Cell-Specific Cardiac Electrophysiology Models
The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the compo...
Saved in:
Published in | PLoS computational biology Vol. 11; no. 4; p. e1004242 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.04.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment. |
---|---|
AbstractList | The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment. The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment. The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment. Mathematical models of cardiac cell electrophysiology are widely used as predictive and illuminatory tools, but have been developed for decades using a suboptimal process. The models are typically constructed by manual adjustment of parameters to fit simple data and therefore often underperform when used to predict complex behavior such as arrhythmias. We present a novel method of model parameterization using automated optimization and dynamically rich fitting data and then demonstrate that this approach is better at finding the “real” model of a cell. Application of the method to cardiac myocytes leads to cell-specific models, which may enable well-controlled studies of both cellular- and subject-level population heterogeneity in disease propensity and response to therapies. |
Audience | Academic |
Author | Zygmunt, Andrew C. Groenendaal, Willemijn Kherlopian, Armen R. Christini, David J. Ortega, Francis A. Krogh-Madsen, Trine |
AuthorAffiliation | 3 Consultant, New Hartford, New York, United States of America 1 Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America 2 Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America University of California San Diego, UNITED STATES 4 Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, United States of America |
AuthorAffiliation_xml | – name: 3 Consultant, New Hartford, New York, United States of America – name: University of California San Diego, UNITED STATES – name: 2 Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America – name: 4 Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, United States of America – name: 1 Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America |
Author_xml | – sequence: 1 givenname: Willemijn surname: Groenendaal fullname: Groenendaal, Willemijn – sequence: 2 givenname: Francis A. surname: Ortega fullname: Ortega, Francis A. – sequence: 3 givenname: Armen R. surname: Kherlopian fullname: Kherlopian, Armen R. – sequence: 4 givenname: Andrew C. surname: Zygmunt fullname: Zygmunt, Andrew C. – sequence: 5 givenname: Trine surname: Krogh-Madsen fullname: Krogh-Madsen, Trine – sequence: 6 givenname: David J. surname: Christini fullname: Christini, David J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25928268$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl9v0zAUxS00xLbCN0BQiZfx0GDHf8MD0lQNqDRAYvBsObaTuXLjzk7Q-u1xaIpWhJBQHnxl_87x9c05Bydd6CwAzxEsEObozToMsVO-2OraFQhCUpLyEThDlOIFx1ScPKhPwXlKawhzWbEn4LSkVSlKJs5AsbTeL262VrvG6flSReOUnl95q_sYtre75IIP7W7-KRjr01PwuFE-2WfTOgPf3199W35cXH_5sFpeXi80w7hfWGRRDZt8haWa1FQIbCpuSmgZN6wusaC0ZrVVpIbM6oprjgiBhBtMaM0xnoGXe9-tD0lOT00SMUEhRTy_awZWe8IEtZbb6DYq7mRQTv7aCLGVKvZOeysrSg1jJUUGNQRXqsp11RhjCGoqqprs9W66bag31mjb9VH5I9Pjk87dyjb8kIQgynmZDS4mgxjuBpt6uXFJ58mqzoZh7JsLTpjAY9-v9mircmuua0J21CMuLwkSDGKBeaaKv1D5M3bjdA5C4_L-keD1kSAzvb3vWzWkJFc3X_-D_XzMvng4mt8zOSQoA2_3gI4hpWgbqV2vehfGSTkvEZRjXA__UI5xlVNcs5j8IT74_1P2E_Qr7Tc |
CitedBy_id | crossref_primary_10_1016_j_bpj_2024_10_018 crossref_primary_10_1371_journal_pone_0266233 crossref_primary_10_7554_eLife_36717 crossref_primary_10_1038_s41598_020_66910_0 crossref_primary_10_3389_fphys_2017_01059 crossref_primary_10_1038_nrd_2015_34 crossref_primary_10_1002_cnm_3815 crossref_primary_10_1016_j_bpj_2020_03_018 crossref_primary_10_3389_fphys_2021_681943 crossref_primary_10_1155_2020_3704523 crossref_primary_10_7554_eLife_91911_3 crossref_primary_10_1126_sciadv_abg0927 crossref_primary_10_1371_journal_pone_0231695 crossref_primary_10_3389_fphys_2020_00314 crossref_primary_10_1007_s11517_022_02685_y crossref_primary_10_1371_journal_pcbi_1005430 crossref_primary_10_3389_fphys_2021_708944 crossref_primary_10_1016_j_hrthm_2016_09_003 crossref_primary_10_1016_j_yjmcc_2016_09_011 crossref_primary_10_3389_fphys_2021_693015 crossref_primary_10_1038_s41598_022_23398_0 crossref_primary_10_1113_JP271671 crossref_primary_10_3389_fphys_2022_879035 crossref_primary_10_3389_fphys_2021_675867 crossref_primary_10_1063_1_5087629 crossref_primary_10_1038_s41540_018_0047_2 crossref_primary_10_1016_j_bpj_2016_06_042 crossref_primary_10_1007_s00232_018_00058_x crossref_primary_10_1007_s11538_024_01273_5 crossref_primary_10_3389_fsysb_2023_1102467 crossref_primary_10_1113_JP285162 crossref_primary_10_1016_j_jneumeth_2019_108326 crossref_primary_10_1016_j_pbiomolbio_2015_12_002 crossref_primary_10_1371_journal_pone_0150761 crossref_primary_10_1016_j_pbiomolbio_2015_12_004 crossref_primary_10_1371_journal_pcbi_1005342 crossref_primary_10_1016_j_yjmcc_2016_10_015 crossref_primary_10_1161_CIRCRESAHA_115_307836 crossref_primary_10_1371_journal_pcbi_1005464 crossref_primary_10_1038_s41598_018_35858_7 crossref_primary_10_1113_JP272015 crossref_primary_10_1016_j_cophys_2017_11_003 crossref_primary_10_3389_fphar_2020_569489 crossref_primary_10_1113_JP276068 crossref_primary_10_1365_s13291_020_00218_w crossref_primary_10_1371_journal_pone_0216999 crossref_primary_10_1113_JP273191 crossref_primary_10_1098_rsta_2019_0388 crossref_primary_10_3389_fphys_2018_00958 crossref_primary_10_1038_s41598_024_63413_0 crossref_primary_10_1113_JP275733 crossref_primary_10_1371_journal_pcbi_1011806 crossref_primary_10_1140_epjnbp_s40366_016_0032_x crossref_primary_10_1113_JP272864 crossref_primary_10_7554_eLife_91911 crossref_primary_10_1098_rsta_2019_0349 crossref_primary_10_1063_1_5000354 crossref_primary_10_1098_rsta_2019_0348 crossref_primary_10_1016_j_yjmcc_2020_04_019 crossref_primary_10_1063_1_5000710 crossref_primary_10_1152_physrev_00024_2019 crossref_primary_10_3389_fncom_2025_1458878 crossref_primary_10_1113_JP284618 crossref_primary_10_3389_fphys_2017_00597 crossref_primary_10_1002_wsbm_1482 crossref_primary_10_3389_fphys_2021_684149 crossref_primary_10_1007_s11517_018_1921_1 crossref_primary_10_1152_ajpheart_00553_2023 crossref_primary_10_1098_rsta_2019_0335 crossref_primary_10_1098_rsta_2019_0334 crossref_primary_10_1016_j_yjmcc_2015_09_003 crossref_primary_10_1016_j_cmpb_2023_107690 crossref_primary_10_1113_JP270618 crossref_primary_10_1113_JP284011 crossref_primary_10_1016_j_stem_2024_01_007 crossref_primary_10_1016_j_pbiomolbio_2018_08_001 crossref_primary_10_1016_j_jacep_2024_09_031 crossref_primary_10_1111_bph_15915 |
Cites_doi | 10.1063/1.3528102 10.1113/jphysiol.1952.sp004764 10.1529/biophysj.107.118190 10.1016/j.jneumeth.2012.06.008 10.1007/s00424-013-1293-1 10.1007/s10439-009-9690-5 10.1016/j.yjmcc.2010.12.020 10.1113/jphysiol.2011.224238 10.1016/j.pbiomolbio.2010.03.002 10.1371/journal.pone.0090112 10.1016/j.neucom.2011.09.006 10.1371/journal.pcbi.0020094 10.1038/nn1639 10.1161/CIRCRESAHA.112.269084 10.1371/journal.pone.0107984 10.1371/journal.pcbi.1000914 10.1113/expphysiol.2008.044610 10.1016/0014-4827(72)90199-1 10.1152/jn.00412.2001 10.1073/pnas.1010674108 10.1023/A:1008972005316 10.1161/CIRCULATIONAHA.107.758672 10.1371/journal.pcbi.0030169 10.1073/pnas.1109370109 10.1073/pnas.1304382110 10.1016/j.yjmcc.2008.05.001 10.1016/j.pbiomolbio.2004.02.002 10.1016/j.bpj.2012.09.034 10.1113/jphysiol.2011.223313 10.1016/j.jtbi.2008.03.029 10.1109/TBME.2012.2216265 10.1126/scitranslmed.3002588 10.1152/ajpheart.2000.278.3.H677 10.1152/jn.00032.2008 10.1007/s11517-005-0017-x 10.1016/S0006-3495(00)76783-X 10.1152/ajpheart.00683.2004 10.1046/j.1540-8167.2004.03550.x 10.1098/rsta.2008.0301 10.1007/BF02351029 10.1124/pr.110.003723 10.1146/annurev-bioeng-071811-150106 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Public Library of Science 2015 Groenendaal et al 2015 Groenendaal et al 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Groenendaal W, Ortega FA, Kherlopian AR, Zygmunt AC, Krogh-Madsen T, Christini DJ (2015) Cell-Specific Cardiac Electrophysiology Models. PLoS Comput Biol 11(4): e1004242. doi:10.1371/journal.pcbi.1004242 |
Copyright_xml | – notice: COPYRIGHT 2015 Public Library of Science – notice: 2015 Groenendaal et al 2015 Groenendaal et al – notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Groenendaal W, Ortega FA, Kherlopian AR, Zygmunt AC, Krogh-Madsen T, Christini DJ (2015) Cell-Specific Cardiac Electrophysiology Models. PLoS Comput Biol 11(4): e1004242. doi:10.1371/journal.pcbi.1004242 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1004242 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Cell-Specific Cardiac Electrophysiology Models |
EISSN | 1553-7358 |
EndPage | e1004242 |
ExternalDocumentID | 1685051755 oai_doaj_org_article_955d66251d1f439a96259fddd41f95af PMC4415772 A418603837 25928268 10_1371_journal_pcbi_1004242 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB016407 – fundername: NIBIB NIH HHS grantid: R01EB016407 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. C1A CGR CUY CVF ECM EIF H13 IPNFZ M0N M~E NPM PGMZT RIG WOQ PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO - AAPBV ABPTK ADACO BBAFP PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c633t-e1e1b0f826e5c4b5883d97d20e67d6b23855b6bea4b06ec97c7144047d345b733 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:13:22 EST 2021 Wed Aug 27 01:30:20 EDT 2025 Thu Aug 21 18:31:12 EDT 2025 Fri Jul 11 11:44:04 EDT 2025 Tue Jun 17 20:46:11 EDT 2025 Tue Jun 10 20:41:21 EDT 2025 Fri Jun 27 04:52:04 EDT 2025 Fri Jun 27 03:56:27 EDT 2025 Wed Feb 19 02:34:14 EST 2025 Tue Jul 01 01:15:35 EDT 2025 Thu Apr 24 22:56:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-e1e1b0f826e5c4b5883d97d20e67d6b23855b6bea4b06ec97c7144047d345b733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: WG FAO ARK ACZ TKM DJC. Performed the experiments: WG FAO. Analyzed the data: WG TKM DJC. Wrote the paper: WG FAO TKM DJC. The authors have declared that no competing interests exist. |
OpenAccessLink | https://doaj.org/article/955d66251d1f439a96259fddd41f95af |
PMID | 25928268 |
PQID | 1678746835 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685051755 doaj_primary_oai_doaj_org_article_955d66251d1f439a96259fddd41f95af pubmedcentral_primary_oai_pubmedcentral_nih_gov_4415772 proquest_miscellaneous_1678746835 gale_infotracmisc_A418603837 gale_infotracacademiconefile_A418603837 gale_incontextgauss_ISR_A418603837 gale_incontextgauss_ISN_A418603837 pubmed_primary_25928268 crossref_citationtrail_10_1371_journal_pcbi_1004242 crossref_primary_10_1371_journal_pcbi_1004242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | RJ Lin (ref51) 2010; 2010 I Deschênes (ref41) 2008; 45 LS Milescu (ref27) 2008; 95 J Kaur (ref25) 2014; 9 T Banyasz (ref49) 2011; 50 S Vecchietti (ref15) 2006; 44 JO Vik (ref48) 2011; 2 S Dokos (ref21) 2004; 85 SA Niederer (ref8) 2009; 94 JD Moreno (ref17) 2011; 3 F Chen (ref24) 2012; 59 P Achard (ref30) 2006; 2 FA Ortega (ref52) 2014; 1183 CT Bot (ref23) 2012; 3 AL Hodgkin (ref1) 1952; 117 J Golowasch (ref10) 2002; 87 GM Faber (ref34) 2000; 78 M Zaniboni (ref43) 2000; 278 MM Wilhelms (ref14) 2012; 3 Q Zhou (ref6) 2009; 37 FM Weber (ref18) 2008; 35 AX Sarkar (ref26) 2010; 6 Y Rudy (ref4) 2012; 9 ML Milstein (ref40) 2012; 109 M Fink (ref7) 2011; 104 M Fink (ref16) 2009; 367 T Krogh-Madsen (ref5) 2012; 14 ref33 E Marder (ref11) 2011; 108 M Gurkiewicz (ref28) 2007; 3 P Gemmell (ref12) 2014; 9 K Veys (ref39) 2012; 209 D Noble (ref3) 2012; 590 MC Vanier (ref50) 1999; 7 L Xiao (ref42) 2008; 118 T Guo (ref20) 2013; 2013 RL DeHaan (ref44) 1972; 70 P Kannankeril (ref46) 2010; 62 A Bueno-Orovio (ref13) 2008; 253 SS Kalb (ref35) 2004; 15 M Tomaiuolo (ref32) 2012; 103 AX Sarkar (ref45) 2012; 590 A Bueno-Orovio (ref2) 2014; 466 A Raue (ref36) 2010; 20 OJ Britton (ref47) 2013; 110 T Krogh-Madsen (ref9) 2005; 289 TT Guo (ref19) 2010; 2010 Z Syed (ref22) 2005; 43 KH Hobbs (ref31) 2008; 99 DJ Schulz (ref38) 2006; 9 JN Weiss (ref37) 2012; 111 D Csercsik (ref29) 2012; 77 |
References_xml | – volume: 20 start-page: 045105 year: 2010 ident: ref36 article-title: Identifiability and observability analysis for experimental design in nonlinear dynamical models publication-title: Chaos doi: 10.1063/1.3528102 – volume: 3 start-page: 487 year: 2012 ident: ref14 article-title: Benchmarking electrophysiological models of human atrial myocytes publication-title: Front Physio – volume: 117 start-page: 500 year: 1952 ident: ref1 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: J Physiol doi: 10.1113/jphysiol.1952.sp004764 – volume: 95 start-page: 66 year: 2008 ident: ref27 article-title: Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp publication-title: Biophys J doi: 10.1529/biophysj.107.118190 – volume: 209 start-page: 227 year: 2012 ident: ref39 article-title: Quantitative single-cell ion-channel gene expression profiling through an improved qRT-PCR technique combined with whole cell patch clamp publication-title: J Neurosci Meth doi: 10.1016/j.jneumeth.2012.06.008 – volume: 466 start-page: 183 year: 2014 ident: ref2 article-title: Na/K pump regulation of cardiac repolarization: insights from a systems biology approach publication-title: Pflugers Arch doi: 10.1007/s00424-013-1293-1 – volume: 37 start-page: 1294 year: 2009 ident: ref6 article-title: Identification of IKr kinetics and drug binding in native myocytes publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9690-5 – volume: 50 start-page: 578 year: 2011 ident: ref49 article-title: Sequential dissection of multiple ionic currents in single cardiac myocytes under action potential-clamp publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2010.12.020 – volume: 590 start-page: 2613 year: 2012 ident: ref3 article-title: How the Hodgkin-Huxley equations inspired the cardiac Physiome Project publication-title: J Physiol doi: 10.1113/jphysiol.2011.224238 – volume: 9 start-page: 268 year: 2012 ident: ref4 article-title: Comprehensive Biophysics – volume: 104 start-page: 2 year: 2011 ident: ref7 article-title: Cardiac cell modelling: Observations from the heart of the cardiac physiome project publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2010.03.002 – volume: 9 start-page: e90112 year: 2014 ident: ref12 article-title: Population of computational rabbit-specific ventricular action potential models for investigating sources of variability incellular repolarisation publication-title: PLoS ONE doi: 10.1371/journal.pone.0090112 – volume: 2010 start-page: 4160 year: 2010 ident: ref51 article-title: Real-time experiment interface for biological control applications publication-title: IEEE Eng Med Biol Soc – volume: 77 start-page: 178 year: 2012 ident: ref29 article-title: Identifiability analysis and parameter estimation of a single Hodgkin–Huxley type voltage dependent ion channel under voltage step measurement conditions publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.09.006 – volume: 2 start-page: 0794 year: 2006 ident: ref30 article-title: Complex parameter landscape for a complex neuron model publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020094 – volume: 1183 start-page: 327 year: 2014 ident: ref52 article-title: Methods in Molecular Biology – volume: 35 start-page: 61 year: 2008 ident: ref18 article-title: Adaptation of a minimal four-state cell model for reproducing atrial excitation properties publication-title: Comput Cardiol – volume: 9 start-page: 356 year: 2006 ident: ref38 article-title: Variable channel expression in identified single and electrically coupled neurons in different animals publication-title: Nat Neurosci doi: 10.1038/nn1639 – volume: 111 start-page: 493 year: 2012 ident: ref37 article-title: “Good enough solutions” and the genetics of complex diseases publication-title: Circ Res doi: 10.1161/CIRCRESAHA.112.269084 – volume: 9 start-page: e107984 year: 2014 ident: ref25 article-title: Fitting membrane resistance along with action potential shape in cardiac myocytes improves convergence: Application of a multi-objective parallel genetic algorithm publication-title: PLoS ONE doi: 10.1371/journal.pone.0107984 – volume: 6 start-page: e1000914 year: 2010 ident: ref26 article-title: Regression analysis for constraining free parameters in electrophysiological models of cardiac cells publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000914 – volume: 94 start-page: 486 year: 2009 ident: ref8 article-title: A meta-analysis of cardiac electrophysiology computational models publication-title: Exp Physiol doi: 10.1113/expphysiol.2008.044610 – volume: 2 start-page: 106 year: 2011 ident: ref48 article-title: Genotype-phenotype map characteristics of an in silico heart cell publication-title: Front Physiol – ident: ref33 – volume: 70 start-page: 214 year: 1972 ident: ref44 article-title: Synchronization of pulsation rates in isolated cardiac myocytes publication-title: Exp Cell Res doi: 10.1016/0014-4827(72)90199-1 – volume: 2013 start-page: 1 year: 2013 ident: ref20 article-title: Optimisation of a generic ionic model of cardiac myocyte electrical activity publication-title: Comput Math Methods Med – volume: 87 start-page: 1129 year: 2002 ident: ref10 article-title: Failure of averaging in the construction of a conductance-based neuron model publication-title: J Neurophysiol doi: 10.1152/jn.00412.2001 – volume: 108 start-page: 15542 issue: Suppl 3 year: 2011 ident: ref11 article-title: Variability, compensation, and modulation in neurons and circuits publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1010674108 – volume: 7 start-page: 149 year: 1999 ident: ref50 article-title: A comparative survey of automated parameter-search methods for compartmental neural models publication-title: J Comput Neurosci doi: 10.1023/A:1008972005316 – volume: 3 start-page: 1 year: 2012 ident: ref23 article-title: Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes publication-title: Front Physio – volume: 118 start-page: 983 year: 2008 ident: ref42 article-title: Feedback remodeling of cardiac potassium current expression: A novel potential mechanism for control of repolarization reserve publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.758672 – volume: 3 start-page: e169 year: 2007 ident: ref28 article-title: A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030169 – volume: 109 start-page: E2134 year: 2012 ident: ref40 article-title: Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1109370109 – volume: 2010 start-page: 1465 year: 2010 ident: ref19 article-title: A generic ionic model of cardiac action potentials publication-title: IEEE Eng Med Biol Soc – volume: 110 start-page: E2098 year: 2013 ident: ref47 article-title: Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1304382110 – volume: 45 start-page: 336 year: 2008 ident: ref41 article-title: Post-transcriptional gene silencing of KChIP2 and Navß1 in neonatal rat cardiac myocytes reveals a functional association between Na and Ito currents publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2008.05.001 – volume: 85 start-page: 407 year: 2004 ident: ref21 article-title: Parameter estimation in cardiac ionic models publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2004.02.002 – volume: 103 start-page: 2021 year: 2012 ident: ref32 article-title: Models of electrical activity: Calibration and prediction testing on the same cell publication-title: Biophys J doi: 10.1016/j.bpj.2012.09.034 – volume: 590 start-page: 2555 year: 2012 ident: ref45 article-title: Exploiting mathematical models to illuminate electrophysiological variability between individuals publication-title: J Physiol doi: 10.1113/jphysiol.2011.223313 – volume: 253 start-page: 544 year: 2008 ident: ref13 article-title: Minimal model for human ventricular action potentials in tissue publication-title: J Theor Biol doi: 10.1016/j.jtbi.2008.03.029 – volume: 59 start-page: 3412 year: 2012 ident: ref24 article-title: Identification of the parameters of the Beeler-Reuter ionic equation with a partially perturbed particle swarm optimization publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2216265 – volume: 3 start-page: 1 year: 2011 ident: ref17 article-title: A computational model to predict the effects of class I anti-arrhythmic drugs on ventricular rhythms publication-title: Science Trans Med doi: 10.1126/scitranslmed.3002588 – volume: 278 start-page: H677 year: 2000 ident: ref43 article-title: Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.2000.278.3.H677 – volume: 99 start-page: 1871 year: 2008 ident: ref31 article-title: Using complicated, wide dynamic range driving to develop models of single neurons in single recording sessions publication-title: J Neurophysiol doi: 10.1152/jn.00032.2008 – volume: 44 start-page: 35 year: 2006 ident: ref15 article-title: Computer simulation of wild-type and mutant human cardiac Na+ current publication-title: Med Bio Eng Comput doi: 10.1007/s11517-005-0017-x – volume: 78 start-page: 2392 year: 2000 ident: ref34 article-title: Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: A simulation study publication-title: Biophys J doi: 10.1016/S0006-3495(00)76783-X – volume: 289 start-page: H398 year: 2005 ident: ref9 article-title: An ionic model for rhythmic activity in small clusters of embryonic chick ventricular cells publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00683.2004 – volume: 15 start-page: 698 year: 2004 ident: ref35 article-title: The restitution portrait: A new method for investigating rate-dependent restitution publication-title: J Cardiovasc Electrophysiol doi: 10.1046/j.1540-8167.2004.03550.x – volume: 367 start-page: 2161 year: 2009 ident: ref16 article-title: Markov models for ion channels: Versatility versus identifiability and speed publication-title: Philos Transact A Math Phys Eng Sci doi: 10.1098/rsta.2008.0301 – volume: 43 start-page: 561 year: 2005 ident: ref22 article-title: Atrial cell action potential parameter fitting using genetic algorithms publication-title: Med Bio Eng Comput doi: 10.1007/BF02351029 – volume: 62 start-page: 760 year: 2010 ident: ref46 article-title: Drug-Induced Long QT Syndrome publication-title: Pharmacol Rev doi: 10.1124/pr.110.003723 – volume: 14 start-page: 179 year: 2012 ident: ref5 article-title: Nonlinear Dynamics in Cardiology publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-071811-150106 |
SSID | ssj0035896 |
Score | 2.4359238 |
Snippet | The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each... The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1004242 |
SubjectTerms | Action Potentials - physiology Animals Automation Behavior Cells, Cultured Computer Simulation Electrophysiology Experiments Heart cells Heart Conduction System - physiology Ion Channel Gating - physiology Ion Channels - physiology Mathematical models Membrane Potentials - physiology Models, Cardiovascular Models, Statistical Myocytes, Cardiac - physiology Physiological aspects Rodents Swine |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEO8GCgoIiZPbdfxKjqWiKkj0AFTamxW_oNIquyK7h_77ztjeVYNAvXCLNl8O83nimdmMvyHkvYtWSK49ZVAhU4hQDbXeBdpbbjlcxDaJ-ny9UOeX4stCLm6N-sKesCwPnIk77qT0CpJ05lmE4Nl3mLBH771gsZN9xN0XYt6umMp7MJdtmsyFQ3Go5mJRDs1xzY7LGh2tnb3CHgHRiGYSlJJ2_36Hnq2Xq_Fv6eefXZS3wtLZI_Kw5JP1SbbjMbkXhifkfp4wef2UHJ2G5ZLicUpsCapd8gdXl-E36W-NhKzTRJzxGbk8-_Tj9JyWEQnUKc43NLDA7DxCjRCkE1a2Lfed9s08KO2VhXgspVU29MLOVXCddhq_5grtuZBWc_6czIbVEA5I3cbIQ2NjDD1EebxqFCyX1C40Mja2InzHkXFFPxzHWCxN-iimoY7IJhtk1hRmK0L3T62zfsYd-I9I_x6L6tfpB_AJU3zC3OUTFXmHi2dQ32LABpqf_XYczefvF-ZEsFbNsSz_J-jbBPShgOIKjHV9ObQAlKFu1gR5OEHCW-omtw_QkXY2j4apVqI-mpQVebtzLoNPYdfbEFZbxMB2KhQkyRV5kZ1tTwxYDNWyaiuiJ244YW56Z7j6lfTDsYSGourl_6D6FXkAKaTMvUyHZLb5vQ2vIU3b2DfpjbwB-n05Zg priority: 102 providerName: Directory of Open Access Journals |
Title | Cell-Specific Cardiac Electrophysiology Models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25928268 https://www.proquest.com/docview/1678746835 https://pubmed.ncbi.nlm.nih.gov/PMC4415772 https://doaj.org/article/955d66251d1f439a96259fddd41f95af http://dx.doi.org/10.1371/journal.pcbi.1004242 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uegi-iN8XPUsVwaeUJvuVPIi059VTuCKnhb4t2a_zoKS1acH7753ZJMXIHfqShGa2sJOZzPyys_Mj5K3xmnEqbZwAQo4hQqWxtsbFhaaawoXPQlOfi5k4n7MvC744IC1na6PA6lZoh3xS881y-OvnzQdw-PeBtUEm7aDh2uhrXPVnEHYOyRHEJomuesH26wqUZ4GxC8lyYknZotlMd9e_dIJV6Om_f3P31stVdVta-nd15R_havqQPGjyzMG4NoxH5MCVj8m9mnny5gkZnrrlMsZtllgqNDDBTsygIcUJnzuC5CAw5VRPyXx69v30PG6oE2IjKN3GLnGJHnnADo4bpnmWUZtLm46ckFZoiNOca6FdwfRIOJNLI3GVl0lLGdeS0mekV65Kd0wGmffUpdp7V0D0x6tUwGPk0riU-1RHhLY6UqbpK470FksVFssk4It6ygo1qxrNRiTej1rXfTX-IT9B9e9lsSt2-GG1uVKNk6mccysA0CU28ZBoFTmCO2-tZYnPeeEj8gYfnsK-FyUW1lwVu6pSn7_N1JglmRghXL9T6LIj9K4R8iuYrCmazQygMuyn1ZE86UiC95rO7WM0pHbOlUpExrFvGucRed0al8JRWA1XutUOZeA1ywQkzxF5XhvbXjEwY0DRIouI7JhhR3PdO-X1j9BXHKE1gK0X_z23l-Q-5I-8LmQ6Ib3tZudeQY621X1yKBcSjtn0U58cjScfJ1M4T85mXy_74btHPzjmb3WVQKQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell-specific+cardiac+electrophysiology+models&rft.jtitle=PLoS+computational+biology&rft.au=Groenendaal%2C+Willemijn&rft.au=Ortega%2C+Francis+A&rft.au=Kherlopian%2C+Armen+R&rft.au=Zygmunt%2C+Andrew+C&rft.date=2015-04-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pcbi.1004242&rft.externalDocID=A418603837 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |