PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction

In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 13; no. 3; p. e1005455
Main Authors You, Zhu-Hong, Huang, Zhi-An, Zhu, Zexuan, Yan, Gui-Ying, Li, Zheng-Wei, Wen, Zhenkun, Chen, Xing
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations.
AbstractList In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations.In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations.
In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations.
In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, P ath- B ased M iRNA- D isease A ssociation (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations. Identification of miRNA-disease associations is considered as a key way for the development of pathology, diagnose and therapy. Computational prediction models contribute to discovering the underlying disease-related miRNAs on a large scale. Based on the assumption that functionally related miRNAs tend to be involved in phenotypically similar disease and vice versa, the model of PBMDA was developed to prioritize the underlying miRNA-disease associations by adopting a special depth-first search algorithm in a heterogeneous graph, which was composed of known miRNA-disease association network, miRNA similarity network, and disease similarity network. Through leave-one-out cross validation and 5-fold cross validation, the promising results demonstrated the effectiveness of the proposed model. We further implemented the case studies of three important human complex diseases, 88%, 88% and 90% of top-50 predicted miRNA-disease associations have been manually confirmed based on recent experimental reports. It is anticipated that PBMDA could prioritize the most potential miRNA-disease associations on a large scale for advancing the progress of biological experiment validation in the future, which could further contribute to the understanding of complex disease mechanisms.
Audience Academic
Author Huang, Zhi-An
You, Zhu-Hong
Wen, Zhenkun
Chen, Xing
Yan, Gui-Ying
Li, Zheng-Wei
Zhu, Zexuan
AuthorAffiliation 2 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
5 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
1 Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, ürümqi, China
4 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
University of Calgary Cumming School of Medicine, CANADA
AuthorAffiliation_xml – name: University of Calgary Cumming School of Medicine, CANADA
– name: 4 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
– name: 2 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– name: 3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
– name: 5 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– name: 1 Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, ürümqi, China
Author_xml – sequence: 1
  givenname: Zhu-Hong
  surname: You
  fullname: You, Zhu-Hong
– sequence: 2
  givenname: Zhi-An
  orcidid: 0000-0001-9974-148X
  surname: Huang
  fullname: Huang, Zhi-An
– sequence: 3
  givenname: Zexuan
  surname: Zhu
  fullname: Zhu, Zexuan
– sequence: 4
  givenname: Gui-Ying
  surname: Yan
  fullname: Yan, Gui-Ying
– sequence: 5
  givenname: Zheng-Wei
  surname: Li
  fullname: Li, Zheng-Wei
– sequence: 6
  givenname: Zhenkun
  surname: Wen
  fullname: Wen, Zhenkun
– sequence: 7
  givenname: Xing
  orcidid: 0000-0001-9028-5342
  surname: Chen
  fullname: Chen, Xing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28339468$$D View this record in MEDLINE/PubMed
BookMark eNqVkttu1DAQhiNURA_wBggicVMusthrx7F7gbSU00qloALX1sSebL1K4hAnq_L2eA-tuhVCQr7waPzNP57Rf5wctL7FJHlOyYSygr5Z-rFvoZ50pnQTSkjO8_xRckTznGUFy-XBvfgwOQ5hSUgMlXiSHE4lY4oLeZTYb---vJ-dpbO09SusU2htilWFZnArTDsYrrMSAtrU-KYbBxicj03TxtsIV75PG3d1OcusCxixFELwxm2otOvROrMOnyaPK6gDPtvdJ8nPjx9-nH_OLr5-mp_PLjIjGBsyixyJUchwSlBZiayUCgAKRouKKRSSSsptrgqASk5ZSRlQyAlTU15WHNhJ8nKr29U-6N2CgqZSSiEo43kk5lvCeljqrncN9L-1B6c3Cd8vNPSDMzVqQXJGSklQGsmpKiWue0piUJTWCoxab3fdxrJBa7Adeqj3RPdfWnetF36lcyZ5IVQUON0J9P7XiGHQjQsG6xpa9OPm33RaECFIRF89QP8-3WRLLSAO4NrKx74mHouNM9E-lYv5GVfRP5zLtezrvYLIDHgzLGAMQc-_X_0He7nPvri_mrud3PouAnwLmN6H0GN1h1Ci1_a-nU-v7a139o5lZw_KjNt6Mg7q6n8X_wH5SgG2
CitedBy_id crossref_primary_10_1016_j_neunet_2023_05_052
crossref_primary_10_3390_ijms222111397
crossref_primary_10_3389_fmicb_2023_1170559
crossref_primary_10_1186_s12859_020_3426_9
crossref_primary_10_1039_C9RA05554A
crossref_primary_10_1016_j_isci_2019_08_030
crossref_primary_10_3390_ijms19123732
crossref_primary_10_1016_j_neucom_2020_02_062
crossref_primary_10_3389_fcell_2021_603758
crossref_primary_10_1007_s00438_020_01702_9
crossref_primary_10_1093_bib_bbac340
crossref_primary_10_1093_bioinformatics_btz254
crossref_primary_10_1038_s41598_017_06201_3
crossref_primary_10_3389_fgene_2022_979815
crossref_primary_10_1016_j_ymthe_2021_01_003
crossref_primary_10_1093_bib_bbaa037
crossref_primary_10_1109_TCBB_2020_2964221
crossref_primary_10_1016_j_isci_2022_105299
crossref_primary_10_1109_TCBB_2021_3067338
crossref_primary_10_3390_molecules24173099
crossref_primary_10_1016_j_ygeno_2019_05_021
crossref_primary_10_1038_s41598_017_07169_w
crossref_primary_10_1109_TCBB_2019_2931546
crossref_primary_10_1016_j_omtn_2019_06_014
crossref_primary_10_3389_fbioe_2020_00901
crossref_primary_10_3390_genes13101759
crossref_primary_10_3389_fgene_2018_00618
crossref_primary_10_1109_ACCESS_2020_2972068
crossref_primary_10_3934_mbe_2022269
crossref_primary_10_1016_j_isci_2020_101261
crossref_primary_10_3389_fgene_2022_978975
crossref_primary_10_1007_s12559_022_10092_6
crossref_primary_10_1093_bib_bbab479
crossref_primary_10_1093_bib_bbaa028
crossref_primary_10_1093_bib_bbz091
crossref_primary_10_3390_biology12010041
crossref_primary_10_3390_molecules27144371
crossref_primary_10_3389_fgene_2021_727744
crossref_primary_10_3389_fgene_2019_00385
crossref_primary_10_1093_bioinformatics_bty503
crossref_primary_10_1007_s11390_021_0740_2
crossref_primary_10_1039_C8RA05122D
crossref_primary_10_1109_JBHI_2021_3088342
crossref_primary_10_1093_bib_bbaa061
crossref_primary_10_1007_s12539_021_00459_y
crossref_primary_10_1038_s41598_018_22240_w
crossref_primary_10_1093_bib_bbaa058
crossref_primary_10_1371_journal_pcbi_1010671
crossref_primary_10_1186_s12859_021_04189_2
crossref_primary_10_1016_j_compbiomed_2019_05_014
crossref_primary_10_1109_TCBB_2019_2934958
crossref_primary_10_3389_fmicb_2018_02560
crossref_primary_10_18632_oncotarget_19588
crossref_primary_10_3389_fmicb_2018_02440
crossref_primary_10_1186_s12911_021_01616_5
crossref_primary_10_1155_2018_5747489
crossref_primary_10_18632_oncotarget_20442
crossref_primary_10_3389_fgene_2019_01346
crossref_primary_10_1186_s12859_019_2956_5
crossref_primary_10_1016_j_csbj_2024_01_011
crossref_primary_10_3389_fgene_2022_899340
crossref_primary_10_1016_j_compbiolchem_2020_107369
crossref_primary_10_3390_life12101578
crossref_primary_10_1109_TCBB_2021_3127017
crossref_primary_10_1016_j_compbiolchem_2020_107361
crossref_primary_10_1109_TNNLS_2021_3129772
crossref_primary_10_1016_j_knosys_2020_106718
crossref_primary_10_3390_biom11121835
crossref_primary_10_1109_ACCESS_2020_2974349
crossref_primary_10_1109_TCBB_2022_3196394
crossref_primary_10_1093_bib_bbac104
crossref_primary_10_3390_biology11050777
crossref_primary_10_1109_JBHI_2024_3383591
crossref_primary_10_1038_s41598_017_15235_6
crossref_primary_10_1109_TCBB_2019_2940182
crossref_primary_10_1109_TCBB_2020_2973091
crossref_primary_10_1155_2019_5938035
crossref_primary_10_1080_15476286_2018_1521210
crossref_primary_10_1038_s41598_019_41552_z
crossref_primary_10_1093_bib_bbaa240
crossref_primary_10_1093_bib_bbab571
crossref_primary_10_1186_s13321_018_0284_9
crossref_primary_10_1371_journal_pcbi_1007209
crossref_primary_10_1109_TCBB_2020_2974732
crossref_primary_10_1016_j_neuroscience_2020_01_024
crossref_primary_10_1109_JBHI_2024_3397003
crossref_primary_10_3389_fgene_2020_598185
crossref_primary_10_1039_C9RA11043G
crossref_primary_10_1016_j_ymthe_2022_01_041
crossref_primary_10_3389_fgene_2018_00303
crossref_primary_10_3389_fgene_2019_00090
crossref_primary_10_1007_s12539_022_00509_z
crossref_primary_10_3892_ijo_2018_4576
crossref_primary_10_3389_fgene_2021_754425
crossref_primary_10_2174_0115748936276861240109045208
crossref_primary_10_1093_bioinformatics_btz965
crossref_primary_10_1109_TCBB_2022_3170843
crossref_primary_10_3390_molecules27144443
crossref_primary_10_1016_j_omtn_2018_09_020
crossref_primary_10_1093_bfgp_ely031
crossref_primary_10_1016_j_compbiomed_2021_104706
crossref_primary_10_18632_oncotarget_23178
crossref_primary_10_1093_bib_bbaa350
crossref_primary_10_18632_oncotarget_22882
crossref_primary_10_1016_j_mbs_2019_108229
crossref_primary_10_1109_TCBB_2019_2898943
crossref_primary_10_1186_s12864_018_5273_x
crossref_primary_10_2174_1574893618666230227105703
crossref_primary_10_3389_fgene_2018_00411
crossref_primary_10_3389_fphys_2018_00092
crossref_primary_10_1093_bib_bbz057
crossref_primary_10_1186_s12918_017_0518_x
crossref_primary_10_1038_s41598_024_56786_9
crossref_primary_10_1371_journal_pone_0184394
crossref_primary_10_1109_TCBB_2024_3366175
crossref_primary_10_1186_s12864_022_08908_8
crossref_primary_10_3390_genes10020080
crossref_primary_10_3390_genes13061021
crossref_primary_10_1007_s00438_018_1438_1
crossref_primary_10_1371_journal_pcbi_1006931
crossref_primary_10_1093_bib_bbac562
crossref_primary_10_2174_0929866526666190723114142
crossref_primary_10_1016_j_isci_2023_108639
crossref_primary_10_1016_j_ymeth_2020_08_004
crossref_primary_10_1111_jcmm_14048
crossref_primary_10_1016_j_omtn_2019_07_022
crossref_primary_10_1109_TCBB_2018_2874267
crossref_primary_10_1371_journal_pcbi_1009655
crossref_primary_10_1093_bib_bbab589
crossref_primary_10_1109_TCBB_2024_3421924
crossref_primary_10_1093_bib_bbad524
crossref_primary_10_1186_s12911_022_01807_8
crossref_primary_10_1109_TCBB_2021_3049642
crossref_primary_10_3390_ijms20040930
crossref_primary_10_3389_fgene_2021_743665
crossref_primary_10_1038_s41598_017_15846_z
crossref_primary_10_1186_s12859_019_2640_9
crossref_primary_10_12677_PM_2023_137196
crossref_primary_10_1371_journal_pone_0179034
crossref_primary_10_1177_1176934320919707
crossref_primary_10_1016_j_omtn_2020_10_040
crossref_primary_10_1093_bib_bbz032
crossref_primary_10_1093_bib_bbad270
crossref_primary_10_1039_C7RA08894A
crossref_primary_10_1016_j_omtm_2018_06_007
crossref_primary_10_1038_s41598_018_31986_2
crossref_primary_10_3390_pharmaceutics15071833
crossref_primary_10_1093_bib_bbaa440
crossref_primary_10_1109_TNNLS_2020_3016357
crossref_primary_10_1093_bib_bbac066
crossref_primary_10_1093_bib_bbad276
crossref_primary_10_3389_fgene_2022_1076554
crossref_primary_10_1186_s12859_023_05152_z
crossref_primary_10_3389_fmicb_2023_1325001
crossref_primary_10_1038_s41598_018_34604_3
crossref_primary_10_1007_s11831_020_09435_z
crossref_primary_10_1109_ACCESS_2019_2917611
crossref_primary_10_1093_bib_bbac058
crossref_primary_10_1186_s12864_024_10729_w
crossref_primary_10_1093_bib_bbac298
crossref_primary_10_1038_s41598_018_24588_5
crossref_primary_10_1039_C8MO00244D
crossref_primary_10_1016_j_cosrev_2024_100633
crossref_primary_10_1109_TCBB_2019_2957094
crossref_primary_10_1016_j_isci_2021_102455
crossref_primary_10_3934_mbe_2023632
crossref_primary_10_3389_fmicb_2018_02174
crossref_primary_10_1093_nar_gkx1025
crossref_primary_10_1186_s12859_020_3409_x
crossref_primary_10_1016_j_compbiomed_2022_106069
crossref_primary_10_3389_fgene_2018_00576
crossref_primary_10_1109_TNNLS_2023_3289182
crossref_primary_10_1007_s11704_023_2490_5
crossref_primary_10_1016_j_omtn_2019_12_010
crossref_primary_10_1016_j_isci_2019_09_013
crossref_primary_10_1038_s41598_020_65633_6
crossref_primary_10_1186_s12859_021_04256_8
crossref_primary_10_1038_s41598_018_24783_4
crossref_primary_10_1186_s12911_020_01320_w
crossref_primary_10_32604_biocell_2022_017538
crossref_primary_10_1109_JBHI_2023_3336247
crossref_primary_10_1111_jcmm_13799
crossref_primary_10_3389_fpls_2018_01685
crossref_primary_10_1038_s41598_018_27364_7
crossref_primary_10_1093_bioinformatics_bty343
crossref_primary_10_1186_s12870_024_04810_5
crossref_primary_10_1093_bib_bbab428
crossref_primary_10_1109_TCBB_2020_3025579
crossref_primary_10_2174_0929866526666191028162302
crossref_primary_10_3389_fphar_2023_1132012
crossref_primary_10_1186_s12859_023_05365_2
crossref_primary_10_1093_bib_bbab543
crossref_primary_10_1093_bib_bbab302
crossref_primary_10_1371_journal_pcbi_1011242
crossref_primary_10_3390_ijms20040978
crossref_primary_10_1371_journal_pcbi_1011927
crossref_primary_10_1016_j_omtn_2018_03_001
crossref_primary_10_1080_15476286_2020_1737441
crossref_primary_10_1038_s41598_021_91991_w
crossref_primary_10_1186_s13059_019_1811_3
crossref_primary_10_1186_s12859_020_03716_x
crossref_primary_10_1109_TCBB_2024_3440913
crossref_primary_10_3389_fgene_2019_00099
crossref_primary_10_1016_j_jmb_2018_05_006
crossref_primary_10_1109_ACCESS_2024_3440951
crossref_primary_10_1155_2017_2498957
crossref_primary_10_2174_0929866526666191025104043
crossref_primary_10_1371_journal_pcbi_1005912
crossref_primary_10_1016_j_future_2024_05_055
crossref_primary_10_1109_TNB_2019_2922214
crossref_primary_10_3389_fbioe_2020_00040
crossref_primary_10_1186_s12967_018_1722_1
crossref_primary_10_1038_s41598_018_24204_6
crossref_primary_10_1038_s41598_023_31413_1
crossref_primary_10_1093_bib_bbac623
crossref_primary_10_1371_journal_pcbi_1009048
crossref_primary_10_3389_fgene_2020_00354
crossref_primary_10_1016_j_artmed_2021_102115
crossref_primary_10_1109_TCBB_2017_2776101
crossref_primary_10_1371_journal_pcbi_1009165
crossref_primary_10_1109_TCBB_2018_2872574
crossref_primary_10_1186_s12859_021_04135_2
crossref_primary_10_2174_1389201024666221025114500
crossref_primary_10_1038_s41598_020_75005_9
crossref_primary_10_1186_s12859_023_05308_x
crossref_primary_10_1016_j_ymeth_2023_12_002
crossref_primary_10_3390_ijms20010110
crossref_primary_10_1093_gigascience_giaa032
crossref_primary_10_1109_TCBB_2023_3335007
crossref_primary_10_1093_bib_bbad111
crossref_primary_10_1016_j_jbi_2018_05_005
crossref_primary_10_1038_s41598_022_21243_y
crossref_primary_10_1080_15476286_2020_1817266
crossref_primary_10_1093_bib_bbac021
crossref_primary_10_1093_bioinformatics_btaa157
crossref_primary_10_3389_fgene_2020_00389
crossref_primary_10_3934_mbe_2021367
crossref_primary_10_1186_s12918_018_0664_9
crossref_primary_10_1007_s11538_018_0449_8
crossref_primary_10_1109_TCBB_2022_3187739
crossref_primary_10_1039_C7RA12491K
crossref_primary_10_1109_TCBB_2021_3133006
crossref_primary_10_1155_2021_6659695
crossref_primary_10_1016_j_neucom_2017_07_065
crossref_primary_10_1093_bib_bbx163
crossref_primary_10_3389_fgene_2019_00476
crossref_primary_10_1109_TCBB_2022_3204726
crossref_primary_10_1109_TCBB_2024_3373772
crossref_primary_10_1038_s41598_020_63735_9
crossref_primary_10_2196_14924
crossref_primary_10_1016_j_compbiolchem_2021_107566
crossref_primary_10_1186_s12967_018_1741_y
crossref_primary_10_1016_j_omtn_2019_04_025
crossref_primary_10_1093_bib_bbab165
crossref_primary_10_1093_bib_bbab286
crossref_primary_10_1016_j_sigpro_2021_108312
crossref_primary_10_1016_j_ymeth_2023_02_003
crossref_primary_10_1093_bioinformatics_bty112
crossref_primary_10_2174_1574893615999200715165335
crossref_primary_10_1016_j_knosys_2019_104963
crossref_primary_10_1038_s41598_017_08127_2
crossref_primary_10_1155_2019_7614850
crossref_primary_10_1016_j_jbi_2018_02_013
crossref_primary_10_3389_fgene_2022_825318
crossref_primary_10_3390_genes10090685
crossref_primary_10_2174_1566523223666230419101405
crossref_primary_10_1155_2021_9678747
crossref_primary_10_1016_j_snb_2023_134209
crossref_primary_10_1007_s12539_023_00594_8
crossref_primary_10_2174_0115748936293219240426051148
crossref_primary_10_1007_s12539_022_00542_y
crossref_primary_10_1093_bib_bbae103
crossref_primary_10_1080_15476286_2018_1517010
crossref_primary_10_2174_1574893618666221118092849
crossref_primary_10_1039_C8RA07519K
crossref_primary_10_3390_ijms231911498
crossref_primary_10_1039_C7MB00485K
crossref_primary_10_1109_TCBB_2020_3013837
crossref_primary_10_1371_journal_pcbi_1006418
crossref_primary_10_1038_s41598_018_24532_7
crossref_primary_10_1093_bib_bbab074
crossref_primary_10_1093_nar_gkaa707
crossref_primary_10_1109_TCBB_2020_2994971
crossref_primary_10_1038_s41598_018_34180_6
crossref_primary_10_1371_journal_pone_0252971
crossref_primary_10_1186_s12864_024_11078_4
crossref_primary_10_1038_s41598_017_15716_8
crossref_primary_10_1155_2021_6652948
crossref_primary_10_1038_s41598_018_25900_z
crossref_primary_10_1186_s12859_021_04266_6
crossref_primary_10_1039_C7MB00450H
crossref_primary_10_3389_fmicb_2019_00676
crossref_primary_10_1186_s12859_019_3063_3
crossref_primary_10_1038_s41598_017_10065_y
crossref_primary_10_1093_bib_bbac155
crossref_primary_10_1093_bib_bbac397
crossref_primary_10_1186_s12859_017_1924_1
crossref_primary_10_1109_JBHI_2024_3467101
crossref_primary_10_2174_1389202920666191023090215
crossref_primary_10_1007_s12539_021_00469_w
crossref_primary_10_1016_j_omtn_2019_04_010
crossref_primary_10_3389_fgene_2018_00239
crossref_primary_10_3389_fmicb_2019_00684
crossref_primary_10_1186_s12885_019_5435_5
crossref_primary_10_3389_fgene_2018_00234
crossref_primary_10_1080_15476286_2019_1570811
crossref_primary_10_1186_s12859_022_04978_3
crossref_primary_10_3389_fcell_2021_617569
Cites_doi 10.1016/0092-8674(93)90529-Y
10.1073/pnas.0605298103
10.1016/S0092-8674(03)00428-8
10.18632/oncotarget.11141
10.1093/bioinformatics/btq241
10.1093/bioinformatics/btr500
10.1093/nar/gkt1023
10.1093/carcin/bgp094
10.1016/j.eururo.2011.01.044
10.1016/j.coph.2009.08.009
10.1038/nature05372
10.1371/journal.pone.0043425
10.1093/bioinformatics/btv039
10.1093/bioinformatics/btt426
10.18632/oncotarget.10008
10.3390/ijms17010021
10.1039/C5MB00697J
10.1111/j.1365-2249.2012.04676.x
10.1038/srep16840
10.1248/bpb.29.903
10.1038/srep13877
10.1186/1471-2407-9-374
10.1039/c2mb25180a
10.1093/bioinformatics/btt677
10.1038/nature02873
10.1038/srep21106
10.18632/oncotarget.8296
10.1016/j.molcel.2010.09.027
10.1038/nature06174
10.1016/S1470-2045(09)70386-9
10.1093/nar/gkq1027
10.1016/j.ccr.2008.02.013
10.1038/srep05501
10.1186/s12859-016-1035-4
10.1038/srep13186
10.1016/j.clinbiochem.2009.07.020
10.1093/cvr/cvn156
10.1074/jbc.M702806200
10.1016/j.urology.2009.10.033
10.1016/S0092-8674(01)00616-X
10.1002/pbc.23105
10.1158/1535-7163.MCT-11-0055
10.1016/S0092-8674(04)00045-5
10.1371/journal.pone.0070204
10.1016/0092-8674(93)90530-4
10.1016/j.athoracsur.2013.10.042
10.1001/jama.299.4.425
10.1126/science.1091903
10.1093/bib/bbw060
10.1093/nar/gkn714
10.1038/35002607
10.1371/journal.pone.0077623
10.1038/nature02871
10.1186/s13321-016-0128-4
10.1186/1752-0509-4-S1-S2
10.1186/1752-0509-7-101
10.1186/1471-2164-11-S4-S5
10.1111/j.1549-8719.2011.00153.x
10.1056/NEJM200011023431804
10.4161/cc.6.17.4641
10.1159/000113489
ContentType Journal Article
Copyright COPYRIGHT 2017 Public Library of Science
2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: You Z-H, Huang Z-A, Zhu Z, Yan G-Y, Li Z-W, Wen Z, et al. (2017) PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput Biol 13(3): e1005455. https://doi.org/10.1371/journal.pcbi.1005455
2017 You et al 2017 You et al
2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: You Z-H, Huang Z-A, Zhu Z, Yan G-Y, Li Z-W, Wen Z, et al. (2017) PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput Biol 13(3): e1005455. https://doi.org/10.1371/journal.pcbi.1005455
Copyright_xml – notice: COPYRIGHT 2017 Public Library of Science
– notice: 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: You Z-H, Huang Z-A, Zhu Z, Yan G-Y, Li Z-W, Wen Z, et al. (2017) PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput Biol 13(3): e1005455. https://doi.org/10.1371/journal.pcbi.1005455
– notice: 2017 You et al 2017 You et al
– notice: 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: You Z-H, Huang Z-A, Zhu Z, Yan G-Y, Li Z-W, Wen Z, et al. (2017) PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput Biol 13(3): e1005455. https://doi.org/10.1371/journal.pcbi.1005455
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1005455
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database



MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
DocumentTitleAlternate miRNA-disease association prediction
EISSN 1553-7358
ExternalDocumentID 1888661345
oai_doaj_org_article_60530b80e8c8419b8ef82380ce6bdd6e
PMC5384769
A493714480
28339468
10_1371_journal_pcbi_1005455
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: Yq2013141
– fundername: ;
  grantid: 2014TQ01X273
– fundername: ;
  grantid: 61572506
– fundername: ;
  grantid: 11301517
– fundername: ;
  grantid: 61471246
– fundername: ;
  grantid: 11631014
– fundername: ;
  grantid: 11371355
– fundername: ;
  grantid: 61572328
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
PMFND
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
N95
UMP
ID FETCH-LOGICAL-c633t-de4e0c9e3e20e9d8e3b89aaa7317f39e681814d597aaf823b13a1a503924bf4a3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun May 07 16:29:13 EDT 2023
Wed Aug 27 01:28:50 EDT 2025
Thu Aug 21 17:47:58 EDT 2025
Fri Jul 11 03:28:58 EDT 2025
Fri Jul 25 11:59:42 EDT 2025
Tue Jun 10 20:36:43 EDT 2025
Fri Jun 27 04:10:10 EDT 2025
Fri Jun 27 04:16:59 EDT 2025
Wed Feb 19 02:32:29 EST 2025
Tue Jul 01 03:51:58 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-de4e0c9e3e20e9d8e3b89aaa7317f39e681814d597aaf823b13a1a503924bf4a3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceptualization: XC.Data curation: XC ZAH.Formal analysis: ZHY XC GYY.Funding acquisition: XC ZZ GYY ZHY ZW.Investigation: XC GYY ZWL.Methodology: XC.Project administration: XC ZZ.Resources: XC.Software: ZAH XC.Supervision: XC ZZ.Validation: XC ZAH ZHY.Visualization: ZAH XC ZHY ZZ GYY ZWL.Writing – original draft: ZAH XC ZHY.Writing – review & editing: XC ZAH ZZ.
These authors are joint senior authors on this work.
The authors have declared that no competing interests exist.
ORCID 0000-0001-9028-5342
0000-0001-9974-148X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1005455
PMID 28339468
PQID 1888661345
PQPubID 1436340
ParticipantIDs plos_journals_1888661345
doaj_primary_oai_doaj_org_article_60530b80e8c8419b8ef82380ce6bdd6e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5384769
proquest_miscellaneous_1881270660
proquest_journals_1888661345
gale_infotracacademiconefile_A493714480
gale_incontextgauss_ISR_A493714480
gale_incontextgauss_ISN_A493714480
pubmed_primary_28339468
crossref_primary_10_1371_journal_pcbi_1005455
crossref_citationtrail_10_1371_journal_pcbi_1005455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2017
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S Mork (ref32) 2014; 30
J Weidhaas (ref20) 2010; 11
BJ Reinhart (ref6) 2000; 403
K Motoyama (ref58) 2009; 34
T Kan (ref47) 2009; 9
AJ Schetter (ref55) 2008; 299
C Urbich (ref13) 2008; 79
Y Li (ref21) 2014; 42
P Xuan (ref34) 2015; 31
Q Jiang (ref30) 2010; 4
L Ma (ref16) 2007; 449
MC Lu (ref53) 2013; 171
A Kozomara (ref8) 2011; 39
V Ambros (ref4) 2004; 431
CA O’Brien (ref54) 2007; 445
W-H Chow (ref49) 2000; 343
ST Sredni (ref17) 2011; 57
FC Tsz-fung (ref52) 2010; 43
X Chen (ref33) 2012; 8
O Slaby (ref57) 2008; 72
F Petrocca (ref14) 2008; 13
X Chen (ref27) 2012; 7
KD Taganov (ref10) 2006; 103
AK Leung (ref15) 2010; 40
G Meister (ref1) 2004; 431
WP Tsang (ref59) 2009; 30
X Chen (ref26) 2016; 7
Q Jiang (ref22) 2009; 37
L Wong (ref62) 2016; 17
X Chen (ref39) 2015; 5
J Xu (ref37) 2011; 10
Y Akao (ref56) 2006; 29
X Chen (ref38) 2014; 4
T van Laarhoven (ref44) 2011; 27
X Chen (ref25) 2015; 5
X Chen (ref28) 2015; 5
GM Arndt (ref60) 2009; 9
C Bang (ref19) 2012; 19
JW Catto (ref50) 2011; 59
Y-A Huang (ref61) 2016; 17
H Shi (ref35) 2013; 7
Z Yang (ref40) 2010; 11
X Chen (ref36) 2016; 6
M Carleton (ref12) 2007; 6
DP Bartel (ref2) 2004; 116
B Wightman (ref7) 1993; 75
D Wang (ref41) 2010; 26
P Xuan (ref31) 2013; 8
V Ambros (ref9) 2003; 113
X Chen (ref29) 2013; 29
C-Z Chen (ref11) 2004; 303
B Shi (ref18) 2007; 282
W Ba-Alawi (ref45) 2016; 8
X-L Xu (ref46) 2014; 97
V Ambros (ref3) 2001; 107
D Juan (ref51) 2010; 75
K Okamoto (ref48) 2013; 8
X Chen (ref42) 2016; 7
Y Huang (ref43) 2016; 7
RC Lee (ref5) 1993; 75
X Chen (ref23) 2016; 12
X Chen (ref24) 2016
References_xml – volume: 75
  start-page: 843
  year: 1993
  ident: ref5
  article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90529-Y
– volume: 103
  start-page: 12481
  year: 2006
  ident: ref10
  article-title: NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0605298103
– volume: 113
  start-page: 673
  year: 2003
  ident: ref9
  article-title: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00428-8
– volume: 7
  start-page: 57919
  year: 2016
  ident: ref42
  article-title: IRWRLDA: Improved Random Walk with Restart for LncRNA-Disease Association prediction
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11141
– volume: 26
  start-page: 1644
  year: 2010
  ident: ref41
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 27
  start-page: 3036
  year: 2011
  ident: ref44
  article-title: Gaussian interaction profile kernels for predicting drug-target interaction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr500
– volume: 42
  start-page: D1070
  year: 2014
  ident: ref21
  article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkt1023
– volume: 30
  start-page: 953
  year: 2009
  ident: ref59
  article-title: The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp094
– volume: 59
  start-page: 671
  year: 2011
  ident: ref50
  article-title: MicroRNA in prostate, bladder, and kidney cancer: a systematic review
  publication-title: European urology
  doi: 10.1016/j.eururo.2011.01.044
– volume: 9
  start-page: 727
  year: 2009
  ident: ref47
  article-title: MicroRNAs in Barrett's esophagus and esophageal adenocarcinoma
  publication-title: Current opinion in pharmacology
  doi: 10.1016/j.coph.2009.08.009
– volume: 445
  start-page: 106
  year: 2007
  ident: ref54
  article-title: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice
  publication-title: Nature
  doi: 10.1038/nature05372
– volume: 7
  start-page: e43425
  year: 2012
  ident: ref27
  article-title: Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043425
– volume: 31
  start-page: 1805
  year: 2015
  ident: ref34
  article-title: Prediction of potential disease-associated microRNAs based on random walk
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv039
– volume: 34
  start-page: 1069
  year: 2009
  ident: ref58
  article-title: Over-and under-expressed microRNAs in human colorectal cancer
  publication-title: International journal of oncology
– volume: 29
  start-page: 2617
  year: 2013
  ident: ref29
  article-title: Novel human lncRNA–disease association inference based on lncRNA expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt426
– volume: 7
  start-page: 45948
  year: 2016
  ident: ref26
  article-title: FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10008
– volume: 17
  start-page: 21
  year: 2016
  ident: ref62
  article-title: Detection of interactions between proteins through rotation forest and local phase quantization descriptors
  publication-title: International journal of molecular sciences
  doi: 10.3390/ijms17010021
– volume: 12
  start-page: 624
  year: 2016
  ident: ref23
  article-title: miREFRWR: a novel disease-related microRNA-environmental factor interactions prediction method
  publication-title: Mol Biosyst
  doi: 10.1039/C5MB00697J
– volume: 171
  start-page: 91
  year: 2013
  ident: ref53
  article-title: Decreased microRNA (miR)‐145 and increased miR‐224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis
  publication-title: Clinical & Experimental Immunology
  doi: 10.1111/j.1365-2249.2012.04676.x
– volume: 5
  start-page: 16840
  year: 2015
  ident: ref25
  article-title: KATZLDA: KATZ measure for the lncRNA-disease association prediction
  publication-title: Sci Rep
  doi: 10.1038/srep16840
– volume: 29
  start-page: 903
  year: 2006
  ident: ref56
  article-title: let-7 microRNA functions as a potential growth suppressor in human colon cancer cells
  publication-title: Biological and Pharmaceutical Bulletin
  doi: 10.1248/bpb.29.903
– volume: 5
  start-page: 13877
  year: 2015
  ident: ref39
  article-title: RBMMMDA: predicting multiple types of disease-microRNA associations
  publication-title: Sci Rep
  doi: 10.1038/srep13877
– volume: 9
  start-page: 1
  year: 2009
  ident: ref60
  article-title: Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer
  publication-title: BMC cancer
  doi: 10.1186/1471-2407-9-374
– volume: 8
  start-page: 2792
  year: 2012
  ident: ref33
  article-title: RWRMDA: predicting novel human microRNA–disease associations
  publication-title: Molecular BioSystems
  doi: 10.1039/c2mb25180a
– volume: 30
  start-page: 392
  year: 2014
  ident: ref32
  article-title: Protein-driven inference of miRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt677
– volume: 431
  start-page: 343
  year: 2004
  ident: ref1
  article-title: Mechanisms of gene silencing by double-stranded RNA
  publication-title: Nature
  doi: 10.1038/nature02873
– volume: 6
  start-page: 21106
  year: 2016
  ident: ref36
  article-title: WBSMDA: Within and Between Score for MiRNA-Disease Association prediction
  publication-title: Sci Rep
  doi: 10.1038/srep21106
– volume: 7
  start-page: 25902
  year: 2016
  ident: ref43
  article-title: ILNCSIM: improved lncRNA functional similarity calculation model
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8296
– volume: 40
  start-page: 205
  year: 2010
  ident: ref15
  article-title: MicroRNA functions in stress responses
  publication-title: Molecular cell
  doi: 10.1016/j.molcel.2010.09.027
– volume: 449
  start-page: 682
  year: 2007
  ident: ref16
  article-title: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer
  publication-title: Nature
  doi: 10.1038/nature06174
– volume: 11
  start-page: 106
  year: 2010
  ident: ref20
  article-title: Using microRNAs to understand cancer biology
  publication-title: The Lancet Oncology
  doi: 10.1016/S1470-2045(09)70386-9
– volume: 39
  start-page: D152
  year: 2011
  ident: ref8
  article-title: miRBase: integrating microRNA annotation and deep-sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1027
– volume: 13
  start-page: 272
  year: 2008
  ident: ref14
  article-title: E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer
  publication-title: Cancer cell
  doi: 10.1016/j.ccr.2008.02.013
– volume: 4
  start-page: 5501
  year: 2014
  ident: ref38
  article-title: Semi-supervised learning for potential human microRNA-disease associations inference
  publication-title: Sci Rep
  doi: 10.1038/srep05501
– volume: 17
  start-page: 184
  year: 2016
  ident: ref61
  article-title: Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-016-1035-4
– volume: 5
  start-page: 13186
  year: 2015
  ident: ref28
  article-title: Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA
  publication-title: Sci Rep
  doi: 10.1038/srep13186
– volume: 43
  start-page: 150
  year: 2010
  ident: ref52
  article-title: Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis
  publication-title: Clinical biochemistry
  doi: 10.1016/j.clinbiochem.2009.07.020
– volume: 79
  start-page: 581
  year: 2008
  ident: ref13
  article-title: Role of microRNAs in vascular diseases, inflammation, and angiogenesis
  publication-title: Cardiovascular Research
  doi: 10.1093/cvr/cvn156
– volume: 282
  start-page: 32582
  year: 2007
  ident: ref18
  article-title: Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M702806200
– volume: 75
  start-page: 835
  year: 2010
  ident: ref51
  article-title: Identification of a microRNA panel for clear-cell kidney cancer
  publication-title: Urology
  doi: 10.1016/j.urology.2009.10.033
– volume: 107
  start-page: 823
  year: 2001
  ident: ref3
  article-title: microRNAs: tiny regulators with great potential
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00616-X
– volume: 57
  start-page: 183
  year: 2011
  ident: ref17
  article-title: MicroRNA expression profiling for molecular classification of pediatric brain tumors
  publication-title: Pediatric blood & cancer
  doi: 10.1002/pbc.23105
– volume: 10
  start-page: 1857
  year: 2011
  ident: ref37
  article-title: Prioritizing candidate disease miRNAs by topological features in the mirna target–dysregulated network: Case study of prostate cancer
  publication-title: Molecular cancer therapeutics
  doi: 10.1158/1535-7163.MCT-11-0055
– volume: 116
  start-page: 281
  year: 2004
  ident: ref2
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 8
  start-page: e70204
  year: 2013
  ident: ref31
  article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors
  publication-title: PloS one
  doi: 10.1371/journal.pone.0070204
– volume: 75
  start-page: 855
  year: 1993
  ident: ref7
  article-title: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90530-4
– volume: 97
  start-page: 1037
  year: 2014
  ident: ref46
  article-title: MicroRNA-17, microRNA-18a, and microRNA-19a are prognostic indicators in esophageal squamous cell carcinoma
  publication-title: The Annals of thoracic surgery
  doi: 10.1016/j.athoracsur.2013.10.042
– volume: 299
  start-page: 425
  year: 2008
  ident: ref55
  article-title: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma
  publication-title: Jama
  doi: 10.1001/jama.299.4.425
– volume: 303
  start-page: 83
  year: 2004
  ident: ref11
  article-title: MicroRNAs modulate hematopoietic lineage differentiation
  publication-title: Science
  doi: 10.1126/science.1091903
– start-page: bbw060
  year: 2016
  ident: ref24
  article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbw060
– volume: 37
  start-page: D98
  year: 2009
  ident: ref22
  article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkn714
– volume: 403
  start-page: 901
  year: 2000
  ident: ref6
  article-title: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans
  publication-title: Nature
  doi: 10.1038/35002607
– volume: 8
  start-page: e77623
  year: 2013
  ident: ref48
  article-title: miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0077623
– volume: 431
  start-page: 350
  year: 2004
  ident: ref4
  article-title: The functions of animal microRNAs
  publication-title: Nature
  doi: 10.1038/nature02871
– volume: 8
  start-page: 1
  year: 2016
  ident: ref45
  article-title: DASPfind: new efficient method to predict drug–target interactions
  publication-title: Journal of Cheminformatics
  doi: 10.1186/s13321-016-0128-4
– volume: 4
  start-page: 1
  year: 2010
  ident: ref30
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC systems biology
  doi: 10.1186/1752-0509-4-S1-S2
– volume: 7
  start-page: 101
  year: 2013
  ident: ref35
  article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes
  publication-title: BMC systems biology
  doi: 10.1186/1752-0509-7-101
– volume: 11
  start-page: S5
  year: 2010
  ident: ref40
  article-title: dbDEMC: a database of differentially expressed miRNAs in human cancers
  publication-title: BMC genomics
  doi: 10.1186/1471-2164-11-S4-S5
– volume: 19
  start-page: 208
  year: 2012
  ident: ref19
  article-title: Cardiovascular Importance of the MicroRNA‐23/27/24 Family
  publication-title: Microcirculation
  doi: 10.1111/j.1549-8719.2011.00153.x
– volume: 343
  start-page: 1305
  year: 2000
  ident: ref49
  article-title: Obesity, hypertension, and the risk of kidney cancer in men
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJM200011023431804
– volume: 6
  start-page: 2127
  year: 2007
  ident: ref12
  article-title: MicroRNAs and cell cycle regulation
  publication-title: Cell cycle
  doi: 10.4161/cc.6.17.4641
– volume: 72
  start-page: 397
  year: 2008
  ident: ref57
  article-title: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer
  publication-title: Oncology
  doi: 10.1159/000113489
SSID ssj0035896
Score 2.6277268
Snippet In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1005455
SubjectTerms Biological activity
Biological computing
Biology and life sciences
Biomarkers, Tumor - genetics
Case studies
Cell cycle
Colon
Colorectal cancer
Computer applications
Computer science
Computer Simulation
Disease
Diseases
Drugs
Esophageal cancer
Esophagus
Genetic Association Studies
Genetic Predisposition to Disease - epidemiology
Genetic Predisposition to Disease - genetics
Health aspects
Humans
Kidney cancer
Kidneys
Lupus
Medical prognosis
Medical research
Medicine and Health Sciences
Methods
MicroRNA
MicroRNAs
MicroRNAs - genetics
miRNA
Models, Genetic
Models, Statistical
Molecular modelling
Neoplasms
Neoplasms - epidemiology
Neoplasms - genetics
Pathogenesis
Physical Sciences
Prediction models
Predictions
Prevalence
Prognosis
Proteins
Research and Analysis Methods
Risk Assessment - methods
Risk Factors
RNA sequencing
Search algorithms
Signal Transduction - genetics
Similarity
Software
Software engineering
Thoracic surgery
Tumors
Urology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fixMxEA5SEHwRz19XPSWK4FO83SabTXzbU49TuCKnB30LSTZ7Fuq2XNsD_3tnsul6Kyf34lNLMy1kZnbmm2YyHyFvbC7L4INnAA4KJoIumLJZzTKrdSMaqEhqvDt8OpUn5-LLrJhdo_rCnrBuPHCnuEOA2zxzKgvKK5Frp0KjIM1kPkhX1zJg9IWctyumuhjMCxWZuZAUh5VczNKlOV7mh8lG71bezbFHACBEMUhKcXZ_H6FHq8VyfRP8_LuL8lpaOn5A7ic8SatuH3vkTmgfkrsdw-SvR6T-enT6sXpPK9our8KC2ramXQsHRDmKdMQM81hNfWR3SP8M0siPQwHP0p_zs2nF0jEOtX-MSVeXeMaDbx-T8-NP3z-csESswLzkfMPqIELmdeBhkgVdq8Cd0tbaEsBEw3WQkMVzUUOtYS1q2-Xc5rbIAEsJ1wjLn5BRu2zDPqHSKXykc2lLKOQg2U0CvNqJk94WWtox4TvNGp-mjiP5xcLEo7QSqo9OUQbtYZI9xoT131p1UzdukT9Co_WyODM7fgCeZJInmds8aUxeo8kNTsVose3mwm7Xa_P529RUAscGQiWb_VPobCD0Ngk1S9ist-mqA6gMp20NJPfRv3abWptcKQWQiQvY08HO525eftUvQ0TAYx7bhuU2ymA7gZTw6087F-0VA2CSayHVmJQD5x1obrjSzn_EqeOQGUUp9bP_oern5N4E4VHs5Tsgo83lNrwAcLdxL-Nz_Bts30ut
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXPsbHCgMZhMSTWVI7js0L6oAykFahwaS-RY7tjEolKf1A4r_nznE6ggY8taovVXw-3_3Od74j5LlJZe6ttwzAQcaE1xlTJnEsMVpXogKPxOHd4ZOpPD4TH2fZLB64rWNaZacTg6J2jcUz8sMUXDWwJVxkr5ffGXaNwuhqbKFxlVxLwdJgSpeavO80Mc9U6M-FrXFYzsUsXp3jeXoYV-rl0pZzzBQAIJH1TFOo4L_T04PlollfBkL_zKX8zThNbpObEVXScSsGd8gVX--R622fyZ975FbXu4HGrXyXuE9HJ2_Hr-iY1s0Pv6CmdrTN7QD1R7FPMUMD56gNj8YjQxoa51AAuvTb_HQ6ZjG-Q83FKtPlCoM_-PUeOZu8-_LmmMWOC8xKzjfMeeETqz33o8RrpzwvlTbG5IAyKq69BPOeCgdOiDGVGvEy5SY1WQIgS5SVMPw-GdRN7fcJlaXCvZ5Kk4OHB1Zw5OHTjEppTaalGRLeMbuwsRw5dsVYFCHGloNb0vKuwCUq4hINCds9tWzLcfyH_gjXcUeLxbTDD83qvIh7swCPjielSryySqS6VB7nphLrZemc9EPyDKWgwHIZNebjnJvtel18-DwtxgLrCYKLm_yV6LRH9CISVQ1M1pp4BwJYhmW4epT7KHLdpNbFhfwPyUEnhpcPP90Ng6rA-I-pfbMNNJhnICX8-4NWaneMAZTJtZBqSPKePPc41x-p519DOXIwmSKX-uG_X-sRuTFCRBTS9w7IYLPa-seA5zblk7BpfwHVfUlf
  priority: 102
  providerName: ProQuest
Title PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/28339468
https://www.proquest.com/docview/1888661345
https://www.proquest.com/docview/1881270660
https://pubmed.ncbi.nlm.nih.gov/PMC5384769
https://doaj.org/article/60530b80e8c8419b8ef82380ce6bdd6e
http://dx.doi.org/10.1371/journal.pcbi.1005455
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tki8IL5XGJVBSDxlSmrHcZAQStnKQGo1FSr1LXIcZ6tUktIPxP577hw3ENQJ8dK09SWS72zf73L2_Qh5rQIRGW20B-Ag9LiJQ08qP_d8FccFLyAiyfHs8GgsLqb88yycHZAdZ6tT4HpvaId8UtPV4vTn95v3MOHfWdaGKNjddLrU2Ryz_gAKwkNyBL4pQk6DEW_yCiyUlrELyXK8CH65w3S3PaXlrGxN_2bl7iwX1XofLP17d-Uf7mp4n9xzOJMm9cB4QA5M-ZDcqZknbx6R_HIwOkve0oSW1Q-zoKrMab21A1Y_ijTFHvq3nGrL-uDeGFLLm0MB59Jv88k48Vx6h6rfRqbLFeZ-8OtjMh2ef_1w4TnCBU8LxjZebrjxdWyY6fsmzqVhmYyVUhGAjILFRoB3D3gOMYhSheyzLGAqUKEPGItnBVfsCemUVWmOCRWZxKkeCBVBgAdOsG_gqvqZ0CqMheoSttNsql01ciTFWKQ2xRZBVFIrKkV7pM4eXeI1dy3rahz_kB-g0RpZrKVt_6hWV6mbmikEdMzPpG-kljyIM2mwb9LXRmR5LkyXvEKTp1gto8TtOFdqu16nn76M04RjOUGIcP1bhSYtoTdOqKigs1q5IxCgMqzC1ZI8xvG169Q6DaSUAKUYhz6d7Mbc_uaXTTOsFJj-UaWptlYGtxkIAU9_Wg_RRjEAMlnMheySqDV4W5prt5Tza1uNHDwmj0T87D9N85zc7SNCstv5Tkhns9qaF4DvNlmPHEazCD7l8GOPHCWDs8EQroPz8eWkZ9-Z9Oyk_gXiI1SU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYIXPsbHCgMMAvFklsSO4yAh1DFKy9YKjU3qW3AcZ1QqSekHaP8UfyN3idNRNOBpT63qS1TfXe4jd74fIc-0LyNrrGEQHIRM2DhkSnsZ83Qc5yKHjCTDs8ODoewdiw-jcLRBfjZnYbCtsrGJlaHOSoPvyHd8SNXAl3ARvpl-Y4gahdXVBkKjVot9e_oDUrb56_4eyPd5EHTfHb3tMYcqwIzkfMEyK6xnYstt4Nk4U5anKtZaR-BJcx5bCS7MFxkE2lrnKuCpz7WvQw8CCZHmQnO47yVyWXDw5Hgyvfu-sfw8VBUeGELxsIiLkTuqxyN_x2nGy6lJx9iZAIFLuOYKK8SAlV9oTSfl_Lyg98_ezd-cYfcmue6iWNqp1e4W2bDFJrlS41qebpIbDVYEdabjNsk-7g72Oq9ohxbldzuhusho3UsC5pYiLjJDh5pRU13qXlHSCqiHQmBNv44Phx3m6klUn2kVnc6w2IRf75DjC5HFXdIqysJuESpThbbFlzqCjBK8bmDhUwepNDqMpW4T3jA7MW78OaJwTJKqphdBGlTzLkERJU5EbcJWV03r8R__od9FOa5ocXh39UM5O0mcLUggg-ReqjyrjBJ-nCqLe1OesTLNMmnb5ClqQYLjOQrs_znRy_k86X8aJh2B8wshpfb-SnS4RvTCEeUlbNZod-YCWIZjv9Yot1Dlmk3Nk7PnrU22GzU8f_nJahlME9abdGHLZUWDfQ1Swt3v1Vq7YgxEtTwWUrVJtKbPa5xbXynGX6rx5-CiRSTj-__-W4_J1d7R4CA56A_3H5BrAUZjVevgNmktZkv7EGLJRfqoeoAp-XzRFuMX5IKGaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAvfIyPFQYYBOLJNIkdJ0FCqKWbVsaqqjCpb8FxnFGpJKUfoP1r_HXcJU5H0ICnPbWqL1F9d7mP3Pl-hDxXrgyMNppBcOAzYSKfhcpJmaOiKBMZZCQpnh0-HsrDE_F-4k-2yM_6LAy2VdY2sTTUaaHxHXnHhVQNfAkXfiezbRGj_sHb-TeGCFJYaa3hNCoVOTJnPyB9W74Z9EHWLzzvYP_Tu0NmEQaYlpyvWGqEcXRkuPEcE6Wh4UkYKaUC8KoZj4wEd-aKFIJupbLQ44nLlat8B4IKkWRCcbjvFbIdYFbUItu9_eFoXPsB7oclOhgC87CAi4k9uMcDt2P15NVcJ1PsU4Awxm84xhI_YOMlWvNZsbwoBP6zk_M313hwi9ywMS3tVkp4m2yZfIdcrVAuz3bIzRo5glpDcoeko95xv_uadmlefDczqvKUVp0lYHwpoiQzdK8p1eWl9oUlLWF7KITZ9Ot0POwyW12i6lzH6HyBpSf8epecXIo07pFWXuRml1CZhGhpXKkCyC_BB3sGPpWXSK38SKo24TWzY22HoSMmxywuK3wBJEUV72IUUWxF1CZsc9W8GgbyH_oeynFDi6O8yx-KxWlsLUMM-SR3ktAxoQ6FGyWhwb2FjjYySVNp2uQZakGMwzpyVPtTtV4u48HHYdwVOM0QEmznr0TjBtFLS5QVsFmt7AkMYBkOAWtQ7qLK1ZtaxudPX5vs1Wp48fLTzTIYKqw-qdwU65IGuxykhLvfr7R2wxiIcXkkZNgmQUOfG5xrruTTL-UwdHDYIpDRg3__rSfkGliL-MNgePSQXPcwNCv7CPdIa7VYm0cQWK6Sx_YJpuTzZRuNX7KKi_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PBMDA%3A+A+novel+and+effective+path-based+computational+model+for+miRNA-disease+association+prediction&rft.jtitle=PLoS+computational+biology&rft.au=You%2C+Zhu-Hong&rft.au=Huang%2C+Zhi-An&rft.au=Zhu%2C+Zexuan&rft.au=Yan%2C+Gui-Ying&rft.date=2017-03-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=13&rft.issue=3&rft.spage=e1005455&rft_id=info:doi/10.1371%2Fjournal.pcbi.1005455&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pcbi_1005455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon