TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection

HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 12; no. 1; p. e1005349
Main Authors Chew, Glen M., Fujita, Tsuyoshi, Webb, Gabriela M., Burwitz, Benjamin J., Wu, Helen L., Reed, Jason S., Hammond, Katherine B., Clayton, Kiera L., Ishii, Naoto, Abdel-Mohsen, Mohamed, Liegler, Teri, Mitchell, Brooks I., Hecht, Frederick M., Ostrowski, Mario, Shikuma, Cecilia M., Hansen, Scott G., Maurer, Mark, Korman, Alan J., Deeks, Steven G., Sacha, Jonah B., Ndhlovu, Lishomwa C.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.01.2016
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.
AbstractList   HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.
HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.
HIV infection induces phenotypic and functional changes to CD8 + T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8 + T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT + and TIGIT + PD-1 + CD8 + T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8 + T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8 + T cell effector responses. The frequency of TIGIT + CD4 + T cells correlated with the CD4 + T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion. HIV-1 infection contributes substantially to global morbidity and mortality, with no immediate promise of an effective vaccine. One major obstacle to vaccine development and therapy is to understand why HIV-1 replication persists in a person despite the presence of viral specific immune responses. The emerging consensus has been that these immune cells are functionally ‘exhausted’ or anergic, and thus, although they can recognize HIV-1 specific target cells, they are unable to effectively keep up with rapid and dynamic viral replication in an individual. We have identified a novel combination pathway that can be targeted, TIGIT and PD-L1which may be responsible, at least in part, for making these immune cells dysfunctional and exhausted and thus unable to control the virus. We show that by blocking the TIGIT and PD-L1 pathway, we can reverse the defects of these viral specific immune cells. Our findings will give new directions to vaccines and therapies that will potentially reverse these dysfunctional cells and allow them to control HIV-1 replication, but also serve in “Shock and Kill” HIV curative strategies.
HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.
HIV infection induces phenotypic and functional changes to [CD8.sup.+] T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector [CD8.sup.+] T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of [TIGIT.sup.+] and [TIGIT.sup.+] [PD-1.sup.+] [CD8.sup.+] T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific [CD8.sup.+] T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific [CD8.sup.+] T cell effector responses. The frequency of [TIGIT.sup.+] [CD4.sup.+] T cells correlated with the [CD4.sup.+] T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.
Audience Academic
Author Mitchell, Brooks I.
Sacha, Jonah B.
Webb, Gabriela M.
Hansen, Scott G.
Maurer, Mark
Deeks, Steven G.
Ostrowski, Mario
Ndhlovu, Lishomwa C.
Ishii, Naoto
Hecht, Frederick M.
Chew, Glen M.
Abdel-Mohsen, Mohamed
Shikuma, Cecilia M.
Fujita, Tsuyoshi
Burwitz, Benjamin J.
Reed, Jason S.
Clayton, Kiera L.
Liegler, Teri
Hammond, Katherine B.
Wu, Helen L.
Korman, Alan J.
AuthorAffiliation Emory University, UNITED STATES
1 Hawaii Center for HIV/AIDS, Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
7 HIV/AIDS Division, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
5 Department of Immunology, University of Toronto, Toronto, Ontario, Canada
4 Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
6 Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
8 Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California, United States of America
2 Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
3 Vaccine and Gene Therapy Institute, Oregon
AuthorAffiliation_xml – name: 8 Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California, United States of America
– name: 3 Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
– name: Emory University, UNITED STATES
– name: 5 Department of Immunology, University of Toronto, Toronto, Ontario, Canada
– name: 6 Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
– name: 1 Hawaii Center for HIV/AIDS, Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
– name: 4 Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
– name: 7 HIV/AIDS Division, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
– name: 2 Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
Author_xml – sequence: 1
  givenname: Glen M.
  surname: Chew
  fullname: Chew, Glen M.
– sequence: 2
  givenname: Tsuyoshi
  surname: Fujita
  fullname: Fujita, Tsuyoshi
– sequence: 3
  givenname: Gabriela M.
  surname: Webb
  fullname: Webb, Gabriela M.
– sequence: 4
  givenname: Benjamin J.
  surname: Burwitz
  fullname: Burwitz, Benjamin J.
– sequence: 5
  givenname: Helen L.
  surname: Wu
  fullname: Wu, Helen L.
– sequence: 6
  givenname: Jason S.
  surname: Reed
  fullname: Reed, Jason S.
– sequence: 7
  givenname: Katherine B.
  surname: Hammond
  fullname: Hammond, Katherine B.
– sequence: 8
  givenname: Kiera L.
  surname: Clayton
  fullname: Clayton, Kiera L.
– sequence: 9
  givenname: Naoto
  surname: Ishii
  fullname: Ishii, Naoto
– sequence: 10
  givenname: Mohamed
  surname: Abdel-Mohsen
  fullname: Abdel-Mohsen, Mohamed
– sequence: 11
  givenname: Teri
  surname: Liegler
  fullname: Liegler, Teri
– sequence: 12
  givenname: Brooks I.
  surname: Mitchell
  fullname: Mitchell, Brooks I.
– sequence: 13
  givenname: Frederick M.
  surname: Hecht
  fullname: Hecht, Frederick M.
– sequence: 14
  givenname: Mario
  surname: Ostrowski
  fullname: Ostrowski, Mario
– sequence: 15
  givenname: Cecilia M.
  surname: Shikuma
  fullname: Shikuma, Cecilia M.
– sequence: 16
  givenname: Scott G.
  surname: Hansen
  fullname: Hansen, Scott G.
– sequence: 17
  givenname: Mark
  surname: Maurer
  fullname: Maurer, Mark
– sequence: 18
  givenname: Alan J.
  surname: Korman
  fullname: Korman, Alan J.
– sequence: 19
  givenname: Steven G.
  surname: Deeks
  fullname: Deeks, Steven G.
– sequence: 20
  givenname: Jonah B.
  surname: Sacha
  fullname: Sacha, Jonah B.
– sequence: 21
  givenname: Lishomwa C.
  surname: Ndhlovu
  fullname: Ndhlovu, Lishomwa C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26741490$$D View this record in MEDLINE/PubMed
BookMark eNqVk9lu1DAUhiNURNuBN0BgiRuQOoMdOxsXSNVQ2khlUTtwaznOScbTxB5sp5RX4KnxbKiDEBJKJFv29_85OctxdKCNhih6SvCE0Iy8XpjBatFNlkvhJwTjhLLiQXREkoSOM5qxg3v7w-jYuQXGjFCSPooO4zRjhBX4KPo5K8_LGfog7I1DZ3dzMTgPNZqhKXSdO0FTYy10woND35Wfo3fKgXCAPlvTWnBOGX2ChK7RNdjbAInwopmwLXjUGIvKvh80oCtw3ljhA46URhfl140orKVuQK4uHkcPG9E5eLJdR9GX92ez6cX48tN5OT29HMuUUj-GKk7zImNAG2iSOq_qIpVFwZosx4AZjWVOYkzqpsJ1DKRJEikBxzEhRQo0BjqKnm98l51xfJtGx0mWMprjNGGBKDdEbcSCL63qhf3BjVB8fWBsy4X1SnbAi7wmFS4IgSpjmMWC0CqHnDFW1ABYBq-3268NVQ-1BO2t6PZM92-0mvPW3HKWYRZqFwxebg2s-TaEPPJeORmqIzSYYR03zpMswau4X2zQVoTQlG5McJQrnJ-yJKXh_0IKR9HkL1R4auiVDE3WqHC-J3i1JwiMhzvfhl5xvLy--g_24z777H5qfudk150BeLMBpDXOWWi4VH7dRCFi1XGC-WoUdjXkq1Hg21EIYvaHeOf_T9kv2fUNZA
CitedBy_id crossref_primary_10_3389_fimmu_2023_1070779
crossref_primary_10_1136_jitc_2022_004564
crossref_primary_10_3390_biomedicines9091277
crossref_primary_10_1371_journal_ppat_1007970
crossref_primary_10_3389_fimmu_2019_02251
crossref_primary_10_1097_QAI_0000000000002121
crossref_primary_10_3390_vaccines8010027
crossref_primary_10_1097_CM9_0000000000002926
crossref_primary_10_3389_fimmu_2022_833531
crossref_primary_10_3390_vaccines12060578
crossref_primary_10_1093_infdis_jiz485
crossref_primary_10_1038_s41590_023_01741_5
crossref_primary_10_14336_AD_2023_0705
crossref_primary_10_4049_jimmunol_2000131
crossref_primary_10_1097_QAD_0000000000002465
crossref_primary_10_1097_QAI_0000000000002001
crossref_primary_10_1016_j_smim_2020_101412
crossref_primary_10_1080_22221751_2020_1826361
crossref_primary_10_1016_j_eng_2018_11_015
crossref_primary_10_1089_aid_2019_0135
crossref_primary_10_1128_jvi_00273_24
crossref_primary_10_1038_s41586_019_1841_8
crossref_primary_10_3389_fimmu_2018_01855
crossref_primary_10_3390_vaccines11020211
crossref_primary_10_1016_j_kint_2019_01_040
crossref_primary_10_3389_fcimb_2021_668637
crossref_primary_10_4049_jimmunol_1901481
crossref_primary_10_1002_eji_201646875
crossref_primary_10_1038_s41467_018_08096_8
crossref_primary_10_1038_s41598_022_23228_3
crossref_primary_10_1111_imm_12715
crossref_primary_10_1158_1535_7163_MCT_20_0464
crossref_primary_10_1371_journal_pone_0231761
crossref_primary_10_3390_cells10102563
crossref_primary_10_1111_imr_13388
crossref_primary_10_3389_fimmu_2021_638010
crossref_primary_10_1097_COH_0000000000000328
crossref_primary_10_3389_fimmu_2017_00572
crossref_primary_10_1097_COH_0000000000000444
crossref_primary_10_1038_s41467_020_15025_1
crossref_primary_10_1111_odi_13703
crossref_primary_10_3389_fimmu_2020_00868
crossref_primary_10_1038_nri_2017_112
crossref_primary_10_1002_cti2_1348
crossref_primary_10_1080_25787489_2023_2261753
crossref_primary_10_1038_s41598_019_39875_y
crossref_primary_10_3389_fimmu_2019_03005
crossref_primary_10_3389_fonc_2018_00086
crossref_primary_10_1016_j_biopha_2023_114913
crossref_primary_10_1016_j_smim_2021_101478
crossref_primary_10_3389_fimmu_2023_1270881
crossref_primary_10_1080_15284336_2018_1514821
crossref_primary_10_1097_QAD_0000000000002488
crossref_primary_10_1111_jvh_13277
crossref_primary_10_1080_08923973_2021_1891247
crossref_primary_10_1097_QAD_0000000000003331
crossref_primary_10_1016_j_molimm_2018_03_027
crossref_primary_10_1155_2022_6952286
crossref_primary_10_1016_j_isci_2023_108165
crossref_primary_10_1016_j_jaut_2020_102504
crossref_primary_10_7554_eLife_83737
crossref_primary_10_3389_fcimb_2021_658848
crossref_primary_10_1126_scitranslmed_adk6152
crossref_primary_10_1371_journal_ppat_1010673
crossref_primary_10_1371_journal_pone_0211112
crossref_primary_10_3389_fonc_2022_872438
crossref_primary_10_1097_CM9_0000000000002458
crossref_primary_10_1002_JLB_3HI1217_500R
crossref_primary_10_3389_fcimb_2020_00175
crossref_primary_10_1089_aid_2018_0184
crossref_primary_10_1371_journal_ppat_1005761
crossref_primary_10_1016_j_immuni_2016_04_022
crossref_primary_10_1080_17512433_2019_1561272
crossref_primary_10_1126_science_aaf6517
crossref_primary_10_1016_j_cellimm_2019_103958
crossref_primary_10_1016_j_ebiom_2022_103840
crossref_primary_10_1371_journal_ppat_1009674
crossref_primary_10_3389_fimmu_2021_647688
crossref_primary_10_3233_HAB_160307
crossref_primary_10_1038_srep40354
crossref_primary_10_1007_s11904_019_00438_5
crossref_primary_10_3390_biomedicines10112809
crossref_primary_10_1007_s13365_024_01223_w
crossref_primary_10_1097_QAD_0000000000003111
crossref_primary_10_3390_v16020219
crossref_primary_10_1016_j_coi_2017_07_016
crossref_primary_10_1007_s11030_022_10452_2
crossref_primary_10_1016_j_ebiom_2022_104254
crossref_primary_10_1038_s41598_021_88965_3
crossref_primary_10_1111_acel_13372
crossref_primary_10_3390_v14030581
crossref_primary_10_1016_j_coviro_2020_02_005
crossref_primary_10_15789_1563_0625_FEO_2734
crossref_primary_10_1093_infdis_jiaa269
crossref_primary_10_1016_j_antiviral_2023_105788
crossref_primary_10_1093_immadv_ltaa004
crossref_primary_10_1186_s13027_023_00512_z
crossref_primary_10_3389_fimmu_2018_02341
crossref_primary_10_1111_acel_12716
crossref_primary_10_4155_fdd_2019_0031
crossref_primary_10_1111_febs_15756
crossref_primary_10_1002_med_21638
crossref_primary_10_1002_cyto_b_21502
crossref_primary_10_1128_JVI_01999_19
crossref_primary_10_3389_fimmu_2022_833310
crossref_primary_10_1093_annonc_mdx686
crossref_primary_10_1089_aid_2020_0172
crossref_primary_10_2217_imt_2020_0273
crossref_primary_10_1128_JVI_00278_17
crossref_primary_10_1016_j_imbio_2020_151915
crossref_primary_10_1097_QAD_0000000000001997
crossref_primary_10_1038_s41577_021_00649_1
crossref_primary_10_1016_j_intimp_2024_112419
crossref_primary_10_6061_clinics_2021_e2902
crossref_primary_10_1038_s42003_024_06225_2
crossref_primary_10_3389_fimmu_2020_01748
crossref_primary_10_3389_fimmu_2018_00746
crossref_primary_10_1002_cyto_a_23357
crossref_primary_10_1016_j_jid_2016_08_016
crossref_primary_10_3389_fmicb_2021_700892
crossref_primary_10_1158_0008_5472_CAN_22_2155
crossref_primary_10_1186_s12974_022_02398_x
crossref_primary_10_3389_fcimb_2023_1074847
crossref_primary_10_3390_v12091051
crossref_primary_10_1097_COH_0000000000000863
crossref_primary_10_1158_2159_8290_CD_21_1586
crossref_primary_10_3389_fimmu_2018_00019
crossref_primary_10_1016_j_biopha_2023_115750
crossref_primary_10_3389_fimmu_2019_00111
crossref_primary_10_1111_imcb_12794
crossref_primary_10_3389_fimmu_2022_908697
crossref_primary_10_4049_jimmunol_2200436
crossref_primary_10_1016_j_actatropica_2023_106871
crossref_primary_10_1128_JVI_02165_20
crossref_primary_10_20411_pai_v8i2_638
crossref_primary_10_3389_fmicb_2018_03158
crossref_primary_10_3389_fonc_2023_1060112
crossref_primary_10_1016_j_xcrm_2022_100766
crossref_primary_10_1136_jclinpath_2021_207789
crossref_primary_10_3389_fimmu_2018_00928
crossref_primary_10_1038_s41467_017_01631_z
crossref_primary_10_1080_13543784_2020_1724281
crossref_primary_10_1097_COH_0000000000000283
crossref_primary_10_1038_s41598_019_47024_8
crossref_primary_10_3389_fphar_2024_1341612
crossref_primary_10_3390_ijms22137016
crossref_primary_10_1002_rmv_2094
crossref_primary_10_1093_infdis_jiab155
crossref_primary_10_3389_fimmu_2018_02783
crossref_primary_10_3390_ijms21249690
crossref_primary_10_1111_cei_13412
crossref_primary_10_1089_aid_2016_0324
crossref_primary_10_1016_j_chom_2017_12_004
crossref_primary_10_1038_s41591_020_1022_1
crossref_primary_10_1016_j_trsl_2017_07_002
crossref_primary_10_1016_j_chom_2020_03_014
crossref_primary_10_3389_fimmu_2019_02310
crossref_primary_10_1097_QAD_0000000000003857
crossref_primary_10_1128_jvi_01424_22
crossref_primary_10_1128_iai_00558_22
crossref_primary_10_1097_QAI_0000000000003399
crossref_primary_10_1097_COH_0000000000000812
crossref_primary_10_1128_jvi_01670_22
crossref_primary_10_3390_vaccines9030271
crossref_primary_10_1093_jimmun_vkae014
crossref_primary_10_1111_cei_13407
crossref_primary_10_1002_cyto_a_22983
crossref_primary_10_12677_PI_2021_103015
crossref_primary_10_3389_fimmu_2021_608890
crossref_primary_10_1016_S2055_6640_20_30463_5
crossref_primary_10_3390_cells8040317
crossref_primary_10_1097_ID9_0000000000000025
crossref_primary_10_1016_j_critrevonc_2019_102836
crossref_primary_10_1172_jci_insight_141245
crossref_primary_10_1172_jci_insight_136648
crossref_primary_10_3389_fimmu_2022_949928
crossref_primary_10_1371_journal_pbio_3002943
crossref_primary_10_2147_IJGM_S407725
crossref_primary_10_1002_mog2_18
crossref_primary_10_1093_infdis_jiz563
crossref_primary_10_1186_s40364_024_00580_2
crossref_primary_10_1146_annurev_cancerbio_060920_084910
crossref_primary_10_1016_S2352_3018_18_30039_0
crossref_primary_10_1002_eji_202451046
crossref_primary_10_1111_imr_12823
crossref_primary_10_17650_1726_9776_2019_15_4_30_38
crossref_primary_10_3390_v15010155
crossref_primary_10_3389_fimmu_2018_02755
crossref_primary_10_1128_JVI_00375_19
crossref_primary_10_1016_j_fitote_2025_106401
crossref_primary_10_1007_s40257_019_00452_8
crossref_primary_10_1371_journal_pone_0311731
crossref_primary_10_3389_fimmu_2017_01215
crossref_primary_10_1016_j_heliyon_2024_e35856
crossref_primary_10_1038_s41467_019_08798_7
crossref_primary_10_3389_fimmu_2024_1505864
crossref_primary_10_1080_14787210_2023_2273919
crossref_primary_10_1371_journal_ppat_1009825
crossref_primary_10_1007_s11481_021_10018_3
crossref_primary_10_2174_1874613601711010091
crossref_primary_10_1007_s00428_019_02538_4
crossref_primary_10_1016_j_isci_2021_103588
crossref_primary_10_1016_j_chom_2017_05_012
crossref_primary_10_1097_QAD_0000000000002557
crossref_primary_10_3389_fimmu_2022_914406
crossref_primary_10_1172_JCI136227
crossref_primary_10_1186_s13045_018_0629_x
crossref_primary_10_2174_0929867330666230324152532
crossref_primary_10_3390_cells10092227
crossref_primary_10_1016_j_virs_2023_01_003
crossref_primary_10_3390_v16040514
crossref_primary_10_1137_22M1485255
crossref_primary_10_3390_pathogens13121137
crossref_primary_10_1136_jitc_2019_000323
crossref_primary_10_1016_j_ebiom_2023_104954
crossref_primary_10_1016_j_jve_2023_100329
crossref_primary_10_1016_j_coviro_2019_03_004
crossref_primary_10_1016_S0140_6736_18_31311_4
crossref_primary_10_1128_JVI_01263_17
crossref_primary_10_1128_mbio_02496_22
crossref_primary_10_1016_j_neo_2024_101086
crossref_primary_10_2147_HIV_S374369
crossref_primary_10_1134_S1607672922050027
crossref_primary_10_1016_j_clim_2017_08_021
crossref_primary_10_1016_j_intimp_2021_108205
crossref_primary_10_4049_jimmunol_2100367
crossref_primary_10_1038_s41590_024_01875_0
crossref_primary_10_3389_fimmu_2017_01311
crossref_primary_10_4049_jimmunol_1701474
crossref_primary_10_1080_08916934_2019_1630064
crossref_primary_10_3390_v14112523
crossref_primary_10_1016_j_xcrm_2024_101591
crossref_primary_10_1128_MMBR_00155_20
crossref_primary_10_3389_fimmu_2020_01223
crossref_primary_10_1016_j_intimp_2024_113341
crossref_primary_10_1186_s12981_020_00315_x
crossref_primary_10_1007_s00203_023_03623_8
crossref_primary_10_3389_fimmu_2020_01350
crossref_primary_10_4102_sajhivmed_v21i1_1089
crossref_primary_10_1093_infdis_jiab291
crossref_primary_10_1089_aid_2019_0078
crossref_primary_10_1158_1078_0432_CCR_16_0933
crossref_primary_10_3390_v14010135
Cites_doi 10.1086/605446
10.1038/nbt0796-845
10.1089/aid.2010.0107
10.1038/nature14001
10.1038/ni.1674
10.1084/jem.20081398
10.1086/433188
10.1056/NEJMoa1305133
10.1080/13550280701327038
10.1007/s11904-011-0106-4
10.4049/jimmunol.174.8.4753
10.1016/j.immuni.2013.07.012
10.1038/nm0402-379
10.1038/nature14053
10.1073/pnas.1120606109
10.1002/eji.200839116
10.1371/journal.pbio.0020020
10.1038/nature07662
10.1016/j.immuni.2012.01.014
10.1093/infdis/jit581
10.1056/NEJMoa1200690
10.4049/jimmunol.1400961
10.1038/nm1482
10.4049/jimmunol.0803771
10.1158/0008-5472.CAN-12-4100
10.1371/journal.ppat.1004380
10.1038/487439a
10.1038/368856a0
10.4049/jimmunol.1102609
10.1371/journal.pone.0004408
10.4049/jimmunol.1300920
10.1016/j.ccell.2014.10.018
10.1128/JVI.00006-15
10.1371/journal.ppat.1004071
10.1182/blood-2010-11-317297
10.1038/nature05115
10.1038/nri3799
10.4049/jimmunol.1402176
10.1182/blood-2007-01-069112
10.4049/jimmunol.181.10.6738
10.4161/hv.23800
10.1086/524143
10.1097/COH.0b013e328344f35e
10.1371/journal.pone.0083134
10.1084/jem.20031598
10.1128/JVI.01763-08
10.1038/ni.2035
10.1038/nature11286
10.1172/JCI60612
10.1371/journal.pone.0063818
10.1038/ni.1679
10.1073/pnas.0903474106
10.1186/1742-4690-10-41
10.1016/S1074-7613(01)00183-2
10.1016/j.immuni.2014.02.012
10.4049/jimmunol.1103627
10.1038/nature13904
10.4049/jimmunol.1003081
10.1212/01.WNL.0000120622.91018.EA
10.1002/eji.201040340
ContentType Journal Article
Copyright COPYRIGHT 2016 Public Library of Science
2016 Chew et al 2016 Chew et al
2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, et al. (2016) TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection. PLoS Pathog 12(1): e1005349. doi:10.1371/journal.ppat.1005349
Copyright_xml – notice: COPYRIGHT 2016 Public Library of Science
– notice: 2016 Chew et al 2016 Chew et al
– notice: 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, et al. (2016) TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection. PLoS Pathog 12(1): e1005349. doi:10.1371/journal.ppat.1005349
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1005349
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Targeting TIGIT Enhances HIV/SIV T Cell Immunity
EISSN 1553-7374
ExternalDocumentID 1764380654
oai_doaj_org_article_98d1b0911eb74042a13b8e84449dee0c
PMC4704737
A456343863
26741490
10_1371_journal_ppat_1005349
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R24 AI067039
– fundername: NIAID NIH HHS
  grantid: R01 AI087145
– fundername: NCRR NIH HHS
  grantid: UL1 RR024131
– fundername: NIAID NIH HHS
  grantid: P30 AI027763
– fundername: NIGMS NIH HHS
  grantid: P30 GM103341
– fundername: NIAID NIH HHS
  grantid: N0I-AI-85341
– fundername: NIMHD NIH HHS
  grantid: U54 MD007584
– fundername: NIAID NIH HHS
  grantid: K24 AI069994
– fundername: NIH HHS
  grantid: P51 OD011092
– fundername: NIAID NIH HHS
  grantid: N01 AI085341
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
~8M
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
7X8
5PM
PUEGO
3V.
AAPBV
ABPTK
M~E
PQEST
PQUKI
ID FETCH-LOGICAL-c633t-eb268974e3fef5d8bd96c994f780e0432c81201dfb0d2e1f55cce0221196e32e3
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Sun Jul 02 11:03:26 EDT 2023
Wed Aug 27 01:08:33 EDT 2025
Thu Aug 21 18:04:50 EDT 2025
Tue Aug 05 10:05:51 EDT 2025
Tue Jun 17 21:40:31 EDT 2025
Tue Jun 10 20:22:06 EDT 2025
Fri Jun 27 04:32:27 EDT 2025
Fri Jun 27 04:38:05 EDT 2025
Mon Jul 21 05:50:50 EDT 2025
Thu Apr 24 22:55:06 EDT 2025
Tue Jul 01 02:20:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-eb268974e3fef5d8bd96c994f780e0432c81201dfb0d2e1f55cce0221196e32e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: GMC LCN JBS. Performed the experiments: GMC GMW TF BJB JSR HLW KBH BIM LCN JBS. Analyzed the data: GMC CMS KLC MO NI TL FMH MAM SGH MM AJK SGD JBS. Contributed reagents/materials/analysis tools: GMW BJB MM AJK KLC TF MAM. Wrote the paper: GMC CMS KLC MO NI TL FMH MAM SGH MM AJK SGD JBS LCN.
I hereby declare that MM (Scientist, Immuno-Oncology) and AJK (Vice president, Immuno-Oncology) are employed by Bristol-Myers Squibb, and have no significant competing financial, professional or personal interests that might have influenced the performance or presentation of the work described in this manuscript. This does not alter our adherence to all PLOS Pathogens policies on sharing data and materials.
JBS and LCN share equal co-senior authorship.
OpenAccessLink https://doaj.org/article/98d1b0911eb74042a13b8e84449dee0c
PMID 26741490
PQID 1760857504
PQPubID 23479
ParticipantIDs plos_journals_1764380654
doaj_primary_oai_doaj_org_article_98d1b0911eb74042a13b8e84449dee0c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4704737
proquest_miscellaneous_1760857504
gale_infotracmisc_A456343863
gale_infotracacademiconefile_A456343863
gale_incontextgauss_ISR_A456343863
gale_incontextgauss_ISN_A456343863
pubmed_primary_26741490
crossref_citationtrail_10_1371_journal_ppat_1005349
crossref_primary_10_1371_journal_ppat_1005349
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2016
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References X Yu (ref23) 2009; 10
KL Clayton (ref58) 2015; 89
EJ Wherry (ref1) 2011; 12
O Hamid (ref16) 2013; 369
AO Pasternak (ref51) 2013; 10
N Joller (ref30) 2014; 40
DM Fishwild (ref62) 1996; 14
D Gardiner (ref13) 2013; 8
V Velu (ref7) 2009; 458
L Shan (ref55) 2012; 36
AC Foks (ref29) 2013; 8
B Vali (ref9) 2010; 40
K Deng (ref56) 2015; 517
AM Kumar (ref60) 2007; 13
SG Deeks (ref57) 2012; 487
JF Okulicz (ref44) 2011; 6
E Lozano (ref31) 2012; 188
J Duraiswamy (ref21) 2013; 73
V Appay (ref32) 2002; 8
DE Kaufmann (ref10) 2009; 182
AL Kinter (ref41) 2008; 181
DG Wei (ref53) 2014; 10
X Tian (ref12) 2015; 194
S Krishnan (ref43) 2014; 209
SD Blackburn (ref22) 2009; 10
JM Chauvin (ref19) 2015
RB Jones (ref8) 2008; 205
L Martinet (ref28) 2015; 15
CL Day (ref2) 2006; 443
KS Boles (ref27) 2009; 39
O Lambotte (ref42) 2005; 41
S Vigano (ref11) 2014; 10
L Trautmann (ref6) 2006; 12
C Petrovas (ref4) 2007; 110
S Mujib (ref35) 2012; 188
Y Sun (ref36) 2005; 174
F Pereyra (ref47) 2009; 200
MP Hosking (ref39) 2013; 191
N Lonberg (ref61) 1994; 368
H Hatano (ref48) 2009; 83
N Joller (ref25) 2011; 186
JA Gross (ref63) 2001; 15
N Stanietsky (ref26) 2009; 106
SA Younes (ref37) 2003; 198
TA Crowell (ref49) 2014
R Rekik (ref40) 2014
TA Rasmussen (ref54) 2013; 9
NM Archin (ref52) 2012; 487
MR Watters (ref59) 2004; 62
L Papagno (ref33) 2004; 2
PW Hunt (ref45) 2008; 197
DS Chen (ref17) 2013; 39
T Powles (ref15) 2014; 515
F Porichis (ref5) 2012; 9
RJ Johnston (ref18) 2014; 26
T Yamamoto (ref20) 2011; 117
T Fujita (ref38) 2014; 193
R Dyavar Shetty (ref3) 2012; 122
M Yadav (ref14) 2014; 515
JD Barbour (ref34) 2009; 4
KF Stengel (ref24) 2012; 109
SL Topalian (ref50) 2012; 366
M Lopez (ref46) 2011; 27
References_xml – volume: 200
  start-page: 984
  year: 2009
  ident: ref47
  article-title: Persistent low-level viremia in HIV-1 elite controllers and relationship to immunologic parameters
  publication-title: J Infect Dis
  doi: 10.1086/605446
– volume: 14
  start-page: 845
  year: 1996
  ident: ref62
  article-title: High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0796-845
– volume: 27
  start-page: 157
  year: 2011
  ident: ref46
  article-title: Elite controllers display higher activation on central memory CD8 T cells than HIV patients successfully on HAART
  publication-title: AIDS Res Hum Retroviruses
  doi: 10.1089/aid.2010.0107
– volume: 515
  start-page: 572
  year: 2014
  ident: ref14
  article-title: Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing
  publication-title: Nature
  doi: 10.1038/nature14001
– volume: 10
  start-page: 48
  year: 2009
  ident: ref23
  article-title: The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells
  publication-title: Nat Immunol
  doi: 10.1038/ni.1674
– volume: 205
  start-page: 2763
  year: 2008
  ident: ref8
  article-title: Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection
  publication-title: J Exp Med
  doi: 10.1084/jem.20081398
– volume: 41
  start-page: 1053
  year: 2005
  ident: ref42
  article-title: HIV controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication
  publication-title: Clin Infect Dis
  doi: 10.1086/433188
– volume: 369
  start-page: 134
  year: 2013
  ident: ref16
  article-title: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1305133
– volume: 13
  start-page: 210
  year: 2007
  ident: ref60
  article-title: Human immunodeficiency virus type 1 RNA Levels in different regions of human brain: quantification using real-time reverse transcriptase-polymerase chain reaction
  publication-title: J Neurovirol
  doi: 10.1080/13550280701327038
– year: 2015
  ident: ref19
  article-title: TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients
  publication-title: J Clin Invest
– volume: 9
  start-page: 81
  year: 2012
  ident: ref5
  article-title: Role of PD-1 in HIV pathogenesis and as target for therapy
  publication-title: Curr HIV/AIDS Rep
  doi: 10.1007/s11904-011-0106-4
– volume: 174
  start-page: 4753
  year: 2005
  ident: ref36
  article-title: Dysfunction of simian immunodeficiency virus/simian human immunodeficiency virus-induced IL-2 expression by central memory CD4+ T lymphocytes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.174.8.4753
– volume: 39
  start-page: 1
  year: 2013
  ident: ref17
  article-title: Oncology meets immunology: the cancer-immunity cycle
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.07.012
– volume: 8
  start-page: 379
  year: 2002
  ident: ref32
  article-title: Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections
  publication-title: Nat Med
  doi: 10.1038/nm0402-379
– volume: 517
  start-page: 381
  year: 2015
  ident: ref56
  article-title: Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations
  publication-title: Nature
  doi: 10.1038/nature14053
– volume: 109
  start-page: 5399
  year: 2012
  ident: ref24
  article-title: Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1120606109
– volume: 39
  start-page: 695
  year: 2009
  ident: ref27
  article-title: A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200839116
– volume: 2
  start-page: E20
  year: 2004
  ident: ref33
  article-title: Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020020
– volume: 458
  start-page: 206
  year: 2009
  ident: ref7
  article-title: Enhancing SIV-specific immunity in vivo by PD-1 blockade
  publication-title: Nature
  doi: 10.1038/nature07662
– volume: 36
  start-page: 491
  year: 2012
  ident: ref55
  article-title: Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.01.014
– volume: 209
  start-page: 931
  year: 2014
  ident: ref43
  article-title: Evidence for innate immune system activation in HIV type 1-infected elite controllers
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jit581
– volume: 366
  start-page: 2443
  year: 2012
  ident: ref50
  article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1200690
– volume: 193
  start-page: 5576
  year: 2014
  ident: ref38
  article-title: Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1400961
– volume: 12
  start-page: 1198
  year: 2006
  ident: ref6
  article-title: Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction
  publication-title: Nat Med
  doi: 10.1038/nm1482
– volume: 182
  start-page: 5891
  year: 2009
  ident: ref10
  article-title: PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0803771
– volume: 73
  start-page: 3591
  year: 2013
  ident: ref21
  article-title: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-4100
– volume: 10
  start-page: e1004380
  year: 2014
  ident: ref11
  article-title: CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004380
– volume: 487
  start-page: 439
  year: 2012
  ident: ref57
  article-title: HIV: Shock and kill
  publication-title: Nature
  doi: 10.1038/487439a
– volume: 368
  start-page: 856
  year: 1994
  ident: ref61
  article-title: Antigen-specific human antibodies from mice comprising four distinct genetic modifications
  publication-title: Nature
  doi: 10.1038/368856a0
– volume: 188
  start-page: 3745
  year: 2012
  ident: ref35
  article-title: Antigen-independent induction of Tim-3 expression on human T cells by the common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 is associated with proliferation and is dependent on the phosphoinositide 3-kinase pathway
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1102609
– volume: 4
  start-page: e4408
  year: 2009
  ident: ref34
  article-title: High CD8+ T cell activation marks a less differentiated HIV-1 specific CD8+ T cell response that is not altered by suppression of viral replication
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004408
– volume: 191
  start-page: 4211
  year: 2013
  ident: ref39
  article-title: CD8+ memory T cells appear exhausted within hours of acute virus infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1300920
– volume: 26
  start-page: 923
  year: 2014
  ident: ref18
  article-title: The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.10.018
– volume: 89
  start-page: 3723
  year: 2015
  ident: ref58
  article-title: Soluble T Cell Immunoglobulin Mucin Domain 3 Is Shed from CD8+ T Cells by the Sheddase ADAM10, Is Increased in Plasma during Untreated HIV Infection, and Correlates with HIV Disease Progression
  publication-title: J Virol
  doi: 10.1128/JVI.00006-15
– volume: 10
  start-page: e1004071
  year: 2014
  ident: ref53
  article-title: Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004071
– volume: 117
  start-page: 4805
  year: 2011
  ident: ref20
  article-title: Surface expression patterns of negative regulatory molecules identify determinants of virus-specific CD8+ T-cell exhaustion in HIV infection
  publication-title: Blood
  doi: 10.1182/blood-2010-11-317297
– volume: 443
  start-page: 350
  year: 2006
  ident: ref2
  article-title: PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression
  publication-title: Nature
  doi: 10.1038/nature05115
– volume: 15
  start-page: 243
  year: 2015
  ident: ref28
  article-title: Balancing natural killer cell activation through paired receptors
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3799
– volume: 194
  start-page: 3873
  year: 2015
  ident: ref12
  article-title: The Upregulation of LAG-3 on T Cells Defines a Subpopulation with Functional Exhaustion and Correlates with Disease Progression in HIV-Infected Subjects
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1402176
– volume: 110
  start-page: 928
  year: 2007
  ident: ref4
  article-title: SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection
  publication-title: Blood
  doi: 10.1182/blood-2007-01-069112
– volume: 181
  start-page: 6738
  year: 2008
  ident: ref41
  article-title: The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.10.6738
– volume: 9
  start-page: 993
  year: 2013
  ident: ref54
  article-title: Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation
  publication-title: Hum Vaccin Immunother
  doi: 10.4161/hv.23800
– volume: 197
  start-page: 126
  year: 2008
  ident: ref45
  article-title: Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy
  publication-title: J Infect Dis
  doi: 10.1086/524143
– volume: 6
  start-page: 163
  year: 2011
  ident: ref44
  article-title: Epidemiology and clinical characteristics of elite controllers
  publication-title: Curr Opin HIV AIDS
  doi: 10.1097/COH.0b013e328344f35e
– year: 2014
  ident: ref49
  article-title: Hospitalization Rates and Reasons among HIV Elite Controllers and Persons With Medically Controlled HIV Infection
  publication-title: J Infect Dis
– volume: 8
  start-page: e83134
  year: 2013
  ident: ref29
  article-title: Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0083134
– volume: 198
  start-page: 1909
  year: 2003
  ident: ref37
  article-title: HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity
  publication-title: J Exp Med
  doi: 10.1084/jem.20031598
– volume: 83
  start-page: 329
  year: 2009
  ident: ref48
  article-title: Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy
  publication-title: J Virol
  doi: 10.1128/JVI.01763-08
– volume: 12
  start-page: 492
  year: 2011
  ident: ref1
  article-title: T cell exhaustion
  publication-title: Nat Immunol
  doi: 10.1038/ni.2035
– volume: 487
  start-page: 482
  year: 2012
  ident: ref52
  article-title: Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy
  publication-title: Nature
  doi: 10.1038/nature11286
– volume: 122
  start-page: 1712
  year: 2012
  ident: ref3
  article-title: PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques
  publication-title: J Clin Invest
  doi: 10.1172/JCI60612
– volume: 8
  start-page: e63818
  year: 2013
  ident: ref13
  article-title: A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0063818
– volume: 10
  start-page: 29
  year: 2009
  ident: ref22
  article-title: Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection
  publication-title: Nat Immunol
  doi: 10.1038/ni.1679
– volume: 106
  start-page: 17858
  year: 2009
  ident: ref26
  article-title: The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0903474106
– volume: 10
  start-page: 41
  year: 2013
  ident: ref51
  article-title: Cell-associated HIV RNA: a dynamic biomarker of viral persistence
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-10-41
– year: 2014
  ident: ref40
  article-title: PD-1 induction through TCR activation is partially regulated by endogenous TGF-beta
  publication-title: Cell Mol Immunol
– volume: 15
  start-page: 289
  year: 2001
  ident: ref63
  article-title: TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS
  publication-title: Immunity
  doi: 10.1016/S1074-7613(01)00183-2
– volume: 40
  start-page: 569
  year: 2014
  ident: ref30
  article-title: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.02.012
– volume: 188
  start-page: 3869
  year: 2012
  ident: ref31
  article-title: The TIGIT/CD226 axis regulates human T cell function
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1103627
– volume: 515
  start-page: 558
  year: 2014
  ident: ref15
  article-title: MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer
  publication-title: Nature
  doi: 10.1038/nature13904
– volume: 186
  start-page: 1338
  year: 2011
  ident: ref25
  article-title: Cutting edge: TIGIT has T cell-intrinsic inhibitory functions
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1003081
– volume: 62
  start-page: 1378
  year: 2004
  ident: ref59
  article-title: Symptomatic distal sensory polyneuropathy in HIV after age 50
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000120622.91018.EA
– volume: 40
  start-page: 2493
  year: 2010
  ident: ref9
  article-title: HCV-specific T cells in HCV/HIV co-infection show elevated frequencies of dual Tim-3/PD-1 expression that correlate with liver disease progression
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201040340
SSID ssj0041316
Score 2.590857
Snippet HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors...
HIV infection induces phenotypic and functional changes to [CD8.sup.+] T cells defined by the coordinated upregulation of a series of negative checkpoint...
HIV infection induces phenotypic and functional changes to CD8 + T cells defined by the coordinated upregulation of a series of negative checkpoint receptors...
  HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1005349
SubjectTerms Acquired immune deficiency syndrome
AIDS
Animals
B7-H1 Antigen - immunology
CD4-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - immunology
Cell Separation
Development and progression
Disease
Disease Progression
DNA, Viral - analysis
Flow Cytometry
Funding
Health aspects
HIV
HIV infection
HIV Infections - immunology
Host-virus relationships
Human immunodeficiency virus
Humans
Immune response
Infections
Lymphocyte Activation - immunology
Lymphocytes
Macaca mulatta
Mortality
Observations
Receptors, Immunologic - immunology
RNA, Viral - analysis
Simian Acquired Immunodeficiency Syndrome - immunology
Simian immunodeficiency virus
Statistical analysis
T cells
Viral infections
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9SEHwRv696ShTBl1tvs8kmu49nvbMreMjZk3sLm4_1Dsq22B7ov-Bf7UySlq4o9yIUFprJQ2Z-mczsTn5DyGs4dYxgVmZt4U0mjIEtVbE26wyrbVvWRtV4wfnTqZyei48X5cVOqy-sCYv0wFFxh3XlmIFDjXmjBCCsZdxUvhJC1M773KL3heFNMhV9MHjm0PQUm-JkikuZLs1xxQ6Tjd4uly3SRwMIkUdz51AK3P1bDz1azherv4Wff1ZR7hxLJ_fI3RRP0qO4jvvklu8fkNuxw-TPh-TXrPnQzCjeyFnR4x-XyPLjHZ3RiZ_PVwd0gs055hhvUnwjS9_H7zX0M5ZtRcqOA9r2jqJPAaEWfnQWqscphLu0weslnp6F_jTByPSqp9Pma5wEzyZVe_WPyPnJ8WwyzVL7hcxKztcZ5NyygnTD8853pauMq6Wta9GpKvfI5GchOMiZ60zuCs-6srTWQ0jAYFN7Xnj-mIz6Re_3CIUcEtuNO-TPEwWmlA5ZEa00rupMW40J3-hf28RNji0y5jp8cFOQo0R1arSaTlYbk2w7axm5OW6Qf4em3cois3b4A_CmE970TXgbk1cIDI3cGT0W53wDy6108-VUH0EwygWvJP-n0NlA6E0S6hawWNumCxGgMuTkGkjuDyTBA9jB8B6CdLPmlWZKYiMBWYoxebkBrsZZWFHX-8V1kAndWXOQeRKBvFVMISHOFHU-JmoA8YHmhiP91WXgJhcqF4qrp_9D1c_IHcBXeuG1T0br79f-OYSAa_Mi7PbfEUNW8A
  priority: 102
  providerName: Directory of Open Access Journals
Title TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection
URI https://www.ncbi.nlm.nih.gov/pubmed/26741490
https://www.proquest.com/docview/1760857504
https://pubmed.ncbi.nlm.nih.gov/PMC4704737
https://doaj.org/article/98d1b0911eb74042a13b8e84449dee0c
http://dx.doi.org/10.1371/journal.ppat.1005349
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZtymAvY7-brQvaGOylLlYkS_bDGG1plwwaRpuMvBlLltswz8niFNp_YX_17mQlzKNlg4AhPhl0upPupNP3EfIeVh0tmJFB1rc6EFqDS8UsCwrNEpNFiVYJXnA-G8nBRHyZRtMtsuZs9Qqs70ztkE9qsiwPbn7efgKH_-hYGxRbNzpYLDIEhAazEsk22YG1SaGrnonNuQLM2I4MFclyAsWl9Jfp7vtKa7FymP6bmbuzKOf1XWHp39WVfyxXp4_JIx9n0sPGMJ6QLVs9JQ8a5snbZ-TXePh5OKY_suX3mtqbK0T_sTkd02NblvU-NUjaUWIcSnGnlvpzHOrKuRooj32aVTnFTV0QyuBHm6pyCmEwneG1E0uXjrfGDT6dVXQw_OYaXcBz6KvAqudkcnoyPh4EnpYhMJLzVQC5uIwhDbG8sEWUxzpPpEkSUag4tIjwZyBoCFle6DDvW1ZEkTEWQgUGzm553_IXpFPNK7tLKOSWSEOeI66e6GOqmSNaopE6jwudxV3C1_pPjccsR-qMMnUHcQpyl0adKY5a6ketS4JNq0WD2fEP-SMc2o0sIm67P-bLy9Q7cJrEOdMQXDGrlYCZLmNcxzYWQiS5taHpkndoGClialRYtHMJI1enw4tReghBKhc8lvxeofOW0AcvVMyhsybzFyVAZYjV1ZLca0nCzGBar3fRSNd9rlOmJBIMyEh0ydu14abYCivtKju_djKOtTUEmZeNIW8U05cQf4ok7BLVMvGW5tpvqtmVwywXKhSKq1f_3bfX5CEYkd_t2iOd1fLavoH4b6V7ZFtNVY_sHJ2Mvp733C5Kz7n5b0udXU4
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TIGIT+marks+exhausted+T+Cells%2C+correlates+with+disease+progression%2C+and+serves+as+a+target+for+immune+restoration+in+HIV+and+SIV+Infection&rft.jtitle=PLoS+pathogens&rft.au=Fujita%2C+Tsuyoshi&rft.au=Webb%2C+Gabriela+M&rft.au=Burwitz%2C+Benjamin+J&rft.au=Wu%2C+L.+Helen&rft.date=2016-01-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft_id=info:doi/10.1371%2Fjournal.ppat.1005349&rft.externalDocID=A456343863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon