Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data

Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 15; no. 8; p. e1007259
Main Authors Huttunen, Janne M. J., Kärkkäinen, Leo, Lindholm, Harri
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 15.08.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1007259

Cover

Loading…
Abstract Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health indices using machine learning approaches. In particular, we carry out theoretical assessment of estimating aortic pulse wave velocity, diastolic and systolic blood pressure and stroke volume using pulse transit/arrival timings derived from photopletyshmography signals. For predictions, we train Gaussian process regression using a database of virtual subjects generated with a cardiovascular simulator. Simulated results provides theoretical assessment of accuracy for predictions of the health indices. For instance, aortic pulse wave velocity can be estimated with a high accuracy (r > 0.9) when photopletyshmography is measured from left carotid artery using a combination of foot-to-foot pulse transmit time and peak location derived for the predictions. Similar accuracy can be reached for diastolic blood pressure, but predictions of systolic blood pressure are less accurate (r > 0.75) and the stroke volume predictions are mostly contributed by heart rate.
AbstractList Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health indices using machine learning approaches. In particular, we carry out theoretical assessment of estimating aortic pulse wave velocity, diastolic and systolic blood pressure and stroke volume using pulse transit/arrival timings derived from photopletyshmography signals. For predictions, we train Gaussian process regression using a database of virtual subjects generated with a cardiovascular simulator. Simulated results provides theoretical assessment of accuracy for predictions of the health indices. For instance, aortic pulse wave velocity can be estimated with a high accuracy (r > 0.9) when photopletyshmography is measured from left carotid artery using a combination of foot-to-foot pulse transmit time and peak location derived for the predictions. Similar accuracy can be reached for diastolic blood pressure, but predictions of systolic blood pressure are less accurate (r > 0.75) and the stroke volume predictions are mostly contributed by heart rate.
Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health indices using machine learning approaches. In particular, we carry out theoretical assessment of estimating aortic pulse wave velocity, diastolic and systolic blood pressure and stroke volume using pulse transit/arrival timings derived from photopletyshmography signals. For predictions, we train Gaussian process regression using a database of virtual subjects generated with a cardiovascular simulator. Simulated results provides theoretical assessment of accuracy for predictions of the health indices. For instance, aortic pulse wave velocity can be estimated with a high accuracy ( r > 0.9) when photopletyshmography is measured from left carotid artery using a combination of foot-to-foot pulse transmit time and peak location derived for the predictions. Similar accuracy can be reached for diastolic blood pressure, but predictions of systolic blood pressure are less accurate ( r > 0.75) and the stroke volume predictions are mostly contributed by heart rate. Recently there has been a strong trend for self-monitoring of your cardiovascular health and new wearable sport trackers and mobile applications are coming to the market everyday. However, such solutions are mostly taking advantage of heart rate measurement. Other health indices such as blood pressure and pulse wave velocity reflecting to the condition of cardiovascular system would also be of great interest, but such solutions for continuous monitoring are barely existing or are at least unreliable. In this paper, we use computational modelling to assess theoretical capabilities of such measurements. We concentrate on predicting health indices using on pulse transmit time type of measurements. Such measurements could be carried out, for example, with photopletyshmography sensor or an optical sensor already found from several wearable sport trackers. We use cardiovascular modelling to create a database of “virtual subjects”, which is applied with machine learning to construct predictors for health indices. Our findings suggest that aortic pulse wave velocity and diastolic blood pressured could be predicted with a high accuracy, but predictions of systolic blood pressure are less accurate.
Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health indices using machine learning approaches. In particular, we carry out theoretical assessment of estimating aortic pulse wave velocity, diastolic and systolic blood pressure and stroke volume using pulse transit/arrival timings derived from photopletyshmography signals. For predictions, we train Gaussian process regression using a database of virtual subjects generated with a cardiovascular simulator. Simulated results provides theoretical assessment of accuracy for predictions of the health indices. For instance, aortic pulse wave velocity can be estimated with a high accuracy (r > 0.9) when photopletyshmography is measured from left carotid artery using a combination of foot-to-foot pulse transmit time and peak location derived for the predictions. Similar accuracy can be reached for diastolic blood pressure, but predictions of systolic blood pressure are less accurate (r > 0.75) and the stroke volume predictions are mostly contributed by heart rate.Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health indices using machine learning approaches. In particular, we carry out theoretical assessment of estimating aortic pulse wave velocity, diastolic and systolic blood pressure and stroke volume using pulse transit/arrival timings derived from photopletyshmography signals. For predictions, we train Gaussian process regression using a database of virtual subjects generated with a cardiovascular simulator. Simulated results provides theoretical assessment of accuracy for predictions of the health indices. For instance, aortic pulse wave velocity can be estimated with a high accuracy (r > 0.9) when photopletyshmography is measured from left carotid artery using a combination of foot-to-foot pulse transmit time and peak location derived for the predictions. Similar accuracy can be reached for diastolic blood pressure, but predictions of systolic blood pressure are less accurate (r > 0.75) and the stroke volume predictions are mostly contributed by heart rate.
Audience Academic
Author Kärkkäinen, Leo
Lindholm, Harri
Huttunen, Janne M. J.
AuthorAffiliation 1 Nokia Bell Laboratories, Espoo, Finland
2 Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
University of Michigan, UNITED STATES
AuthorAffiliation_xml – name: 2 Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
– name: University of Michigan, UNITED STATES
– name: 1 Nokia Bell Laboratories, Espoo, Finland
Author_xml – sequence: 1
  givenname: Janne M. J.
  orcidid: 0000-0002-4549-0272
  surname: Huttunen
  fullname: Huttunen, Janne M. J.
– sequence: 2
  givenname: Leo
  surname: Kärkkäinen
  fullname: Kärkkäinen, Leo
– sequence: 3
  givenname: Harri
  surname: Lindholm
  fullname: Lindholm, Harri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31415554$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1vEzEQhleoiLaBf4DAEhc4JNjr9X5wQKoqPiJVgPg4W7P2bOrIsVN7N9Aj_xxvklZNhZCQD7bGz8x4Xr-n2ZHzDrPsKaMzxiv2eumH4MDO1qo1M0ZplYvmQXbChODTiov66M75ODuNcUlpOjblo-yYsyLdieIk-_1lsBFJH8BF05PerJBgTBv0xjviOwI-9EaR9Zb7CRskG7Remf6agNOktd5rsg4Y4xCQDNG4BVmBujQOiUUIbgyMZDSrwUKPeuxmtmENPTzOHnaQaj_Z75Psx_t3388_Ti8-f5ifn11MVcl5P9Va6K6sqzrHthCsVKi1rhRXwIEJxKrRbcVYRzVHXhea1nWni7oG6FqqEjjJnu_qrq2Pcq9elHnesCJpRItEzHeE9rCU65BECNfSg5HbgA8LCaMWFiXUFZRUtG2reNEIBqJoeMuaWihKqRq7vd13G9oVaoUuDW0Pih7eOHMpF34jyzTEWGySvdwXCP5qSF8iVyYqtBYc-mF8dyXyBFbju1_cQ_8-3WxHLSANYFznU1-VlsaVUclbnUnxs5LSIi8LylLCq4OExPT4q1_AEKOcf_v6H-ynQ_bZXWluNbkxZQKKHaCCjzFgd4swKkfv38wnR-_LvfdT2pt7acmkWxuPfrP_Tv4DkIIOoQ
CitedBy_id crossref_primary_10_1038_s41598_020_72147_8
crossref_primary_10_1038_s41598_021_87903_7
crossref_primary_10_1063_5_0189980
crossref_primary_10_1093_ajh_hpab160
crossref_primary_10_2215_CJN_03680320
crossref_primary_10_1002_hbm_25392
crossref_primary_10_1088_1361_6439_ac87ba
crossref_primary_10_1016_j_bspc_2022_103513
crossref_primary_10_1109_JSEN_2021_3134890
crossref_primary_10_3934_mbe_2021200
crossref_primary_10_1016_j_tust_2022_104759
crossref_primary_10_1152_ajpheart_00314_2023
crossref_primary_10_1016_j_psj_2020_07_044
crossref_primary_10_37015_AUDT_2024_240064
crossref_primary_10_1002_adma_202110291
crossref_primary_10_20960_angiologia_00177
crossref_primary_10_3390_s20247087
crossref_primary_10_1016_j_tafmec_2023_103876
crossref_primary_10_1038_s41598_024_84417_w
crossref_primary_10_1093_ehjdh_ztab089
crossref_primary_10_1161_JAHA_122_027896
crossref_primary_10_1016_j_artmed_2023_102683
crossref_primary_10_1002_cnm_3303
crossref_primary_10_1007_s10462_022_10353_8
crossref_primary_10_1146_annurev_physiol_042022_031925
crossref_primary_10_1016_j_jclinane_2024_111646
crossref_primary_10_1016_j_socl_2021_100029
crossref_primary_10_3390_s22228607
crossref_primary_10_3389_fbioe_2021_649866
crossref_primary_10_1109_JSEN_2019_2959269
crossref_primary_10_1109_JSEN_2020_2997465
crossref_primary_10_1007_s44174_022_00057_6
crossref_primary_10_3390_mi15040507
crossref_primary_10_3788_AOS231738
Cites_doi 10.1109/TBME.2015.2441951
10.1016/j.jbiomech.2016.11.001
10.1088/1361-6579/aae8a0
10.3390/s18061894
10.1152/ajpheart.00175.2015
10.1002/cnm.1466
10.1214/aos/1176347963
10.1136/hrt.51.1.54
10.1152/japplphysiol.00657.2005
10.1097/HJH.0000000000001886
10.1080/01621459.1987.10478410
10.1007/s11517-014-1192-4
10.1007/s10439-015-1313-8
10.1152/ajpheart.1999.276.1.H257
10.1038/s41598-017-06339-0
10.1093/ajh/hpw075
10.1114/1.1326031
10.14814/phy2.12768
10.1016/j.jbiomech.2011.05.041
10.1088/1361-6579/aada72
10.1371/journal.pone.0204105
10.1111/1467-9868.00294
10.1097/HJH.0b013e328360275d
10.1146/annurev-fluid-122109-160730
10.1109/EMBC.2014.6944640
10.1016/j.jbiomech.2007.05.027
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Huttunen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Huttunen et al 2019 Huttunen et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Huttunen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Huttunen et al 2019 Huttunen et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1007259
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Canada in Context
In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Technology Collection
Natural Science Collection (ProQuest)
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological science database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



Publicly Available Content Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
DocumentTitleAlternate Pulse transit time estimation of cardiac indices using simulated training data
EISSN 1553-7358
ExternalDocumentID 2291473504
oai_doaj_org_article_a87a605bbbc34951a5493b1985c000cc
PMC6711549
A600426401
31415554
10_1371_journal_pcbi_1007259
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Finland
GeographicLocations_xml – name: Finland
GrantInformation_xml – fundername: ;
  grantid: 1939/31/2015
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
PMFND
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
7X8
5PM
PUEGO
-
AAPBV
ABPTK
ADACO
BBAFP
PRINS
ID FETCH-LOGICAL-c633t-dd5df68782eb4516ceddd7c3ca3a15ee79db711f0d3e384d088fd488aafb0c7c3
IEDL.DBID 7X7
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:12:20 EST 2021
Wed Aug 27 01:26:24 EDT 2025
Thu Aug 21 18:41:24 EDT 2025
Fri Jul 11 11:32:19 EDT 2025
Fri Jul 25 12:11:18 EDT 2025
Tue Jun 10 20:15:49 EDT 2025
Fri Jun 27 04:25:22 EDT 2025
Fri Jun 27 05:01:51 EDT 2025
Wed Feb 19 02:30:22 EST 2025
Tue Jul 01 02:23:17 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-dd5df68782eb4516ceddd7c3ca3a15ee79db711f0d3e384d088fd488aafb0c7c3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors are employed by Nokia Bell Labs. No related patent applications have been submitted by authors. Nokia can have commercial interest in possible applications of the methods in future.
ORCID 0000-0002-4549-0272
OpenAccessLink https://www.proquest.com/docview/2291473504?pq-origsite=%requestingapplication%
PMID 31415554
PQID 2291473504
PQPubID 1436340
ParticipantIDs plos_journals_2291473504
doaj_primary_oai_doaj_org_article_a87a605bbbc34951a5493b1985c000cc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6711549
proquest_miscellaneous_2275254974
proquest_journals_2291473504
gale_infotracacademiconefile_A600426401
gale_incontextgauss_ISR_A600426401
gale_incontextgauss_ISN_A600426401
pubmed_primary_31415554
crossref_primary_10_1371_journal_pcbi_1007259
crossref_citationtrail_10_1371_journal_pcbi_1007259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-15
PublicationDateYYYYMMDD 2019-08-15
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Alastruey (pcbi.1007259.ref016) 2011; 44
MC Kennedy (pcbi.1007259.ref027) 2001; 63
KS Matthys (pcbi.1007259.ref017) 2007; 40
CE Rasmussen (pcbi.1007259.ref025) 2006
MS Olufsen (pcbi.1007259.ref023) 1999; 276
B Casas (pcbi.1007259.ref030) 2017; 7
S Scarsoglio (pcbi.1007259.ref024) 2014; 52
JH Friedman (pcbi.1007259.ref028) 1991; 19
M Willemet (pcbi.1007259.ref012) 2015; 309
J Sugawara (pcbi.1007259.ref021) 2016; 29
M Negoita (pcbi.1007259.ref003) 2018; 39
FN van de Vosse (pcbi.1007259.ref015) 2011; 43
J Balmer (pcbi.1007259.ref007) 2018; 39
AN Lyle (pcbi.1007259.ref001) 2017; 37
R Mukkamala (pcbi.1007259.ref009) 2015; 62
JP Mynard (pcbi.1007259.ref020) 2012; 28
F Rader (pcbi.1007259.ref011) 2017; 2
pcbi.1007259.ref014
M Gao (pcbi.1007259.ref006) 2016; 4
MS Olufsen (pcbi.1007259.ref018) 2000; 28
Y Rubin (pcbi.1007259.ref026) 2003
JL Moraes (pcbi.1007259.ref005) 2018; 18
H Ihlen (pcbi.1007259.ref004) 1984; 51
MC Kortekaas (pcbi.1007259.ref008) 2018; 13
pcbi.1007259.ref031
B Efron (pcbi.1007259.ref029) 1987; 82
Y Lia (pcbi.1007259.ref002) 2019; 37
RA Payne (pcbi.1007259.ref010) 2006; 100
J Bossuyta (pcbi.1007259.ref022) 2013; 31
JP Mynard (pcbi.1007259.ref019) 2015; 43
M Willemet (pcbi.1007259.ref013) 2016; 49
References_xml – volume: 62
  start-page: 1879
  issue: 8
  year: 2015
  ident: pcbi.1007259.ref009
  article-title: Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2441951
– volume: 49
  start-page: 3908
  year: 2016
  ident: pcbi.1007259.ref013
  article-title: Computational assessment of hemodynamics-based diagnostic tools using a database of virtual subjects: Application to three case studies
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2016.11.001
– volume: 39
  start-page: 114009
  year: 2018
  ident: pcbi.1007259.ref003
  article-title: A method for determining local pulse wave velocity in human ascending aorta from sequential ultrasound measurements of diameter and velocity
  publication-title: Physiological Measurement
  doi: 10.1088/1361-6579/aae8a0
– volume: 2
  start-page: 643
  issue: 6
  year: 2017
  ident: pcbi.1007259.ref011
  article-title: The Slow Evolution of Blood Pressure Monitoring
  publication-title: JACC: Basic to Translational Science
– volume: 18
  start-page: 1894
  issue: 6
  year: 2018
  ident: pcbi.1007259.ref005
  article-title: Advances in Photopletysmography Signal Analysis for Biomedical Applications
  publication-title: Sensors
  doi: 10.3390/s18061894
– volume: 309
  start-page: H663
  year: 2015
  ident: pcbi.1007259.ref012
  article-title: A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00175.2015
– volume: 28
  start-page: 626
  year: 2012
  ident: pcbi.1007259.ref020
  article-title: A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models
  publication-title: Int J Numer Meth Biomed Engng
  doi: 10.1002/cnm.1466
– ident: pcbi.1007259.ref014
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  ident: pcbi.1007259.ref028
  article-title: Multivariate adaptive regression splines
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176347963
– volume: 51
  start-page: 54
  year: 1984
  ident: pcbi.1007259.ref004
  article-title: Determination of cardiac output by Dopler echocardiography
  publication-title: British Heart Journal
  doi: 10.1136/hrt.51.1.54
– volume: 100
  start-page: 136
  year: 2006
  ident: pcbi.1007259.ref010
  article-title: Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00657.2005
– volume: 37
  start-page: 347
  year: 2019
  ident: pcbi.1007259.ref002
  article-title: Stiffening and ventricular—arterial interaction in the ascending aorta using MRI: ageing effects in healthy humans
  publication-title: Journal of Hypertension
  doi: 10.1097/HJH.0000000000001886
– volume: 82
  start-page: 171
  issue: 397
  year: 1987
  ident: pcbi.1007259.ref029
  article-title: Better Bootstrap Confidence Intervals
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1987.10478410
– volume: 52
  start-page: 905
  issue: 11
  year: 2014
  ident: pcbi.1007259.ref024
  article-title: Impact of atrial fibrillation on the cardiovascular system through a lumped-parameter approach
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-014-1192-4
– volume: 43
  start-page: 1443
  issue: 6
  year: 2015
  ident: pcbi.1007259.ref019
  article-title: One-Dimensional Haemodynamic Modeling and Wave Dynamics in the Entire Adult Circulation
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-015-1313-8
– volume: 276
  start-page: H257
  year: 1999
  ident: pcbi.1007259.ref023
  article-title: Structured tree outflow condition for blood flow in larger systemic arteries
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.1999.276.1.H257
– volume: 37
  start-page: e1
  issue: 2
  year: 2017
  ident: pcbi.1007259.ref001
  article-title: Killing me unsoftly: causes and mechanisms of arterial stiffness
  publication-title: Arter Thromb Vasc Biol
– volume: 7
  start-page: 6214
  year: 2017
  ident: pcbi.1007259.ref030
  article-title: Bridging the gap between measurements and modelling: a cardiovascular functional avatar
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-06339-0
– volume: 29
  start-page: 1237
  issue: 11
  year: 2016
  ident: pcbi.1007259.ref021
  article-title: Arterial Path Length for Arterial Stiffness: Methodological Consideration
  publication-title: Am J Hypertens
  doi: 10.1093/ajh/hpw075
– volume: 28
  start-page: 1281
  year: 2000
  ident: pcbi.1007259.ref018
  article-title: Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.1326031
– year: 2003
  ident: pcbi.1007259.ref026
– volume: 4
  start-page: e12768
  issue: 10
  year: 2016
  ident: pcbi.1007259.ref006
  article-title: Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference
  publication-title: Physiol Rep
  doi: 10.14814/phy2.12768
– volume: 44
  start-page: 2250
  year: 2011
  ident: pcbi.1007259.ref016
  article-title: Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.05.041
– volume-title: Adaptive Computation and Machine Learning
  year: 2006
  ident: pcbi.1007259.ref025
– volume: 39
  start-page: 095005
  issue: 9
  year: 2018
  ident: pcbi.1007259.ref007
  article-title: Pre-ejection period, the reason why the electrocardiogram Q-wave is an unreliable indicator of pulse wave initialization
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aada72
– volume: 13
  start-page: e0204105
  issue: 10
  year: 2018
  ident: pcbi.1007259.ref008
  article-title: Small intra-individual variability of the pre-ejection period justifies the use of pulse transit time as approximation of the vascular transit
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204105
– volume: 63
  start-page: 425
  issue: 3
  year: 2001
  ident: pcbi.1007259.ref027
  article-title: Bayesian calibration of computer models
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00294
– volume: 31
  start-page: 946
  year: 2013
  ident: pcbi.1007259.ref022
  article-title: Noninvasive assessment of carotid-femoral pulse wave velocity: the influence of body side and body contours
  publication-title: J Hypertens
  doi: 10.1097/HJH.0b013e328360275d
– volume: 43
  start-page: 467
  year: 2011
  ident: pcbi.1007259.ref015
  article-title: Pulse Wave Propagation in the Arterial Tree
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122109-160730
– ident: pcbi.1007259.ref031
  doi: 10.1109/EMBC.2014.6944640
– volume: 40
  start-page: 3476
  issue: 15
  year: 2007
  ident: pcbi.1007259.ref017
  article-title: Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.05.027
SSID ssj0035896
Score 2.439285
Snippet Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1007259
SubjectTerms Accuracy
Aorta
Aorta - physiology
Aortic valve
Artificial intelligence
Biology and Life Sciences
Blood flow
Blood Flow Velocity - physiology
Blood pressure
Blood Pressure - physiology
Blood pressure measurement
Carotid artery
Computational Biology
Computer applications
Computer Simulation
Coronary vessels
Data collection
Databases, Factual
Feet
Gaussian process
Heart
Heart rate
Humans
Laboratories
Learning algorithms
Machine Learning
Medical examination
Medicine and Health Sciences
Methods
Models, Cardiovascular
Normal Distribution
Patient simulation
Photoplethysmography - statistics & numerical data
Propagation
Pulse diagnosis
Pulse Wave Analysis - statistics & numerical data
Signal processing
Statistics
Stroke
Stroke volume
Stroke Volume - physiology
Technology application
Transit time
Ultrasonic imaging
User-Computer Interface
Vascular Stiffness
Veins & arteries
Velocity
Wave velocity
Wearable Electronic Devices - statistics & numerical data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF7kQPBF_N2rVVYRfIrN3mazl8cqlipYRC3cW9if50GbHE2i9LH_uTObTbhIpS--3n4Lt7OT2Zlk9vsIeZNqpnyuTLLwViaZtkWiCqETgfWFXiibBjGYL6f5yVn2eSVWO1Jf2BPW0wP3hjtUS6kg5dZaGw7JPFNQ0HANpbIw8DQbg9EXzryhmOpjMBfLoMyFojiJ5NkqXprjkh3GPXq3NXoTegQWyFO6cygF7v4xQs-253VzU_r5dxflzrF0_IDcj_kkPerX8ZDccdUjcrdXmLx6TK6_dnD20RZPpE1LUUmeIq9Gf2GR1p6qGqfSbcD9Vr8cxS4iA8k5VZWlobGdhm7Z7tJRbJNf04vQgelolJxYB2SzuUApMGfpIDtBsf30CTk7_vjjw0kSVRcSk3PeJtYK6_MlZA5Oo4qvcdZaabhRXDHhnCysloz51HLHl5mFMOUthAGlvE4NAJ-SWVVXbo9QmYKfZgb2SzjMBBRMyvLcC8eUVKmfEz6YvTSRkhz_4nkZvrNJKE16K5a4WWXcrDlJxlnbnpLjFvx73NERi4Ta4QdwszK6WXmbm83Ja_SHEikzKuzJWauuacpP30_LozwUolCo_hP0bQJ6G0G-hsUaFe9BgMmQimuC3EPnGxbVlItFwVAqOs3m5GBwyJuHX43DEC7wG5CqXN0hRgp8JyAB86z339EwnGF2KWBETjx7YrnpSLX5GSjJc4m0TsX-_zD1c3IPstICX9wzcUBm7WXnXkDm1-qX4SH_AwsMWTk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbKIiQuiHcXCjIIiVOqeB3HyQGhgqgKUisErLS3yK8sK22TZZO09Mg_Z8Z5iKAtXOPPUTIee2bs8XyEvAo1U3msTDDLrQwibdNApUIHAuMLPVM29GQwp2fxyTz6tBCLPdJztnYCrHaGdsgnNd-uD3_-uHoLE_6NZ22QrO90uDF65U_9waW_QW6CbZI4VU-j4VyBi8QzdiFZTiB5tOgu0133lpGx8jX9h5V7slmX1S639O_syj_M1fFdcqfzM-lRqxj3yJ4r7pNbLfPk1QPy63MDNpHWaKlWNUWGeYr1NtqLjLTMqSqxK9143KW6cBSziww47VQVlvqEd-qzaJuto5g-v6TnPjPT0Y6KYumR1eocKcKcpT0dBcW01Idkfvzh2_uToGNjCEzMeR1YK2weJ-BROI3svsZZa6XhRnHFhHMytVoyloeWO55EFpav3MLyoFSuQwPAR2RSlIXbJ1SGoL-RSbkWDj0EBZ2iOM6FY0qqMJ8S3os9M12pcvzEdebP3ySELK0UMxysrBusKQmGXpu2VMd_8O9wRAcsFtr2D8rtMuvmbaYSqSDi01obDrEkUxBPc83SRBgwJsZMyUvUhwxLaRSYq7NUTVVlH7-eZUexD1AhgL0W9GUEet2B8hJ-1qjufgSIDEt0jZD7qHz9T1XZbJYypJAOoyk56BVyd_OLoRmWETwbUoUrG8RIgXsFEjCPW_0dBMMZep0CWuRIs0eSG7cUq---VHkssdxT-uTfn_WU3AY_NMWteiYOyKTeNu4Z-Hq1fu6n72_WXVbY
  priority: 102
  providerName: Scholars Portal
Title Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data
URI https://www.ncbi.nlm.nih.gov/pubmed/31415554
https://www.proquest.com/docview/2291473504
https://www.proquest.com/docview/2275254974
https://pubmed.ncbi.nlm.nih.gov/PMC6711549
https://doaj.org/article/a87a605bbbc34951a5493b1985c000cc
http://dx.doi.org/10.1371/journal.pcbi.1007259
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegExIviO8VRmUQEk9hcR3HyRNqYWUgrZoGk_oW-Sul0paUpgXxyH_OneOGFQ14SaX6LCX2-Xx3_vl-hLyMNVNlqkw0LK2MEm3zSOVCRwLjCz1UNvZkMCfT9Pg8-TgTs5BwawKscmsTvaG2tcEc-eFwmDOkyY2TN8uvEbJG4elqoNC4SfawdBlCuuSsC7i4yDw_F1LjRJIns3B1jkt2GGbq9dLohUcKDLFa6ZWtyVfw7-x0b3lRN9c5oX9iKa9sTpO75E7wKumoVYN75Iar7pNbLc_kjwfk5-kGdkC6xn1psabIJ0-xukZ7bZHWJVU1dqVLL_ddfXMUsUQGXHSqKks9vJ16zOxm5SiC5ef00uMwHQ3EE3Mv2SwukRDMWboln6AIQn1IzidHn98eR4F7ITIp5-vIWmHLNAP_wWnk8jXOWisNN4orJpyTudWSsTK23PEssWCsSgvGQKlSxwYEH5FeVVdun1AZg7YmJudaOPQHFHRK0rQUjimp4rJP-HbYCxMKk-MrXhT-tE1CgNKOYoGTVYTJ6pOo67VsC3P8R36MM9rJYllt_0e9mhdhlRYqkwriO6214RA5MgXRM9csz4SBrcOYPnmB-lBg4YwKkTlztWma4sOnaTFKfTgK4epfhc52hF4FobKGjzUq3IaAIcOCXDuS-6h8249qit8roU8Otgp5ffPzrhmMBp4EqcrVG5SRAjMDEmQet_rbDQxn6GMKaJE7mr0zcrst1eKLL0yeSizulD_592s9JbfB68wxMc_EAemtVxv3DDy7tR745QvPbPJ-QPZG43fjCfyOj6anZwOfLYHnSZL9AgK6Vtk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAQXxLuBAgsCcTL1er3e-IBQeVQpbSMErZSb2ZdDpNYOcULVI3-I38jM-kGDCpx6zX4b2Tuz8_DOzkfIs1AzlSfKBFFuZRBrmwYqFToQmF_oSNnQk8Hsj5LhYfxhLMZr5Gd7FwbLKlub6A21LQ1-I9-MopQhTW4Yv559C5A1Ck9XWwqNWi123ekJpGzVq513IN_nUbT9_uDtMGhYBQKTcL4IrBU2TwbgGZ1GllrjrLXScKO4YsI5mVotGctDyx0fxBa2YW5BzZXKdWgACP97iVwGxxvijpLjLsHjYuD5wJCKJ5A8HjdX9bhkm41mvJwZPfWVCRF2Rz3jCj1jQOcXerOjsjov6P2zdvOMM9y-Qa43USzdqtXuJllzxS1ypea1PL1NfnxcgselC_SD0wVF_nqK3Tzqa5K0zKkqcSqdedyJ-u4o1i4ZSAmoKiz15fTU1-gu545icf6EHvu6T0cboouJR1bTYyQgc5a2ZBcUi17vkMMLkcpd0ivKwq0TKkPYHbFJuRYO4w8Fk-IkyYVjSqow7xPeLntmmkbo-IhHmT_dk5AQ1auYobCyRlh9EnSzZnUjkP_g36BEOyy28fY_lPNJ1liFTA2kgnxSa204ZKpMQbbONUsHwoCrMqZPnqI-ZNioo8BKoIlaVlW283mUbSU-_YX0-K-gTyugFw0oL-FljWpuX8CSYQOwFeQ6Kl_7UlX2e-f1yUarkOcPP-mGwUjhyZMqXLlEjBT4JUIC5l6tv93CcIYxrYARuaLZKyu3OlJMv_pG6InEZlLp_X8_1mNydXiwv5ft7Yx2H5BrEPGmeCjAxAbpLeZL9xCiyoV-5LcyJV8u2nb8Am_0kGs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIhAXxLsLBQwCcUo3juN4c0CoUFZdCqsKqLS34FeWldpk2QdVj_wtfh0zzoMuKnDqNf4cOfZ4HvF4PkKehZqpPFEmiHIrg1jbNFCp0IHA-EJHyoaeDObDKNk7jN-NxXiD_GzuwmBaZaMTvaK2pcF_5L0oShnS5IZxL6_TIg52B69m3wJkkMKT1oZOoxKRfXd6AuHb4uVwF9b6eRQN3n5-sxfUDAOBSThfBtYKmyd9sJJOI2OtcdZaabhRXDHhnEytlozloeWO92MLWzK3IPJK5To0AIT3XiKXYVgM95gct8EeF33PDYa0PIHk8bi-tscl69VSsj0zeuqzFCKslHrGLHr2gNZGdGZH5eI8B_jPPM4zhnFwg1yvPVq6U4ngTbLhilvkSsVxeXqb_DhYgfWlS7SJ0yVFLnuKlT2qK5O0zKkqsSudedyJ-u4o5jEZCA-oKiz1qfXU5-uu5o5iov6EHvscUEdr0ouJRy6mx0hG5ixtiC8oJsDeIYcXsip3SacoC7dJqAxhp8Qm5Vo49EUUdIqTJBeOKanCvEt4M-2ZqYui4xCPMn_SJyE4qmYxw8XK6sXqkqDtNauKgvwH_xpXtMViSW__oJxPslpDZKovFcSWWmvDIWplCiJ3rlnaFwbMljFd8hTlIcOiHQWK_0StFots-GmU7SQ-FIZQ-a-gj2ugFzUoL-FjjapvYsCUYTGwNeQmCl_zUYvs9y7skq1GIM9vftI2g8LCUyhVuHKFGCnwr4QEzL1KftuJ4Qz9WwEtck2y12ZuvaWYfvVF0ROJhaXS-_8e1mNyFbRG9n442n9AroHzm-L5ABNbpLOcr9xDcDCX-pHfyZR8uWjV8QvtWJSh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulse+transit+time+estimation+of+aortic+pulse+wave+velocity+and+blood+pressure+using+machine+learning+and+simulated+training+data&rft.jtitle=PLoS+computational+biology&rft.au=Huttunen%2C+Janne+M+J&rft.au=Lindholm%2C+Harri&rft.date=2019-08-15&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=15&rft.issue=8&rft.spage=e1007259&rft_id=info:doi/10.1371%2Fjournal.pcbi.1007259&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon