Cell-Specific Cardiac Electrophysiology Models

The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the compo...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 11; no. 4; p. e1004242
Main Authors Groenendaal, Willemijn, Ortega, Francis A., Kherlopian, Armen R., Zygmunt, Andrew C., Krogh-Madsen, Trine, Christini, David J.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment.
AbstractList The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment.
  The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment.
The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment. Mathematical models of cardiac cell electrophysiology are widely used as predictive and illuminatory tools, but have been developed for decades using a suboptimal process. The models are typically constructed by manual adjustment of parameters to fit simple data and therefore often underperform when used to predict complex behavior such as arrhythmias. We present a novel method of model parameterization using automated optimization and dynamically rich fitting data and then demonstrate that this approach is better at finding the “real” model of a cell. Application of the method to cardiac myocytes leads to cell-specific models, which may enable well-controlled studies of both cellular- and subject-level population heterogeneity in disease propensity and response to therapies.
Audience Academic
Author Zygmunt, Andrew C.
Groenendaal, Willemijn
Kherlopian, Armen R.
Christini, David J.
Ortega, Francis A.
Krogh-Madsen, Trine
AuthorAffiliation 3 Consultant, New Hartford, New York, United States of America
1 Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America
2 Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
University of California San Diego, UNITED STATES
4 Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, United States of America
AuthorAffiliation_xml – name: 3 Consultant, New Hartford, New York, United States of America
– name: University of California San Diego, UNITED STATES
– name: 2 Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
– name: 4 Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, United States of America
– name: 1 Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America
Author_xml – sequence: 1
  givenname: Willemijn
  surname: Groenendaal
  fullname: Groenendaal, Willemijn
– sequence: 2
  givenname: Francis A.
  surname: Ortega
  fullname: Ortega, Francis A.
– sequence: 3
  givenname: Armen R.
  surname: Kherlopian
  fullname: Kherlopian, Armen R.
– sequence: 4
  givenname: Andrew C.
  surname: Zygmunt
  fullname: Zygmunt, Andrew C.
– sequence: 5
  givenname: Trine
  surname: Krogh-Madsen
  fullname: Krogh-Madsen, Trine
– sequence: 6
  givenname: David J.
  surname: Christini
  fullname: Christini, David J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25928268$$D View this record in MEDLINE/PubMed
BookMark eNqVkl9v0zAUxS00xLbCN0BQiZfx0GDHf8MD0lQNqDRAYvBsObaTuXLjzk7Q-u1xaIpWhJBQHnxl_87x9c05Bydd6CwAzxEsEObozToMsVO-2OraFQhCUpLyEThDlOIFx1ScPKhPwXlKawhzWbEn4LSkVSlKJs5AsbTeL262VrvG6flSReOUnl95q_sYtre75IIP7W7-KRjr01PwuFE-2WfTOgPf3199W35cXH_5sFpeXi80w7hfWGRRDZt8haWa1FQIbCpuSmgZN6wusaC0ZrVVpIbM6oprjgiBhBtMaM0xnoGXe9-tD0lOT00SMUEhRTy_awZWe8IEtZbb6DYq7mRQTv7aCLGVKvZOeysrSg1jJUUGNQRXqsp11RhjCGoqqprs9W66bag31mjb9VH5I9Pjk87dyjb8kIQgynmZDS4mgxjuBpt6uXFJ58mqzoZh7JsLTpjAY9-v9mircmuua0J21CMuLwkSDGKBeaaKv1D5M3bjdA5C4_L-keD1kSAzvb3vWzWkJFc3X_-D_XzMvng4mt8zOSQoA2_3gI4hpWgbqV2vehfGSTkvEZRjXA__UI5xlVNcs5j8IT74_1P2E_Qr7Tc
CitedBy_id crossref_primary_10_1016_j_bpj_2024_10_018
crossref_primary_10_1371_journal_pone_0266233
crossref_primary_10_7554_eLife_36717
crossref_primary_10_1038_s41598_020_66910_0
crossref_primary_10_3389_fphys_2017_01059
crossref_primary_10_1038_nrd_2015_34
crossref_primary_10_1002_cnm_3815
crossref_primary_10_1016_j_bpj_2020_03_018
crossref_primary_10_3389_fphys_2021_681943
crossref_primary_10_1155_2020_3704523
crossref_primary_10_7554_eLife_91911_3
crossref_primary_10_1126_sciadv_abg0927
crossref_primary_10_1371_journal_pone_0231695
crossref_primary_10_3389_fphys_2020_00314
crossref_primary_10_1007_s11517_022_02685_y
crossref_primary_10_1371_journal_pcbi_1005430
crossref_primary_10_3389_fphys_2021_708944
crossref_primary_10_1016_j_hrthm_2016_09_003
crossref_primary_10_1016_j_yjmcc_2016_09_011
crossref_primary_10_3389_fphys_2021_693015
crossref_primary_10_1038_s41598_022_23398_0
crossref_primary_10_1113_JP271671
crossref_primary_10_3389_fphys_2022_879035
crossref_primary_10_3389_fphys_2021_675867
crossref_primary_10_1063_1_5087629
crossref_primary_10_1038_s41540_018_0047_2
crossref_primary_10_1016_j_bpj_2016_06_042
crossref_primary_10_1007_s00232_018_00058_x
crossref_primary_10_1007_s11538_024_01273_5
crossref_primary_10_3389_fsysb_2023_1102467
crossref_primary_10_1113_JP285162
crossref_primary_10_1016_j_jneumeth_2019_108326
crossref_primary_10_1016_j_pbiomolbio_2015_12_002
crossref_primary_10_1371_journal_pone_0150761
crossref_primary_10_1016_j_pbiomolbio_2015_12_004
crossref_primary_10_1371_journal_pcbi_1005342
crossref_primary_10_1016_j_yjmcc_2016_10_015
crossref_primary_10_1161_CIRCRESAHA_115_307836
crossref_primary_10_1371_journal_pcbi_1005464
crossref_primary_10_1038_s41598_018_35858_7
crossref_primary_10_1113_JP272015
crossref_primary_10_1016_j_cophys_2017_11_003
crossref_primary_10_3389_fphar_2020_569489
crossref_primary_10_1113_JP276068
crossref_primary_10_1365_s13291_020_00218_w
crossref_primary_10_1371_journal_pone_0216999
crossref_primary_10_1113_JP273191
crossref_primary_10_1098_rsta_2019_0388
crossref_primary_10_3389_fphys_2018_00958
crossref_primary_10_1038_s41598_024_63413_0
crossref_primary_10_1113_JP275733
crossref_primary_10_1371_journal_pcbi_1011806
crossref_primary_10_1140_epjnbp_s40366_016_0032_x
crossref_primary_10_1113_JP272864
crossref_primary_10_7554_eLife_91911
crossref_primary_10_1098_rsta_2019_0349
crossref_primary_10_1063_1_5000354
crossref_primary_10_1098_rsta_2019_0348
crossref_primary_10_1016_j_yjmcc_2020_04_019
crossref_primary_10_1063_1_5000710
crossref_primary_10_1152_physrev_00024_2019
crossref_primary_10_3389_fncom_2025_1458878
crossref_primary_10_1113_JP284618
crossref_primary_10_3389_fphys_2017_00597
crossref_primary_10_1002_wsbm_1482
crossref_primary_10_3389_fphys_2021_684149
crossref_primary_10_1007_s11517_018_1921_1
crossref_primary_10_1152_ajpheart_00553_2023
crossref_primary_10_1098_rsta_2019_0335
crossref_primary_10_1098_rsta_2019_0334
crossref_primary_10_1016_j_yjmcc_2015_09_003
crossref_primary_10_1016_j_cmpb_2023_107690
crossref_primary_10_1113_JP270618
crossref_primary_10_1113_JP284011
crossref_primary_10_1016_j_stem_2024_01_007
crossref_primary_10_1016_j_pbiomolbio_2018_08_001
crossref_primary_10_1016_j_jacep_2024_09_031
crossref_primary_10_1111_bph_15915
Cites_doi 10.1063/1.3528102
10.1113/jphysiol.1952.sp004764
10.1529/biophysj.107.118190
10.1016/j.jneumeth.2012.06.008
10.1007/s00424-013-1293-1
10.1007/s10439-009-9690-5
10.1016/j.yjmcc.2010.12.020
10.1113/jphysiol.2011.224238
10.1016/j.pbiomolbio.2010.03.002
10.1371/journal.pone.0090112
10.1016/j.neucom.2011.09.006
10.1371/journal.pcbi.0020094
10.1038/nn1639
10.1161/CIRCRESAHA.112.269084
10.1371/journal.pone.0107984
10.1371/journal.pcbi.1000914
10.1113/expphysiol.2008.044610
10.1016/0014-4827(72)90199-1
10.1152/jn.00412.2001
10.1073/pnas.1010674108
10.1023/A:1008972005316
10.1161/CIRCULATIONAHA.107.758672
10.1371/journal.pcbi.0030169
10.1073/pnas.1109370109
10.1073/pnas.1304382110
10.1016/j.yjmcc.2008.05.001
10.1016/j.pbiomolbio.2004.02.002
10.1016/j.bpj.2012.09.034
10.1113/jphysiol.2011.223313
10.1016/j.jtbi.2008.03.029
10.1109/TBME.2012.2216265
10.1126/scitranslmed.3002588
10.1152/ajpheart.2000.278.3.H677
10.1152/jn.00032.2008
10.1007/s11517-005-0017-x
10.1016/S0006-3495(00)76783-X
10.1152/ajpheart.00683.2004
10.1046/j.1540-8167.2004.03550.x
10.1098/rsta.2008.0301
10.1007/BF02351029
10.1124/pr.110.003723
10.1146/annurev-bioeng-071811-150106
ContentType Journal Article
Copyright COPYRIGHT 2015 Public Library of Science
2015 Groenendaal et al 2015 Groenendaal et al
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Groenendaal W, Ortega FA, Kherlopian AR, Zygmunt AC, Krogh-Madsen T, Christini DJ (2015) Cell-Specific Cardiac Electrophysiology Models. PLoS Comput Biol 11(4): e1004242. doi:10.1371/journal.pcbi.1004242
Copyright_xml – notice: COPYRIGHT 2015 Public Library of Science
– notice: 2015 Groenendaal et al 2015 Groenendaal et al
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Groenendaal W, Ortega FA, Kherlopian AR, Zygmunt AC, Krogh-Madsen T, Christini DJ (2015) Cell-Specific Cardiac Electrophysiology Models. PLoS Comput Biol 11(4): e1004242. doi:10.1371/journal.pcbi.1004242
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1004242
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Cell-Specific Cardiac Electrophysiology Models
EISSN 1553-7358
EndPage e1004242
ExternalDocumentID 1685051755
oai_doaj_org_article_955d66251d1f439a96259fddd41f95af
PMC4415772
A418603837
25928268
10_1371_journal_pcbi_1004242
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB016407
– fundername: NIBIB NIH HHS
  grantid: R01EB016407
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
-
AAPBV
ABPTK
ADACO
BBAFP
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c633t-e1e1b0f826e5c4b5883d97d20e67d6b23855b6bea4b06ec97c7144047d345b733
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:13:22 EST 2021
Wed Aug 27 01:30:20 EDT 2025
Thu Aug 21 18:31:12 EDT 2025
Fri Jul 11 11:44:04 EDT 2025
Tue Jun 17 20:46:11 EDT 2025
Tue Jun 10 20:41:21 EDT 2025
Fri Jun 27 04:52:04 EDT 2025
Fri Jun 27 03:56:27 EDT 2025
Wed Feb 19 02:34:14 EST 2025
Tue Jul 01 01:15:35 EDT 2025
Thu Apr 24 22:56:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-e1e1b0f826e5c4b5883d97d20e67d6b23855b6bea4b06ec97c7144047d345b733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: WG FAO ARK ACZ TKM DJC. Performed the experiments: WG FAO. Analyzed the data: WG TKM DJC. Wrote the paper: WG FAO TKM DJC.
The authors have declared that no competing interests exist.
OpenAccessLink https://doaj.org/article/955d66251d1f439a96259fddd41f95af
PMID 25928268
PQID 1678746835
PQPubID 23479
ParticipantIDs plos_journals_1685051755
doaj_primary_oai_doaj_org_article_955d66251d1f439a96259fddd41f95af
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4415772
proquest_miscellaneous_1678746835
gale_infotracmisc_A418603837
gale_infotracacademiconefile_A418603837
gale_incontextgauss_ISR_A418603837
gale_incontextgauss_ISN_A418603837
pubmed_primary_25928268
crossref_citationtrail_10_1371_journal_pcbi_1004242
crossref_primary_10_1371_journal_pcbi_1004242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References RJ Lin (ref51) 2010; 2010
I Deschênes (ref41) 2008; 45
LS Milescu (ref27) 2008; 95
J Kaur (ref25) 2014; 9
T Banyasz (ref49) 2011; 50
S Vecchietti (ref15) 2006; 44
JO Vik (ref48) 2011; 2
S Dokos (ref21) 2004; 85
SA Niederer (ref8) 2009; 94
JD Moreno (ref17) 2011; 3
F Chen (ref24) 2012; 59
P Achard (ref30) 2006; 2
FA Ortega (ref52) 2014; 1183
CT Bot (ref23) 2012; 3
AL Hodgkin (ref1) 1952; 117
J Golowasch (ref10) 2002; 87
GM Faber (ref34) 2000; 78
M Zaniboni (ref43) 2000; 278
MM Wilhelms (ref14) 2012; 3
Q Zhou (ref6) 2009; 37
FM Weber (ref18) 2008; 35
AX Sarkar (ref26) 2010; 6
Y Rudy (ref4) 2012; 9
ML Milstein (ref40) 2012; 109
M Fink (ref7) 2011; 104
M Fink (ref16) 2009; 367
T Krogh-Madsen (ref5) 2012; 14
ref33
E Marder (ref11) 2011; 108
M Gurkiewicz (ref28) 2007; 3
P Gemmell (ref12) 2014; 9
K Veys (ref39) 2012; 209
D Noble (ref3) 2012; 590
MC Vanier (ref50) 1999; 7
L Xiao (ref42) 2008; 118
T Guo (ref20) 2013; 2013
RL DeHaan (ref44) 1972; 70
P Kannankeril (ref46) 2010; 62
A Bueno-Orovio (ref13) 2008; 253
SS Kalb (ref35) 2004; 15
M Tomaiuolo (ref32) 2012; 103
AX Sarkar (ref45) 2012; 590
A Bueno-Orovio (ref2) 2014; 466
A Raue (ref36) 2010; 20
OJ Britton (ref47) 2013; 110
T Krogh-Madsen (ref9) 2005; 289
TT Guo (ref19) 2010; 2010
Z Syed (ref22) 2005; 43
KH Hobbs (ref31) 2008; 99
DJ Schulz (ref38) 2006; 9
JN Weiss (ref37) 2012; 111
D Csercsik (ref29) 2012; 77
References_xml – volume: 20
  start-page: 045105
  year: 2010
  ident: ref36
  article-title: Identifiability and observability analysis for experimental design in nonlinear dynamical models
  publication-title: Chaos
  doi: 10.1063/1.3528102
– volume: 3
  start-page: 487
  year: 2012
  ident: ref14
  article-title: Benchmarking electrophysiological models of human atrial myocytes
  publication-title: Front Physio
– volume: 117
  start-page: 500
  year: 1952
  ident: ref1
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1952.sp004764
– volume: 95
  start-page: 66
  year: 2008
  ident: ref27
  article-title: Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp
  publication-title: Biophys J
  doi: 10.1529/biophysj.107.118190
– volume: 209
  start-page: 227
  year: 2012
  ident: ref39
  article-title: Quantitative single-cell ion-channel gene expression profiling through an improved qRT-PCR technique combined with whole cell patch clamp
  publication-title: J Neurosci Meth
  doi: 10.1016/j.jneumeth.2012.06.008
– volume: 466
  start-page: 183
  year: 2014
  ident: ref2
  article-title: Na/K pump regulation of cardiac repolarization: insights from a systems biology approach
  publication-title: Pflugers Arch
  doi: 10.1007/s00424-013-1293-1
– volume: 37
  start-page: 1294
  year: 2009
  ident: ref6
  article-title: Identification of IKr kinetics and drug binding in native myocytes
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9690-5
– volume: 50
  start-page: 578
  year: 2011
  ident: ref49
  article-title: Sequential dissection of multiple ionic currents in single cardiac myocytes under action potential-clamp
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2010.12.020
– volume: 590
  start-page: 2613
  year: 2012
  ident: ref3
  article-title: How the Hodgkin-Huxley equations inspired the cardiac Physiome Project
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2011.224238
– volume: 9
  start-page: 268
  year: 2012
  ident: ref4
  article-title: Comprehensive Biophysics
– volume: 104
  start-page: 2
  year: 2011
  ident: ref7
  article-title: Cardiac cell modelling: Observations from the heart of the cardiac physiome project
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2010.03.002
– volume: 9
  start-page: e90112
  year: 2014
  ident: ref12
  article-title: Population of computational rabbit-specific ventricular action potential models for investigating sources of variability incellular repolarisation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0090112
– volume: 2010
  start-page: 4160
  year: 2010
  ident: ref51
  article-title: Real-time experiment interface for biological control applications
  publication-title: IEEE Eng Med Biol Soc
– volume: 77
  start-page: 178
  year: 2012
  ident: ref29
  article-title: Identifiability analysis and parameter estimation of a single Hodgkin–Huxley type voltage dependent ion channel under voltage step measurement conditions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.09.006
– volume: 2
  start-page: 0794
  year: 2006
  ident: ref30
  article-title: Complex parameter landscape for a complex neuron model
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020094
– volume: 1183
  start-page: 327
  year: 2014
  ident: ref52
  article-title: Methods in Molecular Biology
– volume: 35
  start-page: 61
  year: 2008
  ident: ref18
  article-title: Adaptation of a minimal four-state cell model for reproducing atrial excitation properties
  publication-title: Comput Cardiol
– volume: 9
  start-page: 356
  year: 2006
  ident: ref38
  article-title: Variable channel expression in identified single and electrically coupled neurons in different animals
  publication-title: Nat Neurosci
  doi: 10.1038/nn1639
– volume: 111
  start-page: 493
  year: 2012
  ident: ref37
  article-title: “Good enough solutions” and the genetics of complex diseases
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.112.269084
– volume: 9
  start-page: e107984
  year: 2014
  ident: ref25
  article-title: Fitting membrane resistance along with action potential shape in cardiac myocytes improves convergence: Application of a multi-objective parallel genetic algorithm
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0107984
– volume: 6
  start-page: e1000914
  year: 2010
  ident: ref26
  article-title: Regression analysis for constraining free parameters in electrophysiological models of cardiac cells
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000914
– volume: 94
  start-page: 486
  year: 2009
  ident: ref8
  article-title: A meta-analysis of cardiac electrophysiology computational models
  publication-title: Exp Physiol
  doi: 10.1113/expphysiol.2008.044610
– volume: 2
  start-page: 106
  year: 2011
  ident: ref48
  article-title: Genotype-phenotype map characteristics of an in silico heart cell
  publication-title: Front Physiol
– ident: ref33
– volume: 70
  start-page: 214
  year: 1972
  ident: ref44
  article-title: Synchronization of pulsation rates in isolated cardiac myocytes
  publication-title: Exp Cell Res
  doi: 10.1016/0014-4827(72)90199-1
– volume: 2013
  start-page: 1
  year: 2013
  ident: ref20
  article-title: Optimisation of a generic ionic model of cardiac myocyte electrical activity
  publication-title: Comput Math Methods Med
– volume: 87
  start-page: 1129
  year: 2002
  ident: ref10
  article-title: Failure of averaging in the construction of a conductance-based neuron model
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00412.2001
– volume: 108
  start-page: 15542
  issue: Suppl 3
  year: 2011
  ident: ref11
  article-title: Variability, compensation, and modulation in neurons and circuits
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1010674108
– volume: 7
  start-page: 149
  year: 1999
  ident: ref50
  article-title: A comparative survey of automated parameter-search methods for compartmental neural models
  publication-title: J Comput Neurosci
  doi: 10.1023/A:1008972005316
– volume: 3
  start-page: 1
  year: 2012
  ident: ref23
  article-title: Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes
  publication-title: Front Physio
– volume: 118
  start-page: 983
  year: 2008
  ident: ref42
  article-title: Feedback remodeling of cardiac potassium current expression: A novel potential mechanism for control of repolarization reserve
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.758672
– volume: 3
  start-page: e169
  year: 2007
  ident: ref28
  article-title: A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030169
– volume: 109
  start-page: E2134
  year: 2012
  ident: ref40
  article-title: Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1109370109
– volume: 2010
  start-page: 1465
  year: 2010
  ident: ref19
  article-title: A generic ionic model of cardiac action potentials
  publication-title: IEEE Eng Med Biol Soc
– volume: 110
  start-page: E2098
  year: 2013
  ident: ref47
  article-title: Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1304382110
– volume: 45
  start-page: 336
  year: 2008
  ident: ref41
  article-title: Post-transcriptional gene silencing of KChIP2 and Navß1 in neonatal rat cardiac myocytes reveals a functional association between Na and Ito currents
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2008.05.001
– volume: 85
  start-page: 407
  year: 2004
  ident: ref21
  article-title: Parameter estimation in cardiac ionic models
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2004.02.002
– volume: 103
  start-page: 2021
  year: 2012
  ident: ref32
  article-title: Models of electrical activity: Calibration and prediction testing on the same cell
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2012.09.034
– volume: 590
  start-page: 2555
  year: 2012
  ident: ref45
  article-title: Exploiting mathematical models to illuminate electrophysiological variability between individuals
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2011.223313
– volume: 253
  start-page: 544
  year: 2008
  ident: ref13
  article-title: Minimal model for human ventricular action potentials in tissue
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2008.03.029
– volume: 59
  start-page: 3412
  year: 2012
  ident: ref24
  article-title: Identification of the parameters of the Beeler-Reuter ionic equation with a partially perturbed particle swarm optimization
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2216265
– volume: 3
  start-page: 1
  year: 2011
  ident: ref17
  article-title: A computational model to predict the effects of class I anti-arrhythmic drugs on ventricular rhythms
  publication-title: Science Trans Med
  doi: 10.1126/scitranslmed.3002588
– volume: 278
  start-page: H677
  year: 2000
  ident: ref43
  article-title: Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.2000.278.3.H677
– volume: 99
  start-page: 1871
  year: 2008
  ident: ref31
  article-title: Using complicated, wide dynamic range driving to develop models of single neurons in single recording sessions
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00032.2008
– volume: 44
  start-page: 35
  year: 2006
  ident: ref15
  article-title: Computer simulation of wild-type and mutant human cardiac Na+ current
  publication-title: Med Bio Eng Comput
  doi: 10.1007/s11517-005-0017-x
– volume: 78
  start-page: 2392
  year: 2000
  ident: ref34
  article-title: Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: A simulation study
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(00)76783-X
– volume: 289
  start-page: H398
  year: 2005
  ident: ref9
  article-title: An ionic model for rhythmic activity in small clusters of embryonic chick ventricular cells
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00683.2004
– volume: 15
  start-page: 698
  year: 2004
  ident: ref35
  article-title: The restitution portrait: A new method for investigating rate-dependent restitution
  publication-title: J Cardiovasc Electrophysiol
  doi: 10.1046/j.1540-8167.2004.03550.x
– volume: 367
  start-page: 2161
  year: 2009
  ident: ref16
  article-title: Markov models for ion channels: Versatility versus identifiability and speed
  publication-title: Philos Transact A Math Phys Eng Sci
  doi: 10.1098/rsta.2008.0301
– volume: 43
  start-page: 561
  year: 2005
  ident: ref22
  article-title: Atrial cell action potential parameter fitting using genetic algorithms
  publication-title: Med Bio Eng Comput
  doi: 10.1007/BF02351029
– volume: 62
  start-page: 760
  year: 2010
  ident: ref46
  article-title: Drug-Induced Long QT Syndrome
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.110.003723
– volume: 14
  start-page: 179
  year: 2012
  ident: ref5
  article-title: Nonlinear Dynamics in Cardiology
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071811-150106
SSID ssj0035896
Score 2.4359238
Snippet The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each...
  The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004242
SubjectTerms Action Potentials - physiology
Animals
Automation
Behavior
Cells, Cultured
Computer Simulation
Electrophysiology
Experiments
Heart cells
Heart Conduction System - physiology
Ion Channel Gating - physiology
Ion Channels - physiology
Mathematical models
Membrane Potentials - physiology
Models, Cardiovascular
Models, Statistical
Myocytes, Cardiac - physiology
Physiological aspects
Rodents
Swine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEO8GCgoIiZPbdfxKjqWiKkj0AFTamxW_oNIquyK7h_77ztjeVYNAvXCLNl8O83nimdmMvyHkvYtWSK49ZVAhU4hQDbXeBdpbbjlcxDaJ-ny9UOeX4stCLm6N-sKesCwPnIk77qT0CpJ05lmE4Nl3mLBH771gsZN9xN0XYt6umMp7MJdtmsyFQ3Go5mJRDs1xzY7LGh2tnb3CHgHRiGYSlJJ2_36Hnq2Xq_Fv6eefXZS3wtLZI_Kw5JP1SbbjMbkXhifkfp4wef2UHJ2G5ZLicUpsCapd8gdXl-E36W-NhKzTRJzxGbk8-_Tj9JyWEQnUKc43NLDA7DxCjRCkE1a2Lfed9s08KO2VhXgspVU29MLOVXCddhq_5grtuZBWc_6czIbVEA5I3cbIQ2NjDD1EebxqFCyX1C40Mja2InzHkXFFPxzHWCxN-iimoY7IJhtk1hRmK0L3T62zfsYd-I9I_x6L6tfpB_AJU3zC3OUTFXmHi2dQ32LABpqf_XYczefvF-ZEsFbNsSz_J-jbBPShgOIKjHV9ObQAlKFu1gR5OEHCW-omtw_QkXY2j4apVqI-mpQVebtzLoNPYdfbEFZbxMB2KhQkyRV5kZ1tTwxYDNWyaiuiJ244YW56Z7j6lfTDsYSGourl_6D6FXkAKaTMvUyHZLb5vQ2vIU3b2DfpjbwB-n05Zg
  priority: 102
  providerName: Directory of Open Access Journals
Title Cell-Specific Cardiac Electrophysiology Models
URI https://www.ncbi.nlm.nih.gov/pubmed/25928268
https://www.proquest.com/docview/1678746835
https://pubmed.ncbi.nlm.nih.gov/PMC4415772
https://doaj.org/article/955d66251d1f439a96259fddd41f95af
http://dx.doi.org/10.1371/journal.pcbi.1004242
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uegi-iN8XPUsVwaeUJvuVPIi059VTuCKnhb4t2a_zoKS1acH7753ZJMXIHfqShGa2sJOZzPyys_Mj5K3xmnEqbZwAQo4hQqWxtsbFhaaawoXPQlOfi5k4n7MvC744IC1na6PA6lZoh3xS881y-OvnzQdw-PeBtUEm7aDh2uhrXPVnEHYOyRHEJomuesH26wqUZ4GxC8lyYknZotlMd9e_dIJV6Om_f3P31stVdVta-nd15R_havqQPGjyzMG4NoxH5MCVj8m9mnny5gkZnrrlMsZtllgqNDDBTsygIcUJnzuC5CAw5VRPyXx69v30PG6oE2IjKN3GLnGJHnnADo4bpnmWUZtLm46ckFZoiNOca6FdwfRIOJNLI3GVl0lLGdeS0mekV65Kd0wGmffUpdp7V0D0x6tUwGPk0riU-1RHhLY6UqbpK470FksVFssk4It6ygo1qxrNRiTej1rXfTX-IT9B9e9lsSt2-GG1uVKNk6mccysA0CU28ZBoFTmCO2-tZYnPeeEj8gYfnsK-FyUW1lwVu6pSn7_N1JglmRghXL9T6LIj9K4R8iuYrCmazQygMuyn1ZE86UiC95rO7WM0pHbOlUpExrFvGucRed0al8JRWA1XutUOZeA1ywQkzxF5XhvbXjEwY0DRIouI7JhhR3PdO-X1j9BXHKE1gK0X_z23l-Q-5I-8LmQ6Ib3tZudeQY621X1yKBcSjtn0U58cjScfJ1M4T85mXy_74btHPzjmb3WVQKQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell-specific+cardiac+electrophysiology+models&rft.jtitle=PLoS+computational+biology&rft.au=Groenendaal%2C+Willemijn&rft.au=Ortega%2C+Francis+A&rft.au=Kherlopian%2C+Armen+R&rft.au=Zygmunt%2C+Andrew+C&rft.date=2015-04-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pcbi.1004242&rft.externalDocID=A418603837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon