PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction
In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood...
Saved in:
Published in | PLoS computational biology Vol. 13; no. 3; p. e1005455 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.03.2017
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations. |
---|---|
AbstractList | In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations.In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations. In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations. In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, P ath- B ased M iRNA- D isease A ssociation (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations. Identification of miRNA-disease associations is considered as a key way for the development of pathology, diagnose and therapy. Computational prediction models contribute to discovering the underlying disease-related miRNAs on a large scale. Based on the assumption that functionally related miRNAs tend to be involved in phenotypically similar disease and vice versa, the model of PBMDA was developed to prioritize the underlying miRNA-disease associations by adopting a special depth-first search algorithm in a heterogeneous graph, which was composed of known miRNA-disease association network, miRNA similarity network, and disease similarity network. Through leave-one-out cross validation and 5-fold cross validation, the promising results demonstrated the effectiveness of the proposed model. We further implemented the case studies of three important human complex diseases, 88%, 88% and 90% of top-50 predicted miRNA-disease associations have been manually confirmed based on recent experimental reports. It is anticipated that PBMDA could prioritize the most potential miRNA-disease associations on a large scale for advancing the progress of biological experiment validation in the future, which could further contribute to the understanding of complex disease mechanisms. |
Audience | Academic |
Author | Huang, Zhi-An You, Zhu-Hong Wen, Zhenkun Chen, Xing Yan, Gui-Ying Li, Zheng-Wei Zhu, Zexuan |
AuthorAffiliation | 2 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China 3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China 5 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China 1 Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, ürümqi, China 4 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China University of Calgary Cumming School of Medicine, CANADA |
AuthorAffiliation_xml | – name: University of Calgary Cumming School of Medicine, CANADA – name: 4 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China – name: 2 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – name: 3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China – name: 5 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – name: 1 Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, ürümqi, China |
Author_xml | – sequence: 1 givenname: Zhu-Hong surname: You fullname: You, Zhu-Hong – sequence: 2 givenname: Zhi-An orcidid: 0000-0001-9974-148X surname: Huang fullname: Huang, Zhi-An – sequence: 3 givenname: Zexuan surname: Zhu fullname: Zhu, Zexuan – sequence: 4 givenname: Gui-Ying surname: Yan fullname: Yan, Gui-Ying – sequence: 5 givenname: Zheng-Wei surname: Li fullname: Li, Zheng-Wei – sequence: 6 givenname: Zhenkun surname: Wen fullname: Wen, Zhenkun – sequence: 7 givenname: Xing orcidid: 0000-0001-9028-5342 surname: Chen fullname: Chen, Xing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28339468$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkttu1DAQhiNURA_wBggicVMusthrx7F7gbSU00qloALX1sSebL1K4hAnq_L2eA-tuhVCQr7waPzNP57Rf5wctL7FJHlOyYSygr5Z-rFvoZ50pnQTSkjO8_xRckTznGUFy-XBvfgwOQ5hSUgMlXiSHE4lY4oLeZTYb---vJ-dpbO09SusU2htilWFZnArTDsYrrMSAtrU-KYbBxicj03TxtsIV75PG3d1OcusCxixFELwxm2otOvROrMOnyaPK6gDPtvdJ8nPjx9-nH_OLr5-mp_PLjIjGBsyixyJUchwSlBZiayUCgAKRouKKRSSSsptrgqASk5ZSRlQyAlTU15WHNhJ8nKr29U-6N2CgqZSSiEo43kk5lvCeljqrncN9L-1B6c3Cd8vNPSDMzVqQXJGSklQGsmpKiWue0piUJTWCoxab3fdxrJBa7Adeqj3RPdfWnetF36lcyZ5IVQUON0J9P7XiGHQjQsG6xpa9OPm33RaECFIRF89QP8-3WRLLSAO4NrKx74mHouNM9E-lYv5GVfRP5zLtezrvYLIDHgzLGAMQc-_X_0He7nPvri_mrud3PouAnwLmN6H0GN1h1Ci1_a-nU-v7a139o5lZw_KjNt6Mg7q6n8X_wH5SgG2 |
CitedBy_id | crossref_primary_10_1016_j_neunet_2023_05_052 crossref_primary_10_3390_ijms222111397 crossref_primary_10_3389_fmicb_2023_1170559 crossref_primary_10_1186_s12859_020_3426_9 crossref_primary_10_1039_C9RA05554A crossref_primary_10_1016_j_isci_2019_08_030 crossref_primary_10_3390_ijms19123732 crossref_primary_10_1016_j_neucom_2020_02_062 crossref_primary_10_3389_fcell_2021_603758 crossref_primary_10_1007_s00438_020_01702_9 crossref_primary_10_1093_bib_bbac340 crossref_primary_10_1093_bioinformatics_btz254 crossref_primary_10_1038_s41598_017_06201_3 crossref_primary_10_3389_fgene_2022_979815 crossref_primary_10_1016_j_ymthe_2021_01_003 crossref_primary_10_1093_bib_bbaa037 crossref_primary_10_1109_TCBB_2020_2964221 crossref_primary_10_1016_j_isci_2022_105299 crossref_primary_10_1109_TCBB_2021_3067338 crossref_primary_10_3390_molecules24173099 crossref_primary_10_1016_j_ygeno_2019_05_021 crossref_primary_10_1038_s41598_017_07169_w crossref_primary_10_1109_TCBB_2019_2931546 crossref_primary_10_1016_j_omtn_2019_06_014 crossref_primary_10_3389_fbioe_2020_00901 crossref_primary_10_3390_genes13101759 crossref_primary_10_3389_fgene_2018_00618 crossref_primary_10_1109_ACCESS_2020_2972068 crossref_primary_10_3934_mbe_2022269 crossref_primary_10_1016_j_isci_2020_101261 crossref_primary_10_3389_fgene_2022_978975 crossref_primary_10_1007_s12559_022_10092_6 crossref_primary_10_1093_bib_bbab479 crossref_primary_10_1093_bib_bbaa028 crossref_primary_10_1093_bib_bbz091 crossref_primary_10_3390_biology12010041 crossref_primary_10_3390_molecules27144371 crossref_primary_10_3389_fgene_2021_727744 crossref_primary_10_3389_fgene_2019_00385 crossref_primary_10_1093_bioinformatics_bty503 crossref_primary_10_1007_s11390_021_0740_2 crossref_primary_10_1039_C8RA05122D crossref_primary_10_1109_JBHI_2021_3088342 crossref_primary_10_1093_bib_bbaa061 crossref_primary_10_1007_s12539_021_00459_y crossref_primary_10_1038_s41598_018_22240_w crossref_primary_10_1093_bib_bbaa058 crossref_primary_10_1371_journal_pcbi_1010671 crossref_primary_10_1186_s12859_021_04189_2 crossref_primary_10_1016_j_compbiomed_2019_05_014 crossref_primary_10_1109_TCBB_2019_2934958 crossref_primary_10_3389_fmicb_2018_02560 crossref_primary_10_18632_oncotarget_19588 crossref_primary_10_3389_fmicb_2018_02440 crossref_primary_10_1186_s12911_021_01616_5 crossref_primary_10_1155_2018_5747489 crossref_primary_10_18632_oncotarget_20442 crossref_primary_10_3389_fgene_2019_01346 crossref_primary_10_1186_s12859_019_2956_5 crossref_primary_10_1016_j_csbj_2024_01_011 crossref_primary_10_3389_fgene_2022_899340 crossref_primary_10_1016_j_compbiolchem_2020_107369 crossref_primary_10_3390_life12101578 crossref_primary_10_1109_TCBB_2021_3127017 crossref_primary_10_1016_j_compbiolchem_2020_107361 crossref_primary_10_1109_TNNLS_2021_3129772 crossref_primary_10_1016_j_knosys_2020_106718 crossref_primary_10_3390_biom11121835 crossref_primary_10_1109_ACCESS_2020_2974349 crossref_primary_10_1109_TCBB_2022_3196394 crossref_primary_10_1093_bib_bbac104 crossref_primary_10_3390_biology11050777 crossref_primary_10_1109_JBHI_2024_3383591 crossref_primary_10_1038_s41598_017_15235_6 crossref_primary_10_1109_TCBB_2019_2940182 crossref_primary_10_1109_TCBB_2020_2973091 crossref_primary_10_1155_2019_5938035 crossref_primary_10_1080_15476286_2018_1521210 crossref_primary_10_1038_s41598_019_41552_z crossref_primary_10_1093_bib_bbaa240 crossref_primary_10_1093_bib_bbab571 crossref_primary_10_1186_s13321_018_0284_9 crossref_primary_10_1371_journal_pcbi_1007209 crossref_primary_10_1109_TCBB_2020_2974732 crossref_primary_10_1016_j_neuroscience_2020_01_024 crossref_primary_10_1109_JBHI_2024_3397003 crossref_primary_10_3389_fgene_2020_598185 crossref_primary_10_1039_C9RA11043G crossref_primary_10_1016_j_ymthe_2022_01_041 crossref_primary_10_3389_fgene_2018_00303 crossref_primary_10_3389_fgene_2019_00090 crossref_primary_10_1007_s12539_022_00509_z crossref_primary_10_3892_ijo_2018_4576 crossref_primary_10_3389_fgene_2021_754425 crossref_primary_10_2174_0115748936276861240109045208 crossref_primary_10_1093_bioinformatics_btz965 crossref_primary_10_1109_TCBB_2022_3170843 crossref_primary_10_3390_molecules27144443 crossref_primary_10_1016_j_omtn_2018_09_020 crossref_primary_10_1093_bfgp_ely031 crossref_primary_10_1016_j_compbiomed_2021_104706 crossref_primary_10_18632_oncotarget_23178 crossref_primary_10_1093_bib_bbaa350 crossref_primary_10_18632_oncotarget_22882 crossref_primary_10_1016_j_mbs_2019_108229 crossref_primary_10_1109_TCBB_2019_2898943 crossref_primary_10_1186_s12864_018_5273_x crossref_primary_10_2174_1574893618666230227105703 crossref_primary_10_3389_fgene_2018_00411 crossref_primary_10_3389_fphys_2018_00092 crossref_primary_10_1093_bib_bbz057 crossref_primary_10_1186_s12918_017_0518_x crossref_primary_10_1038_s41598_024_56786_9 crossref_primary_10_1371_journal_pone_0184394 crossref_primary_10_1109_TCBB_2024_3366175 crossref_primary_10_1186_s12864_022_08908_8 crossref_primary_10_3390_genes10020080 crossref_primary_10_3390_genes13061021 crossref_primary_10_1007_s00438_018_1438_1 crossref_primary_10_1371_journal_pcbi_1006931 crossref_primary_10_1093_bib_bbac562 crossref_primary_10_2174_0929866526666190723114142 crossref_primary_10_1016_j_isci_2023_108639 crossref_primary_10_1016_j_ymeth_2020_08_004 crossref_primary_10_1111_jcmm_14048 crossref_primary_10_1016_j_omtn_2019_07_022 crossref_primary_10_1109_TCBB_2018_2874267 crossref_primary_10_1371_journal_pcbi_1009655 crossref_primary_10_1093_bib_bbab589 crossref_primary_10_1109_TCBB_2024_3421924 crossref_primary_10_1093_bib_bbad524 crossref_primary_10_1186_s12911_022_01807_8 crossref_primary_10_1109_TCBB_2021_3049642 crossref_primary_10_3390_ijms20040930 crossref_primary_10_3389_fgene_2021_743665 crossref_primary_10_1038_s41598_017_15846_z crossref_primary_10_1186_s12859_019_2640_9 crossref_primary_10_12677_PM_2023_137196 crossref_primary_10_1371_journal_pone_0179034 crossref_primary_10_1177_1176934320919707 crossref_primary_10_1016_j_omtn_2020_10_040 crossref_primary_10_1093_bib_bbz032 crossref_primary_10_1093_bib_bbad270 crossref_primary_10_1039_C7RA08894A crossref_primary_10_1016_j_omtm_2018_06_007 crossref_primary_10_1038_s41598_018_31986_2 crossref_primary_10_3390_pharmaceutics15071833 crossref_primary_10_1093_bib_bbaa440 crossref_primary_10_1109_TNNLS_2020_3016357 crossref_primary_10_1093_bib_bbac066 crossref_primary_10_1093_bib_bbad276 crossref_primary_10_3389_fgene_2022_1076554 crossref_primary_10_1186_s12859_023_05152_z crossref_primary_10_3389_fmicb_2023_1325001 crossref_primary_10_1038_s41598_018_34604_3 crossref_primary_10_1007_s11831_020_09435_z crossref_primary_10_1109_ACCESS_2019_2917611 crossref_primary_10_1093_bib_bbac058 crossref_primary_10_1186_s12864_024_10729_w crossref_primary_10_1093_bib_bbac298 crossref_primary_10_1038_s41598_018_24588_5 crossref_primary_10_1039_C8MO00244D crossref_primary_10_1016_j_cosrev_2024_100633 crossref_primary_10_1109_TCBB_2019_2957094 crossref_primary_10_1016_j_isci_2021_102455 crossref_primary_10_3934_mbe_2023632 crossref_primary_10_3389_fmicb_2018_02174 crossref_primary_10_1093_nar_gkx1025 crossref_primary_10_1186_s12859_020_3409_x crossref_primary_10_1016_j_compbiomed_2022_106069 crossref_primary_10_3389_fgene_2018_00576 crossref_primary_10_1109_TNNLS_2023_3289182 crossref_primary_10_1007_s11704_023_2490_5 crossref_primary_10_1016_j_omtn_2019_12_010 crossref_primary_10_1016_j_isci_2019_09_013 crossref_primary_10_1038_s41598_020_65633_6 crossref_primary_10_1186_s12859_021_04256_8 crossref_primary_10_1038_s41598_018_24783_4 crossref_primary_10_1186_s12911_020_01320_w crossref_primary_10_32604_biocell_2022_017538 crossref_primary_10_1109_JBHI_2023_3336247 crossref_primary_10_1111_jcmm_13799 crossref_primary_10_3389_fpls_2018_01685 crossref_primary_10_1038_s41598_018_27364_7 crossref_primary_10_1093_bioinformatics_bty343 crossref_primary_10_1186_s12870_024_04810_5 crossref_primary_10_1093_bib_bbab428 crossref_primary_10_1109_TCBB_2020_3025579 crossref_primary_10_2174_0929866526666191028162302 crossref_primary_10_3389_fphar_2023_1132012 crossref_primary_10_1186_s12859_023_05365_2 crossref_primary_10_1093_bib_bbab543 crossref_primary_10_1093_bib_bbab302 crossref_primary_10_1371_journal_pcbi_1011242 crossref_primary_10_3390_ijms20040978 crossref_primary_10_1371_journal_pcbi_1011927 crossref_primary_10_1016_j_omtn_2018_03_001 crossref_primary_10_1080_15476286_2020_1737441 crossref_primary_10_1038_s41598_021_91991_w crossref_primary_10_1186_s13059_019_1811_3 crossref_primary_10_1186_s12859_020_03716_x crossref_primary_10_1109_TCBB_2024_3440913 crossref_primary_10_3389_fgene_2019_00099 crossref_primary_10_1016_j_jmb_2018_05_006 crossref_primary_10_1109_ACCESS_2024_3440951 crossref_primary_10_1155_2017_2498957 crossref_primary_10_2174_0929866526666191025104043 crossref_primary_10_1371_journal_pcbi_1005912 crossref_primary_10_1016_j_future_2024_05_055 crossref_primary_10_1109_TNB_2019_2922214 crossref_primary_10_3389_fbioe_2020_00040 crossref_primary_10_1186_s12967_018_1722_1 crossref_primary_10_1038_s41598_018_24204_6 crossref_primary_10_1038_s41598_023_31413_1 crossref_primary_10_1093_bib_bbac623 crossref_primary_10_1371_journal_pcbi_1009048 crossref_primary_10_3389_fgene_2020_00354 crossref_primary_10_1016_j_artmed_2021_102115 crossref_primary_10_1109_TCBB_2017_2776101 crossref_primary_10_1371_journal_pcbi_1009165 crossref_primary_10_1109_TCBB_2018_2872574 crossref_primary_10_1186_s12859_021_04135_2 crossref_primary_10_2174_1389201024666221025114500 crossref_primary_10_1038_s41598_020_75005_9 crossref_primary_10_1186_s12859_023_05308_x crossref_primary_10_1016_j_ymeth_2023_12_002 crossref_primary_10_3390_ijms20010110 crossref_primary_10_1093_gigascience_giaa032 crossref_primary_10_1109_TCBB_2023_3335007 crossref_primary_10_1093_bib_bbad111 crossref_primary_10_1016_j_jbi_2018_05_005 crossref_primary_10_1038_s41598_022_21243_y crossref_primary_10_1080_15476286_2020_1817266 crossref_primary_10_1093_bib_bbac021 crossref_primary_10_1093_bioinformatics_btaa157 crossref_primary_10_3389_fgene_2020_00389 crossref_primary_10_3934_mbe_2021367 crossref_primary_10_1186_s12918_018_0664_9 crossref_primary_10_1007_s11538_018_0449_8 crossref_primary_10_1109_TCBB_2022_3187739 crossref_primary_10_1039_C7RA12491K crossref_primary_10_1109_TCBB_2021_3133006 crossref_primary_10_1155_2021_6659695 crossref_primary_10_1016_j_neucom_2017_07_065 crossref_primary_10_1093_bib_bbx163 crossref_primary_10_3389_fgene_2019_00476 crossref_primary_10_1109_TCBB_2022_3204726 crossref_primary_10_1109_TCBB_2024_3373772 crossref_primary_10_1038_s41598_020_63735_9 crossref_primary_10_2196_14924 crossref_primary_10_1016_j_compbiolchem_2021_107566 crossref_primary_10_1186_s12967_018_1741_y crossref_primary_10_1016_j_omtn_2019_04_025 crossref_primary_10_1093_bib_bbab165 crossref_primary_10_1093_bib_bbab286 crossref_primary_10_1016_j_sigpro_2021_108312 crossref_primary_10_1016_j_ymeth_2023_02_003 crossref_primary_10_1093_bioinformatics_bty112 crossref_primary_10_2174_1574893615999200715165335 crossref_primary_10_1016_j_knosys_2019_104963 crossref_primary_10_1038_s41598_017_08127_2 crossref_primary_10_1155_2019_7614850 crossref_primary_10_1016_j_jbi_2018_02_013 crossref_primary_10_3389_fgene_2022_825318 crossref_primary_10_3390_genes10090685 crossref_primary_10_2174_1566523223666230419101405 crossref_primary_10_1155_2021_9678747 crossref_primary_10_1016_j_snb_2023_134209 crossref_primary_10_1007_s12539_023_00594_8 crossref_primary_10_2174_0115748936293219240426051148 crossref_primary_10_1007_s12539_022_00542_y crossref_primary_10_1093_bib_bbae103 crossref_primary_10_1080_15476286_2018_1517010 crossref_primary_10_2174_1574893618666221118092849 crossref_primary_10_1039_C8RA07519K crossref_primary_10_3390_ijms231911498 crossref_primary_10_1039_C7MB00485K crossref_primary_10_1109_TCBB_2020_3013837 crossref_primary_10_1371_journal_pcbi_1006418 crossref_primary_10_1038_s41598_018_24532_7 crossref_primary_10_1093_bib_bbab074 crossref_primary_10_1093_nar_gkaa707 crossref_primary_10_1109_TCBB_2020_2994971 crossref_primary_10_1038_s41598_018_34180_6 crossref_primary_10_1371_journal_pone_0252971 crossref_primary_10_1186_s12864_024_11078_4 crossref_primary_10_1038_s41598_017_15716_8 crossref_primary_10_1155_2021_6652948 crossref_primary_10_1038_s41598_018_25900_z crossref_primary_10_1186_s12859_021_04266_6 crossref_primary_10_1039_C7MB00450H crossref_primary_10_3389_fmicb_2019_00676 crossref_primary_10_1186_s12859_019_3063_3 crossref_primary_10_1038_s41598_017_10065_y crossref_primary_10_1093_bib_bbac155 crossref_primary_10_1093_bib_bbac397 crossref_primary_10_1186_s12859_017_1924_1 crossref_primary_10_1109_JBHI_2024_3467101 crossref_primary_10_2174_1389202920666191023090215 crossref_primary_10_1007_s12539_021_00469_w crossref_primary_10_1016_j_omtn_2019_04_010 crossref_primary_10_3389_fgene_2018_00239 crossref_primary_10_3389_fmicb_2019_00684 crossref_primary_10_1186_s12885_019_5435_5 crossref_primary_10_3389_fgene_2018_00234 crossref_primary_10_1080_15476286_2019_1570811 crossref_primary_10_1186_s12859_022_04978_3 crossref_primary_10_3389_fcell_2021_617569 |
Cites_doi | 10.1016/0092-8674(93)90529-Y 10.1073/pnas.0605298103 10.1016/S0092-8674(03)00428-8 10.18632/oncotarget.11141 10.1093/bioinformatics/btq241 10.1093/bioinformatics/btr500 10.1093/nar/gkt1023 10.1093/carcin/bgp094 10.1016/j.eururo.2011.01.044 10.1016/j.coph.2009.08.009 10.1038/nature05372 10.1371/journal.pone.0043425 10.1093/bioinformatics/btv039 10.1093/bioinformatics/btt426 10.18632/oncotarget.10008 10.3390/ijms17010021 10.1039/C5MB00697J 10.1111/j.1365-2249.2012.04676.x 10.1038/srep16840 10.1248/bpb.29.903 10.1038/srep13877 10.1186/1471-2407-9-374 10.1039/c2mb25180a 10.1093/bioinformatics/btt677 10.1038/nature02873 10.1038/srep21106 10.18632/oncotarget.8296 10.1016/j.molcel.2010.09.027 10.1038/nature06174 10.1016/S1470-2045(09)70386-9 10.1093/nar/gkq1027 10.1016/j.ccr.2008.02.013 10.1038/srep05501 10.1186/s12859-016-1035-4 10.1038/srep13186 10.1016/j.clinbiochem.2009.07.020 10.1093/cvr/cvn156 10.1074/jbc.M702806200 10.1016/j.urology.2009.10.033 10.1016/S0092-8674(01)00616-X 10.1002/pbc.23105 10.1158/1535-7163.MCT-11-0055 10.1016/S0092-8674(04)00045-5 10.1371/journal.pone.0070204 10.1016/0092-8674(93)90530-4 10.1016/j.athoracsur.2013.10.042 10.1001/jama.299.4.425 10.1126/science.1091903 10.1093/bib/bbw060 10.1093/nar/gkn714 10.1038/35002607 10.1371/journal.pone.0077623 10.1038/nature02871 10.1186/s13321-016-0128-4 10.1186/1752-0509-4-S1-S2 10.1186/1752-0509-7-101 10.1186/1471-2164-11-S4-S5 10.1111/j.1549-8719.2011.00153.x 10.1056/NEJM200011023431804 10.4161/cc.6.17.4641 10.1159/000113489 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 Public Library of Science 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: You Z-H, Huang Z-A, Zhu Z, Yan G-Y, Li Z-W, Wen Z, et al. (2017) PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput Biol 13(3): e1005455. https://doi.org/10.1371/journal.pcbi.1005455 2017 You et al 2017 You et al 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: You Z-H, Huang Z-A, Zhu Z, Yan G-Y, Li Z-W, Wen Z, et al. (2017) PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput Biol 13(3): e1005455. https://doi.org/10.1371/journal.pcbi.1005455 |
Copyright_xml | – notice: COPYRIGHT 2017 Public Library of Science – notice: 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: You Z-H, Huang Z-A, Zhu Z, Yan G-Y, Li Z-W, Wen Z, et al. (2017) PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput Biol 13(3): e1005455. https://doi.org/10.1371/journal.pcbi.1005455 – notice: 2017 You et al 2017 You et al – notice: 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: You Z-H, Huang Z-A, Zhu Z, Yan G-Y, Li Z-W, Wen Z, et al. (2017) PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput Biol 13(3): e1005455. https://doi.org/10.1371/journal.pcbi.1005455 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1005455 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Computer Science |
DocumentTitleAlternate | miRNA-disease association prediction |
EISSN | 1553-7358 |
ExternalDocumentID | 1888661345 oai_doaj_org_article_60530b80e8c8419b8ef82380ce6bdd6e PMC5384769 A493714480 28339468 10_1371_journal_pcbi_1005455 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: Yq2013141 – fundername: ; grantid: 2014TQ01X273 – fundername: ; grantid: 61572506 – fundername: ; grantid: 11301517 – fundername: ; grantid: 61471246 – fundername: ; grantid: 11631014 – fundername: ; grantid: 11371355 – fundername: ; grantid: 61572328 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. C1A CGR CUY CVF ECM EIF H13 IPNFZ M0N M~E NPM PGMZT RIG WOQ PMFND 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 7X8 5PM PUEGO AAPBV ABPTK N95 UMP |
ID | FETCH-LOGICAL-c633t-de4e0c9e3e20e9d8e3b89aaa7317f39e681814d597aaf823b13a1a503924bf4a3 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Sun May 07 16:29:13 EDT 2023 Wed Aug 27 01:28:50 EDT 2025 Thu Aug 21 17:47:58 EDT 2025 Fri Jul 11 03:28:58 EDT 2025 Fri Jul 25 11:59:42 EDT 2025 Tue Jun 10 20:36:43 EDT 2025 Fri Jun 27 04:10:10 EDT 2025 Fri Jun 27 04:16:59 EDT 2025 Wed Feb 19 02:32:29 EST 2025 Tue Jul 01 03:51:58 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-de4e0c9e3e20e9d8e3b89aaa7317f39e681814d597aaf823b13a1a503924bf4a3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceptualization: XC.Data curation: XC ZAH.Formal analysis: ZHY XC GYY.Funding acquisition: XC ZZ GYY ZHY ZW.Investigation: XC GYY ZWL.Methodology: XC.Project administration: XC ZZ.Resources: XC.Software: ZAH XC.Supervision: XC ZZ.Validation: XC ZAH ZHY.Visualization: ZAH XC ZHY ZZ GYY ZWL.Writing – original draft: ZAH XC ZHY.Writing – review & editing: XC ZAH ZZ. These authors are joint senior authors on this work. The authors have declared that no competing interests exist. |
ORCID | 0000-0001-9028-5342 0000-0001-9974-148X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1005455 |
PMID | 28339468 |
PQID | 1888661345 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_1888661345 doaj_primary_oai_doaj_org_article_60530b80e8c8419b8ef82380ce6bdd6e pubmedcentral_primary_oai_pubmedcentral_nih_gov_5384769 proquest_miscellaneous_1881270660 proquest_journals_1888661345 gale_infotracacademiconefile_A493714480 gale_incontextgauss_ISR_A493714480 gale_incontextgauss_ISN_A493714480 pubmed_primary_28339468 crossref_primary_10_1371_journal_pcbi_1005455 crossref_citationtrail_10_1371_journal_pcbi_1005455 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2017 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | S Mork (ref32) 2014; 30 J Weidhaas (ref20) 2010; 11 BJ Reinhart (ref6) 2000; 403 K Motoyama (ref58) 2009; 34 T Kan (ref47) 2009; 9 AJ Schetter (ref55) 2008; 299 C Urbich (ref13) 2008; 79 Y Li (ref21) 2014; 42 P Xuan (ref34) 2015; 31 Q Jiang (ref30) 2010; 4 L Ma (ref16) 2007; 449 MC Lu (ref53) 2013; 171 A Kozomara (ref8) 2011; 39 V Ambros (ref4) 2004; 431 CA O’Brien (ref54) 2007; 445 W-H Chow (ref49) 2000; 343 ST Sredni (ref17) 2011; 57 FC Tsz-fung (ref52) 2010; 43 X Chen (ref33) 2012; 8 O Slaby (ref57) 2008; 72 F Petrocca (ref14) 2008; 13 X Chen (ref27) 2012; 7 KD Taganov (ref10) 2006; 103 AK Leung (ref15) 2010; 40 G Meister (ref1) 2004; 431 WP Tsang (ref59) 2009; 30 X Chen (ref26) 2016; 7 Q Jiang (ref22) 2009; 37 L Wong (ref62) 2016; 17 X Chen (ref39) 2015; 5 J Xu (ref37) 2011; 10 Y Akao (ref56) 2006; 29 X Chen (ref38) 2014; 4 T van Laarhoven (ref44) 2011; 27 X Chen (ref25) 2015; 5 X Chen (ref28) 2015; 5 GM Arndt (ref60) 2009; 9 C Bang (ref19) 2012; 19 JW Catto (ref50) 2011; 59 Y-A Huang (ref61) 2016; 17 H Shi (ref35) 2013; 7 Z Yang (ref40) 2010; 11 X Chen (ref36) 2016; 6 M Carleton (ref12) 2007; 6 DP Bartel (ref2) 2004; 116 B Wightman (ref7) 1993; 75 D Wang (ref41) 2010; 26 P Xuan (ref31) 2013; 8 V Ambros (ref9) 2003; 113 X Chen (ref29) 2013; 29 C-Z Chen (ref11) 2004; 303 B Shi (ref18) 2007; 282 W Ba-Alawi (ref45) 2016; 8 X-L Xu (ref46) 2014; 97 V Ambros (ref3) 2001; 107 D Juan (ref51) 2010; 75 K Okamoto (ref48) 2013; 8 X Chen (ref42) 2016; 7 Y Huang (ref43) 2016; 7 RC Lee (ref5) 1993; 75 X Chen (ref23) 2016; 12 X Chen (ref24) 2016 |
References_xml | – volume: 75 start-page: 843 year: 1993 ident: ref5 article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 publication-title: Cell doi: 10.1016/0092-8674(93)90529-Y – volume: 103 start-page: 12481 year: 2006 ident: ref10 article-title: NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0605298103 – volume: 113 start-page: 673 year: 2003 ident: ref9 article-title: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing publication-title: Cell doi: 10.1016/S0092-8674(03)00428-8 – volume: 7 start-page: 57919 year: 2016 ident: ref42 article-title: IRWRLDA: Improved Random Walk with Restart for LncRNA-Disease Association prediction publication-title: Oncotarget doi: 10.18632/oncotarget.11141 – volume: 26 start-page: 1644 year: 2010 ident: ref41 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – volume: 27 start-page: 3036 year: 2011 ident: ref44 article-title: Gaussian interaction profile kernels for predicting drug-target interaction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr500 – volume: 42 start-page: D1070 year: 2014 ident: ref21 article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations publication-title: Nucleic acids research doi: 10.1093/nar/gkt1023 – volume: 30 start-page: 953 year: 2009 ident: ref59 article-title: The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras publication-title: Carcinogenesis doi: 10.1093/carcin/bgp094 – volume: 59 start-page: 671 year: 2011 ident: ref50 article-title: MicroRNA in prostate, bladder, and kidney cancer: a systematic review publication-title: European urology doi: 10.1016/j.eururo.2011.01.044 – volume: 9 start-page: 727 year: 2009 ident: ref47 article-title: MicroRNAs in Barrett's esophagus and esophageal adenocarcinoma publication-title: Current opinion in pharmacology doi: 10.1016/j.coph.2009.08.009 – volume: 445 start-page: 106 year: 2007 ident: ref54 article-title: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice publication-title: Nature doi: 10.1038/nature05372 – volume: 7 start-page: e43425 year: 2012 ident: ref27 article-title: Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier publication-title: PLoS One doi: 10.1371/journal.pone.0043425 – volume: 31 start-page: 1805 year: 2015 ident: ref34 article-title: Prediction of potential disease-associated microRNAs based on random walk publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv039 – volume: 34 start-page: 1069 year: 2009 ident: ref58 article-title: Over-and under-expressed microRNAs in human colorectal cancer publication-title: International journal of oncology – volume: 29 start-page: 2617 year: 2013 ident: ref29 article-title: Novel human lncRNA–disease association inference based on lncRNA expression profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt426 – volume: 7 start-page: 45948 year: 2016 ident: ref26 article-title: FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model publication-title: Oncotarget doi: 10.18632/oncotarget.10008 – volume: 17 start-page: 21 year: 2016 ident: ref62 article-title: Detection of interactions between proteins through rotation forest and local phase quantization descriptors publication-title: International journal of molecular sciences doi: 10.3390/ijms17010021 – volume: 12 start-page: 624 year: 2016 ident: ref23 article-title: miREFRWR: a novel disease-related microRNA-environmental factor interactions prediction method publication-title: Mol Biosyst doi: 10.1039/C5MB00697J – volume: 171 start-page: 91 year: 2013 ident: ref53 article-title: Decreased microRNA (miR)‐145 and increased miR‐224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis publication-title: Clinical & Experimental Immunology doi: 10.1111/j.1365-2249.2012.04676.x – volume: 5 start-page: 16840 year: 2015 ident: ref25 article-title: KATZLDA: KATZ measure for the lncRNA-disease association prediction publication-title: Sci Rep doi: 10.1038/srep16840 – volume: 29 start-page: 903 year: 2006 ident: ref56 article-title: let-7 microRNA functions as a potential growth suppressor in human colon cancer cells publication-title: Biological and Pharmaceutical Bulletin doi: 10.1248/bpb.29.903 – volume: 5 start-page: 13877 year: 2015 ident: ref39 article-title: RBMMMDA: predicting multiple types of disease-microRNA associations publication-title: Sci Rep doi: 10.1038/srep13877 – volume: 9 start-page: 1 year: 2009 ident: ref60 article-title: Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer publication-title: BMC cancer doi: 10.1186/1471-2407-9-374 – volume: 8 start-page: 2792 year: 2012 ident: ref33 article-title: RWRMDA: predicting novel human microRNA–disease associations publication-title: Molecular BioSystems doi: 10.1039/c2mb25180a – volume: 30 start-page: 392 year: 2014 ident: ref32 article-title: Protein-driven inference of miRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt677 – volume: 431 start-page: 343 year: 2004 ident: ref1 article-title: Mechanisms of gene silencing by double-stranded RNA publication-title: Nature doi: 10.1038/nature02873 – volume: 6 start-page: 21106 year: 2016 ident: ref36 article-title: WBSMDA: Within and Between Score for MiRNA-Disease Association prediction publication-title: Sci Rep doi: 10.1038/srep21106 – volume: 7 start-page: 25902 year: 2016 ident: ref43 article-title: ILNCSIM: improved lncRNA functional similarity calculation model publication-title: Oncotarget doi: 10.18632/oncotarget.8296 – volume: 40 start-page: 205 year: 2010 ident: ref15 article-title: MicroRNA functions in stress responses publication-title: Molecular cell doi: 10.1016/j.molcel.2010.09.027 – volume: 449 start-page: 682 year: 2007 ident: ref16 article-title: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer publication-title: Nature doi: 10.1038/nature06174 – volume: 11 start-page: 106 year: 2010 ident: ref20 article-title: Using microRNAs to understand cancer biology publication-title: The Lancet Oncology doi: 10.1016/S1470-2045(09)70386-9 – volume: 39 start-page: D152 year: 2011 ident: ref8 article-title: miRBase: integrating microRNA annotation and deep-sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1027 – volume: 13 start-page: 272 year: 2008 ident: ref14 article-title: E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer publication-title: Cancer cell doi: 10.1016/j.ccr.2008.02.013 – volume: 4 start-page: 5501 year: 2014 ident: ref38 article-title: Semi-supervised learning for potential human microRNA-disease associations inference publication-title: Sci Rep doi: 10.1038/srep05501 – volume: 17 start-page: 184 year: 2016 ident: ref61 article-title: Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding publication-title: BMC bioinformatics doi: 10.1186/s12859-016-1035-4 – volume: 5 start-page: 13186 year: 2015 ident: ref28 article-title: Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA publication-title: Sci Rep doi: 10.1038/srep13186 – volume: 43 start-page: 150 year: 2010 ident: ref52 article-title: Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis publication-title: Clinical biochemistry doi: 10.1016/j.clinbiochem.2009.07.020 – volume: 79 start-page: 581 year: 2008 ident: ref13 article-title: Role of microRNAs in vascular diseases, inflammation, and angiogenesis publication-title: Cardiovascular Research doi: 10.1093/cvr/cvn156 – volume: 282 start-page: 32582 year: 2007 ident: ref18 article-title: Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M702806200 – volume: 75 start-page: 835 year: 2010 ident: ref51 article-title: Identification of a microRNA panel for clear-cell kidney cancer publication-title: Urology doi: 10.1016/j.urology.2009.10.033 – volume: 107 start-page: 823 year: 2001 ident: ref3 article-title: microRNAs: tiny regulators with great potential publication-title: Cell doi: 10.1016/S0092-8674(01)00616-X – volume: 57 start-page: 183 year: 2011 ident: ref17 article-title: MicroRNA expression profiling for molecular classification of pediatric brain tumors publication-title: Pediatric blood & cancer doi: 10.1002/pbc.23105 – volume: 10 start-page: 1857 year: 2011 ident: ref37 article-title: Prioritizing candidate disease miRNAs by topological features in the mirna target–dysregulated network: Case study of prostate cancer publication-title: Molecular cancer therapeutics doi: 10.1158/1535-7163.MCT-11-0055 – volume: 116 start-page: 281 year: 2004 ident: ref2 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 8 start-page: e70204 year: 2013 ident: ref31 article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors publication-title: PloS one doi: 10.1371/journal.pone.0070204 – volume: 75 start-page: 855 year: 1993 ident: ref7 article-title: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans publication-title: Cell doi: 10.1016/0092-8674(93)90530-4 – volume: 97 start-page: 1037 year: 2014 ident: ref46 article-title: MicroRNA-17, microRNA-18a, and microRNA-19a are prognostic indicators in esophageal squamous cell carcinoma publication-title: The Annals of thoracic surgery doi: 10.1016/j.athoracsur.2013.10.042 – volume: 299 start-page: 425 year: 2008 ident: ref55 article-title: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma publication-title: Jama doi: 10.1001/jama.299.4.425 – volume: 303 start-page: 83 year: 2004 ident: ref11 article-title: MicroRNAs modulate hematopoietic lineage differentiation publication-title: Science doi: 10.1126/science.1091903 – start-page: bbw060 year: 2016 ident: ref24 article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbw060 – volume: 37 start-page: D98 year: 2009 ident: ref22 article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease publication-title: Nucleic acids research doi: 10.1093/nar/gkn714 – volume: 403 start-page: 901 year: 2000 ident: ref6 article-title: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans publication-title: Nature doi: 10.1038/35002607 – volume: 8 start-page: e77623 year: 2013 ident: ref48 article-title: miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells publication-title: PLoS One doi: 10.1371/journal.pone.0077623 – volume: 431 start-page: 350 year: 2004 ident: ref4 article-title: The functions of animal microRNAs publication-title: Nature doi: 10.1038/nature02871 – volume: 8 start-page: 1 year: 2016 ident: ref45 article-title: DASPfind: new efficient method to predict drug–target interactions publication-title: Journal of Cheminformatics doi: 10.1186/s13321-016-0128-4 – volume: 4 start-page: 1 year: 2010 ident: ref30 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC systems biology doi: 10.1186/1752-0509-4-S1-S2 – volume: 7 start-page: 101 year: 2013 ident: ref35 article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes publication-title: BMC systems biology doi: 10.1186/1752-0509-7-101 – volume: 11 start-page: S5 year: 2010 ident: ref40 article-title: dbDEMC: a database of differentially expressed miRNAs in human cancers publication-title: BMC genomics doi: 10.1186/1471-2164-11-S4-S5 – volume: 19 start-page: 208 year: 2012 ident: ref19 article-title: Cardiovascular Importance of the MicroRNA‐23/27/24 Family publication-title: Microcirculation doi: 10.1111/j.1549-8719.2011.00153.x – volume: 343 start-page: 1305 year: 2000 ident: ref49 article-title: Obesity, hypertension, and the risk of kidney cancer in men publication-title: New England Journal of Medicine doi: 10.1056/NEJM200011023431804 – volume: 6 start-page: 2127 year: 2007 ident: ref12 article-title: MicroRNAs and cell cycle regulation publication-title: Cell cycle doi: 10.4161/cc.6.17.4641 – volume: 72 start-page: 397 year: 2008 ident: ref57 article-title: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer publication-title: Oncology doi: 10.1159/000113489 |
SSID | ssj0035896 |
Score | 2.6277268 |
Snippet | In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1005455 |
SubjectTerms | Biological activity Biological computing Biology and life sciences Biomarkers, Tumor - genetics Case studies Cell cycle Colon Colorectal cancer Computer applications Computer science Computer Simulation Disease Diseases Drugs Esophageal cancer Esophagus Genetic Association Studies Genetic Predisposition to Disease - epidemiology Genetic Predisposition to Disease - genetics Health aspects Humans Kidney cancer Kidneys Lupus Medical prognosis Medical research Medicine and Health Sciences Methods MicroRNA MicroRNAs MicroRNAs - genetics miRNA Models, Genetic Models, Statistical Molecular modelling Neoplasms Neoplasms - epidemiology Neoplasms - genetics Pathogenesis Physical Sciences Prediction models Predictions Prevalence Prognosis Proteins Research and Analysis Methods Risk Assessment - methods Risk Factors RNA sequencing Search algorithms Signal Transduction - genetics Similarity Software Software engineering Thoracic surgery Tumors Urology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fixMxEA5SEHwRz19XPSWK4FO83SabTXzbU49TuCKnB30LSTZ7Fuq2XNsD_3tnsul6Kyf34lNLMy1kZnbmm2YyHyFvbC7L4INnAA4KJoIumLJZzTKrdSMaqEhqvDt8OpUn5-LLrJhdo_rCnrBuPHCnuEOA2zxzKgvKK5Frp0KjIM1kPkhX1zJg9IWctyumuhjMCxWZuZAUh5VczNKlOV7mh8lG71bezbFHACBEMUhKcXZ_H6FHq8VyfRP8_LuL8lpaOn5A7ic8SatuH3vkTmgfkrsdw-SvR6T-enT6sXpPK9our8KC2ramXQsHRDmKdMQM81hNfWR3SP8M0siPQwHP0p_zs2nF0jEOtX-MSVeXeMaDbx-T8-NP3z-csESswLzkfMPqIELmdeBhkgVdq8Cd0tbaEsBEw3WQkMVzUUOtYS1q2-Xc5rbIAEsJ1wjLn5BRu2zDPqHSKXykc2lLKOQg2U0CvNqJk94WWtox4TvNGp-mjiP5xcLEo7QSqo9OUQbtYZI9xoT131p1UzdukT9Co_WyODM7fgCeZJInmds8aUxeo8kNTsVose3mwm7Xa_P529RUAscGQiWb_VPobCD0Ngk1S9ist-mqA6gMp20NJPfRv3abWptcKQWQiQvY08HO525eftUvQ0TAYx7bhuU2ymA7gZTw6087F-0VA2CSayHVmJQD5x1obrjSzn_EqeOQGUUp9bP_oern5N4E4VHs5Tsgo83lNrwAcLdxL-Nz_Bts30ut priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXPsbHCgMZhMSTWVI7js0L6oAykFahwaS-RY7tjEolKf1A4r_nznE6ggY8taovVXw-3_3Od74j5LlJZe6ttwzAQcaE1xlTJnEsMVpXogKPxOHd4ZOpPD4TH2fZLB64rWNaZacTg6J2jcUz8sMUXDWwJVxkr5ffGXaNwuhqbKFxlVxLwdJgSpeavO80Mc9U6M-FrXFYzsUsXp3jeXoYV-rl0pZzzBQAIJH1TFOo4L_T04PlollfBkL_zKX8zThNbpObEVXScSsGd8gVX--R622fyZ975FbXu4HGrXyXuE9HJ2_Hr-iY1s0Pv6CmdrTN7QD1R7FPMUMD56gNj8YjQxoa51AAuvTb_HQ6ZjG-Q83FKtPlCoM_-PUeOZu8-_LmmMWOC8xKzjfMeeETqz33o8RrpzwvlTbG5IAyKq69BPOeCgdOiDGVGvEy5SY1WQIgS5SVMPw-GdRN7fcJlaXCvZ5Kk4OHB1Zw5OHTjEppTaalGRLeMbuwsRw5dsVYFCHGloNb0vKuwCUq4hINCds9tWzLcfyH_gjXcUeLxbTDD83qvIh7swCPjielSryySqS6VB7nphLrZemc9EPyDKWgwHIZNebjnJvtel18-DwtxgLrCYKLm_yV6LRH9CISVQ1M1pp4BwJYhmW4epT7KHLdpNbFhfwPyUEnhpcPP90Ng6rA-I-pfbMNNJhnICX8-4NWaneMAZTJtZBqSPKePPc41x-p519DOXIwmSKX-uG_X-sRuTFCRBTS9w7IYLPa-seA5zblk7BpfwHVfUlf priority: 102 providerName: ProQuest |
Title | PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28339468 https://www.proquest.com/docview/1888661345 https://www.proquest.com/docview/1881270660 https://pubmed.ncbi.nlm.nih.gov/PMC5384769 https://doaj.org/article/60530b80e8c8419b8ef82380ce6bdd6e http://dx.doi.org/10.1371/journal.pcbi.1005455 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tki8IL5XGJVBSDxlSmrHcZAQStnKQGo1FSr1LXIcZ6tUktIPxP577hw3ENQJ8dK09SWS72zf73L2_Qh5rQIRGW20B-Ag9LiJQ08qP_d8FccFLyAiyfHs8GgsLqb88yycHZAdZ6tT4HpvaId8UtPV4vTn95v3MOHfWdaGKNjddLrU2Ryz_gAKwkNyBL4pQk6DEW_yCiyUlrELyXK8CH65w3S3PaXlrGxN_2bl7iwX1XofLP17d-Uf7mp4n9xzOJMm9cB4QA5M-ZDcqZknbx6R_HIwOkve0oSW1Q-zoKrMab21A1Y_ijTFHvq3nGrL-uDeGFLLm0MB59Jv88k48Vx6h6rfRqbLFeZ-8OtjMh2ef_1w4TnCBU8LxjZebrjxdWyY6fsmzqVhmYyVUhGAjILFRoB3D3gOMYhSheyzLGAqUKEPGItnBVfsCemUVWmOCRWZxKkeCBVBgAdOsG_gqvqZ0CqMheoSttNsql01ciTFWKQ2xRZBVFIrKkV7pM4eXeI1dy3rahz_kB-g0RpZrKVt_6hWV6mbmikEdMzPpG-kljyIM2mwb9LXRmR5LkyXvEKTp1gto8TtOFdqu16nn76M04RjOUGIcP1bhSYtoTdOqKigs1q5IxCgMqzC1ZI8xvG169Q6DaSUAKUYhz6d7Mbc_uaXTTOsFJj-UaWptlYGtxkIAU9_Wg_RRjEAMlnMheySqDV4W5prt5Tza1uNHDwmj0T87D9N85zc7SNCstv5Tkhns9qaF4DvNlmPHEazCD7l8GOPHCWDs8EQroPz8eWkZ9-Z9Oyk_gXiI1SU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYIXPsbHCgMMAvFklsSO4yAh1DFKy9YKjU3qW3AcZ1QqSekHaP8UfyN3idNRNOBpT63qS1TfXe4jd74fIc-0LyNrrGEQHIRM2DhkSnsZ83Qc5yKHjCTDs8ODoewdiw-jcLRBfjZnYbCtsrGJlaHOSoPvyHd8SNXAl3ARvpl-Y4gahdXVBkKjVot9e_oDUrb56_4eyPd5EHTfHb3tMYcqwIzkfMEyK6xnYstt4Nk4U5anKtZaR-BJcx5bCS7MFxkE2lrnKuCpz7WvQw8CCZHmQnO47yVyWXDw5Hgyvfu-sfw8VBUeGELxsIiLkTuqxyN_x2nGy6lJx9iZAIFLuOYKK8SAlV9oTSfl_Lyg98_ezd-cYfcmue6iWNqp1e4W2bDFJrlS41qebpIbDVYEdabjNsk-7g72Oq9ohxbldzuhusho3UsC5pYiLjJDh5pRU13qXlHSCqiHQmBNv44Phx3m6klUn2kVnc6w2IRf75DjC5HFXdIqysJuESpThbbFlzqCjBK8bmDhUwepNDqMpW4T3jA7MW78OaJwTJKqphdBGlTzLkERJU5EbcJWV03r8R__od9FOa5ocXh39UM5O0mcLUggg-ReqjyrjBJ-nCqLe1OesTLNMmnb5ClqQYLjOQrs_znRy_k86X8aJh2B8wshpfb-SnS4RvTCEeUlbNZod-YCWIZjv9Yot1Dlmk3Nk7PnrU22GzU8f_nJahlME9abdGHLZUWDfQ1Swt3v1Vq7YgxEtTwWUrVJtKbPa5xbXynGX6rx5-CiRSTj-__-W4_J1d7R4CA56A_3H5BrAUZjVevgNmktZkv7EGLJRfqoeoAp-XzRFuMX5IKGaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAvfIyPFQYYBOLJNIkdJ0FCqKWbVsaqqjCpb8FxnFGpJKUfoP1r_HXcJU5H0ICnPbWqL1F9d7mP3Pl-hDxXrgyMNppBcOAzYSKfhcpJmaOiKBMZZCQpnh0-HsrDE_F-4k-2yM_6LAy2VdY2sTTUaaHxHXnHhVQNfAkXfiezbRGj_sHb-TeGCFJYaa3hNCoVOTJnPyB9W74Z9EHWLzzvYP_Tu0NmEQaYlpyvWGqEcXRkuPEcE6Wh4UkYKaUC8KoZj4wEd-aKFIJupbLQ44nLlat8B4IKkWRCcbjvFbIdYFbUItu9_eFoXPsB7oclOhgC87CAi4k9uMcDt2P15NVcJ1PsU4Awxm84xhI_YOMlWvNZsbwoBP6zk_M313hwi9ywMS3tVkp4m2yZfIdcrVAuz3bIzRo5glpDcoeko95xv_uadmlefDczqvKUVp0lYHwpoiQzdK8p1eWl9oUlLWF7KITZ9Ot0POwyW12i6lzH6HyBpSf8epecXIo07pFWXuRml1CZhGhpXKkCyC_BB3sGPpWXSK38SKo24TWzY22HoSMmxywuK3wBJEUV72IUUWxF1CZsc9W8GgbyH_oeynFDi6O8yx-KxWlsLUMM-SR3ktAxoQ6FGyWhwb2FjjYySVNp2uQZakGMwzpyVPtTtV4u48HHYdwVOM0QEmznr0TjBtFLS5QVsFmt7AkMYBkOAWtQ7qLK1ZtaxudPX5vs1Wp48fLTzTIYKqw-qdwU65IGuxykhLvfr7R2wxiIcXkkZNgmQUOfG5xrruTTL-UwdHDYIpDRg3__rSfkGliL-MNgePSQXPcwNCv7CPdIa7VYm0cQWK6Sx_YJpuTzZRuNX7KKi_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PBMDA%3A+A+novel+and+effective+path-based+computational+model+for+miRNA-disease+association+prediction&rft.jtitle=PLoS+computational+biology&rft.au=You%2C+Zhu-Hong&rft.au=Huang%2C+Zhi-An&rft.au=Zhu%2C+Zexuan&rft.au=Yan%2C+Gui-Ying&rft.date=2017-03-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=13&rft.issue=3&rft.spage=e1005455&rft_id=info:doi/10.1371%2Fjournal.pcbi.1005455&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pcbi_1005455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |