persons With Medically Controlled HIV Infection publication-title: J Infect Dis – volume: 8 start-page: e83134 year: 2013 ident: ref29 article-title: Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development publication-title: PLoS One doi: 10.1371/journal.pone.0083134 – volume: 198 start-page: 1909 year: 2003 ident: ref37 article-title: HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity publication-title: J Exp Med doi: 10.1084/jem.20031598 – volume: 83 start-page: 329 year: 2009 ident: ref48 article-title: Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy publication-title: J Virol doi: 10.1128/JVI.01763-08 – volume: 12 start-page: 492 year: 2011 ident: ref1 article-title: T cell exhaustion publication-title: Nat Immunol doi: 10.1038/ni.2035 – volume: 487 start-page: 482 year: 2012 ident: ref52 article-title: Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy publication-title: Nature doi: 10.1038/nature11286 – volume: 122 start-page: 1712 year: 2012 ident: ref3 article-title: PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques publication-title: J Clin Invest doi: 10.1172/JCI60612 – volume: 8 start-page: e63818 year: 2013 ident: ref13 article-title: A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection publication-title: PLoS One doi: 10.1371/journal.pone.0063818 – volume: 10 start-page: 29 year: 2009 ident: ref22 article-title: Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection publication-title: Nat Immunol doi: 10.1038/ni.1679 – volume: 106 start-page: 17858 year: 2009 ident: ref26 article-title: The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0903474106 – volume: 10 start-page: 41 year: 2013 ident: ref51 article-title: Cell-associated HIV RNA: a dynamic biomarker of viral persistence publication-title: Retrovirology doi: 10.1186/1742-4690-10-41 – year: 2014 ident: ref40 article-title: PD-1 induction through TCR activation is partially regulated by endogenous TGF-beta publication-title: Cell Mol Immunol – volume: 15 start-page: 289 year: 2001 ident: ref63 article-title: TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS publication-title: Immunity doi: 10.1016/S1074-7613(01)00183-2 – volume: 40 start-page: 569 year: 2014 ident: ref30 article-title: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses publication-title: Immunity doi: 10.1016/j.immuni.2014.02.012 – volume: 188 start-page: 3869 year: 2012 ident: ref31 article-title: The TIGIT/CD226 axis regulates human T cell function publication-title: J Immunol doi: 10.4049/jimmunol.1103627 – volume: 515 start-page: 558 year: 2014 ident: ref15 article-title: MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer publication-title: Nature doi: 10.1038/nature13904 – volume: 186 start-page: 1338 year: 2011 ident: ref25 article-title: Cutting edge: TIGIT has T cell-intrinsic inhibitory functions publication-title: J Immunol doi: 10.4049/jimmunol.1003081 – volume: 62 start-page: 1378 year: 2004 ident: ref59 article-title: Symptomatic distal sensory polyneuropathy in HIV after age 50 publication-title: Neurology doi: 10.1212/01.WNL.0000120622.91018.EA – volume: 40 start-page: 2493 year: 2010 ident: ref9 article-title: HCV-specific T cells in HCV/HIV co-infection show elevated frequencies of dual Tim-3/PD-1 expression that correlate with liver disease progression publication-title: Eur J Immunol doi: 10.1002/eji.201040340 |
SSID | ssj0041316 |
Score | 2.590857 |
Snippet | HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors... HIV infection induces phenotypic and functional changes to [CD8.sup.+] T cells defined by the coordinated upregulation of a series of negative checkpoint... HIV infection induces phenotypic and functional changes to CD8 + T cells defined by the coordinated upregulation of a series of negative checkpoint receptors... HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1005349 |
SubjectTerms | Acquired immune deficiency syndrome AIDS Animals B7-H1 Antigen - immunology CD4-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - immunology Cell Separation Development and progression Disease Disease Progression DNA, Viral - analysis Flow Cytometry Funding Health aspects HIV HIV infection HIV Infections - immunology Host-virus relationships Human immunodeficiency virus Humans Immune response Infections Lymphocyte Activation - immunology Lymphocytes Macaca mulatta Mortality Observations Receptors, Immunologic - immunology RNA, Viral - analysis Simian Acquired Immunodeficiency Syndrome - immunology Simian immunodeficiency virus Statistical analysis T cells Viral infections |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9SEHwRv696ShTBl1tvs8kmu49nvbMreMjZk3sLm4_1Dsq22B7ov-Bf7UySlq4o9yIUFprJQ2Z-mczsTn5DyGs4dYxgVmZt4U0mjIEtVbE26wyrbVvWRtV4wfnTqZyei48X5cVOqy-sCYv0wFFxh3XlmIFDjXmjBCCsZdxUvhJC1M773KL3heFNMhV9MHjm0PQUm-JkikuZLs1xxQ6Tjd4uly3SRwMIkUdz51AK3P1bDz1azherv4Wff1ZR7hxLJ_fI3RRP0qO4jvvklu8fkNuxw-TPh-TXrPnQzCjeyFnR4x-XyPLjHZ3RiZ_PVwd0gs055hhvUnwjS9_H7zX0M5ZtRcqOA9r2jqJPAaEWfnQWqscphLu0weslnp6F_jTByPSqp9Pma5wEzyZVe_WPyPnJ8WwyzVL7hcxKztcZ5NyygnTD8853pauMq6Wta9GpKvfI5GchOMiZ60zuCs-6srTWQ0jAYFN7Xnj-mIz6Re_3CIUcEtuNO-TPEwWmlA5ZEa00rupMW40J3-hf28RNji0y5jp8cFOQo0R1arSaTlYbk2w7axm5OW6Qf4em3cois3b4A_CmE970TXgbk1cIDI3cGT0W53wDy6108-VUH0EwygWvJP-n0NlA6E0S6hawWNumCxGgMuTkGkjuDyTBA9jB8B6CdLPmlWZKYiMBWYoxebkBrsZZWFHX-8V1kAndWXOQeRKBvFVMISHOFHU-JmoA8YHmhiP91WXgJhcqF4qrp_9D1c_IHcBXeuG1T0br79f-OYSAa_Mi7PbfEUNW8A priority: 102 providerName: Directory of Open Access Journals |
Title | TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26741490 https://www.proquest.com/docview/1760857504 https://pubmed.ncbi.nlm.nih.gov/PMC4704737 https://doaj.org/article/98d1b0911eb74042a13b8e84449dee0c http://dx.doi.org/10.1371/journal.ppat.1005349 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZtymAvY7-brQvaGOylLlYkS_bDGG1plwwaRpuMvBlLltswz8niFNp_YX_17mQlzKNlg4AhPhl0upPupNP3EfIeVh0tmJFB1rc6EFqDS8UsCwrNEpNFiVYJXnA-G8nBRHyZRtMtsuZs9Qqs70ztkE9qsiwPbn7efgKH_-hYGxRbNzpYLDIEhAazEsk22YG1SaGrnonNuQLM2I4MFclyAsWl9Jfp7vtKa7FymP6bmbuzKOf1XWHp39WVfyxXp4_JIx9n0sPGMJ6QLVs9JQ8a5snbZ-TXePh5OKY_suX3mtqbK0T_sTkd02NblvU-NUjaUWIcSnGnlvpzHOrKuRooj32aVTnFTV0QyuBHm6pyCmEwneG1E0uXjrfGDT6dVXQw_OYaXcBz6KvAqudkcnoyPh4EnpYhMJLzVQC5uIwhDbG8sEWUxzpPpEkSUag4tIjwZyBoCFle6DDvW1ZEkTEWQgUGzm553_IXpFPNK7tLKOSWSEOeI66e6GOqmSNaopE6jwudxV3C1_pPjccsR-qMMnUHcQpyl0adKY5a6ketS4JNq0WD2fEP-SMc2o0sIm67P-bLy9Q7cJrEOdMQXDGrlYCZLmNcxzYWQiS5taHpkndoGClialRYtHMJI1enw4tReghBKhc8lvxeofOW0AcvVMyhsybzFyVAZYjV1ZLca0nCzGBar3fRSNd9rlOmJBIMyEh0ydu14abYCivtKju_djKOtTUEmZeNIW8U05cQf4ok7BLVMvGW5tpvqtmVwywXKhSKq1f_3bfX5CEYkd_t2iOd1fLavoH4b6V7ZFtNVY_sHJ2Mvp733C5Kz7n5b0udXU4 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TIGIT+marks+exhausted+T+Cells%2C+correlates+with+disease+progression%2C+and+serves+as+a+target+for+immune+restoration+in+HIV+and+SIV+Infection&rft.jtitle=PLoS+pathogens&rft.au=Fujita%2C+Tsuyoshi&rft.au=Webb%2C+Gabriela+M&rft.au=Burwitz%2C+Benjamin+J&rft.au=Wu%2C+L.+Helen&rft.date=2016-01-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft_id=info:doi/10.1371%2Fjournal.ppat.1005349&rft.externalDocID=A456343863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |