Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts

Although single-atomically dispersed metal-N x on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-N x is greatly challenging since the loading and single-atomic dispersion have to be balanced at...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 1278 - 11
Main Authors Zhao, Lu, Zhang, Yun, Huang, Lin-Bo, Liu, Xiao-Zhi, Zhang, Qing-Hua, He, Chao, Wu, Ze-Yuan, Zhang, Lin-Juan, Wu, Jinpeng, Yang, Wanli, Gu, Lin, Hu, Jin-Song, Wan, Li-Jun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.03.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although single-atomically dispersed metal-N x on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-N x is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-N x . Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O 2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO 2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-N x sites for diverse high-performance applications. Although single atom catalysts (SACs) with high-loading metal-Nx have great potential in heterogeneous catalysis, their scalable synthesis remains challenging. Here, the authors develop a general cascade anchoring strategy for the mass production of a series of metal-Nx SACs with a metal loading up to 12.1 wt%.
AbstractList Although single-atomically dispersed metal-N x on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-N x is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-N x . Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O 2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO 2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-N x sites for diverse high-performance applications.
Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-Nx is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-Nx. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-Nx sites for diverse high-performance applications.
Although single-atomically dispersed metal-N x on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-N x is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-N x . Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O 2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO 2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-N x sites for diverse high-performance applications. Although single atom catalysts (SACs) with high-loading metal-Nx have great potential in heterogeneous catalysis, their scalable synthesis remains challenging. Here, the authors develop a general cascade anchoring strategy for the mass production of a series of metal-Nx SACs with a metal loading up to 12.1 wt%.
Although single atom catalysts (SACs) with high-loading metal-Nx have great potential in heterogeneous catalysis, their scalable synthesis remains challenging. Here, the authors develop a general cascade anchoring strategy for the mass production of a series of metal-Nx SACs with a metal loading up to 12.1 wt%.
Although single-atomically dispersed metal-N on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-N is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-N . Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-N sites for diverse high-performance applications.
Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-Nx is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-Nx. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-Nx sites for diverse high-performance applications.Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-Nx is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-Nx. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-Nx sites for diverse high-performance applications.
Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-Nx is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-Nx. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-Nx sites for diverse high-performance applications.Although single atom catalysts (SACs) with high-loading metal-Nx have great potential in heterogeneous catalysis, their scalable synthesis remains challenging. Here, the authors develop a general cascade anchoring strategy for the mass production of a series of metal-Nx SACs with a metal loading up to 12.1 wt%.
ArticleNumber 1278
Author Huang, Lin-Bo
Wu, Jinpeng
He, Chao
Zhang, Yun
Zhao, Lu
Hu, Jin-Song
Gu, Lin
Zhang, Qing-Hua
Zhang, Lin-Juan
Yang, Wanli
Wan, Li-Jun
Wu, Ze-Yuan
Liu, Xiao-Zhi
Author_xml – sequence: 1
  givenname: Lu
  surname: Zhao
  fullname: Zhao, Lu
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yun
  surname: Zhang
  fullname: Zhang, Yun
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, College of Chemistry and Materials Science, Sichuan Normal University
– sequence: 3
  givenname: Lin-Bo
  surname: Huang
  fullname: Huang, Lin-Bo
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Xiao-Zhi
  surname: Liu
  fullname: Liu, Xiao-Zhi
  organization: University of Chinese Academy of Sciences, Beijing National Research Center for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences
– sequence: 5
  givenname: Qing-Hua
  surname: Zhang
  fullname: Zhang, Qing-Hua
  organization: Beijing National Research Center for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences
– sequence: 6
  givenname: Chao
  surname: He
  fullname: He, Chao
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 7
  givenname: Ze-Yuan
  surname: Wu
  fullname: Wu, Ze-Yuan
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 8
  givenname: Lin-Juan
  surname: Zhang
  fullname: Zhang, Lin-Juan
  organization: Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences
– sequence: 9
  givenname: Jinpeng
  orcidid: 0000-0002-7082-4123
  surname: Wu
  fullname: Wu, Jinpeng
  organization: Advanced Light Source, Lawrence Berkeley National Laboratory
– sequence: 10
  givenname: Wanli
  orcidid: 0000-0003-0666-8063
  surname: Yang
  fullname: Yang, Wanli
  organization: Advanced Light Source, Lawrence Berkeley National Laboratory
– sequence: 11
  givenname: Lin
  orcidid: 0000-0002-7504-031X
  surname: Gu
  fullname: Gu, Lin
  organization: Beijing National Research Center for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences
– sequence: 12
  givenname: Jin-Song
  surname: Hu
  fullname: Hu, Jin-Song
  email: hujs@iccas.ac.cn
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 13
  givenname: Li-Jun
  surname: Wan
  fullname: Wan, Li-Jun
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30894539$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1559195$$D View this record in Osti.gov
BookMark eNp9Uktv1DAYjFARLaV_gAOK4MIl4HfiCxJa8ahUiQucLa_9JetVYi-2g7T_HmfTQttDffBzZjz-PC-rMx88VNVrjD5gRLuPiWEm2gZh2SBJJGqOz6oLghhucEvo2b35eXWV0h6VRiXuGHtRnVPUScapvKimjU5GW6i1N7sQnR_qlKPOMBzrPsR6AA9Rj_WkU6oPMdjZZBd8Hfp654ZdMwZtT6TSjdDoHCZn6gmyHhvvcgxFoDa6LI8pp1fV816PCa5ux8vq19cvPzffm5sf3643n28aIyjNje2lFa2lzLSi7wjqEcEEtXhLBAONMMMSU00IstBKYo013GBDuw6IRVJs6WV1veraoPfqEN2k41EF7dRpI8RB6ZidGUEBCC6ZlUYLznrMpaak7VrW9ZIXD7xofVq1DvN2AmvAl_qMD0Qfnni3U0P4owQjomOLwNtVIKTsVDIug9mZ4D2YrDDnEssF9P72lhh-z5CymlwyMI7aQ5iTIgVEeCs4LdB3j6D7MEdf6rmgGBdUElRQb-7b_uf37usLoFsBJoaUIvSqONPL55ZXuFFhpJagqTVoqgRNnYKmjoVKHlHv1J8k0ZWUDkvMIP63_QTrLyiJ5kI
CitedBy_id crossref_primary_10_1002_adfm_202104864
crossref_primary_10_1021_acs_est_1c01131
crossref_primary_10_1002_adma_201904037
crossref_primary_10_1016_j_cej_2023_143641
crossref_primary_10_1039_D4EN00189C
crossref_primary_10_1016_j_apcatb_2021_120877
crossref_primary_10_1016_j_ccr_2022_214613
crossref_primary_10_1016_j_ccr_2024_216110
crossref_primary_10_1038_s41467_024_50629_x
crossref_primary_10_1007_s40843_021_1734_x
crossref_primary_10_1039_C9TA13651G
crossref_primary_10_1142_S1793604723400313
crossref_primary_10_1002_ange_202208215
crossref_primary_10_1002_anie_202425063
crossref_primary_10_1039_D2TA06351D
crossref_primary_10_1002_smtd_202001165
crossref_primary_10_1021_acsnano_2c04077
crossref_primary_10_1039_C9NH00361D
crossref_primary_10_1016_j_jcis_2024_01_023
crossref_primary_10_1016_j_nantod_2020_100971
crossref_primary_10_1002_adts_202000054
crossref_primary_10_1002_smll_202205583
crossref_primary_10_1021_jacs_2c05247
crossref_primary_10_1039_D0RA08223F
crossref_primary_10_1016_j_cej_2023_143870
crossref_primary_10_1002_advs_202206084
crossref_primary_10_1016_j_apsusc_2022_155298
crossref_primary_10_1039_D2DT01258H
crossref_primary_10_1016_j_cej_2023_143996
crossref_primary_10_1002_ange_202308070
crossref_primary_10_1002_anie_202318924
crossref_primary_10_1016_j_ccr_2022_214603
crossref_primary_10_1002_adma_202312182
crossref_primary_10_1016_j_mattod_2021_02_005
crossref_primary_10_1002_adma_202102801
crossref_primary_10_1016_j_jece_2022_108986
crossref_primary_10_1021_acs_nanolett_3c00245
crossref_primary_10_1039_D3CP04209J
crossref_primary_10_1002_smll_202207991
crossref_primary_10_1016_j_pmatsci_2022_100964
crossref_primary_10_1039_D4EE01226G
crossref_primary_10_1039_D1SC05867C
crossref_primary_10_1016_j_esci_2023_100172
crossref_primary_10_1016_j_cej_2023_143740
crossref_primary_10_1039_D1MA00720C
crossref_primary_10_1002_anie_202116068
crossref_primary_10_1002_sstr_202100225
crossref_primary_10_1021_acsaem_0c00488
crossref_primary_10_1016_j_jece_2024_112114
crossref_primary_10_1002_adfm_202103558
crossref_primary_10_1002_adma_201904496
crossref_primary_10_1038_s41467_022_31660_2
crossref_primary_10_1039_D3EE01166F
crossref_primary_10_1080_08940886_2020_1812354
crossref_primary_10_1016_j_jpowsour_2021_230557
crossref_primary_10_1021_acssuschemeng_3c04125
crossref_primary_10_1016_j_nanoen_2023_109149
crossref_primary_10_1016_j_carbon_2024_119790
crossref_primary_10_1016_j_nanoen_2021_106751
crossref_primary_10_1016_j_pmatsci_2022_100959
crossref_primary_10_1093_nsr_nwac248
crossref_primary_10_1002_adma_201906548
crossref_primary_10_1002_advs_202105008
crossref_primary_10_1002_chem_201904233
crossref_primary_10_1021_acscatal_2c02146
crossref_primary_10_1039_D4TA07911F
crossref_primary_10_1002_ange_202308091
crossref_primary_10_1039_C9CS00422J
crossref_primary_10_1016_j_cjche_2021_04_034
crossref_primary_10_1016_j_jcis_2023_06_153
crossref_primary_10_1016_j_jcis_2024_10_166
crossref_primary_10_1021_acscatal_2c01294
crossref_primary_10_1021_acscatal_0c00936
crossref_primary_10_1016_j_apcatb_2020_119270
crossref_primary_10_1002_smll_202105892
crossref_primary_10_1002_asia_202300679
crossref_primary_10_1002_aenm_201902084
crossref_primary_10_1021_acs_jpcc_2c02593
crossref_primary_10_1039_D0EN00505C
crossref_primary_10_1002_adma_202002292
crossref_primary_10_1002_advs_202001069
crossref_primary_10_1016_j_esci_2023_100156
crossref_primary_10_1016_j_apcatb_2023_123100
crossref_primary_10_1021_jacs_2c07413
crossref_primary_10_3389_fctls_2022_915971
crossref_primary_10_1016_j_indcrop_2024_120060
crossref_primary_10_1002_adfm_202103857
crossref_primary_10_1016_j_electacta_2024_145624
crossref_primary_10_1039_D2RA00757F
crossref_primary_10_1039_D3QM00146F
crossref_primary_10_3390_ma14081908
crossref_primary_10_1039_D3QI00700F
crossref_primary_10_1016_j_cej_2022_136873
crossref_primary_10_1016_j_coelec_2022_100994
crossref_primary_10_1039_D0CC01517B
crossref_primary_10_1016_j_ijhydene_2023_10_260
crossref_primary_10_1021_acs_jpclett_3c02530
crossref_primary_10_1016_j_cej_2020_127345
crossref_primary_10_1002_advs_202206166
crossref_primary_10_1007_s12274_020_2988_1
crossref_primary_10_1016_j_chempr_2019_10_007
crossref_primary_10_1021_jacs_2c00719
crossref_primary_10_1016_j_checat_2023_100810
crossref_primary_10_1016_j_apcatb_2022_122298
crossref_primary_10_1021_acs_jpclett_1c01779
crossref_primary_10_1088_1361_6528_ac6885
crossref_primary_10_1016_j_carbon_2021_05_038
crossref_primary_10_1016_j_electacta_2021_139604
crossref_primary_10_1016_j_apcatb_2022_122172
crossref_primary_10_3390_c10010012
crossref_primary_10_1039_D1TA05605K
crossref_primary_10_1039_D4CC04663C
crossref_primary_10_1016_j_carbon_2023_118192
crossref_primary_10_3389_fchem_2021_717201
crossref_primary_10_1002_adfm_202000503
crossref_primary_10_1016_j_apcatb_2021_120695
crossref_primary_10_1002_adma_202003238
crossref_primary_10_1360_nso_20220059
crossref_primary_10_1016_j_matre_2022_100146
crossref_primary_10_1039_D0SC07040H
crossref_primary_10_1021_acs_jpcc_3c01976
crossref_primary_10_1016_j_jmst_2024_12_095
crossref_primary_10_1039_D4NH00024B
crossref_primary_10_1002_adfm_202009645
crossref_primary_10_1007_s11426_024_2067_0
crossref_primary_10_1039_D2NR04880A
crossref_primary_10_1038_s41563_022_01252_y
crossref_primary_10_1002_smtd_202100947
crossref_primary_10_1016_j_fuel_2020_118361
crossref_primary_10_1016_j_cej_2023_148273
crossref_primary_10_1021_acsanm_4c00522
crossref_primary_10_1038_s41467_024_50476_w
crossref_primary_10_1007_s12598_020_01592_1
crossref_primary_10_1002_adfm_202008318
crossref_primary_10_1002_ange_202301642
crossref_primary_10_3390_polym15193879
crossref_primary_10_1016_j_jiec_2023_07_060
crossref_primary_10_1039_D0GC01177K
crossref_primary_10_1016_j_ccr_2021_214289
crossref_primary_10_1103_PhysRevApplied_19_054094
crossref_primary_10_1039_D2NR00294A
crossref_primary_10_1016_j_checat_2022_01_025
crossref_primary_10_1021_accountsmr_0c00110
crossref_primary_10_1063_5_0147165
crossref_primary_10_1021_acsami_0c03415
crossref_primary_10_1021_acsami_1c15061
crossref_primary_10_1021_acsami_3c18548
crossref_primary_10_1016_j_cej_2022_139816
crossref_primary_10_1016_j_ijleo_2020_165252
crossref_primary_10_1016_j_comptc_2023_114294
crossref_primary_10_26599_NRE_2023_9120082
crossref_primary_10_1002_adfm_202209726
crossref_primary_10_1002_anie_202301642
crossref_primary_10_1016_j_apsusc_2023_156616
crossref_primary_10_1021_acsami_2c13425
crossref_primary_10_1002_admi_202001788
crossref_primary_10_1016_j_jhazmat_2022_129253
crossref_primary_10_1002_cjce_24376
crossref_primary_10_1038_s44160_024_00607_4
crossref_primary_10_1039_C9CY02481F
crossref_primary_10_1016_j_xcrp_2021_100495
crossref_primary_10_1021_acsami_9b18510
crossref_primary_10_1039_D0TA01208D
crossref_primary_10_1007_s42452_020_03968_5
crossref_primary_10_1002_aenm_202200875
crossref_primary_10_1016_j_apsusc_2025_163005
crossref_primary_10_1021_acsami_3c04761
crossref_primary_10_1002_anie_202211396
crossref_primary_10_1007_s12274_022_4318_2
crossref_primary_10_1016_j_jechem_2020_01_034
crossref_primary_10_1002_adma_202104718
crossref_primary_10_1039_C9TA03300A
crossref_primary_10_1002_adfm_202110224
crossref_primary_10_1002_advs_202301656
crossref_primary_10_1007_s12274_021_3816_y
crossref_primary_10_1007_s12274_021_3432_x
crossref_primary_10_1021_acsenergylett_9b00804
crossref_primary_10_1039_D1TA08007E
crossref_primary_10_1002_cphc_202000595
crossref_primary_10_1016_j_chemosphere_2021_130911
crossref_primary_10_1007_s41918_022_00156_4
crossref_primary_10_1038_s41467_024_54959_8
crossref_primary_10_1039_D1GC01040A
crossref_primary_10_1016_j_cclet_2021_03_082
crossref_primary_10_1039_C9TA10506A
crossref_primary_10_1021_acs_jpcc_1c07682
crossref_primary_10_1021_acsenergylett_1c01678
crossref_primary_10_1002_adfm_202102974
crossref_primary_10_1016_j_mattod_2020_02_019
crossref_primary_10_1016_j_apcatb_2023_122558
crossref_primary_10_1021_acscatal_1c00627
crossref_primary_10_1021_acs_jpcc_4c04327
crossref_primary_10_1016_j_apcatb_2023_123407
crossref_primary_10_1039_D1NJ02769G
crossref_primary_10_1007_s11426_024_2457_y
crossref_primary_10_1021_acs_analchem_1c02232
crossref_primary_10_1007_s12274_021_3827_8
crossref_primary_10_1021_acs_iecr_0c00547
crossref_primary_10_1103_PhysRevB_103_125407
crossref_primary_10_1021_acs_nanolett_2c02159
crossref_primary_10_1002_adfm_202214658
crossref_primary_10_1038_s41467_023_37529_2
crossref_primary_10_1016_j_diamond_2023_110761
crossref_primary_10_1039_D1EE00142F
crossref_primary_10_1002_adma_202000966
crossref_primary_10_1002_ange_202501506
crossref_primary_10_1016_j_cej_2020_127619
crossref_primary_10_1016_j_checat_2023_100862
crossref_primary_10_1155_2024_8714253
crossref_primary_10_1016_j_carbon_2021_09_044
crossref_primary_10_1016_j_jechem_2021_04_064
crossref_primary_10_1016_j_cej_2024_153671
crossref_primary_10_1002_ange_202105750
crossref_primary_10_1016_j_est_2024_110671
crossref_primary_10_1016_j_ijhydene_2022_12_292
crossref_primary_10_1002_adma_202401288
crossref_primary_10_1039_D4MH01479K
crossref_primary_10_1007_s40242_025_4207_9
crossref_primary_10_1021_acsmaterialslett_1c00375
crossref_primary_10_1002_adfm_202401027
crossref_primary_10_1021_acs_est_3c05509
crossref_primary_10_1016_j_xcrp_2022_100880
crossref_primary_10_1002_anie_202313099
crossref_primary_10_1002_aenm_202103097
crossref_primary_10_1002_ange_202425063
crossref_primary_10_1016_j_seppur_2024_126693
crossref_primary_10_1021_acs_jpcc_4c07614
crossref_primary_10_1016_j_jechem_2021_03_011
crossref_primary_10_1039_D3TA02450D
crossref_primary_10_1016_j_apcatb_2023_122778
crossref_primary_10_1016_j_mtcomm_2021_102286
crossref_primary_10_1016_j_apcata_2023_119254
crossref_primary_10_1016_j_nanoms_2019_10_008
crossref_primary_10_1016_j_nanoen_2021_106488
crossref_primary_10_1021_acs_langmuir_1c01866
crossref_primary_10_1016_j_mtener_2022_101017
crossref_primary_10_1016_j_mtener_2022_101138
crossref_primary_10_1016_j_cej_2023_142593
crossref_primary_10_1002_cctc_202300849
crossref_primary_10_1016_j_mtsust_2022_100288
crossref_primary_10_1039_D0CC03977B
crossref_primary_10_1021_acsami_1c15554
crossref_primary_10_1016_j_jhazmat_2020_122511
crossref_primary_10_1149_1945_7111_ac96a9
crossref_primary_10_1016_j_cej_2025_159479
crossref_primary_10_1021_acsomega_2c01562
crossref_primary_10_1002_ange_202314303
crossref_primary_10_1021_acs_chemrev_0c00594
crossref_primary_10_1016_j_jechem_2021_04_041
crossref_primary_10_1021_acs_jpclett_9b01892
crossref_primary_10_1007_s12274_024_6414_y
crossref_primary_10_1021_acs_energyfuels_4c05389
crossref_primary_10_1016_j_jechem_2020_03_003
crossref_primary_10_1016_j_jelechem_2022_116024
crossref_primary_10_1016_j_nanoen_2020_105085
crossref_primary_10_1002_adma_202404659
crossref_primary_10_1002_smll_202304863
crossref_primary_10_1021_acs_est_1c01189
crossref_primary_10_1021_acssuschemeng_2c01010
crossref_primary_10_1021_acs_chemmater_3c01171
crossref_primary_10_1002_anie_201905645
crossref_primary_10_1016_j_nxmate_2024_100457
crossref_primary_10_1021_acsami_4c17626
crossref_primary_10_1016_j_ensm_2024_103240
crossref_primary_10_1039_D2TA06574F
crossref_primary_10_1002_adma_202205324
crossref_primary_10_1002_adma_202100429
crossref_primary_10_1002_smll_202402050
crossref_primary_10_1016_j_cej_2022_136804
crossref_primary_10_1002_cctc_202200383
crossref_primary_10_1016_j_cogsc_2020_01_004
crossref_primary_10_1002_sus2_38
crossref_primary_10_1016_j_jechem_2021_11_018
crossref_primary_10_1002_aenm_202302007
crossref_primary_10_1007_s12274_021_3839_4
crossref_primary_10_1002_ange_202318924
crossref_primary_10_1063_5_0162029
crossref_primary_10_1002_adma_202004287
crossref_primary_10_1021_acscatal_9b01536
crossref_primary_10_1002_adma_202107088
crossref_primary_10_1016_j_ijhydene_2025_02_087
crossref_primary_10_1016_j_nanoms_2022_07_001
crossref_primary_10_1002_smll_202308080
crossref_primary_10_1016_j_xcrp_2020_100115
crossref_primary_10_1002_ange_202207268
crossref_primary_10_1093_nsr_nwae193
crossref_primary_10_1016_j_ccr_2022_214874
crossref_primary_10_1016_j_ijhydene_2022_11_048
crossref_primary_10_1002_adfm_202214215
crossref_primary_10_1016_j_apcatb_2023_122961
crossref_primary_10_1002_smtd_202301363
crossref_primary_10_1007_s12274_020_2689_9
crossref_primary_10_1002_anie_202109207
crossref_primary_10_1002_ange_202003842
crossref_primary_10_1021_acs_chemrev_2c00429
crossref_primary_10_1016_j_electacta_2020_136568
crossref_primary_10_1039_C9CS00869A
crossref_primary_10_1002_adma_202003075
crossref_primary_10_1038_s41467_021_27640_7
crossref_primary_10_1021_acs_nanolett_3c04374
crossref_primary_10_1016_j_ccr_2022_214980
crossref_primary_10_1016_j_nanoen_2025_110665
crossref_primary_10_1002_anie_202111761
crossref_primary_10_1016_j_apsusc_2022_156048
crossref_primary_10_1021_jacs_3c00537
crossref_primary_10_34133_2020_9512763
crossref_primary_10_1002_adfm_202108381
crossref_primary_10_1021_acsami_0c08829
crossref_primary_10_1021_acs_chemrev_0c00576
crossref_primary_10_1021_acsaem_2c01987
crossref_primary_10_1016_j_electacta_2023_142549
crossref_primary_10_1016_j_nanoen_2019_103917
crossref_primary_10_1002_smsc_202000028
crossref_primary_10_1002_sstr_202100007
crossref_primary_10_1016_j_jpowsour_2021_229665
crossref_primary_10_1016_j_jechem_2021_05_046
crossref_primary_10_1016_j_ijhydene_2022_03_229
crossref_primary_10_1002_slct_202201425
crossref_primary_10_1002_anie_202100526
crossref_primary_10_1002_smll_202006178
crossref_primary_10_1021_acscatal_4c04297
crossref_primary_10_1016_j_jre_2024_06_017
crossref_primary_10_1016_j_jechem_2023_04_003
crossref_primary_10_1063_5_0054730
crossref_primary_10_1002_aenm_202000588
crossref_primary_10_1002_ange_202313099
crossref_primary_10_1016_j_jcat_2020_08_016
crossref_primary_10_1021_jacs_1c05032
crossref_primary_10_1021_acs_chemmater_3c00271
crossref_primary_10_1016_j_enchem_2022_100086
crossref_primary_10_1002_adma_202007090
crossref_primary_10_1021_acsami_3c11467
crossref_primary_10_1016_j_xcrp_2019_100004
crossref_primary_10_1039_D3EE04251K
crossref_primary_10_1016_j_cclet_2022_06_073
crossref_primary_10_1007_s12274_021_3412_9
crossref_primary_10_1002_adfm_202111835
crossref_primary_10_1016_j_jechem_2021_01_032
crossref_primary_10_1002_smll_202303214
crossref_primary_10_1016_j_apcatb_2021_121058
crossref_primary_10_1016_j_carbon_2020_06_064
crossref_primary_10_1038_s41467_022_33442_2
crossref_primary_10_1016_j_mtener_2021_100834
crossref_primary_10_1021_acsnano_0c06610
crossref_primary_10_1016_j_jallcom_2022_163763
crossref_primary_10_1002_adsu_202000151
crossref_primary_10_1016_j_apcatb_2024_124151
crossref_primary_10_1007_s12274_024_6411_1
crossref_primary_10_1002_adfm_202100833
crossref_primary_10_1016_j_scib_2022_06_006
crossref_primary_10_1016_j_xcrp_2023_101737
crossref_primary_10_1039_D1TA09987F
crossref_primary_10_1002_anie_202409000
crossref_primary_10_1002_smtd_202101324
crossref_primary_10_1039_D1CC03076K
crossref_primary_10_1039_D3NR04244H
crossref_primary_10_1002_aenm_202103588
crossref_primary_10_1002_adfm_202404484
crossref_primary_10_1021_acsaem_0c03092
crossref_primary_10_1021_acsnano_2c02464
crossref_primary_10_1103_PhysRevB_104_235157
crossref_primary_10_1002_ange_202008787
crossref_primary_10_1021_acs_nanolett_2c01229
crossref_primary_10_1002_adma_202101038
crossref_primary_10_1016_j_mtener_2021_100721
crossref_primary_10_1002_eem2_12085
crossref_primary_10_1002_adfm_202301229
crossref_primary_10_1002_admi_202002159
crossref_primary_10_1021_acscatal_2c01861
crossref_primary_10_1007_s41918_022_00142_w
crossref_primary_10_1021_acsami_2c05343
crossref_primary_10_1039_D2TA00747A
crossref_primary_10_1016_j_jece_2024_115067
crossref_primary_10_1039_D0CS00071J
crossref_primary_10_1016_j_jallcom_2022_168069
crossref_primary_10_1016_j_apcatb_2023_122801
crossref_primary_10_1039_D0CS01032D
crossref_primary_10_1038_s41557_021_00734_x
crossref_primary_10_1002_cctc_202001255
crossref_primary_10_1021_acsnano_9b02930
crossref_primary_10_1021_acs_jpcc_2c06266
crossref_primary_10_1039_C9CC07489A
crossref_primary_10_1002_advs_202203391
crossref_primary_10_1002_marc_202200392
crossref_primary_10_1002_smll_202202522
crossref_primary_10_1021_acssuschemeng_1c05882
crossref_primary_10_1021_acsami_3c12518
crossref_primary_10_1002_cjoc_202200661
crossref_primary_10_1007_s40820_021_00768_3
crossref_primary_10_1016_j_cej_2024_155203
crossref_primary_10_1016_j_jcis_2022_09_035
crossref_primary_10_1002_ange_202211396
crossref_primary_10_1002_adma_202209948
crossref_primary_10_1016_j_jechem_2020_06_018
crossref_primary_10_1002_smll_202304750
crossref_primary_10_1039_D0TA08115A
crossref_primary_10_1021_acs_est_0c08805
crossref_primary_10_1002_smtd_201900540
crossref_primary_10_1002_anie_202006175
crossref_primary_10_1021_acsaem_2c04017
crossref_primary_10_1016_j_nanoms_2021_03_006
crossref_primary_10_1021_acsami_3c04602
crossref_primary_10_1016_j_cej_2023_146556
crossref_primary_10_1038_s41467_023_43678_1
crossref_primary_10_1021_acsami_1c12329
crossref_primary_10_1016_j_ccr_2022_214493
crossref_primary_10_1016_j_cclet_2021_10_004
crossref_primary_10_1016_j_seppur_2020_118025
crossref_primary_10_1002_ange_202409000
crossref_primary_10_1002_advs_202310202
crossref_primary_10_1021_acs_chemrev_4c00155
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1016_j_scitotenv_2022_155670
crossref_primary_10_1016_j_apcatb_2019_118347
crossref_primary_10_1016_j_carbon_2021_07_064
crossref_primary_10_1016_j_cej_2022_136078
crossref_primary_10_1039_D1TA07778C
crossref_primary_10_1016_j_cej_2020_127917
crossref_primary_10_1002_adma_202311102
crossref_primary_10_1016_j_cclet_2019_12_004
crossref_primary_10_1039_D1CY01742J
crossref_primary_10_1016_j_apcatb_2024_124249
crossref_primary_10_1016_j_mtnano_2024_100466
crossref_primary_10_1002_ange_202109058
crossref_primary_10_1016_j_ijhydene_2024_01_183
crossref_primary_10_1039_D2NR01655A
crossref_primary_10_1039_D4QM00285G
crossref_primary_10_1021_jacs_3c05371
crossref_primary_10_1016_j_jcat_2021_03_002
crossref_primary_10_1002_ange_202006175
crossref_primary_10_1016_j_jelechem_2021_115956
crossref_primary_10_1021_acsomega_1c07298
crossref_primary_10_1103_PhysRevB_106_235402
crossref_primary_10_3390_pr11020361
crossref_primary_10_1021_accountsmr_1c00135
crossref_primary_10_1002_adfm_202209273
crossref_primary_10_1039_C9TA08532G
crossref_primary_10_1021_acscatal_0c01647
crossref_primary_10_1021_acsanm_3c02948
crossref_primary_10_1038_s41929_021_00650_w
crossref_primary_10_1002_inf2_12268
crossref_primary_10_1021_acs_jpcc_4c06149
crossref_primary_10_26599_NR_2025_94907133
crossref_primary_10_1002_ange_202304229
crossref_primary_10_1021_acs_energyfuels_1c03923
crossref_primary_10_1039_D2SC04776D
crossref_primary_10_1016_j_colsurfa_2020_125895
crossref_primary_10_1016_j_jpowsour_2022_231058
crossref_primary_10_1021_acscatal_0c03831
crossref_primary_10_1016_j_nanoen_2021_106187
crossref_primary_10_1002_advs_202302930
crossref_primary_10_1021_acsami_0c21641
crossref_primary_10_1039_D1GC04285H
crossref_primary_10_1002_smll_202006473
crossref_primary_10_1016_j_cej_2021_132307
crossref_primary_10_1021_acsami_0c04169
crossref_primary_10_1039_D4QI01190B
crossref_primary_10_1002_adma_202409369
crossref_primary_10_1002_ange_202400765
crossref_primary_10_1016_j_apcatb_2020_119861
crossref_primary_10_1039_D0SC04512H
crossref_primary_10_1002_anie_202109058
crossref_primary_10_1021_acs_nanolett_0c02167
crossref_primary_10_1039_D0TA03457F
crossref_primary_10_1038_s44160_022_00129_x
crossref_primary_10_1039_D1EE00271F
crossref_primary_10_1016_j_apcatb_2019_118207
crossref_primary_10_1016_j_pmatsci_2022_101044
crossref_primary_10_1016_j_nanoen_2022_107206
crossref_primary_10_1002_cey2_695
crossref_primary_10_1016_j_seppur_2022_120922
crossref_primary_10_1016_j_talanta_2024_126496
crossref_primary_10_1016_j_micromeso_2022_111865
crossref_primary_10_1002_smll_202303598
crossref_primary_10_1142_S1793604721300073
crossref_primary_10_1002_adma_202304713
crossref_primary_10_1002_anie_202008787
crossref_primary_10_1021_acsami_2c10947
crossref_primary_10_1016_j_apsusc_2023_157154
crossref_primary_10_1016_j_pmatsci_2020_100711
crossref_primary_10_1016_j_cej_2023_146403
crossref_primary_10_1016_j_jece_2024_114286
crossref_primary_10_1039_D2CC06503G
crossref_primary_10_1016_j_jpha_2021_09_007
crossref_primary_10_1016_j_jece_2025_115439
crossref_primary_10_1039_D0CY00540A
crossref_primary_10_1002_aesr_202300168
crossref_primary_10_1016_j_partic_2021_02_002
crossref_primary_10_1039_D0CC04779A
crossref_primary_10_1016_j_jechem_2020_06_059
crossref_primary_10_1039_D1CY01537K
crossref_primary_10_1002_anie_202400765
crossref_primary_10_1016_j_est_2024_113197
crossref_primary_10_1021_acscatal_0c02643
crossref_primary_10_1021_acs_jpcc_2c07160
crossref_primary_10_1038_s44160_022_00193_3
crossref_primary_10_1039_D3CP04243J
crossref_primary_10_1021_acsnano_2c02324
crossref_primary_10_1002_adma_201906905
crossref_primary_10_1016_j_cclet_2022_06_024
crossref_primary_10_1002_aic_17877
crossref_primary_10_1021_acs_energyfuels_3c02017
crossref_primary_10_1039_D2NR00994C
crossref_primary_10_1002_adma_202103186
crossref_primary_10_1002_adfm_202009197
crossref_primary_10_1016_j_apsusc_2020_146624
crossref_primary_10_1016_j_apsusc_2024_160496
crossref_primary_10_1021_acs_energyfuels_4c04644
crossref_primary_10_1088_1742_6596_2194_1_012048
crossref_primary_10_1021_acs_analchem_9b02901
crossref_primary_10_1016_j_cej_2024_158343
crossref_primary_10_1016_j_colsurfa_2021_126608
crossref_primary_10_1021_acs_energyfuels_1c00448
crossref_primary_10_1016_j_nanoen_2020_105689
crossref_primary_10_1038_s41467_020_14848_2
crossref_primary_10_1039_D2NR01986H
crossref_primary_10_1007_s12274_022_4502_4
crossref_primary_10_1016_j_isci_2022_104367
crossref_primary_10_1007_s40843_020_1334_6
crossref_primary_10_1007_s12274_022_4235_4
crossref_primary_10_1039_D4TA05064A
crossref_primary_10_1002_anie_202304229
crossref_primary_10_1016_j_cej_2021_129973
crossref_primary_10_1021_acscatal_3c04976
crossref_primary_10_1021_acscatal_3c01466
crossref_primary_10_1039_D2QI00876A
crossref_primary_10_1002_slct_202000844
crossref_primary_10_1016_j_watres_2024_122612
crossref_primary_10_1039_C9QI00297A
crossref_primary_10_1007_s12598_024_03053_5
crossref_primary_10_1021_jacs_9b12642
crossref_primary_10_1002_smll_202204767
crossref_primary_10_1002_cnma_202000436
crossref_primary_10_1016_j_ensm_2023_102890
crossref_primary_10_1021_acsami_9b14839
crossref_primary_10_1021_jacs_9b09352
crossref_primary_10_1039_D1TA03375A
crossref_primary_10_1142_S1088424624500597
crossref_primary_10_1016_j_diamond_2021_108431
crossref_primary_10_1016_j_jcat_2021_05_025
crossref_primary_10_1007_s11426_020_9835_8
crossref_primary_10_1039_D0NR04391E
crossref_primary_10_1038_s41467_020_19599_8
crossref_primary_10_1002_aenm_202101222
crossref_primary_10_1038_s41467_021_22122_2
crossref_primary_10_3390_catal11121470
crossref_primary_10_1016_j_nanoen_2021_105817
crossref_primary_10_1021_acs_jpclett_3c02308
crossref_primary_10_1002_smll_202204559
crossref_primary_10_1007_s12274_022_4501_5
crossref_primary_10_1021_acs_nanolett_4c01846
crossref_primary_10_1002_aenm_202201278
crossref_primary_10_1039_D1CS00421B
crossref_primary_10_1021_acs_nanolett_1c00432
crossref_primary_10_1021_acssuschemeng_2c00878
crossref_primary_10_1016_j_ensm_2021_11_050
crossref_primary_10_1021_acsami_0c01206
crossref_primary_10_1039_D1TA10874C
crossref_primary_10_1038_s41467_021_21919_5
crossref_primary_10_1002_ange_202116068
crossref_primary_10_3390_catal13040651
crossref_primary_10_1002_smll_202204782
crossref_primary_10_1016_j_electacta_2020_135848
crossref_primary_10_1021_jacs_0c07790
crossref_primary_10_1002_anie_202501506
crossref_primary_10_1007_s11426_019_9703_7
crossref_primary_10_1016_j_nanoen_2020_105533
crossref_primary_10_1039_D3TA07016F
crossref_primary_10_1002_anie_202308070
crossref_primary_10_1021_jacs_9b09572
crossref_primary_10_1021_acscatal_9b04217
crossref_primary_10_1021_acsami_2c11201
crossref_primary_10_1039_C9GC03553B
crossref_primary_10_1007_s40843_021_1699_4
crossref_primary_10_1021_acs_jpcc_1c03790
crossref_primary_10_1016_j_cej_2024_148856
crossref_primary_10_1002_anie_202003842
crossref_primary_10_1038_s41467_020_14917_6
crossref_primary_10_1021_acsami_4c12959
crossref_primary_10_1007_s40820_021_00679_3
crossref_primary_10_1039_D1CY01442K
crossref_primary_10_1039_D4TA05189K
crossref_primary_10_1002_smll_202105387
crossref_primary_10_1016_j_jpowsour_2022_232434
crossref_primary_10_1002_chem_202100996
crossref_primary_10_1016_j_apcatb_2020_118593
crossref_primary_10_1021_acs_inorgchem_0c02420
crossref_primary_10_1039_D1NJ01380G
crossref_primary_10_1021_acsanm_0c02698
crossref_primary_10_1038_s41565_021_01022_y
crossref_primary_10_1016_j_carbon_2021_12_096
crossref_primary_10_1002_asia_202200390
crossref_primary_10_1021_acsami_0c21597
crossref_primary_10_1039_D3TA05199D
crossref_primary_10_1002_cey2_74
crossref_primary_10_1039_D3GC00737E
crossref_primary_10_1002_smll_202006860
crossref_primary_10_1039_D0TA08732G
crossref_primary_10_1002_ange_202100526
crossref_primary_10_1016_j_jallcom_2024_177670
crossref_primary_10_1016_j_seppur_2022_122113
crossref_primary_10_1002_smtd_201900159
crossref_primary_10_1016_j_electacta_2023_142083
crossref_primary_10_1002_smll_202300926
crossref_primary_10_1016_j_cej_2022_135271
crossref_primary_10_1002_aenm_202100683
crossref_primary_10_1002_anie_202207268
crossref_primary_10_1039_D4IM00014E
crossref_primary_10_1002_ange_202109207
crossref_primary_10_1002_anie_202308091
crossref_primary_10_1002_smll_202004579
crossref_primary_10_1016_j_seppur_2021_118717
crossref_primary_10_1002_anie_202105750
crossref_primary_10_1016_j_cej_2020_127181
crossref_primary_10_1002_ange_202111761
crossref_primary_10_1021_acs_jpclett_4c03682
crossref_primary_10_1016_j_cclet_2022_108050
crossref_primary_10_1039_C9TA12468C
crossref_primary_10_1016_j_apcatb_2024_123783
crossref_primary_10_1016_j_ijhydene_2021_08_163
crossref_primary_10_1002_smll_202201361
crossref_primary_10_1016_j_apcatb_2021_120977
crossref_primary_10_1002_sstr_202000138
crossref_primary_10_1016_j_ccr_2023_215209
crossref_primary_10_1002_adma_202202714
crossref_primary_10_1016_j_scib_2023_02_028
crossref_primary_10_1016_j_cclet_2023_108142
crossref_primary_10_1016_j_cej_2021_130541
crossref_primary_10_1016_j_jcis_2023_06_101
crossref_primary_10_1039_D1TA00154J
crossref_primary_10_1002_ange_201905645
crossref_primary_10_1007_s12598_024_02727_4
crossref_primary_10_1038_s41467_023_42756_8
crossref_primary_10_1016_j_cclet_2021_07_050
crossref_primary_10_1016_j_jhazmat_2023_131333
crossref_primary_10_1039_C9EE02974E
crossref_primary_10_1016_j_apcatb_2024_124783
crossref_primary_10_1021_acsnano_3c04581
crossref_primary_10_1039_D2CS00191H
crossref_primary_10_1039_D4CP00929K
crossref_primary_10_1016_j_apcatb_2024_123695
crossref_primary_10_1103_PhysRevB_103_155411
crossref_primary_10_1002_anie_202314303
crossref_primary_10_1002_anie_202208215
crossref_primary_10_1016_j_checat_2024_101028
crossref_primary_10_1021_acscatal_9b03175
crossref_primary_10_1002_aenm_202202054
crossref_primary_10_1021_jacs_9b11852
crossref_primary_10_3390_inorganics11070300
crossref_primary_10_1016_j_apsusc_2020_148742
crossref_primary_10_1021_acsami_4c07003
crossref_primary_10_1039_C9TA06435D
crossref_primary_10_1007_s12274_021_3964_0
crossref_primary_10_1038_s41467_024_46175_1
Cites_doi 10.1063/1.3257621
10.1021/ja049436v
10.1039/C6SC02105K
10.1016/0008-6215(95)00050-4
10.1038/s41467-017-01521-4
10.1039/C4CP01455C
10.1021/cs200652y
10.1103/PhysRevB.55.2570
10.1038/s41565-018-0089-z
10.1002/anie.201808049
10.1039/B713096A
10.1002/smll.201700191
10.1002/adma.201706508
10.1021/jacs.6b00757
10.1021/ja505777v
10.1126/science.aaf5251
10.1038/ncomms13285
10.1002/adma.201402978
10.1021/ar300361m
10.1002/adma.201606550
10.1126/sciadv.aap7970
10.1002/anie.201703864
10.1038/ncomms15938
10.1038/nature24640
10.1021/ja907098f
10.1126/science.1200832
10.1038/ncomms13638
10.1002/anie.201311111
10.1007/BF02063547
10.1021/ja910094r
10.1021/la900923z
10.1038/s41929-018-0063-z
10.1038/s41467-018-03138-7
10.1126/science.1253150
10.1126/sciadv.1500462
10.1038/nmat2384
10.1126/science.1185200
10.1038/ncomms5885
10.1021/jacs.8b07294
10.1021/ar3002427
10.1016/S0020-1693(00)82085-X
10.1002/anie.201702473
10.1126/science.aaf8800
10.1038/nnano.2012.72
10.1093/nsr/nwv024
10.1038/s41467-017-01035-z
10.1002/anie.201604802
10.1038/s41929-017-0008-y
10.1002/aenm.201501794
10.1021/jacs.6b02692
10.1038/ncomms10922
10.1021/ar800078m
10.1021/ja408574m
10.1126/science.aan2255
10.1002/smll.201402069
10.1038/ncomms3076
10.1038/ncomms9668
10.1126/science.1159639
10.1021/jacs.7b01686
10.1038/nchem.1095
10.1126/science.1075094
10.1002/adfm.201605785
10.1038/nmat4757
10.1126/sciadv.1400129
10.1002/adma.201505281
10.1038/s41565-018-0197-9
10.1021/ja039037k
10.1039/c0jm03613g
10.1126/science.aac6368
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-019-09290-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef



PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_ee6594d9ca654f159a3278748f9567d5
PMC6426845
1559195
30894539
10_1038_s41467_019_09290_y
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c633t-df9d67d34c76f820f0212071b264ea0141913a220de792dcdc5c1c388e2d096b3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:23:16 EDT 2025
Thu Aug 21 18:24:55 EDT 2025
Mon Jul 03 03:58:34 EDT 2023
Fri Jul 11 01:11:49 EDT 2025
Wed Aug 13 05:12:23 EDT 2025
Thu Apr 03 07:06:24 EDT 2025
Thu Apr 24 22:53:02 EDT 2025
Tue Jul 01 02:21:25 EDT 2025
Fri Feb 21 02:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-df9d67d34c76f820f0212071b264ea0141913a220de792dcdc5c1c388e2d096b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231
USDOE Office of Science (SC)
ORCID 0000-0003-0666-8063
0000-0002-7504-031X
0000-0002-7082-4123
0000000306668063
0000000270824123
000000027504031X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-09290-y
PMID 30894539
PQID 2194563920
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ee6594d9ca654f159a3278748f9567d5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6426845
osti_scitechconnect_1559195
proquest_miscellaneous_2195257653
proquest_journals_2194563920
pubmed_primary_30894539
crossref_citationtrail_10_1038_s41467_019_09290_y
crossref_primary_10_1038_s41467_019_09290_y
springer_journals_10_1038_s41467_019_09290_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-20
PublicationDateYYYYMMDD 2019-03-20
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ju (CR25) 2017; 8
Jones (CR5) 2016; 353
Liu (CR31) 2017; 16
Wei (CR19) 2017; 8
Jiang (CR49) 2018; 140
Liu (CR9) 2016; 352
Wang (CR66) 2014; 136
Zhu, Fu, Shi, Du, Lin (CR2) 2017; 56
Wu (CR60) 2011; 21
Risse, Shaikhutdinov, Nilius, Sterrer, Freund (CR45) 2008; 41
Chen (CR68) 2017; 56
Simonsen (CR43) 2010; 132
Gao, Jiao, Waclawik, Du (CR16) 2016; 138
Wang, Maiyalagan, Wang (CR58) 2012; 2
Cao (CR50) 2013; 4
Wei (CR63) 2018; 13
Cheng (CR17) 2016; 7
Yang (CR1) 2013; 46
Campbell, Parker, Starr (CR42) 2002; 298
Zhou (CR52) 2014; 16
Shui, Wang, Du, Dai (CR65) 2015; 1
Cook, Liu, Yang, Himpsel (CR53) 2009; 131
Peterson (CR11) 2014; 5
Li (CR35) 2012; 7
Wang (CR24) 2018; 4
Li (CR69) 2015; 11
Yang (CR54) 2018; 57
Vajda (CR4) 2009; 8
Zou (CR57) 2014; 53
Hansen, DeLaRiva, Challa, Datye (CR44) 2013; 46
Xu, Cheng, Cao, Zeng (CR37) 2018; 1
Yan, Li, Zou (CR62) 2009; 25
Nagy (CR47) 1986; 124
Genovese (CR36) 2018; 9
Shi (CR27) 2014; 26
Liu (CR23) 2017; 8
Shi (CR26) 2017; 29
Cheon (CR51) 2016; 6
Li (CR6) 2018; 13
Choi (CR32) 2016; 7
Guo (CR14) 2014; 344
Chung (CR20) 2017; 357
Jiang (CR67) 2016; 138
Shan, Li, Allard, Lee, Flytzani-Stephanopoulos (CR10) 2017; 551
Lin (CR13) 2013; 135
Han (CR22) 2018; 30
Malko, Kucernak, Lopes (CR34) 2016; 7
Geetha, Raghavan, Kulshreshtha, Sasikala, Rao (CR46) 1995; 271
Li (CR56) 2009; 131
Deng (CR38) 2015; 1
Wu, More, Johnston, Zelenay (CR64) 2011; 332
Lee, Fan, Wu, Anderson (CR29) 2004; 126
Qiao (CR8) 2011; 3
Yang, Deng, Pan, Fu, Bao (CR7) 2015; 2
Nagy, Gajda, Kürti, Schrantz, Burger (CR48) 1996; 209
Judai, Abbet, Wörz, Heiz, Henry (CR28) 2004; 126
Wu (CR61) 1997; 55
Wang (CR55) 2017; 139
Herzing, Kiely, Carley, Landon, Hutchings (CR3) 2008; 321
Bayatsarmadi, Zheng, Vasileff, Qiao (CR18) 2017; 13
Yin (CR21) 2016; 55
Fei (CR33) 2015; 6
Lei (CR30) 2010; 328
Chen (CR40) 2017; 27
Yang, Liu, Kariuki, Chen (CR59) 2008; 21
Li (CR15) 2016; 28
Fei (CR41) 2018; 1
Ding (CR12) 2015; 350
Liu (CR39) 2016; 7
C Zhu (9290_CR2) 2017; 56
G Wu (9290_CR64) 2011; 332
EJ Peterson (9290_CR11) 2014; 5
D Deng (9290_CR38) 2015; 1
H Xu (9290_CR37) 2018; 1
X Zou (9290_CR57) 2014; 53
CH Choi (9290_CR32) 2016; 7
J Yang (9290_CR54) 2018; 57
J Yang (9290_CR59) 2008; 21
B Qiao (9290_CR8) 2011; 3
G Gao (9290_CR16) 2016; 138
R Jiang (9290_CR49) 2018; 140
AA Herzing (9290_CR3) 2008; 321
JY Cheon (9290_CR51) 2016; 6
SB Simonsen (9290_CR43) 2010; 132
Y Chen (9290_CR68) 2017; 56
Q Li (9290_CR69) 2015; 11
CT Campbell (9290_CR42) 2002; 298
TW Hansen (9290_CR44) 2013; 46
R Cao (9290_CR50) 2013; 4
A Han (9290_CR22) 2018; 30
T Risse (9290_CR45) 2008; 41
N Cheng (9290_CR17) 2016; 7
J Shui (9290_CR65) 2015; 1
X Wang (9290_CR55) 2017; 139
K Ding (9290_CR12) 2015; 350
H Fei (9290_CR41) 2018; 1
F Yang (9290_CR7) 2015; 2
H Wei (9290_CR19) 2017; 8
S Wei (9290_CR63) 2018; 13
J Liu (9290_CR23) 2017; 8
L Liu (9290_CR31) 2017; 16
H Fei (9290_CR33) 2015; 6
K Geetha (9290_CR46) 1995; 271
PL Cook (9290_CR53) 2009; 131
W Ju (9290_CR25) 2017; 8
Y Shi (9290_CR27) 2014; 26
HT Chung (9290_CR20) 2017; 357
J Zhou (9290_CR52) 2014; 16
P Liu (9290_CR9) 2016; 352
G Wu (9290_CR60) 2011; 21
H Li (9290_CR6) 2018; 13
B Bayatsarmadi (9290_CR18) 2017; 13
S Vajda (9290_CR4) 2009; 8
D Malko (9290_CR34) 2016; 7
J Jones (9290_CR5) 2016; 353
L Nagy (9290_CR47) 1986; 124
ZY Wu (9290_CR61) 1997; 55
P Yin (9290_CR21) 2016; 55
J Wang (9290_CR24) 2018; 4
J Shan (9290_CR10) 2017; 551
C Genovese (9290_CR36) 2018; 9
Y Lei (9290_CR30) 2010; 328
W Liu (9290_CR39) 2016; 7
XF Yang (9290_CR1) 2013; 46
K Judai (9290_CR28) 2004; 126
L Nagy (9290_CR48) 1996; 209
S Lee (9290_CR29) 2004; 126
X Li (9290_CR15) 2016; 28
MM Shi (9290_CR26) 2017; 29
Y Li (9290_CR35) 2012; 7
SC Yan (9290_CR62) 2009; 25
WJ Jiang (9290_CR67) 2016; 138
H Wang (9290_CR58) 2012; 2
Q Wang (9290_CR66) 2014; 136
J Lin (9290_CR13) 2013; 135
X Li (9290_CR56) 2009; 131
Z Chen (9290_CR40) 2017; 27
X Guo (9290_CR14) 2014; 344
References_xml – volume: 131
  start-page: 194701
  year: 2009
  ident: CR53
  article-title: X-ray absorption spectroscopy of biomimetic dye molecules for solar cells
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3257621
– volume: 126
  start-page: 5682
  year: 2004
  end-page: 5683
  ident: CR29
  article-title: CO oxidation on Aun/TiO catalysts produced by size-selected cluster deposition
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049436v
– volume: 7
  start-page: 5758
  year: 2016
  end-page: 5764
  ident: CR39
  article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC02105K
– volume: 271
  start-page: 163
  year: 1995
  end-page: 175
  ident: CR46
  article-title: Transition-metal saccharide chemistry: synthesis, spectroscopy, electrochemistry and magnetic susceptibility studies of iron(III) complexes of mono- and disaccharides
  publication-title: Carbohydr. Res.
  doi: 10.1016/0008-6215(95)00050-4
– volume: 8
  year: 2017
  ident: CR19
  article-title: Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01521-4
– volume: 16
  start-page: 15787
  year: 2014
  end-page: 15791
  ident: CR52
  article-title: Fe–N bonding in a carbon nanotube–graphene complex for oxygen reduction: an XAS study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP01455C
– volume: 2
  start-page: 781
  year: 2012
  end-page: 794
  ident: CR58
  article-title: Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications
  publication-title: ACS Catal.
  doi: 10.1021/cs200652y
– volume: 55
  start-page: 2570
  year: 1997
  end-page: 2577
  ident: CR61
  article-title: Characterization of iron oxides by x-ray absorption at the oxygen K edgeusing a full multiple-scattering approach
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.2570
– volume: 13
  start-page: 411
  year: 2018
  end-page: 417
  ident: CR6
  article-title: Synergetic interaction between neighbouring platinum monomers in CO hydrogenation
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 57
  start-page: 14095
  year: 2018
  end-page: 14100
  ident: CR54
  article-title: In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808049
– volume: 21
  start-page: 329
  year: 2008
  end-page: 331
  ident: CR59
  article-title: Aligned carbon nanotubes with built-in FeN4 active sites for electrocatalytic reduction of oxygen
  publication-title: Chem. Commun.
  doi: 10.1039/B713096A
– volume: 13
  start-page: 1700191
  year: 2017
  ident: CR18
  article-title: Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion
  publication-title: Small
  doi: 10.1002/smll.201700191
– volume: 30
  start-page: 1706508
  year: 2018
  ident: CR22
  article-title: A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706508
– volume: 138
  start-page: 3570
  year: 2016
  end-page: 3578
  ident: CR67
  article-title: Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe C nanoparticles boost the activity of Fe–N
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00757
– volume: 136
  start-page: 10882
  year: 2014
  end-page: 10885
  ident: CR66
  article-title: Phenylenediamine-based FeN /C catalyst with high activity for oxygen reduction in acid medium and its active-site probing
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505777v
– volume: 352
  start-page: 797
  year: 2016
  end-page: 800
  ident: CR9
  article-title: Photochemical route for synthesizing atomically dispersed palladium catalysts
  publication-title: Science
  doi: 10.1126/science.aaf5251
– volume: 7
  year: 2016
  ident: CR34
  article-title: In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13285
– volume: 26
  start-page: 8147
  year: 2014
  ident: CR27
  article-title: Single-atom catalysis in mesoporous photovoltaics: The principle of utility maximization
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402978
– volume: 46
  start-page: 1740
  year: 2013
  end-page: 1748
  ident: CR1
  article-title: Single-atom catalysts: A new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 29
  start-page: 1606550
  year: 2017
  ident: CR26
  article-title: Au sub-nanoclusters on TiO toward highly efficient and selective electrocatalyst for N conversion to NH at ambient conditions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606550
– volume: 4
  start-page: eaap7970
  year: 2018
  ident: CR24
  article-title: In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap7970
– volume: 56
  start-page: 13944
  year: 2017
  end-page: 13960
  ident: CR2
  article-title: Single-atom electrocatalysts
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703864
– volume: 8
  year: 2017
  ident: CR23
  article-title: High performance platinum single atom electrocatalyst for oxygen reduction reaction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15938
– volume: 551
  start-page: 605
  year: 2017
  end-page: 608
  ident: CR10
  article-title: Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts
  publication-title: Nature
  doi: 10.1038/nature24640
– volume: 131
  start-page: 15939
  year: 2009
  end-page: 15944
  ident: CR56
  article-title: Simultaneous nitrogen doping and reduction of graphene oxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907098f
– volume: 332
  start-page: 443
  year: 2011
  end-page: 447
  ident: CR64
  article-title: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt
  publication-title: Science
  doi: 10.1126/science.1200832
– volume: 7
  year: 2016
  ident: CR17
  article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13638
– volume: 53
  start-page: 4372
  year: 2014
  end-page: 4376
  ident: CR57
  article-title: Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at All pH values
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311111
– volume: 209
  start-page: 225
  year: 1996
  end-page: 234
  ident: CR48
  article-title: Spectroscopic studies of iron(III) complexes of D-saccharose and D-glucose in the solid state and in solution
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/BF02063547
– volume: 132
  start-page: 7968
  year: 2010
  end-page: 7975
  ident: CR43
  article-title: Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja910094r
– volume: 25
  start-page: 10397
  year: 2009
  end-page: 10401
  ident: CR62
  article-title: Photodegradation performance of g-C N fabricated by directly heating melamine
  publication-title: Langmuir
  doi: 10.1021/la900923z
– volume: 1
  start-page: 339
  year: 2018
  end-page: 348
  ident: CR37
  article-title: A universal principle for a rational design of single-atom electrocatalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 9
  year: 2018
  ident: CR36
  article-title: Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03138-7
– volume: 344
  start-page: 616
  year: 2014
  end-page: 619
  ident: CR14
  article-title: Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen
  publication-title: Science
  doi: 10.1126/science.1253150
– volume: 1
  start-page: e1500462
  year: 2015
  ident: CR38
  article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500462
– volume: 8
  start-page: 213
  year: 2009
  end-page: 216
  ident: CR4
  article-title: Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2384
– volume: 328
  start-page: 224
  year: 2010
  end-page: 228
  ident: CR30
  article-title: Increased silver activity for direct propylene epoxidation via subnanometer size effects
  publication-title: Science
  doi: 10.1126/science.1185200
– volume: 5
  year: 2014
  ident: CR11
  article-title: Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5885
– volume: 140
  start-page: 11594
  year: 2018
  end-page: 11598
  ident: CR49
  article-title: Edge-site engineering of atomically dispersed Fe–N by selective C–N bond cleavage for enhanced oxygen reduction reaction activities
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07294
– volume: 46
  start-page: 1720
  year: 2013
  end-page: 1730
  ident: CR44
  article-title: Sintering of catalytic nanoparticles: Particle migration or ostwald ripening?
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3002427
– volume: 124
  start-page: 55
  year: 1986
  end-page: 59
  ident: CR47
  article-title: Iron(III) complexes of sugar-type ligands
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)82085-X
– volume: 56
  start-page: 6937
  year: 2017
  end-page: 6941
  ident: CR68
  article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702473
– volume: 353
  start-page: 150
  year: 2016
  end-page: 154
  ident: CR5
  article-title: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping
  publication-title: Science
  doi: 10.1126/science.aaf8800
– volume: 7
  start-page: 394
  year: 2012
  end-page: 400
  ident: CR35
  article-title: An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.72
– volume: 2
  start-page: 183
  year: 2015
  end-page: 201
  ident: CR7
  article-title: Understanding nano effects in catalysis
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwv024
– volume: 8
  year: 2017
  ident: CR25
  article-title: Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01035-z
– volume: 55
  start-page: 10800
  year: 2016
  end-page: 10805
  ident: CR21
  article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604802
– volume: 1
  start-page: 63
  year: 2018
  end-page: 72
  ident: CR41
  article-title: General synthesis and definitive structural identification of MN C single-atom catalysts with tunable electrocatalytic activities
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 6
  start-page: 1501794
  year: 2016
  ident: CR51
  article-title: Graphitic nanoshell/mesoporous carbon nanohybrids as highly efficient and stable bifunctional oxygen electrocatalysts for rechargeable aqueous Na–air batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501794
– volume: 138
  start-page: 6292
  year: 2016
  end-page: 6297
  ident: CR16
  article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02692
– volume: 7
  year: 2016
  ident: CR32
  article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10922
– volume: 41
  start-page: 949
  year: 2008
  end-page: 956
  ident: CR45
  article-title: Gold supported on thin oxide films: From single atoms to nanoparticles
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800078m
– volume: 135
  start-page: 15314
  year: 2013
  end-page: 15317
  ident: CR13
  article-title: Remarkable performance of Ir /FeO single-atom catalyst in water gas shift reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408574m
– volume: 357
  start-page: 479
  year: 2017
  end-page: 484
  ident: CR20
  article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
  publication-title: Science
  doi: 10.1126/science.aan2255
– volume: 11
  start-page: 1443
  year: 2015
  end-page: 1452
  ident: CR69
  article-title: Metal–organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts
  publication-title: Small
  doi: 10.1002/smll.201402069
– volume: 4
  year: 2013
  ident: CR50
  article-title: Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3076
– volume: 6
  year: 2015
  ident: CR33
  article-title: Atomic cobalt on nitrogen-doped graphene for hydrogen generation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9668
– volume: 321
  start-page: 1331
  year: 2008
  end-page: 1335
  ident: CR3
  article-title: Identification of active gold nanoclusters on iron oxide supports for CO oxidation
  publication-title: Science
  doi: 10.1126/science.1159639
– volume: 139
  start-page: 9419
  year: 2017
  end-page: 9422
  ident: CR55
  article-title: Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01686
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  ident: CR8
  article-title: Single-atom catalysis of CO oxidation using Pt /FeO
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 298
  start-page: 811
  year: 2002
  end-page: 814
  ident: CR42
  article-title: The effect of size-dependent nanoparticle energetics on catalyst sintering
  publication-title: Science
  doi: 10.1126/science.1075094
– volume: 27
  start-page: 1605785
  year: 2017
  ident: CR40
  article-title: Stabilization of single metal atoms on graphitic carbon nitride
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605785
– volume: 16
  start-page: 132
  year: 2017
  end-page: 138
  ident: CR31
  article-title: Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4757
– volume: 1
  start-page: e1400129
  year: 2015
  ident: CR65
  article-title: N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1400129
– volume: 28
  start-page: 2427
  year: 2016
  ident: CR15
  article-title: Single-atom Pt as co-catalyst for enhanced photocatalytic H evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505281
– volume: 13
  start-page: 856
  year: 2018
  end-page: 861
  ident: CR63
  article-title: Direct observation of noble metal nanoparticles transforming to thermally stable single atoms
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0197-9
– volume: 126
  start-page: 2732
  year: 2004
  end-page: 2737
  ident: CR28
  article-title: Low-temperature cluster catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja039037k
– volume: 21
  start-page: 11392
  year: 2011
  end-page: 11405
  ident: CR60
  article-title: Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03613g
– volume: 350
  start-page: 189
  year: 2015
  end-page: 192
  ident: CR12
  article-title: Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts
  publication-title: Science
  doi: 10.1126/science.aac6368
– volume: 352
  start-page: 797
  year: 2016
  ident: 9290_CR9
  publication-title: Science
  doi: 10.1126/science.aaf5251
– volume: 46
  start-page: 1740
  year: 2013
  ident: 9290_CR1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 13
  start-page: 856
  year: 2018
  ident: 9290_CR63
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0197-9
– volume: 1
  start-page: 63
  year: 2018
  ident: 9290_CR41
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 138
  start-page: 6292
  year: 2016
  ident: 9290_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02692
– volume: 344
  start-page: 616
  year: 2014
  ident: 9290_CR14
  publication-title: Science
  doi: 10.1126/science.1253150
– volume: 139
  start-page: 9419
  year: 2017
  ident: 9290_CR55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01686
– volume: 13
  start-page: 411
  year: 2018
  ident: 9290_CR6
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 55
  start-page: 2570
  year: 1997
  ident: 9290_CR61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.2570
– volume: 11
  start-page: 1443
  year: 2015
  ident: 9290_CR69
  publication-title: Small
  doi: 10.1002/smll.201402069
– volume: 350
  start-page: 189
  year: 2015
  ident: 9290_CR12
  publication-title: Science
  doi: 10.1126/science.aac6368
– volume: 5
  year: 2014
  ident: 9290_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5885
– volume: 29
  start-page: 1606550
  year: 2017
  ident: 9290_CR26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606550
– volume: 7
  year: 2016
  ident: 9290_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10922
– volume: 7
  year: 2016
  ident: 9290_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13638
– volume: 1
  start-page: e1500462
  year: 2015
  ident: 9290_CR38
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500462
– volume: 357
  start-page: 479
  year: 2017
  ident: 9290_CR20
  publication-title: Science
  doi: 10.1126/science.aan2255
– volume: 6
  start-page: 1501794
  year: 2016
  ident: 9290_CR51
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501794
– volume: 1
  start-page: 339
  year: 2018
  ident: 9290_CR37
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 2
  start-page: 781
  year: 2012
  ident: 9290_CR58
  publication-title: ACS Catal.
  doi: 10.1021/cs200652y
– volume: 321
  start-page: 1331
  year: 2008
  ident: 9290_CR3
  publication-title: Science
  doi: 10.1126/science.1159639
– volume: 124
  start-page: 55
  year: 1986
  ident: 9290_CR47
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)82085-X
– volume: 7
  start-page: 394
  year: 2012
  ident: 9290_CR35
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.72
– volume: 271
  start-page: 163
  year: 1995
  ident: 9290_CR46
  publication-title: Carbohydr. Res.
  doi: 10.1016/0008-6215(95)00050-4
– volume: 4
  year: 2013
  ident: 9290_CR50
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3076
– volume: 57
  start-page: 14095
  year: 2018
  ident: 9290_CR54
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808049
– volume: 56
  start-page: 6937
  year: 2017
  ident: 9290_CR68
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702473
– volume: 135
  start-page: 15314
  year: 2013
  ident: 9290_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408574m
– volume: 131
  start-page: 194701
  year: 2009
  ident: 9290_CR53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3257621
– volume: 16
  start-page: 15787
  year: 2014
  ident: 9290_CR52
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP01455C
– volume: 8
  year: 2017
  ident: 9290_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01035-z
– volume: 53
  start-page: 4372
  year: 2014
  ident: 9290_CR57
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311111
– volume: 3
  start-page: 634
  year: 2011
  ident: 9290_CR8
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 4
  start-page: eaap7970
  year: 2018
  ident: 9290_CR24
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap7970
– volume: 28
  start-page: 2427
  year: 2016
  ident: 9290_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505281
– volume: 27
  start-page: 1605785
  year: 2017
  ident: 9290_CR40
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605785
– volume: 7
  year: 2016
  ident: 9290_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13285
– volume: 209
  start-page: 225
  year: 1996
  ident: 9290_CR48
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/BF02063547
– volume: 131
  start-page: 15939
  year: 2009
  ident: 9290_CR56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907098f
– volume: 8
  start-page: 213
  year: 2009
  ident: 9290_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2384
– volume: 8
  year: 2017
  ident: 9290_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15938
– volume: 16
  start-page: 132
  year: 2017
  ident: 9290_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4757
– volume: 126
  start-page: 5682
  year: 2004
  ident: 9290_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049436v
– volume: 551
  start-page: 605
  year: 2017
  ident: 9290_CR10
  publication-title: Nature
  doi: 10.1038/nature24640
– volume: 126
  start-page: 2732
  year: 2004
  ident: 9290_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja039037k
– volume: 132
  start-page: 7968
  year: 2010
  ident: 9290_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja910094r
– volume: 41
  start-page: 949
  year: 2008
  ident: 9290_CR45
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800078m
– volume: 1
  start-page: e1400129
  year: 2015
  ident: 9290_CR65
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1400129
– volume: 13
  start-page: 1700191
  year: 2017
  ident: 9290_CR18
  publication-title: Small
  doi: 10.1002/smll.201700191
– volume: 26
  start-page: 8147
  year: 2014
  ident: 9290_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402978
– volume: 298
  start-page: 811
  year: 2002
  ident: 9290_CR42
  publication-title: Science
  doi: 10.1126/science.1075094
– volume: 46
  start-page: 1720
  year: 2013
  ident: 9290_CR44
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3002427
– volume: 25
  start-page: 10397
  year: 2009
  ident: 9290_CR62
  publication-title: Langmuir
  doi: 10.1021/la900923z
– volume: 55
  start-page: 10800
  year: 2016
  ident: 9290_CR21
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604802
– volume: 7
  start-page: 5758
  year: 2016
  ident: 9290_CR39
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC02105K
– volume: 140
  start-page: 11594
  year: 2018
  ident: 9290_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07294
– volume: 6
  year: 2015
  ident: 9290_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9668
– volume: 2
  start-page: 183
  year: 2015
  ident: 9290_CR7
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwv024
– volume: 353
  start-page: 150
  year: 2016
  ident: 9290_CR5
  publication-title: Science
  doi: 10.1126/science.aaf8800
– volume: 332
  start-page: 443
  year: 2011
  ident: 9290_CR64
  publication-title: Science
  doi: 10.1126/science.1200832
– volume: 56
  start-page: 13944
  year: 2017
  ident: 9290_CR2
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703864
– volume: 21
  start-page: 329
  year: 2008
  ident: 9290_CR59
  publication-title: Chem. Commun.
  doi: 10.1039/B713096A
– volume: 8
  year: 2017
  ident: 9290_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01521-4
– volume: 138
  start-page: 3570
  year: 2016
  ident: 9290_CR67
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00757
– volume: 328
  start-page: 224
  year: 2010
  ident: 9290_CR30
  publication-title: Science
  doi: 10.1126/science.1185200
– volume: 30
  start-page: 1706508
  year: 2018
  ident: 9290_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706508
– volume: 21
  start-page: 11392
  year: 2011
  ident: 9290_CR60
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03613g
– volume: 9
  year: 2018
  ident: 9290_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03138-7
– volume: 136
  start-page: 10882
  year: 2014
  ident: 9290_CR66
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505777v
SSID ssj0000391844
Score 2.7000084
Snippet Although single-atomically dispersed metal-N x on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such...
Although single-atomically dispersed metal-N on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such...
Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such...
Although single atom catalysts (SACs) with high-loading metal-Nx have great potential in heterogeneous catalysis, their scalable synthesis remains challenging....
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1278
SubjectTerms 140/133
140/146
147/135
147/137
147/143
639/301/299/161
639/301/299/886
639/638/77/884
Anchoring
Atomic properties
Carbon
Carbon dioxide
Catalysis
Catalysts
Catalytic oxidation
Chelates
Chelating agents
Chelation
Chemical synthesis
Coordination compounds
Dispersion
Glucose
High temperature
Humanities and Social Sciences
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Iron
Laboratories
Mass production
Metal ions
Metals
multidisciplinary
Nickel
Nitrogen
Physics
Reduction
Science
Science (multidisciplinary)
Single atom catalysts
Strategy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LatwwFBUlUOim9F03SVGhu1bElmTZWjahIRTaVQPZCVuSm8CMHWJn4b_vkeSZZvrcdGWwZCPfl86Vro8IeeuU78rWV8xKZ5l0yrJG1R1rC86d0Lb0kaz68xd1di4_XZQXd476CjVhiR44Ce7Ie1Vq6bRtVCk7TL6N4DAyWXdA9pWL7KWY8-4kUzEGC43URS5_yeSiPhpljAl5-GcHkCBn885MFAn7cRngWL8Dm7_WTP60cRrno9NH5OECJOmH9AGPyT3fPyH309GS81OyPmnGUPpOodXLWGRHx0REO1PgVPot0U3TNcAzvU60r1ARHToaGIzZaojF9TQsJaw8Q2q-vrJ07YHVGaLAzYAX0Lj2M4_T-Iycn378enLGlqMVmFVCTMx12kF6QtpKdQABXWB6B9pogY98E4o_dSEaznPnK82ddba0hRV17blD0tOK52SvH3r_ktCW605WLUB6ywMTTg3A1hZlxxuFh7nNSLERs7EL73g4_mJl4v63qE1SjYFqTFSNmTPybvvMdWLd-Gvv46C9bc_AmB1vwI7MYkfmX3aUkf2gewPgEdhzbSgzspMJu7aFRuvBxiTM4uSjQbAH_ATAzDPyZtsM9wx7Lk3vh9vYJ_DNqlJk5EWyoO04RV7jBUJnpNqxrZ0P2W3pry4jBTiyRlVLDOv9xgp_DOvPgnr1PwS1Tx7w6EUCEfaA7E03t_4QwGxqX0cf_A7C3jPV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb5wwELbaVJV6idI3SVq5Um-tFbCNMaeqjbqNKrWnRsrNAj-SSLuwXciBf58ZwxJtHzmBsEGGeX22h28Iee-UD3ntC2als0w6ZVmldGB1xrkTpc19JKv-8VOdncvvF_nFtODWTWmVW58YHbVrLa6Rn4BlQayHaJ5-Wv9mWDUKd1enEhoPyaMMIg2mdOnFt3mNBdnPtZTTvzKp0CedjJ4hxT93ABikbNiJR5G2Hw4tmNe_IOffmZN_bJ_GqLQ4IPsTnKSfR_k_JQ9884w8HgtMDnAWEzxt95ysTqsOU-EpSPkqJt3RbiSmHSjgVno50k_TFYBpuh5pYEFktA0UGY3Zso3J9hSXFpaewVR9dW3pygN2Z-AVNi08gMa1oKHruxfkfPH11-kZm0otMKuE6JkLpVOFE9IWKgAoCMj8DuijBrzkK0wGLTNRcZ46X5TcWWdzm1mhtecOJkG1eEn2mrbxrwmteRlkUQNorzky42gAcHWWB14puJnbhGTbD27sxEOO5TCWJu6HC21GIRkQkolCMkNCPsz3rEcWjnt7f0E5zj2RQTteaDeXZjJI473KS-lKW6lcBgB1leDgvKQOMGMsXJ6QI9QCA0AE2XQtph3Z3uAublZC6_FWOcxk9J25U9GEvJubwVxxD6ZqfHsT-yD_rMpFQl6NujSPU6QaHiDKhBQ7WrbzIrstzfVVpASHWaTSEob1cauPd8P6_4c6vP8tjsgTHi1FgC89Jnv95sa_AQjW12-jnd0CPWQvCg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ShEIvJX3GSVpU6K0VtSVZlo_b0BAW2ksbyE3YeiSBXTusnYP_fUeyvWXbtNCTwZKMrHnoG2n0CeC9lc7ntSuoEdZQYaWhlVSe1hljlpcmd5Gs-us3eXEpllf51R6w-SxMTNqPlJbRTc_ZYZ86EU06DUducEZP6fAIDgJVO-r2wWKx_L7crqwEznMlxHRCJuXqgcY7s1Ak68dHi0b1END8M1_yt03TOBedH8LTCUSSxdjtZ7DnmufweLxWcngB67OqC2nvBCV6ExPsSDeS0A4EMSq5HqmmyRqBM7kbKV9RPKT1JLAX01UbE-tJWEZYOYph-frWkLVDnE7RA2xa_ACJ6z5D13cv4fL8y4-zCzpdq0CN5Lyn1pdWFpYLU0iPAMAHlndEGjViI1eFxM8y4xVjqXVFyayxJjeZ4Uo5ZjHgqfkr2G_axh0BqVnpRVEjQK9ZYMFRCNbqLPesktiYmQSyeZi1mTjHw9UXKx33vrnSo2g0ikZH0eghgQ_bNncj48Y_a38O0tvWDGzZ8UW7udaT9mjnZF4KW5pK5sIjgKs4Q0cllMfosLB5AidB9hpBR2DONSHFyPQ67NhmJZaeziqhJwPvNDp6hJ4ILtME3m2L0TTDfkvVuPY-1glcszLnCbweNWjbT54q_AAvEyh2dGvnR3ZLmtubSP-NEaNUArv1cdbCX936-0Ad_1_1E3jCor1w9KOnsN9v7t0bhF99_Xayt5_9CCvI
  priority: 102
  providerName: Springer Nature
Title Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts
URI https://link.springer.com/article/10.1038/s41467-019-09290-y
https://www.ncbi.nlm.nih.gov/pubmed/30894539
https://www.proquest.com/docview/2194563920
https://www.proquest.com/docview/2195257653
https://www.osti.gov/servlets/purl/1559195
https://pubmed.ncbi.nlm.nih.gov/PMC6426845
https://doaj.org/article/ee6594d9ca654f159a3278748f9567d5
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wWAvY9_12gUN9rZpsyVZth_GSEOzEmgZ2wJ5E7Ykt4XE7uIU5v9-J9nJyJb1xQZLNrLuTvqddPodwFsjbRkXNqFaGE2FkZrmMi1pETFmeKZj68mqLy7l-VRMZvFsD9bpjvoObHa6di6f1HQ5__DrZ_sZDf5Td2Q8_dgIb-6hO46Ds31I2304xJkpcRkNLnq470dmnqFD4zaaWSgiihV4f45m92e25ipP6Y-3Gk1vFxz9N6ryr61VP2ONH8OjHmqSYacbT2DPVk_hQZd8sn0Gi1HeuOB4gnK_9mF4pOmoaluCSJZcdYTUZIHwmtx2xLAoRFKXxHEc03ntw--JW2yYW4rO--JGk4XFjqQ4Tixr_ADxq0Nts2qew3R89mN0TvvkC1RLzlfUlJmRieFCJ7JEmFA6LnjEIwUiKJu78NAs4jljobFJxow2OtaR5mlqmUG3qOAv4KCqK3sEpGBZKZICYXzBHFdOipCuiOKS5RJfZjqAaN3NSvfM5C5Bxlz5HXKeqk40CkWjvGhUG8C7zTu3HS_HvbVPnfQ2NR2ntn9QL69Ub6LKWhlnwmQ6l7EoEeblnOFwJtISfcjExAEcO9krhCaOX1e7QCS9Um5fN8qw9GStEmqtxQqnAwSoCEHDAN5sitGA3a5MXtn6ztdxjLQy5gG87DRo004epvgBngWQbOnW1o9sl1Q3154kHP1KmQps1vu1Fv5p1v876tW9_3gMD5k3D46D6wkcrJZ39jVislUxgP1kluA1HX8ZwOFwOPk-wfvp2eXXb_h0JEcDv9ox8Ab5G61XOB4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYJLxbOkLWAkOIHVxHac5IAQFJYtfZxaqTeT2E6LtLtZNqlQ_hS_kRkn2Wp59NbTRmsncjKvz_b4G0JeWeXKuHAJM9IaJq0yLFdpyYqIcysyEztPVn10rMan8utZfLZGfg1nYTCtcvCJ3lHbyuAa-S5YFsR6iObh-_kPhlWjcHd1KKHRqcWBa3_ClK1-t_8J5Pua89Hnk70x66sKMKOEaJgtM6sSK6RJVAnxr0SScwi0BUADl2PeYxaJnPPQuiTj1lgTm8iINHXcAt4vBDz3FrktBURyPJk--rJc00G29VTK_mxOKNLdWnpPFOJJIQAiIWtX4p8vEwA_FZjzvyDu35maf2zX-ig4uk82evhKP3T69oCsudlDcqcraNnClU8oNfUjMt3La0y9p6BVFz7Jj9YdEW5LASfT847umk4BvNN5RzsLKkKrkiKDMptUPrmf4lLGxLG8wdPTdOpgrsDACy0qeAD1a09t3dSPyemNCOEJWZ9VM_eU0IJnpUwKmCQUHJl4UgCMRRSXPFdwMzcBiYYPrk3Pe47lNyba77-LVHdC0iAk7YWk24C8Wd4z71g_ru39EeW47ImM3f6PanGuewegnVNxJm1mchXLEkBkLjg4S5mWMENNbByQbdQCDcAH2XsNpjmZRuOucZRB686gHLp3MrW-MomAvFw2g3vAPZ985qpL3wf5blUsArLZ6dJynCJM4QEiC0iyomUrL7LaMvt-4SnIYdaqUgnDejvo49Ww_v-htq5_ixfk7vjk6FAf7h8fbJN73FuNAD--Q9abxaV7BvCvKZ57m6Pk200b-W-cimrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDthA4wET2A1sR0neUCIXaqNQTUhJu3NJLazIbVNaTqh_DV-Hec4Sady2dueEsWO5eTc7ePvEPLKKlfGhUuYkdYwaZVhuUpLVkScW5GZ2Hmw6s9jdXAiP57GpxvkV38WBtMqe53oFbWtDK6RD0GywNaDNQ-HZZcWcbw3ej__wbCCFO609uU0WhY5cs1PCN_qd4d7QOvXnI_2v-4esK7CADNKiCWzZWZVYoU0iSrBFpYIeA5GtwA3weWYA5lFIuc8tC7JuDXWxCYyIk0dt-D7FwLGvUE2E4yKBmRzZ398_GW1woPY66mU3UmdUKTDWnq9FOK5IXBLQtasWUNfNAAuFQj3vxzev_M2_9i89TZxdJfc6ZxZ-qHlvntkw83uk5ttecsG7nx6qakfkOluXmMiPgUeO_cpf7RuYXEbCl4zPWvBr-kUXHk6b0FogWFoVVLEU2aTyqf6U1zYmDiWL_EsNZ06iBwY6KRFBQNQvxLV1Mv6ITm5FjI8IoNZNXNPCC14VsqkgJCh4IjLk4L7WERxyXMFL3MTkKj_4dp0KOhYjGOi_W68SHVLJA1E0p5IugnIm9U78xYD5MreO0jHVU_E7_YPqsWZ7tSBdk7FmbSZyVUsS3Apc8FBdcq0hHg1sXFAtpALNLhBiOVrMOnJLDXuIUcZtG73zKE7lVPrSwEJyMtVMygL3AHKZ6668H0Q_VbFIiCPW15azVOEKQwgsoAka1y29iHrLbPv5x6QHGJYlUqY1tueHy-n9f8f9fTqr3hBboGA60-H46Mtcpt7oRGg1LfJYLm4cM_AF1wWzzuho-Tbdcv5b8LxcGI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascade+anchoring+strategy+for+general+mass+production+of+high-loading+single-atomic+metal-nitrogen+catalysts&rft.jtitle=Nature+communications&rft.au=Zhao%2C+Lu&rft.au=Zhang%2C+Yun&rft.au=Huang%2C+Lin-Bo&rft.au=Liu%2C+Xiao-Zhi&rft.date=2019-03-20&rft.pub=Nature+Publishing+Group&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-09290-y&rft.externalDocID=1559195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon