Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts
Although single-atomically dispersed metal-N x on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-N x is greatly challenging since the loading and single-atomic dispersion have to be balanced at...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 1278 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.03.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although single-atomically dispersed metal-N
x
on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-N
x
is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-N
x
. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O
2
reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO
2
reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-N
x
sites for diverse high-performance applications.
Although single atom catalysts (SACs) with high-loading metal-Nx have great potential in heterogeneous catalysis, their scalable synthesis remains challenging. Here, the authors develop a general cascade anchoring strategy for the mass production of a series of metal-Nx SACs with a metal loading up to 12.1 wt%. |
---|---|
AbstractList | Although single-atomically dispersed metal-N
x
on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-N
x
is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-N
x
. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O
2
reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO
2
reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-N
x
sites for diverse high-performance applications. Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-Nx is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-Nx. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-Nx sites for diverse high-performance applications. Although single-atomically dispersed metal-N x on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-N x is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-N x . Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O 2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO 2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-N x sites for diverse high-performance applications. Although single atom catalysts (SACs) with high-loading metal-Nx have great potential in heterogeneous catalysis, their scalable synthesis remains challenging. Here, the authors develop a general cascade anchoring strategy for the mass production of a series of metal-Nx SACs with a metal loading up to 12.1 wt%. Although single atom catalysts (SACs) with high-loading metal-Nx have great potential in heterogeneous catalysis, their scalable synthesis remains challenging. Here, the authors develop a general cascade anchoring strategy for the mass production of a series of metal-Nx SACs with a metal loading up to 12.1 wt%. Although single-atomically dispersed metal-N on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-N is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-N . Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-N sites for diverse high-performance applications. Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-Nx is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-Nx. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-Nx sites for diverse high-performance applications.Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-Nx is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-Nx. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-Nx sites for diverse high-performance applications. Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-Nx is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-Nx. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-Nx sites for diverse high-performance applications.Although single atom catalysts (SACs) with high-loading metal-Nx have great potential in heterogeneous catalysis, their scalable synthesis remains challenging. Here, the authors develop a general cascade anchoring strategy for the mass production of a series of metal-Nx SACs with a metal loading up to 12.1 wt%. |
ArticleNumber | 1278 |
Author | Huang, Lin-Bo Wu, Jinpeng He, Chao Zhang, Yun Zhao, Lu Hu, Jin-Song Gu, Lin Zhang, Qing-Hua Zhang, Lin-Juan Yang, Wanli Wan, Li-Jun Wu, Ze-Yuan Liu, Xiao-Zhi |
Author_xml | – sequence: 1 givenname: Lu surname: Zhao fullname: Zhao, Lu organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Yun surname: Zhang fullname: Zhang, Yun organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, College of Chemistry and Materials Science, Sichuan Normal University – sequence: 3 givenname: Lin-Bo surname: Huang fullname: Huang, Lin-Bo organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 4 givenname: Xiao-Zhi surname: Liu fullname: Liu, Xiao-Zhi organization: University of Chinese Academy of Sciences, Beijing National Research Center for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences – sequence: 5 givenname: Qing-Hua surname: Zhang fullname: Zhang, Qing-Hua organization: Beijing National Research Center for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences – sequence: 6 givenname: Chao surname: He fullname: He, Chao organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 7 givenname: Ze-Yuan surname: Wu fullname: Wu, Ze-Yuan organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 8 givenname: Lin-Juan surname: Zhang fullname: Zhang, Lin-Juan organization: Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences – sequence: 9 givenname: Jinpeng orcidid: 0000-0002-7082-4123 surname: Wu fullname: Wu, Jinpeng organization: Advanced Light Source, Lawrence Berkeley National Laboratory – sequence: 10 givenname: Wanli orcidid: 0000-0003-0666-8063 surname: Yang fullname: Yang, Wanli organization: Advanced Light Source, Lawrence Berkeley National Laboratory – sequence: 11 givenname: Lin orcidid: 0000-0002-7504-031X surname: Gu fullname: Gu, Lin organization: Beijing National Research Center for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences – sequence: 12 givenname: Jin-Song surname: Hu fullname: Hu, Jin-Song email: hujs@iccas.ac.cn organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 13 givenname: Li-Jun surname: Wan fullname: Wan, Li-Jun organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30894539$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1559195$$D View this record in Osti.gov |
BookMark | eNp9Uktv1DAYjFARLaV_gAOK4MIl4HfiCxJa8ahUiQucLa_9JetVYi-2g7T_HmfTQttDffBzZjz-PC-rMx88VNVrjD5gRLuPiWEm2gZh2SBJJGqOz6oLghhucEvo2b35eXWV0h6VRiXuGHtRnVPUScapvKimjU5GW6i1N7sQnR_qlKPOMBzrPsR6AA9Rj_WkU6oPMdjZZBd8Hfp654ZdMwZtT6TSjdDoHCZn6gmyHhvvcgxFoDa6LI8pp1fV816PCa5ux8vq19cvPzffm5sf3643n28aIyjNje2lFa2lzLSi7wjqEcEEtXhLBAONMMMSU00IstBKYo013GBDuw6IRVJs6WV1veraoPfqEN2k41EF7dRpI8RB6ZidGUEBCC6ZlUYLznrMpaak7VrW9ZIXD7xofVq1DvN2AmvAl_qMD0Qfnni3U0P4owQjomOLwNtVIKTsVDIug9mZ4D2YrDDnEssF9P72lhh-z5CymlwyMI7aQ5iTIgVEeCs4LdB3j6D7MEdf6rmgGBdUElRQb-7b_uf37usLoFsBJoaUIvSqONPL55ZXuFFhpJagqTVoqgRNnYKmjoVKHlHv1J8k0ZWUDkvMIP63_QTrLyiJ5kI |
CitedBy_id | crossref_primary_10_1002_adfm_202104864 crossref_primary_10_1021_acs_est_1c01131 crossref_primary_10_1002_adma_201904037 crossref_primary_10_1016_j_cej_2023_143641 crossref_primary_10_1039_D4EN00189C crossref_primary_10_1016_j_apcatb_2021_120877 crossref_primary_10_1016_j_ccr_2022_214613 crossref_primary_10_1016_j_ccr_2024_216110 crossref_primary_10_1038_s41467_024_50629_x crossref_primary_10_1007_s40843_021_1734_x crossref_primary_10_1039_C9TA13651G crossref_primary_10_1142_S1793604723400313 crossref_primary_10_1002_ange_202208215 crossref_primary_10_1002_anie_202425063 crossref_primary_10_1039_D2TA06351D crossref_primary_10_1002_smtd_202001165 crossref_primary_10_1021_acsnano_2c04077 crossref_primary_10_1039_C9NH00361D crossref_primary_10_1016_j_jcis_2024_01_023 crossref_primary_10_1016_j_nantod_2020_100971 crossref_primary_10_1002_adts_202000054 crossref_primary_10_1002_smll_202205583 crossref_primary_10_1021_jacs_2c05247 crossref_primary_10_1039_D0RA08223F crossref_primary_10_1016_j_cej_2023_143870 crossref_primary_10_1002_advs_202206084 crossref_primary_10_1016_j_apsusc_2022_155298 crossref_primary_10_1039_D2DT01258H crossref_primary_10_1016_j_cej_2023_143996 crossref_primary_10_1002_ange_202308070 crossref_primary_10_1002_anie_202318924 crossref_primary_10_1016_j_ccr_2022_214603 crossref_primary_10_1002_adma_202312182 crossref_primary_10_1016_j_mattod_2021_02_005 crossref_primary_10_1002_adma_202102801 crossref_primary_10_1016_j_jece_2022_108986 crossref_primary_10_1021_acs_nanolett_3c00245 crossref_primary_10_1039_D3CP04209J crossref_primary_10_1002_smll_202207991 crossref_primary_10_1016_j_pmatsci_2022_100964 crossref_primary_10_1039_D4EE01226G crossref_primary_10_1039_D1SC05867C crossref_primary_10_1016_j_esci_2023_100172 crossref_primary_10_1016_j_cej_2023_143740 crossref_primary_10_1039_D1MA00720C crossref_primary_10_1002_anie_202116068 crossref_primary_10_1002_sstr_202100225 crossref_primary_10_1021_acsaem_0c00488 crossref_primary_10_1016_j_jece_2024_112114 crossref_primary_10_1002_adfm_202103558 crossref_primary_10_1002_adma_201904496 crossref_primary_10_1038_s41467_022_31660_2 crossref_primary_10_1039_D3EE01166F crossref_primary_10_1080_08940886_2020_1812354 crossref_primary_10_1016_j_jpowsour_2021_230557 crossref_primary_10_1021_acssuschemeng_3c04125 crossref_primary_10_1016_j_nanoen_2023_109149 crossref_primary_10_1016_j_carbon_2024_119790 crossref_primary_10_1016_j_nanoen_2021_106751 crossref_primary_10_1016_j_pmatsci_2022_100959 crossref_primary_10_1093_nsr_nwac248 crossref_primary_10_1002_adma_201906548 crossref_primary_10_1002_advs_202105008 crossref_primary_10_1002_chem_201904233 crossref_primary_10_1021_acscatal_2c02146 crossref_primary_10_1039_D4TA07911F crossref_primary_10_1002_ange_202308091 crossref_primary_10_1039_C9CS00422J crossref_primary_10_1016_j_cjche_2021_04_034 crossref_primary_10_1016_j_jcis_2023_06_153 crossref_primary_10_1016_j_jcis_2024_10_166 crossref_primary_10_1021_acscatal_2c01294 crossref_primary_10_1021_acscatal_0c00936 crossref_primary_10_1016_j_apcatb_2020_119270 crossref_primary_10_1002_smll_202105892 crossref_primary_10_1002_asia_202300679 crossref_primary_10_1002_aenm_201902084 crossref_primary_10_1021_acs_jpcc_2c02593 crossref_primary_10_1039_D0EN00505C crossref_primary_10_1002_adma_202002292 crossref_primary_10_1002_advs_202001069 crossref_primary_10_1016_j_esci_2023_100156 crossref_primary_10_1016_j_apcatb_2023_123100 crossref_primary_10_1021_jacs_2c07413 crossref_primary_10_3389_fctls_2022_915971 crossref_primary_10_1016_j_indcrop_2024_120060 crossref_primary_10_1002_adfm_202103857 crossref_primary_10_1016_j_electacta_2024_145624 crossref_primary_10_1039_D2RA00757F crossref_primary_10_1039_D3QM00146F crossref_primary_10_3390_ma14081908 crossref_primary_10_1039_D3QI00700F crossref_primary_10_1016_j_cej_2022_136873 crossref_primary_10_1016_j_coelec_2022_100994 crossref_primary_10_1039_D0CC01517B crossref_primary_10_1016_j_ijhydene_2023_10_260 crossref_primary_10_1021_acs_jpclett_3c02530 crossref_primary_10_1016_j_cej_2020_127345 crossref_primary_10_1002_advs_202206166 crossref_primary_10_1007_s12274_020_2988_1 crossref_primary_10_1016_j_chempr_2019_10_007 crossref_primary_10_1021_jacs_2c00719 crossref_primary_10_1016_j_checat_2023_100810 crossref_primary_10_1016_j_apcatb_2022_122298 crossref_primary_10_1021_acs_jpclett_1c01779 crossref_primary_10_1088_1361_6528_ac6885 crossref_primary_10_1016_j_carbon_2021_05_038 crossref_primary_10_1016_j_electacta_2021_139604 crossref_primary_10_1016_j_apcatb_2022_122172 crossref_primary_10_3390_c10010012 crossref_primary_10_1039_D1TA05605K crossref_primary_10_1039_D4CC04663C crossref_primary_10_1016_j_carbon_2023_118192 crossref_primary_10_3389_fchem_2021_717201 crossref_primary_10_1002_adfm_202000503 crossref_primary_10_1016_j_apcatb_2021_120695 crossref_primary_10_1002_adma_202003238 crossref_primary_10_1360_nso_20220059 crossref_primary_10_1016_j_matre_2022_100146 crossref_primary_10_1039_D0SC07040H crossref_primary_10_1021_acs_jpcc_3c01976 crossref_primary_10_1016_j_jmst_2024_12_095 crossref_primary_10_1039_D4NH00024B crossref_primary_10_1002_adfm_202009645 crossref_primary_10_1007_s11426_024_2067_0 crossref_primary_10_1039_D2NR04880A crossref_primary_10_1038_s41563_022_01252_y crossref_primary_10_1002_smtd_202100947 crossref_primary_10_1016_j_fuel_2020_118361 crossref_primary_10_1016_j_cej_2023_148273 crossref_primary_10_1021_acsanm_4c00522 crossref_primary_10_1038_s41467_024_50476_w crossref_primary_10_1007_s12598_020_01592_1 crossref_primary_10_1002_adfm_202008318 crossref_primary_10_1002_ange_202301642 crossref_primary_10_3390_polym15193879 crossref_primary_10_1016_j_jiec_2023_07_060 crossref_primary_10_1039_D0GC01177K crossref_primary_10_1016_j_ccr_2021_214289 crossref_primary_10_1103_PhysRevApplied_19_054094 crossref_primary_10_1039_D2NR00294A crossref_primary_10_1016_j_checat_2022_01_025 crossref_primary_10_1021_accountsmr_0c00110 crossref_primary_10_1063_5_0147165 crossref_primary_10_1021_acsami_0c03415 crossref_primary_10_1021_acsami_1c15061 crossref_primary_10_1021_acsami_3c18548 crossref_primary_10_1016_j_cej_2022_139816 crossref_primary_10_1016_j_ijleo_2020_165252 crossref_primary_10_1016_j_comptc_2023_114294 crossref_primary_10_26599_NRE_2023_9120082 crossref_primary_10_1002_adfm_202209726 crossref_primary_10_1002_anie_202301642 crossref_primary_10_1016_j_apsusc_2023_156616 crossref_primary_10_1021_acsami_2c13425 crossref_primary_10_1002_admi_202001788 crossref_primary_10_1016_j_jhazmat_2022_129253 crossref_primary_10_1002_cjce_24376 crossref_primary_10_1038_s44160_024_00607_4 crossref_primary_10_1039_C9CY02481F crossref_primary_10_1016_j_xcrp_2021_100495 crossref_primary_10_1021_acsami_9b18510 crossref_primary_10_1039_D0TA01208D crossref_primary_10_1007_s42452_020_03968_5 crossref_primary_10_1002_aenm_202200875 crossref_primary_10_1016_j_apsusc_2025_163005 crossref_primary_10_1021_acsami_3c04761 crossref_primary_10_1002_anie_202211396 crossref_primary_10_1007_s12274_022_4318_2 crossref_primary_10_1016_j_jechem_2020_01_034 crossref_primary_10_1002_adma_202104718 crossref_primary_10_1039_C9TA03300A crossref_primary_10_1002_adfm_202110224 crossref_primary_10_1002_advs_202301656 crossref_primary_10_1007_s12274_021_3816_y crossref_primary_10_1007_s12274_021_3432_x crossref_primary_10_1021_acsenergylett_9b00804 crossref_primary_10_1039_D1TA08007E crossref_primary_10_1002_cphc_202000595 crossref_primary_10_1016_j_chemosphere_2021_130911 crossref_primary_10_1007_s41918_022_00156_4 crossref_primary_10_1038_s41467_024_54959_8 crossref_primary_10_1039_D1GC01040A crossref_primary_10_1016_j_cclet_2021_03_082 crossref_primary_10_1039_C9TA10506A crossref_primary_10_1021_acs_jpcc_1c07682 crossref_primary_10_1021_acsenergylett_1c01678 crossref_primary_10_1002_adfm_202102974 crossref_primary_10_1016_j_mattod_2020_02_019 crossref_primary_10_1016_j_apcatb_2023_122558 crossref_primary_10_1021_acscatal_1c00627 crossref_primary_10_1021_acs_jpcc_4c04327 crossref_primary_10_1016_j_apcatb_2023_123407 crossref_primary_10_1039_D1NJ02769G crossref_primary_10_1007_s11426_024_2457_y crossref_primary_10_1021_acs_analchem_1c02232 crossref_primary_10_1007_s12274_021_3827_8 crossref_primary_10_1021_acs_iecr_0c00547 crossref_primary_10_1103_PhysRevB_103_125407 crossref_primary_10_1021_acs_nanolett_2c02159 crossref_primary_10_1002_adfm_202214658 crossref_primary_10_1038_s41467_023_37529_2 crossref_primary_10_1016_j_diamond_2023_110761 crossref_primary_10_1039_D1EE00142F crossref_primary_10_1002_adma_202000966 crossref_primary_10_1002_ange_202501506 crossref_primary_10_1016_j_cej_2020_127619 crossref_primary_10_1016_j_checat_2023_100862 crossref_primary_10_1155_2024_8714253 crossref_primary_10_1016_j_carbon_2021_09_044 crossref_primary_10_1016_j_jechem_2021_04_064 crossref_primary_10_1016_j_cej_2024_153671 crossref_primary_10_1002_ange_202105750 crossref_primary_10_1016_j_est_2024_110671 crossref_primary_10_1016_j_ijhydene_2022_12_292 crossref_primary_10_1002_adma_202401288 crossref_primary_10_1039_D4MH01479K crossref_primary_10_1007_s40242_025_4207_9 crossref_primary_10_1021_acsmaterialslett_1c00375 crossref_primary_10_1002_adfm_202401027 crossref_primary_10_1021_acs_est_3c05509 crossref_primary_10_1016_j_xcrp_2022_100880 crossref_primary_10_1002_anie_202313099 crossref_primary_10_1002_aenm_202103097 crossref_primary_10_1002_ange_202425063 crossref_primary_10_1016_j_seppur_2024_126693 crossref_primary_10_1021_acs_jpcc_4c07614 crossref_primary_10_1016_j_jechem_2021_03_011 crossref_primary_10_1039_D3TA02450D crossref_primary_10_1016_j_apcatb_2023_122778 crossref_primary_10_1016_j_mtcomm_2021_102286 crossref_primary_10_1016_j_apcata_2023_119254 crossref_primary_10_1016_j_nanoms_2019_10_008 crossref_primary_10_1016_j_nanoen_2021_106488 crossref_primary_10_1021_acs_langmuir_1c01866 crossref_primary_10_1016_j_mtener_2022_101017 crossref_primary_10_1016_j_mtener_2022_101138 crossref_primary_10_1016_j_cej_2023_142593 crossref_primary_10_1002_cctc_202300849 crossref_primary_10_1016_j_mtsust_2022_100288 crossref_primary_10_1039_D0CC03977B crossref_primary_10_1021_acsami_1c15554 crossref_primary_10_1016_j_jhazmat_2020_122511 crossref_primary_10_1149_1945_7111_ac96a9 crossref_primary_10_1016_j_cej_2025_159479 crossref_primary_10_1021_acsomega_2c01562 crossref_primary_10_1002_ange_202314303 crossref_primary_10_1021_acs_chemrev_0c00594 crossref_primary_10_1016_j_jechem_2021_04_041 crossref_primary_10_1021_acs_jpclett_9b01892 crossref_primary_10_1007_s12274_024_6414_y crossref_primary_10_1021_acs_energyfuels_4c05389 crossref_primary_10_1016_j_jechem_2020_03_003 crossref_primary_10_1016_j_jelechem_2022_116024 crossref_primary_10_1016_j_nanoen_2020_105085 crossref_primary_10_1002_adma_202404659 crossref_primary_10_1002_smll_202304863 crossref_primary_10_1021_acs_est_1c01189 crossref_primary_10_1021_acssuschemeng_2c01010 crossref_primary_10_1021_acs_chemmater_3c01171 crossref_primary_10_1002_anie_201905645 crossref_primary_10_1016_j_nxmate_2024_100457 crossref_primary_10_1021_acsami_4c17626 crossref_primary_10_1016_j_ensm_2024_103240 crossref_primary_10_1039_D2TA06574F crossref_primary_10_1002_adma_202205324 crossref_primary_10_1002_adma_202100429 crossref_primary_10_1002_smll_202402050 crossref_primary_10_1016_j_cej_2022_136804 crossref_primary_10_1002_cctc_202200383 crossref_primary_10_1016_j_cogsc_2020_01_004 crossref_primary_10_1002_sus2_38 crossref_primary_10_1016_j_jechem_2021_11_018 crossref_primary_10_1002_aenm_202302007 crossref_primary_10_1007_s12274_021_3839_4 crossref_primary_10_1002_ange_202318924 crossref_primary_10_1063_5_0162029 crossref_primary_10_1002_adma_202004287 crossref_primary_10_1021_acscatal_9b01536 crossref_primary_10_1002_adma_202107088 crossref_primary_10_1016_j_ijhydene_2025_02_087 crossref_primary_10_1016_j_nanoms_2022_07_001 crossref_primary_10_1002_smll_202308080 crossref_primary_10_1016_j_xcrp_2020_100115 crossref_primary_10_1002_ange_202207268 crossref_primary_10_1093_nsr_nwae193 crossref_primary_10_1016_j_ccr_2022_214874 crossref_primary_10_1016_j_ijhydene_2022_11_048 crossref_primary_10_1002_adfm_202214215 crossref_primary_10_1016_j_apcatb_2023_122961 crossref_primary_10_1002_smtd_202301363 crossref_primary_10_1007_s12274_020_2689_9 crossref_primary_10_1002_anie_202109207 crossref_primary_10_1002_ange_202003842 crossref_primary_10_1021_acs_chemrev_2c00429 crossref_primary_10_1016_j_electacta_2020_136568 crossref_primary_10_1039_C9CS00869A crossref_primary_10_1002_adma_202003075 crossref_primary_10_1038_s41467_021_27640_7 crossref_primary_10_1021_acs_nanolett_3c04374 crossref_primary_10_1016_j_ccr_2022_214980 crossref_primary_10_1016_j_nanoen_2025_110665 crossref_primary_10_1002_anie_202111761 crossref_primary_10_1016_j_apsusc_2022_156048 crossref_primary_10_1021_jacs_3c00537 crossref_primary_10_34133_2020_9512763 crossref_primary_10_1002_adfm_202108381 crossref_primary_10_1021_acsami_0c08829 crossref_primary_10_1021_acs_chemrev_0c00576 crossref_primary_10_1021_acsaem_2c01987 crossref_primary_10_1016_j_electacta_2023_142549 crossref_primary_10_1016_j_nanoen_2019_103917 crossref_primary_10_1002_smsc_202000028 crossref_primary_10_1002_sstr_202100007 crossref_primary_10_1016_j_jpowsour_2021_229665 crossref_primary_10_1016_j_jechem_2021_05_046 crossref_primary_10_1016_j_ijhydene_2022_03_229 crossref_primary_10_1002_slct_202201425 crossref_primary_10_1002_anie_202100526 crossref_primary_10_1002_smll_202006178 crossref_primary_10_1021_acscatal_4c04297 crossref_primary_10_1016_j_jre_2024_06_017 crossref_primary_10_1016_j_jechem_2023_04_003 crossref_primary_10_1063_5_0054730 crossref_primary_10_1002_aenm_202000588 crossref_primary_10_1002_ange_202313099 crossref_primary_10_1016_j_jcat_2020_08_016 crossref_primary_10_1021_jacs_1c05032 crossref_primary_10_1021_acs_chemmater_3c00271 crossref_primary_10_1016_j_enchem_2022_100086 crossref_primary_10_1002_adma_202007090 crossref_primary_10_1021_acsami_3c11467 crossref_primary_10_1016_j_xcrp_2019_100004 crossref_primary_10_1039_D3EE04251K crossref_primary_10_1016_j_cclet_2022_06_073 crossref_primary_10_1007_s12274_021_3412_9 crossref_primary_10_1002_adfm_202111835 crossref_primary_10_1016_j_jechem_2021_01_032 crossref_primary_10_1002_smll_202303214 crossref_primary_10_1016_j_apcatb_2021_121058 crossref_primary_10_1016_j_carbon_2020_06_064 crossref_primary_10_1038_s41467_022_33442_2 crossref_primary_10_1016_j_mtener_2021_100834 crossref_primary_10_1021_acsnano_0c06610 crossref_primary_10_1016_j_jallcom_2022_163763 crossref_primary_10_1002_adsu_202000151 crossref_primary_10_1016_j_apcatb_2024_124151 crossref_primary_10_1007_s12274_024_6411_1 crossref_primary_10_1002_adfm_202100833 crossref_primary_10_1016_j_scib_2022_06_006 crossref_primary_10_1016_j_xcrp_2023_101737 crossref_primary_10_1039_D1TA09987F crossref_primary_10_1002_anie_202409000 crossref_primary_10_1002_smtd_202101324 crossref_primary_10_1039_D1CC03076K crossref_primary_10_1039_D3NR04244H crossref_primary_10_1002_aenm_202103588 crossref_primary_10_1002_adfm_202404484 crossref_primary_10_1021_acsaem_0c03092 crossref_primary_10_1021_acsnano_2c02464 crossref_primary_10_1103_PhysRevB_104_235157 crossref_primary_10_1002_ange_202008787 crossref_primary_10_1021_acs_nanolett_2c01229 crossref_primary_10_1002_adma_202101038 crossref_primary_10_1016_j_mtener_2021_100721 crossref_primary_10_1002_eem2_12085 crossref_primary_10_1002_adfm_202301229 crossref_primary_10_1002_admi_202002159 crossref_primary_10_1021_acscatal_2c01861 crossref_primary_10_1007_s41918_022_00142_w crossref_primary_10_1021_acsami_2c05343 crossref_primary_10_1039_D2TA00747A crossref_primary_10_1016_j_jece_2024_115067 crossref_primary_10_1039_D0CS00071J crossref_primary_10_1016_j_jallcom_2022_168069 crossref_primary_10_1016_j_apcatb_2023_122801 crossref_primary_10_1039_D0CS01032D crossref_primary_10_1038_s41557_021_00734_x crossref_primary_10_1002_cctc_202001255 crossref_primary_10_1021_acsnano_9b02930 crossref_primary_10_1021_acs_jpcc_2c06266 crossref_primary_10_1039_C9CC07489A crossref_primary_10_1002_advs_202203391 crossref_primary_10_1002_marc_202200392 crossref_primary_10_1002_smll_202202522 crossref_primary_10_1021_acssuschemeng_1c05882 crossref_primary_10_1021_acsami_3c12518 crossref_primary_10_1002_cjoc_202200661 crossref_primary_10_1007_s40820_021_00768_3 crossref_primary_10_1016_j_cej_2024_155203 crossref_primary_10_1016_j_jcis_2022_09_035 crossref_primary_10_1002_ange_202211396 crossref_primary_10_1002_adma_202209948 crossref_primary_10_1016_j_jechem_2020_06_018 crossref_primary_10_1002_smll_202304750 crossref_primary_10_1039_D0TA08115A crossref_primary_10_1021_acs_est_0c08805 crossref_primary_10_1002_smtd_201900540 crossref_primary_10_1002_anie_202006175 crossref_primary_10_1021_acsaem_2c04017 crossref_primary_10_1016_j_nanoms_2021_03_006 crossref_primary_10_1021_acsami_3c04602 crossref_primary_10_1016_j_cej_2023_146556 crossref_primary_10_1038_s41467_023_43678_1 crossref_primary_10_1021_acsami_1c12329 crossref_primary_10_1016_j_ccr_2022_214493 crossref_primary_10_1016_j_cclet_2021_10_004 crossref_primary_10_1016_j_seppur_2020_118025 crossref_primary_10_1002_ange_202409000 crossref_primary_10_1002_advs_202310202 crossref_primary_10_1021_acs_chemrev_4c00155 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1016_j_scitotenv_2022_155670 crossref_primary_10_1016_j_apcatb_2019_118347 crossref_primary_10_1016_j_carbon_2021_07_064 crossref_primary_10_1016_j_cej_2022_136078 crossref_primary_10_1039_D1TA07778C crossref_primary_10_1016_j_cej_2020_127917 crossref_primary_10_1002_adma_202311102 crossref_primary_10_1016_j_cclet_2019_12_004 crossref_primary_10_1039_D1CY01742J crossref_primary_10_1016_j_apcatb_2024_124249 crossref_primary_10_1016_j_mtnano_2024_100466 crossref_primary_10_1002_ange_202109058 crossref_primary_10_1016_j_ijhydene_2024_01_183 crossref_primary_10_1039_D2NR01655A crossref_primary_10_1039_D4QM00285G crossref_primary_10_1021_jacs_3c05371 crossref_primary_10_1016_j_jcat_2021_03_002 crossref_primary_10_1002_ange_202006175 crossref_primary_10_1016_j_jelechem_2021_115956 crossref_primary_10_1021_acsomega_1c07298 crossref_primary_10_1103_PhysRevB_106_235402 crossref_primary_10_3390_pr11020361 crossref_primary_10_1021_accountsmr_1c00135 crossref_primary_10_1002_adfm_202209273 crossref_primary_10_1039_C9TA08532G crossref_primary_10_1021_acscatal_0c01647 crossref_primary_10_1021_acsanm_3c02948 crossref_primary_10_1038_s41929_021_00650_w crossref_primary_10_1002_inf2_12268 crossref_primary_10_1021_acs_jpcc_4c06149 crossref_primary_10_26599_NR_2025_94907133 crossref_primary_10_1002_ange_202304229 crossref_primary_10_1021_acs_energyfuels_1c03923 crossref_primary_10_1039_D2SC04776D crossref_primary_10_1016_j_colsurfa_2020_125895 crossref_primary_10_1016_j_jpowsour_2022_231058 crossref_primary_10_1021_acscatal_0c03831 crossref_primary_10_1016_j_nanoen_2021_106187 crossref_primary_10_1002_advs_202302930 crossref_primary_10_1021_acsami_0c21641 crossref_primary_10_1039_D1GC04285H crossref_primary_10_1002_smll_202006473 crossref_primary_10_1016_j_cej_2021_132307 crossref_primary_10_1021_acsami_0c04169 crossref_primary_10_1039_D4QI01190B crossref_primary_10_1002_adma_202409369 crossref_primary_10_1002_ange_202400765 crossref_primary_10_1016_j_apcatb_2020_119861 crossref_primary_10_1039_D0SC04512H crossref_primary_10_1002_anie_202109058 crossref_primary_10_1021_acs_nanolett_0c02167 crossref_primary_10_1039_D0TA03457F crossref_primary_10_1038_s44160_022_00129_x crossref_primary_10_1039_D1EE00271F crossref_primary_10_1016_j_apcatb_2019_118207 crossref_primary_10_1016_j_pmatsci_2022_101044 crossref_primary_10_1016_j_nanoen_2022_107206 crossref_primary_10_1002_cey2_695 crossref_primary_10_1016_j_seppur_2022_120922 crossref_primary_10_1016_j_talanta_2024_126496 crossref_primary_10_1016_j_micromeso_2022_111865 crossref_primary_10_1002_smll_202303598 crossref_primary_10_1142_S1793604721300073 crossref_primary_10_1002_adma_202304713 crossref_primary_10_1002_anie_202008787 crossref_primary_10_1021_acsami_2c10947 crossref_primary_10_1016_j_apsusc_2023_157154 crossref_primary_10_1016_j_pmatsci_2020_100711 crossref_primary_10_1016_j_cej_2023_146403 crossref_primary_10_1016_j_jece_2024_114286 crossref_primary_10_1039_D2CC06503G crossref_primary_10_1016_j_jpha_2021_09_007 crossref_primary_10_1016_j_jece_2025_115439 crossref_primary_10_1039_D0CY00540A crossref_primary_10_1002_aesr_202300168 crossref_primary_10_1016_j_partic_2021_02_002 crossref_primary_10_1039_D0CC04779A crossref_primary_10_1016_j_jechem_2020_06_059 crossref_primary_10_1039_D1CY01537K crossref_primary_10_1002_anie_202400765 crossref_primary_10_1016_j_est_2024_113197 crossref_primary_10_1021_acscatal_0c02643 crossref_primary_10_1021_acs_jpcc_2c07160 crossref_primary_10_1038_s44160_022_00193_3 crossref_primary_10_1039_D3CP04243J crossref_primary_10_1021_acsnano_2c02324 crossref_primary_10_1002_adma_201906905 crossref_primary_10_1016_j_cclet_2022_06_024 crossref_primary_10_1002_aic_17877 crossref_primary_10_1021_acs_energyfuels_3c02017 crossref_primary_10_1039_D2NR00994C crossref_primary_10_1002_adma_202103186 crossref_primary_10_1002_adfm_202009197 crossref_primary_10_1016_j_apsusc_2020_146624 crossref_primary_10_1016_j_apsusc_2024_160496 crossref_primary_10_1021_acs_energyfuels_4c04644 crossref_primary_10_1088_1742_6596_2194_1_012048 crossref_primary_10_1021_acs_analchem_9b02901 crossref_primary_10_1016_j_cej_2024_158343 crossref_primary_10_1016_j_colsurfa_2021_126608 crossref_primary_10_1021_acs_energyfuels_1c00448 crossref_primary_10_1016_j_nanoen_2020_105689 crossref_primary_10_1038_s41467_020_14848_2 crossref_primary_10_1039_D2NR01986H crossref_primary_10_1007_s12274_022_4502_4 crossref_primary_10_1016_j_isci_2022_104367 crossref_primary_10_1007_s40843_020_1334_6 crossref_primary_10_1007_s12274_022_4235_4 crossref_primary_10_1039_D4TA05064A crossref_primary_10_1002_anie_202304229 crossref_primary_10_1016_j_cej_2021_129973 crossref_primary_10_1021_acscatal_3c04976 crossref_primary_10_1021_acscatal_3c01466 crossref_primary_10_1039_D2QI00876A crossref_primary_10_1002_slct_202000844 crossref_primary_10_1016_j_watres_2024_122612 crossref_primary_10_1039_C9QI00297A crossref_primary_10_1007_s12598_024_03053_5 crossref_primary_10_1021_jacs_9b12642 crossref_primary_10_1002_smll_202204767 crossref_primary_10_1002_cnma_202000436 crossref_primary_10_1016_j_ensm_2023_102890 crossref_primary_10_1021_acsami_9b14839 crossref_primary_10_1021_jacs_9b09352 crossref_primary_10_1039_D1TA03375A crossref_primary_10_1142_S1088424624500597 crossref_primary_10_1016_j_diamond_2021_108431 crossref_primary_10_1016_j_jcat_2021_05_025 crossref_primary_10_1007_s11426_020_9835_8 crossref_primary_10_1039_D0NR04391E crossref_primary_10_1038_s41467_020_19599_8 crossref_primary_10_1002_aenm_202101222 crossref_primary_10_1038_s41467_021_22122_2 crossref_primary_10_3390_catal11121470 crossref_primary_10_1016_j_nanoen_2021_105817 crossref_primary_10_1021_acs_jpclett_3c02308 crossref_primary_10_1002_smll_202204559 crossref_primary_10_1007_s12274_022_4501_5 crossref_primary_10_1021_acs_nanolett_4c01846 crossref_primary_10_1002_aenm_202201278 crossref_primary_10_1039_D1CS00421B crossref_primary_10_1021_acs_nanolett_1c00432 crossref_primary_10_1021_acssuschemeng_2c00878 crossref_primary_10_1016_j_ensm_2021_11_050 crossref_primary_10_1021_acsami_0c01206 crossref_primary_10_1039_D1TA10874C crossref_primary_10_1038_s41467_021_21919_5 crossref_primary_10_1002_ange_202116068 crossref_primary_10_3390_catal13040651 crossref_primary_10_1002_smll_202204782 crossref_primary_10_1016_j_electacta_2020_135848 crossref_primary_10_1021_jacs_0c07790 crossref_primary_10_1002_anie_202501506 crossref_primary_10_1007_s11426_019_9703_7 crossref_primary_10_1016_j_nanoen_2020_105533 crossref_primary_10_1039_D3TA07016F crossref_primary_10_1002_anie_202308070 crossref_primary_10_1021_jacs_9b09572 crossref_primary_10_1021_acscatal_9b04217 crossref_primary_10_1021_acsami_2c11201 crossref_primary_10_1039_C9GC03553B crossref_primary_10_1007_s40843_021_1699_4 crossref_primary_10_1021_acs_jpcc_1c03790 crossref_primary_10_1016_j_cej_2024_148856 crossref_primary_10_1002_anie_202003842 crossref_primary_10_1038_s41467_020_14917_6 crossref_primary_10_1021_acsami_4c12959 crossref_primary_10_1007_s40820_021_00679_3 crossref_primary_10_1039_D1CY01442K crossref_primary_10_1039_D4TA05189K crossref_primary_10_1002_smll_202105387 crossref_primary_10_1016_j_jpowsour_2022_232434 crossref_primary_10_1002_chem_202100996 crossref_primary_10_1016_j_apcatb_2020_118593 crossref_primary_10_1021_acs_inorgchem_0c02420 crossref_primary_10_1039_D1NJ01380G crossref_primary_10_1021_acsanm_0c02698 crossref_primary_10_1038_s41565_021_01022_y crossref_primary_10_1016_j_carbon_2021_12_096 crossref_primary_10_1002_asia_202200390 crossref_primary_10_1021_acsami_0c21597 crossref_primary_10_1039_D3TA05199D crossref_primary_10_1002_cey2_74 crossref_primary_10_1039_D3GC00737E crossref_primary_10_1002_smll_202006860 crossref_primary_10_1039_D0TA08732G crossref_primary_10_1002_ange_202100526 crossref_primary_10_1016_j_jallcom_2024_177670 crossref_primary_10_1016_j_seppur_2022_122113 crossref_primary_10_1002_smtd_201900159 crossref_primary_10_1016_j_electacta_2023_142083 crossref_primary_10_1002_smll_202300926 crossref_primary_10_1016_j_cej_2022_135271 crossref_primary_10_1002_aenm_202100683 crossref_primary_10_1002_anie_202207268 crossref_primary_10_1039_D4IM00014E crossref_primary_10_1002_ange_202109207 crossref_primary_10_1002_anie_202308091 crossref_primary_10_1002_smll_202004579 crossref_primary_10_1016_j_seppur_2021_118717 crossref_primary_10_1002_anie_202105750 crossref_primary_10_1016_j_cej_2020_127181 crossref_primary_10_1002_ange_202111761 crossref_primary_10_1021_acs_jpclett_4c03682 crossref_primary_10_1016_j_cclet_2022_108050 crossref_primary_10_1039_C9TA12468C crossref_primary_10_1016_j_apcatb_2024_123783 crossref_primary_10_1016_j_ijhydene_2021_08_163 crossref_primary_10_1002_smll_202201361 crossref_primary_10_1016_j_apcatb_2021_120977 crossref_primary_10_1002_sstr_202000138 crossref_primary_10_1016_j_ccr_2023_215209 crossref_primary_10_1002_adma_202202714 crossref_primary_10_1016_j_scib_2023_02_028 crossref_primary_10_1016_j_cclet_2023_108142 crossref_primary_10_1016_j_cej_2021_130541 crossref_primary_10_1016_j_jcis_2023_06_101 crossref_primary_10_1039_D1TA00154J crossref_primary_10_1002_ange_201905645 crossref_primary_10_1007_s12598_024_02727_4 crossref_primary_10_1038_s41467_023_42756_8 crossref_primary_10_1016_j_cclet_2021_07_050 crossref_primary_10_1016_j_jhazmat_2023_131333 crossref_primary_10_1039_C9EE02974E crossref_primary_10_1016_j_apcatb_2024_124783 crossref_primary_10_1021_acsnano_3c04581 crossref_primary_10_1039_D2CS00191H crossref_primary_10_1039_D4CP00929K crossref_primary_10_1016_j_apcatb_2024_123695 crossref_primary_10_1103_PhysRevB_103_155411 crossref_primary_10_1002_anie_202314303 crossref_primary_10_1002_anie_202208215 crossref_primary_10_1016_j_checat_2024_101028 crossref_primary_10_1021_acscatal_9b03175 crossref_primary_10_1002_aenm_202202054 crossref_primary_10_1021_jacs_9b11852 crossref_primary_10_3390_inorganics11070300 crossref_primary_10_1016_j_apsusc_2020_148742 crossref_primary_10_1021_acsami_4c07003 crossref_primary_10_1039_C9TA06435D crossref_primary_10_1007_s12274_021_3964_0 crossref_primary_10_1038_s41467_024_46175_1 |
Cites_doi | 10.1063/1.3257621 10.1021/ja049436v 10.1039/C6SC02105K 10.1016/0008-6215(95)00050-4 10.1038/s41467-017-01521-4 10.1039/C4CP01455C 10.1021/cs200652y 10.1103/PhysRevB.55.2570 10.1038/s41565-018-0089-z 10.1002/anie.201808049 10.1039/B713096A 10.1002/smll.201700191 10.1002/adma.201706508 10.1021/jacs.6b00757 10.1021/ja505777v 10.1126/science.aaf5251 10.1038/ncomms13285 10.1002/adma.201402978 10.1021/ar300361m 10.1002/adma.201606550 10.1126/sciadv.aap7970 10.1002/anie.201703864 10.1038/ncomms15938 10.1038/nature24640 10.1021/ja907098f 10.1126/science.1200832 10.1038/ncomms13638 10.1002/anie.201311111 10.1007/BF02063547 10.1021/ja910094r 10.1021/la900923z 10.1038/s41929-018-0063-z 10.1038/s41467-018-03138-7 10.1126/science.1253150 10.1126/sciadv.1500462 10.1038/nmat2384 10.1126/science.1185200 10.1038/ncomms5885 10.1021/jacs.8b07294 10.1021/ar3002427 10.1016/S0020-1693(00)82085-X 10.1002/anie.201702473 10.1126/science.aaf8800 10.1038/nnano.2012.72 10.1093/nsr/nwv024 10.1038/s41467-017-01035-z 10.1002/anie.201604802 10.1038/s41929-017-0008-y 10.1002/aenm.201501794 10.1021/jacs.6b02692 10.1038/ncomms10922 10.1021/ar800078m 10.1021/ja408574m 10.1126/science.aan2255 10.1002/smll.201402069 10.1038/ncomms3076 10.1038/ncomms9668 10.1126/science.1159639 10.1021/jacs.7b01686 10.1038/nchem.1095 10.1126/science.1075094 10.1002/adfm.201605785 10.1038/nmat4757 10.1126/sciadv.1400129 10.1002/adma.201505281 10.1038/s41565-018-0197-9 10.1021/ja039037k 10.1039/c0jm03613g 10.1126/science.aac6368 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-019-09290-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_ee6594d9ca654f159a3278748f9567d5 PMC6426845 1559195 30894539 10_1038_s41467_019_09290_y |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 AAADF AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c633t-df9d67d34c76f820f0212071b264ea0141913a220de792dcdc5c1c388e2d096b3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:23:16 EDT 2025 Thu Aug 21 18:24:55 EDT 2025 Mon Jul 03 03:58:34 EDT 2023 Fri Jul 11 01:11:49 EDT 2025 Wed Aug 13 05:12:23 EDT 2025 Thu Apr 03 07:06:24 EDT 2025 Thu Apr 24 22:53:02 EDT 2025 Tue Jul 01 02:21:25 EDT 2025 Fri Feb 21 02:38:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-df9d67d34c76f820f0212071b264ea0141913a220de792dcdc5c1c388e2d096b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231 USDOE Office of Science (SC) |
ORCID | 0000-0003-0666-8063 0000-0002-7504-031X 0000-0002-7082-4123 0000000306668063 0000000270824123 000000027504031X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-09290-y |
PMID | 30894539 |
PQID | 2194563920 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ee6594d9ca654f159a3278748f9567d5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6426845 osti_scitechconnect_1559195 proquest_miscellaneous_2195257653 proquest_journals_2194563920 pubmed_primary_30894539 crossref_citationtrail_10_1038_s41467_019_09290_y crossref_primary_10_1038_s41467_019_09290_y springer_journals_10_1038_s41467_019_09290_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-20 |
PublicationDateYYYYMMDD | 2019-03-20 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Ju (CR25) 2017; 8 Jones (CR5) 2016; 353 Liu (CR31) 2017; 16 Wei (CR19) 2017; 8 Jiang (CR49) 2018; 140 Liu (CR9) 2016; 352 Wang (CR66) 2014; 136 Zhu, Fu, Shi, Du, Lin (CR2) 2017; 56 Wu (CR60) 2011; 21 Risse, Shaikhutdinov, Nilius, Sterrer, Freund (CR45) 2008; 41 Chen (CR68) 2017; 56 Simonsen (CR43) 2010; 132 Gao, Jiao, Waclawik, Du (CR16) 2016; 138 Wang, Maiyalagan, Wang (CR58) 2012; 2 Cao (CR50) 2013; 4 Wei (CR63) 2018; 13 Cheng (CR17) 2016; 7 Yang (CR1) 2013; 46 Campbell, Parker, Starr (CR42) 2002; 298 Zhou (CR52) 2014; 16 Shui, Wang, Du, Dai (CR65) 2015; 1 Cook, Liu, Yang, Himpsel (CR53) 2009; 131 Peterson (CR11) 2014; 5 Li (CR35) 2012; 7 Wang (CR24) 2018; 4 Li (CR69) 2015; 11 Yang (CR54) 2018; 57 Vajda (CR4) 2009; 8 Zou (CR57) 2014; 53 Hansen, DeLaRiva, Challa, Datye (CR44) 2013; 46 Xu, Cheng, Cao, Zeng (CR37) 2018; 1 Yan, Li, Zou (CR62) 2009; 25 Nagy (CR47) 1986; 124 Genovese (CR36) 2018; 9 Shi (CR27) 2014; 26 Liu (CR23) 2017; 8 Shi (CR26) 2017; 29 Cheon (CR51) 2016; 6 Li (CR6) 2018; 13 Choi (CR32) 2016; 7 Guo (CR14) 2014; 344 Chung (CR20) 2017; 357 Jiang (CR67) 2016; 138 Shan, Li, Allard, Lee, Flytzani-Stephanopoulos (CR10) 2017; 551 Lin (CR13) 2013; 135 Han (CR22) 2018; 30 Malko, Kucernak, Lopes (CR34) 2016; 7 Geetha, Raghavan, Kulshreshtha, Sasikala, Rao (CR46) 1995; 271 Li (CR56) 2009; 131 Deng (CR38) 2015; 1 Wu, More, Johnston, Zelenay (CR64) 2011; 332 Lee, Fan, Wu, Anderson (CR29) 2004; 126 Qiao (CR8) 2011; 3 Yang, Deng, Pan, Fu, Bao (CR7) 2015; 2 Nagy, Gajda, Kürti, Schrantz, Burger (CR48) 1996; 209 Judai, Abbet, Wörz, Heiz, Henry (CR28) 2004; 126 Wu (CR61) 1997; 55 Wang (CR55) 2017; 139 Herzing, Kiely, Carley, Landon, Hutchings (CR3) 2008; 321 Bayatsarmadi, Zheng, Vasileff, Qiao (CR18) 2017; 13 Yin (CR21) 2016; 55 Fei (CR33) 2015; 6 Lei (CR30) 2010; 328 Chen (CR40) 2017; 27 Yang, Liu, Kariuki, Chen (CR59) 2008; 21 Li (CR15) 2016; 28 Fei (CR41) 2018; 1 Ding (CR12) 2015; 350 Liu (CR39) 2016; 7 C Zhu (9290_CR2) 2017; 56 G Wu (9290_CR64) 2011; 332 EJ Peterson (9290_CR11) 2014; 5 D Deng (9290_CR38) 2015; 1 H Xu (9290_CR37) 2018; 1 X Zou (9290_CR57) 2014; 53 CH Choi (9290_CR32) 2016; 7 J Yang (9290_CR54) 2018; 57 J Yang (9290_CR59) 2008; 21 B Qiao (9290_CR8) 2011; 3 G Gao (9290_CR16) 2016; 138 R Jiang (9290_CR49) 2018; 140 AA Herzing (9290_CR3) 2008; 321 JY Cheon (9290_CR51) 2016; 6 SB Simonsen (9290_CR43) 2010; 132 Y Chen (9290_CR68) 2017; 56 Q Li (9290_CR69) 2015; 11 CT Campbell (9290_CR42) 2002; 298 TW Hansen (9290_CR44) 2013; 46 R Cao (9290_CR50) 2013; 4 A Han (9290_CR22) 2018; 30 T Risse (9290_CR45) 2008; 41 N Cheng (9290_CR17) 2016; 7 J Shui (9290_CR65) 2015; 1 X Wang (9290_CR55) 2017; 139 K Ding (9290_CR12) 2015; 350 H Fei (9290_CR41) 2018; 1 F Yang (9290_CR7) 2015; 2 H Wei (9290_CR19) 2017; 8 S Wei (9290_CR63) 2018; 13 J Liu (9290_CR23) 2017; 8 L Liu (9290_CR31) 2017; 16 H Fei (9290_CR33) 2015; 6 K Geetha (9290_CR46) 1995; 271 PL Cook (9290_CR53) 2009; 131 W Ju (9290_CR25) 2017; 8 Y Shi (9290_CR27) 2014; 26 HT Chung (9290_CR20) 2017; 357 J Zhou (9290_CR52) 2014; 16 P Liu (9290_CR9) 2016; 352 G Wu (9290_CR60) 2011; 21 H Li (9290_CR6) 2018; 13 B Bayatsarmadi (9290_CR18) 2017; 13 S Vajda (9290_CR4) 2009; 8 D Malko (9290_CR34) 2016; 7 J Jones (9290_CR5) 2016; 353 L Nagy (9290_CR47) 1986; 124 ZY Wu (9290_CR61) 1997; 55 P Yin (9290_CR21) 2016; 55 J Wang (9290_CR24) 2018; 4 J Shan (9290_CR10) 2017; 551 C Genovese (9290_CR36) 2018; 9 Y Lei (9290_CR30) 2010; 328 W Liu (9290_CR39) 2016; 7 XF Yang (9290_CR1) 2013; 46 K Judai (9290_CR28) 2004; 126 L Nagy (9290_CR48) 1996; 209 S Lee (9290_CR29) 2004; 126 X Li (9290_CR15) 2016; 28 MM Shi (9290_CR26) 2017; 29 Y Li (9290_CR35) 2012; 7 SC Yan (9290_CR62) 2009; 25 WJ Jiang (9290_CR67) 2016; 138 H Wang (9290_CR58) 2012; 2 Q Wang (9290_CR66) 2014; 136 J Lin (9290_CR13) 2013; 135 X Li (9290_CR56) 2009; 131 Z Chen (9290_CR40) 2017; 27 X Guo (9290_CR14) 2014; 344 |
References_xml | – volume: 131 start-page: 194701 year: 2009 ident: CR53 article-title: X-ray absorption spectroscopy of biomimetic dye molecules for solar cells publication-title: J. Chem. Phys. doi: 10.1063/1.3257621 – volume: 126 start-page: 5682 year: 2004 end-page: 5683 ident: CR29 article-title: CO oxidation on Aun/TiO catalysts produced by size-selected cluster deposition publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049436v – volume: 7 start-page: 5758 year: 2016 end-page: 5764 ident: CR39 article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes publication-title: Chem. Sci. doi: 10.1039/C6SC02105K – volume: 271 start-page: 163 year: 1995 end-page: 175 ident: CR46 article-title: Transition-metal saccharide chemistry: synthesis, spectroscopy, electrochemistry and magnetic susceptibility studies of iron(III) complexes of mono- and disaccharides publication-title: Carbohydr. Res. doi: 10.1016/0008-6215(95)00050-4 – volume: 8 year: 2017 ident: CR19 article-title: Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth publication-title: Nat. Commun. doi: 10.1038/s41467-017-01521-4 – volume: 16 start-page: 15787 year: 2014 end-page: 15791 ident: CR52 article-title: Fe–N bonding in a carbon nanotube–graphene complex for oxygen reduction: an XAS study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01455C – volume: 2 start-page: 781 year: 2012 end-page: 794 ident: CR58 article-title: Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications publication-title: ACS Catal. doi: 10.1021/cs200652y – volume: 55 start-page: 2570 year: 1997 end-page: 2577 ident: CR61 article-title: Characterization of iron oxides by x-ray absorption at the oxygen K edgeusing a full multiple-scattering approach publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.2570 – volume: 13 start-page: 411 year: 2018 end-page: 417 ident: CR6 article-title: Synergetic interaction between neighbouring platinum monomers in CO hydrogenation publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 57 start-page: 14095 year: 2018 end-page: 14100 ident: CR54 article-title: In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808049 – volume: 21 start-page: 329 year: 2008 end-page: 331 ident: CR59 article-title: Aligned carbon nanotubes with built-in FeN4 active sites for electrocatalytic reduction of oxygen publication-title: Chem. Commun. doi: 10.1039/B713096A – volume: 13 start-page: 1700191 year: 2017 ident: CR18 article-title: Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion publication-title: Small doi: 10.1002/smll.201700191 – volume: 30 start-page: 1706508 year: 2018 ident: CR22 article-title: A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts publication-title: Adv. Mater. doi: 10.1002/adma.201706508 – volume: 138 start-page: 3570 year: 2016 end-page: 3578 ident: CR67 article-title: Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe C nanoparticles boost the activity of Fe–N publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00757 – volume: 136 start-page: 10882 year: 2014 end-page: 10885 ident: CR66 article-title: Phenylenediamine-based FeN /C catalyst with high activity for oxygen reduction in acid medium and its active-site probing publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505777v – volume: 352 start-page: 797 year: 2016 end-page: 800 ident: CR9 article-title: Photochemical route for synthesizing atomically dispersed palladium catalysts publication-title: Science doi: 10.1126/science.aaf5251 – volume: 7 year: 2016 ident: CR34 article-title: In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts publication-title: Nat. Commun. doi: 10.1038/ncomms13285 – volume: 26 start-page: 8147 year: 2014 ident: CR27 article-title: Single-atom catalysis in mesoporous photovoltaics: The principle of utility maximization publication-title: Adv. Mater. doi: 10.1002/adma.201402978 – volume: 46 start-page: 1740 year: 2013 end-page: 1748 ident: CR1 article-title: Single-atom catalysts: A new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 29 start-page: 1606550 year: 2017 ident: CR26 article-title: Au sub-nanoclusters on TiO toward highly efficient and selective electrocatalyst for N conversion to NH at ambient conditions publication-title: Adv. Mater. doi: 10.1002/adma.201606550 – volume: 4 start-page: eaap7970 year: 2018 ident: CR24 article-title: In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution publication-title: Sci. Adv. doi: 10.1126/sciadv.aap7970 – volume: 56 start-page: 13944 year: 2017 end-page: 13960 ident: CR2 article-title: Single-atom electrocatalysts publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703864 – volume: 8 year: 2017 ident: CR23 article-title: High performance platinum single atom electrocatalyst for oxygen reduction reaction publication-title: Nat. Commun. doi: 10.1038/ncomms15938 – volume: 551 start-page: 605 year: 2017 end-page: 608 ident: CR10 article-title: Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts publication-title: Nature doi: 10.1038/nature24640 – volume: 131 start-page: 15939 year: 2009 end-page: 15944 ident: CR56 article-title: Simultaneous nitrogen doping and reduction of graphene oxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907098f – volume: 332 start-page: 443 year: 2011 end-page: 447 ident: CR64 article-title: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt publication-title: Science doi: 10.1126/science.1200832 – volume: 7 year: 2016 ident: CR17 article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 53 start-page: 4372 year: 2014 end-page: 4376 ident: CR57 article-title: Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at All pH values publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311111 – volume: 209 start-page: 225 year: 1996 end-page: 234 ident: CR48 article-title: Spectroscopic studies of iron(III) complexes of D-saccharose and D-glucose in the solid state and in solution publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/BF02063547 – volume: 132 start-page: 7968 year: 2010 end-page: 7975 ident: CR43 article-title: Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910094r – volume: 25 start-page: 10397 year: 2009 end-page: 10401 ident: CR62 article-title: Photodegradation performance of g-C N fabricated by directly heating melamine publication-title: Langmuir doi: 10.1021/la900923z – volume: 1 start-page: 339 year: 2018 end-page: 348 ident: CR37 article-title: A universal principle for a rational design of single-atom electrocatalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 9 year: 2018 ident: CR36 article-title: Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon publication-title: Nat. Commun. doi: 10.1038/s41467-018-03138-7 – volume: 344 start-page: 616 year: 2014 end-page: 619 ident: CR14 article-title: Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen publication-title: Science doi: 10.1126/science.1253150 – volume: 1 start-page: e1500462 year: 2015 ident: CR38 article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature publication-title: Sci. Adv. doi: 10.1126/sciadv.1500462 – volume: 8 start-page: 213 year: 2009 end-page: 216 ident: CR4 article-title: Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane publication-title: Nat. Mater. doi: 10.1038/nmat2384 – volume: 328 start-page: 224 year: 2010 end-page: 228 ident: CR30 article-title: Increased silver activity for direct propylene epoxidation via subnanometer size effects publication-title: Science doi: 10.1126/science.1185200 – volume: 5 year: 2014 ident: CR11 article-title: Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina publication-title: Nat. Commun. doi: 10.1038/ncomms5885 – volume: 140 start-page: 11594 year: 2018 end-page: 11598 ident: CR49 article-title: Edge-site engineering of atomically dispersed Fe–N by selective C–N bond cleavage for enhanced oxygen reduction reaction activities publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07294 – volume: 46 start-page: 1720 year: 2013 end-page: 1730 ident: CR44 article-title: Sintering of catalytic nanoparticles: Particle migration or ostwald ripening? publication-title: Acc. Chem. Res. doi: 10.1021/ar3002427 – volume: 124 start-page: 55 year: 1986 end-page: 59 ident: CR47 article-title: Iron(III) complexes of sugar-type ligands publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)82085-X – volume: 56 start-page: 6937 year: 2017 end-page: 6941 ident: CR68 article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702473 – volume: 353 start-page: 150 year: 2016 end-page: 154 ident: CR5 article-title: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping publication-title: Science doi: 10.1126/science.aaf8800 – volume: 7 start-page: 394 year: 2012 end-page: 400 ident: CR35 article-title: An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.72 – volume: 2 start-page: 183 year: 2015 end-page: 201 ident: CR7 article-title: Understanding nano effects in catalysis publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwv024 – volume: 8 year: 2017 ident: CR25 article-title: Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO publication-title: Nat. Commun. doi: 10.1038/s41467-017-01035-z – volume: 55 start-page: 10800 year: 2016 end-page: 10805 ident: CR21 article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604802 – volume: 1 start-page: 63 year: 2018 end-page: 72 ident: CR41 article-title: General synthesis and definitive structural identification of MN C single-atom catalysts with tunable electrocatalytic activities publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 6 start-page: 1501794 year: 2016 ident: CR51 article-title: Graphitic nanoshell/mesoporous carbon nanohybrids as highly efficient and stable bifunctional oxygen electrocatalysts for rechargeable aqueous Na–air batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501794 – volume: 138 start-page: 6292 year: 2016 end-page: 6297 ident: CR16 article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02692 – volume: 7 year: 2016 ident: CR32 article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst publication-title: Nat. Commun. doi: 10.1038/ncomms10922 – volume: 41 start-page: 949 year: 2008 end-page: 956 ident: CR45 article-title: Gold supported on thin oxide films: From single atoms to nanoparticles publication-title: Acc. Chem. Res. doi: 10.1021/ar800078m – volume: 135 start-page: 15314 year: 2013 end-page: 15317 ident: CR13 article-title: Remarkable performance of Ir /FeO single-atom catalyst in water gas shift reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408574m – volume: 357 start-page: 479 year: 2017 end-page: 484 ident: CR20 article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst publication-title: Science doi: 10.1126/science.aan2255 – volume: 11 start-page: 1443 year: 2015 end-page: 1452 ident: CR69 article-title: Metal–organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts publication-title: Small doi: 10.1002/smll.201402069 – volume: 4 year: 2013 ident: CR50 article-title: Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst publication-title: Nat. Commun. doi: 10.1038/ncomms3076 – volume: 6 year: 2015 ident: CR33 article-title: Atomic cobalt on nitrogen-doped graphene for hydrogen generation publication-title: Nat. Commun. doi: 10.1038/ncomms9668 – volume: 321 start-page: 1331 year: 2008 end-page: 1335 ident: CR3 article-title: Identification of active gold nanoclusters on iron oxide supports for CO oxidation publication-title: Science doi: 10.1126/science.1159639 – volume: 139 start-page: 9419 year: 2017 end-page: 9422 ident: CR55 article-title: Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01686 – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: CR8 article-title: Single-atom catalysis of CO oxidation using Pt /FeO publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 298 start-page: 811 year: 2002 end-page: 814 ident: CR42 article-title: The effect of size-dependent nanoparticle energetics on catalyst sintering publication-title: Science doi: 10.1126/science.1075094 – volume: 27 start-page: 1605785 year: 2017 ident: CR40 article-title: Stabilization of single metal atoms on graphitic carbon nitride publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605785 – volume: 16 start-page: 132 year: 2017 end-page: 138 ident: CR31 article-title: Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D publication-title: Nat. Mater. doi: 10.1038/nmat4757 – volume: 1 start-page: e1400129 year: 2015 ident: CR65 article-title: N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells publication-title: Sci. Adv. doi: 10.1126/sciadv.1400129 – volume: 28 start-page: 2427 year: 2016 ident: CR15 article-title: Single-atom Pt as co-catalyst for enhanced photocatalytic H evolution publication-title: Adv. Mater. doi: 10.1002/adma.201505281 – volume: 13 start-page: 856 year: 2018 end-page: 861 ident: CR63 article-title: Direct observation of noble metal nanoparticles transforming to thermally stable single atoms publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0197-9 – volume: 126 start-page: 2732 year: 2004 end-page: 2737 ident: CR28 article-title: Low-temperature cluster catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja039037k – volume: 21 start-page: 11392 year: 2011 end-page: 11405 ident: CR60 article-title: Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells publication-title: J. Mater. Chem. doi: 10.1039/c0jm03613g – volume: 350 start-page: 189 year: 2015 end-page: 192 ident: CR12 article-title: Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts publication-title: Science doi: 10.1126/science.aac6368 – volume: 352 start-page: 797 year: 2016 ident: 9290_CR9 publication-title: Science doi: 10.1126/science.aaf5251 – volume: 46 start-page: 1740 year: 2013 ident: 9290_CR1 publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 13 start-page: 856 year: 2018 ident: 9290_CR63 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0197-9 – volume: 1 start-page: 63 year: 2018 ident: 9290_CR41 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 138 start-page: 6292 year: 2016 ident: 9290_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02692 – volume: 344 start-page: 616 year: 2014 ident: 9290_CR14 publication-title: Science doi: 10.1126/science.1253150 – volume: 139 start-page: 9419 year: 2017 ident: 9290_CR55 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01686 – volume: 13 start-page: 411 year: 2018 ident: 9290_CR6 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 55 start-page: 2570 year: 1997 ident: 9290_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.2570 – volume: 11 start-page: 1443 year: 2015 ident: 9290_CR69 publication-title: Small doi: 10.1002/smll.201402069 – volume: 350 start-page: 189 year: 2015 ident: 9290_CR12 publication-title: Science doi: 10.1126/science.aac6368 – volume: 5 year: 2014 ident: 9290_CR11 publication-title: Nat. Commun. doi: 10.1038/ncomms5885 – volume: 29 start-page: 1606550 year: 2017 ident: 9290_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.201606550 – volume: 7 year: 2016 ident: 9290_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms10922 – volume: 7 year: 2016 ident: 9290_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 1 start-page: e1500462 year: 2015 ident: 9290_CR38 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500462 – volume: 357 start-page: 479 year: 2017 ident: 9290_CR20 publication-title: Science doi: 10.1126/science.aan2255 – volume: 6 start-page: 1501794 year: 2016 ident: 9290_CR51 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501794 – volume: 1 start-page: 339 year: 2018 ident: 9290_CR37 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 2 start-page: 781 year: 2012 ident: 9290_CR58 publication-title: ACS Catal. doi: 10.1021/cs200652y – volume: 321 start-page: 1331 year: 2008 ident: 9290_CR3 publication-title: Science doi: 10.1126/science.1159639 – volume: 124 start-page: 55 year: 1986 ident: 9290_CR47 publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)82085-X – volume: 7 start-page: 394 year: 2012 ident: 9290_CR35 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.72 – volume: 271 start-page: 163 year: 1995 ident: 9290_CR46 publication-title: Carbohydr. Res. doi: 10.1016/0008-6215(95)00050-4 – volume: 4 year: 2013 ident: 9290_CR50 publication-title: Nat. Commun. doi: 10.1038/ncomms3076 – volume: 57 start-page: 14095 year: 2018 ident: 9290_CR54 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808049 – volume: 56 start-page: 6937 year: 2017 ident: 9290_CR68 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702473 – volume: 135 start-page: 15314 year: 2013 ident: 9290_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408574m – volume: 131 start-page: 194701 year: 2009 ident: 9290_CR53 publication-title: J. Chem. Phys. doi: 10.1063/1.3257621 – volume: 16 start-page: 15787 year: 2014 ident: 9290_CR52 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01455C – volume: 8 year: 2017 ident: 9290_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01035-z – volume: 53 start-page: 4372 year: 2014 ident: 9290_CR57 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311111 – volume: 3 start-page: 634 year: 2011 ident: 9290_CR8 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 4 start-page: eaap7970 year: 2018 ident: 9290_CR24 publication-title: Sci. Adv. doi: 10.1126/sciadv.aap7970 – volume: 28 start-page: 2427 year: 2016 ident: 9290_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201505281 – volume: 27 start-page: 1605785 year: 2017 ident: 9290_CR40 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605785 – volume: 7 year: 2016 ident: 9290_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms13285 – volume: 209 start-page: 225 year: 1996 ident: 9290_CR48 publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/BF02063547 – volume: 131 start-page: 15939 year: 2009 ident: 9290_CR56 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907098f – volume: 8 start-page: 213 year: 2009 ident: 9290_CR4 publication-title: Nat. Mater. doi: 10.1038/nmat2384 – volume: 8 year: 2017 ident: 9290_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms15938 – volume: 16 start-page: 132 year: 2017 ident: 9290_CR31 publication-title: Nat. Mater. doi: 10.1038/nmat4757 – volume: 126 start-page: 5682 year: 2004 ident: 9290_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049436v – volume: 551 start-page: 605 year: 2017 ident: 9290_CR10 publication-title: Nature doi: 10.1038/nature24640 – volume: 126 start-page: 2732 year: 2004 ident: 9290_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja039037k – volume: 132 start-page: 7968 year: 2010 ident: 9290_CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910094r – volume: 41 start-page: 949 year: 2008 ident: 9290_CR45 publication-title: Acc. Chem. Res. doi: 10.1021/ar800078m – volume: 1 start-page: e1400129 year: 2015 ident: 9290_CR65 publication-title: Sci. Adv. doi: 10.1126/sciadv.1400129 – volume: 13 start-page: 1700191 year: 2017 ident: 9290_CR18 publication-title: Small doi: 10.1002/smll.201700191 – volume: 26 start-page: 8147 year: 2014 ident: 9290_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201402978 – volume: 298 start-page: 811 year: 2002 ident: 9290_CR42 publication-title: Science doi: 10.1126/science.1075094 – volume: 46 start-page: 1720 year: 2013 ident: 9290_CR44 publication-title: Acc. Chem. Res. doi: 10.1021/ar3002427 – volume: 25 start-page: 10397 year: 2009 ident: 9290_CR62 publication-title: Langmuir doi: 10.1021/la900923z – volume: 55 start-page: 10800 year: 2016 ident: 9290_CR21 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604802 – volume: 7 start-page: 5758 year: 2016 ident: 9290_CR39 publication-title: Chem. Sci. doi: 10.1039/C6SC02105K – volume: 140 start-page: 11594 year: 2018 ident: 9290_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07294 – volume: 6 year: 2015 ident: 9290_CR33 publication-title: Nat. Commun. doi: 10.1038/ncomms9668 – volume: 2 start-page: 183 year: 2015 ident: 9290_CR7 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwv024 – volume: 353 start-page: 150 year: 2016 ident: 9290_CR5 publication-title: Science doi: 10.1126/science.aaf8800 – volume: 332 start-page: 443 year: 2011 ident: 9290_CR64 publication-title: Science doi: 10.1126/science.1200832 – volume: 56 start-page: 13944 year: 2017 ident: 9290_CR2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703864 – volume: 21 start-page: 329 year: 2008 ident: 9290_CR59 publication-title: Chem. Commun. doi: 10.1039/B713096A – volume: 8 year: 2017 ident: 9290_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01521-4 – volume: 138 start-page: 3570 year: 2016 ident: 9290_CR67 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00757 – volume: 328 start-page: 224 year: 2010 ident: 9290_CR30 publication-title: Science doi: 10.1126/science.1185200 – volume: 30 start-page: 1706508 year: 2018 ident: 9290_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201706508 – volume: 21 start-page: 11392 year: 2011 ident: 9290_CR60 publication-title: J. Mater. Chem. doi: 10.1039/c0jm03613g – volume: 9 year: 2018 ident: 9290_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03138-7 – volume: 136 start-page: 10882 year: 2014 ident: 9290_CR66 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505777v |
SSID | ssj0000391844 |
Score | 2.7000084 |
Snippet | Although single-atomically dispersed metal-N
x
on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such... Although single-atomically dispersed metal-N on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such... Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such... Although single atom catalysts (SACs) with high-loading metal-Nx have great potential in heterogeneous catalysis, their scalable synthesis remains challenging.... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1278 |
SubjectTerms | 140/133 140/146 147/135 147/137 147/143 639/301/299/161 639/301/299/886 639/638/77/884 Anchoring Atomic properties Carbon Carbon dioxide Catalysis Catalysts Catalytic oxidation Chelates Chelating agents Chelation Chemical synthesis Coordination compounds Dispersion Glucose High temperature Humanities and Social Sciences INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Iron Laboratories Mass production Metal ions Metals multidisciplinary Nickel Nitrogen Physics Reduction Science Science (multidisciplinary) Single atom catalysts Strategy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LatwwFBUlUOim9F03SVGhu1bElmTZWjahIRTaVQPZCVuSm8CMHWJn4b_vkeSZZvrcdGWwZCPfl86Vro8IeeuU78rWV8xKZ5l0yrJG1R1rC86d0Lb0kaz68xd1di4_XZQXd476CjVhiR44Ce7Ie1Vq6bRtVCk7TL6N4DAyWXdA9pWL7KWY8-4kUzEGC43URS5_yeSiPhpljAl5-GcHkCBn885MFAn7cRngWL8Dm7_WTP60cRrno9NH5OECJOmH9AGPyT3fPyH309GS81OyPmnGUPpOodXLWGRHx0REO1PgVPot0U3TNcAzvU60r1ARHToaGIzZaojF9TQsJaw8Q2q-vrJ07YHVGaLAzYAX0Lj2M4_T-Iycn378enLGlqMVmFVCTMx12kF6QtpKdQABXWB6B9pogY98E4o_dSEaznPnK82ddba0hRV17blD0tOK52SvH3r_ktCW605WLUB6ywMTTg3A1hZlxxuFh7nNSLERs7EL73g4_mJl4v63qE1SjYFqTFSNmTPybvvMdWLd-Gvv46C9bc_AmB1vwI7MYkfmX3aUkf2gewPgEdhzbSgzspMJu7aFRuvBxiTM4uSjQbAH_ATAzDPyZtsM9wx7Lk3vh9vYJ_DNqlJk5EWyoO04RV7jBUJnpNqxrZ0P2W3pry4jBTiyRlVLDOv9xgp_DOvPgnr1PwS1Tx7w6EUCEfaA7E03t_4QwGxqX0cf_A7C3jPV priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb5wwELbaVJV6idI3SVq5Um-tFbCNMaeqjbqNKrWnRsrNAj-SSLuwXciBf58ZwxJtHzmBsEGGeX22h28Iee-UD3ntC2als0w6ZVmldGB1xrkTpc19JKv-8VOdncvvF_nFtODWTWmVW58YHbVrLa6Rn4BlQayHaJ5-Wv9mWDUKd1enEhoPyaMMIg2mdOnFt3mNBdnPtZTTvzKp0CedjJ4hxT93ABikbNiJR5G2Hw4tmNe_IOffmZN_bJ_GqLQ4IPsTnKSfR_k_JQ9884w8HgtMDnAWEzxt95ysTqsOU-EpSPkqJt3RbiSmHSjgVno50k_TFYBpuh5pYEFktA0UGY3Zso3J9hSXFpaewVR9dW3pygN2Z-AVNi08gMa1oKHruxfkfPH11-kZm0otMKuE6JkLpVOFE9IWKgAoCMj8DuijBrzkK0wGLTNRcZ46X5TcWWdzm1mhtecOJkG1eEn2mrbxrwmteRlkUQNorzky42gAcHWWB14puJnbhGTbD27sxEOO5TCWJu6HC21GIRkQkolCMkNCPsz3rEcWjnt7f0E5zj2RQTteaDeXZjJI473KS-lKW6lcBgB1leDgvKQOMGMsXJ6QI9QCA0AE2XQtph3Z3uAublZC6_FWOcxk9J25U9GEvJubwVxxD6ZqfHsT-yD_rMpFQl6NujSPU6QaHiDKhBQ7WrbzIrstzfVVpASHWaTSEob1cauPd8P6_4c6vP8tjsgTHi1FgC89Jnv95sa_AQjW12-jnd0CPWQvCg priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ShEIvJX3GSVpU6K0VtSVZlo_b0BAW2ksbyE3YeiSBXTusnYP_fUeyvWXbtNCTwZKMrHnoG2n0CeC9lc7ntSuoEdZQYaWhlVSe1hljlpcmd5Gs-us3eXEpllf51R6w-SxMTNqPlJbRTc_ZYZ86EU06DUducEZP6fAIDgJVO-r2wWKx_L7crqwEznMlxHRCJuXqgcY7s1Ak68dHi0b1END8M1_yt03TOBedH8LTCUSSxdjtZ7DnmufweLxWcngB67OqC2nvBCV6ExPsSDeS0A4EMSq5HqmmyRqBM7kbKV9RPKT1JLAX01UbE-tJWEZYOYph-frWkLVDnE7RA2xa_ACJ6z5D13cv4fL8y4-zCzpdq0CN5Lyn1pdWFpYLU0iPAMAHlndEGjViI1eFxM8y4xVjqXVFyayxJjeZ4Uo5ZjHgqfkr2G_axh0BqVnpRVEjQK9ZYMFRCNbqLPesktiYmQSyeZi1mTjHw9UXKx33vrnSo2g0ikZH0eghgQ_bNncj48Y_a38O0tvWDGzZ8UW7udaT9mjnZF4KW5pK5sIjgKs4Q0cllMfosLB5AidB9hpBR2DONSHFyPQ67NhmJZaeziqhJwPvNDp6hJ4ILtME3m2L0TTDfkvVuPY-1glcszLnCbweNWjbT54q_AAvEyh2dGvnR3ZLmtubSP-NEaNUArv1cdbCX936-0Ad_1_1E3jCor1w9KOnsN9v7t0bhF99_Xayt5_9CCvI priority: 102 providerName: Springer Nature |
Title | Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts |
URI | https://link.springer.com/article/10.1038/s41467-019-09290-y https://www.ncbi.nlm.nih.gov/pubmed/30894539 https://www.proquest.com/docview/2194563920 https://www.proquest.com/docview/2195257653 https://www.osti.gov/servlets/purl/1559195 https://pubmed.ncbi.nlm.nih.gov/PMC6426845 https://doaj.org/article/ee6594d9ca654f159a3278748f9567d5 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wWAvY9_12gUN9rZpsyVZth_GSEOzEmgZ2wJ5E7Ykt4XE7uIU5v9-J9nJyJb1xQZLNrLuTvqddPodwFsjbRkXNqFaGE2FkZrmMi1pETFmeKZj68mqLy7l-VRMZvFsD9bpjvoObHa6di6f1HQ5__DrZ_sZDf5Td2Q8_dgIb-6hO46Ds31I2304xJkpcRkNLnq470dmnqFD4zaaWSgiihV4f45m92e25ipP6Y-3Gk1vFxz9N6ryr61VP2ONH8OjHmqSYacbT2DPVk_hQZd8sn0Gi1HeuOB4gnK_9mF4pOmoaluCSJZcdYTUZIHwmtx2xLAoRFKXxHEc03ntw--JW2yYW4rO--JGk4XFjqQ4Tixr_ADxq0Nts2qew3R89mN0TvvkC1RLzlfUlJmRieFCJ7JEmFA6LnjEIwUiKJu78NAs4jljobFJxow2OtaR5mlqmUG3qOAv4KCqK3sEpGBZKZICYXzBHFdOipCuiOKS5RJfZjqAaN3NSvfM5C5Bxlz5HXKeqk40CkWjvGhUG8C7zTu3HS_HvbVPnfQ2NR2ntn9QL69Ub6LKWhlnwmQ6l7EoEeblnOFwJtISfcjExAEcO9krhCaOX1e7QCS9Um5fN8qw9GStEmqtxQqnAwSoCEHDAN5sitGA3a5MXtn6ztdxjLQy5gG87DRo004epvgBngWQbOnW1o9sl1Q3154kHP1KmQps1vu1Fv5p1v876tW9_3gMD5k3D46D6wkcrJZ39jVislUxgP1kluA1HX8ZwOFwOPk-wfvp2eXXb_h0JEcDv9ox8Ab5G61XOB4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYJLxbOkLWAkOIHVxHac5IAQFJYtfZxaqTeT2E6LtLtZNqlQ_hS_kRkn2Wp59NbTRmsncjKvz_b4G0JeWeXKuHAJM9IaJq0yLFdpyYqIcysyEztPVn10rMan8utZfLZGfg1nYTCtcvCJ3lHbyuAa-S5YFsR6iObh-_kPhlWjcHd1KKHRqcWBa3_ClK1-t_8J5Pua89Hnk70x66sKMKOEaJgtM6sSK6RJVAnxr0SScwi0BUADl2PeYxaJnPPQuiTj1lgTm8iINHXcAt4vBDz3FrktBURyPJk--rJc00G29VTK_mxOKNLdWnpPFOJJIQAiIWtX4p8vEwA_FZjzvyDu35maf2zX-ig4uk82evhKP3T69oCsudlDcqcraNnClU8oNfUjMt3La0y9p6BVFz7Jj9YdEW5LASfT847umk4BvNN5RzsLKkKrkiKDMptUPrmf4lLGxLG8wdPTdOpgrsDACy0qeAD1a09t3dSPyemNCOEJWZ9VM_eU0IJnpUwKmCQUHJl4UgCMRRSXPFdwMzcBiYYPrk3Pe47lNyba77-LVHdC0iAk7YWk24C8Wd4z71g_ru39EeW47ImM3f6PanGuewegnVNxJm1mchXLEkBkLjg4S5mWMENNbByQbdQCDcAH2XsNpjmZRuOucZRB686gHLp3MrW-MomAvFw2g3vAPZ985qpL3wf5blUsArLZ6dJynCJM4QEiC0iyomUrL7LaMvt-4SnIYdaqUgnDejvo49Ww_v-htq5_ixfk7vjk6FAf7h8fbJN73FuNAD--Q9abxaV7BvCvKZ57m6Pk200b-W-cimrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDthA4wET2A1sR0neUCIXaqNQTUhJu3NJLazIbVNaTqh_DV-Hec4Sady2dueEsWO5eTc7ePvEPLKKlfGhUuYkdYwaZVhuUpLVkScW5GZ2Hmw6s9jdXAiP57GpxvkV38WBtMqe53oFbWtDK6RD0GywNaDNQ-HZZcWcbw3ej__wbCCFO609uU0WhY5cs1PCN_qd4d7QOvXnI_2v-4esK7CADNKiCWzZWZVYoU0iSrBFpYIeA5GtwA3weWYA5lFIuc8tC7JuDXWxCYyIk0dt-D7FwLGvUE2E4yKBmRzZ398_GW1woPY66mU3UmdUKTDWnq9FOK5IXBLQtasWUNfNAAuFQj3vxzev_M2_9i89TZxdJfc6ZxZ-qHlvntkw83uk5ttecsG7nx6qakfkOluXmMiPgUeO_cpf7RuYXEbCl4zPWvBr-kUXHk6b0FogWFoVVLEU2aTyqf6U1zYmDiWL_EsNZ06iBwY6KRFBQNQvxLV1Mv6ITm5FjI8IoNZNXNPCC14VsqkgJCh4IjLk4L7WERxyXMFL3MTkKj_4dp0KOhYjGOi_W68SHVLJA1E0p5IugnIm9U78xYD5MreO0jHVU_E7_YPqsWZ7tSBdk7FmbSZyVUsS3Apc8FBdcq0hHg1sXFAtpALNLhBiOVrMOnJLDXuIUcZtG73zKE7lVPrSwEJyMtVMygL3AHKZ6668H0Q_VbFIiCPW15azVOEKQwgsoAka1y29iHrLbPv5x6QHGJYlUqY1tueHy-n9f8f9fTqr3hBboGA60-H46Mtcpt7oRGg1LfJYLm4cM_AF1wWzzuho-Tbdcv5b8LxcGI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascade+anchoring+strategy+for+general+mass+production+of+high-loading+single-atomic+metal-nitrogen+catalysts&rft.jtitle=Nature+communications&rft.au=Zhao%2C+Lu&rft.au=Zhang%2C+Yun&rft.au=Huang%2C+Lin-Bo&rft.au=Liu%2C+Xiao-Zhi&rft.date=2019-03-20&rft.pub=Nature+Publishing+Group&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-09290-y&rft.externalDocID=1559195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |