Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data
Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health...
Saved in:
Published in | PLoS computational biology Vol. 15; no. 8; p. e1007259 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
15.08.2019
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7358 1553-734X 1553-7358 |
DOI | 10.1371/journal.pcbi.1007259 |
Cover
Loading…
Abstract | Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health indices using machine learning approaches. In particular, we carry out theoretical assessment of estimating aortic pulse wave velocity, diastolic and systolic blood pressure and stroke volume using pulse transit/arrival timings derived from photopletyshmography signals. For predictions, we train Gaussian process regression using a database of virtual subjects generated with a cardiovascular simulator. Simulated results provides theoretical assessment of accuracy for predictions of the health indices. For instance, aortic pulse wave velocity can be estimated with a high accuracy (r > 0.9) when photopletyshmography is measured from left carotid artery using a combination of foot-to-foot pulse transmit time and peak location derived for the predictions. Similar accuracy can be reached for diastolic blood pressure, but predictions of systolic blood pressure are less accurate (r > 0.75) and the stroke volume predictions are mostly contributed by heart rate. |
---|---|
AbstractList | Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health indices using machine learning approaches. In particular, we carry out theoretical assessment of estimating aortic pulse wave velocity, diastolic and systolic blood pressure and stroke volume using pulse transit/arrival timings derived from photopletyshmography signals. For predictions, we train Gaussian process regression using a database of virtual subjects generated with a cardiovascular simulator. Simulated results provides theoretical assessment of accuracy for predictions of the health indices. For instance, aortic pulse wave velocity can be estimated with a high accuracy (r > 0.9) when photopletyshmography is measured from left carotid artery using a combination of foot-to-foot pulse transmit time and peak location derived for the predictions. Similar accuracy can be reached for diastolic blood pressure, but predictions of systolic blood pressure are less accurate (r > 0.75) and the stroke volume predictions are mostly contributed by heart rate. Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health indices using machine learning approaches. In particular, we carry out theoretical assessment of estimating aortic pulse wave velocity, diastolic and systolic blood pressure and stroke volume using pulse transit/arrival timings derived from photopletyshmography signals. For predictions, we train Gaussian process regression using a database of virtual subjects generated with a cardiovascular simulator. Simulated results provides theoretical assessment of accuracy for predictions of the health indices. For instance, aortic pulse wave velocity can be estimated with a high accuracy ( r > 0.9) when photopletyshmography is measured from left carotid artery using a combination of foot-to-foot pulse transmit time and peak location derived for the predictions. Similar accuracy can be reached for diastolic blood pressure, but predictions of systolic blood pressure are less accurate ( r > 0.75) and the stroke volume predictions are mostly contributed by heart rate. Recently there has been a strong trend for self-monitoring of your cardiovascular health and new wearable sport trackers and mobile applications are coming to the market everyday. However, such solutions are mostly taking advantage of heart rate measurement. Other health indices such as blood pressure and pulse wave velocity reflecting to the condition of cardiovascular system would also be of great interest, but such solutions for continuous monitoring are barely existing or are at least unreliable. In this paper, we use computational modelling to assess theoretical capabilities of such measurements. We concentrate on predicting health indices using on pulse transmit time type of measurements. Such measurements could be carried out, for example, with photopletyshmography sensor or an optical sensor already found from several wearable sport trackers. We use cardiovascular modelling to create a database of “virtual subjects”, which is applied with machine learning to construct predictors for health indices. Our findings suggest that aortic pulse wave velocity and diastolic blood pressured could be predicted with a high accuracy, but predictions of systolic blood pressure are less accurate. Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health indices using machine learning approaches. In particular, we carry out theoretical assessment of estimating aortic pulse wave velocity, diastolic and systolic blood pressure and stroke volume using pulse transit/arrival timings derived from photopletyshmography signals. For predictions, we train Gaussian process regression using a database of virtual subjects generated with a cardiovascular simulator. Simulated results provides theoretical assessment of accuracy for predictions of the health indices. For instance, aortic pulse wave velocity can be estimated with a high accuracy (r > 0.9) when photopletyshmography is measured from left carotid artery using a combination of foot-to-foot pulse transmit time and peak location derived for the predictions. Similar accuracy can be reached for diastolic blood pressure, but predictions of systolic blood pressure are less accurate (r > 0.75) and the stroke volume predictions are mostly contributed by heart rate.Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of virtual subjects, with sizes limited only by computational resources. In this work, we study if it is possible to estimate cardiovascular health indices using machine learning approaches. In particular, we carry out theoretical assessment of estimating aortic pulse wave velocity, diastolic and systolic blood pressure and stroke volume using pulse transit/arrival timings derived from photopletyshmography signals. For predictions, we train Gaussian process regression using a database of virtual subjects generated with a cardiovascular simulator. Simulated results provides theoretical assessment of accuracy for predictions of the health indices. For instance, aortic pulse wave velocity can be estimated with a high accuracy (r > 0.9) when photopletyshmography is measured from left carotid artery using a combination of foot-to-foot pulse transmit time and peak location derived for the predictions. Similar accuracy can be reached for diastolic blood pressure, but predictions of systolic blood pressure are less accurate (r > 0.75) and the stroke volume predictions are mostly contributed by heart rate. |
Audience | Academic |
Author | Kärkkäinen, Leo Lindholm, Harri Huttunen, Janne M. J. |
AuthorAffiliation | 1 Nokia Bell Laboratories, Espoo, Finland 2 Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland University of Michigan, UNITED STATES |
AuthorAffiliation_xml | – name: 2 Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland – name: University of Michigan, UNITED STATES – name: 1 Nokia Bell Laboratories, Espoo, Finland |
Author_xml | – sequence: 1 givenname: Janne M. J. orcidid: 0000-0002-4549-0272 surname: Huttunen fullname: Huttunen, Janne M. J. – sequence: 2 givenname: Leo surname: Kärkkäinen fullname: Kärkkäinen, Leo – sequence: 3 givenname: Harri surname: Lindholm fullname: Lindholm, Harri |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31415554$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkk1vEzEQhleoiLaBf4DAEhc4JNjr9X5wQKoqPiJVgPg4W7P2bOrIsVN7N9Aj_xxvklZNhZCQD7bGz8x4Xr-n2ZHzDrPsKaMzxiv2eumH4MDO1qo1M0ZplYvmQXbChODTiov66M75ODuNcUlpOjblo-yYsyLdieIk-_1lsBFJH8BF05PerJBgTBv0xjviOwI-9EaR9Zb7CRskG7Remf6agNOktd5rsg4Y4xCQDNG4BVmBujQOiUUIbgyMZDSrwUKPeuxmtmENPTzOHnaQaj_Z75Psx_t3388_Ti8-f5ifn11MVcl5P9Va6K6sqzrHthCsVKi1rhRXwIEJxKrRbcVYRzVHXhea1nWni7oG6FqqEjjJnu_qrq2Pcq9elHnesCJpRItEzHeE9rCU65BECNfSg5HbgA8LCaMWFiXUFZRUtG2reNEIBqJoeMuaWihKqRq7vd13G9oVaoUuDW0Pih7eOHMpF34jyzTEWGySvdwXCP5qSF8iVyYqtBYc-mF8dyXyBFbju1_cQ_8-3WxHLSANYFznU1-VlsaVUclbnUnxs5LSIi8LylLCq4OExPT4q1_AEKOcf_v6H-ynQ_bZXWluNbkxZQKKHaCCjzFgd4swKkfv38wnR-_LvfdT2pt7acmkWxuPfrP_Tv4DkIIOoQ |
CitedBy_id | crossref_primary_10_1038_s41598_020_72147_8 crossref_primary_10_1038_s41598_021_87903_7 crossref_primary_10_1063_5_0189980 crossref_primary_10_1093_ajh_hpab160 crossref_primary_10_2215_CJN_03680320 crossref_primary_10_1002_hbm_25392 crossref_primary_10_1088_1361_6439_ac87ba crossref_primary_10_1016_j_bspc_2022_103513 crossref_primary_10_1109_JSEN_2021_3134890 crossref_primary_10_3934_mbe_2021200 crossref_primary_10_1016_j_tust_2022_104759 crossref_primary_10_1152_ajpheart_00314_2023 crossref_primary_10_1016_j_psj_2020_07_044 crossref_primary_10_37015_AUDT_2024_240064 crossref_primary_10_1002_adma_202110291 crossref_primary_10_20960_angiologia_00177 crossref_primary_10_3390_s20247087 crossref_primary_10_1016_j_tafmec_2023_103876 crossref_primary_10_1038_s41598_024_84417_w crossref_primary_10_1093_ehjdh_ztab089 crossref_primary_10_1161_JAHA_122_027896 crossref_primary_10_1016_j_artmed_2023_102683 crossref_primary_10_1002_cnm_3303 crossref_primary_10_1007_s10462_022_10353_8 crossref_primary_10_1146_annurev_physiol_042022_031925 crossref_primary_10_1016_j_jclinane_2024_111646 crossref_primary_10_1016_j_socl_2021_100029 crossref_primary_10_3390_s22228607 crossref_primary_10_3389_fbioe_2021_649866 crossref_primary_10_1109_JSEN_2019_2959269 crossref_primary_10_1109_JSEN_2020_2997465 crossref_primary_10_1007_s44174_022_00057_6 crossref_primary_10_3390_mi15040507 crossref_primary_10_3788_AOS231738 |
Cites_doi | 10.1109/TBME.2015.2441951 10.1016/j.jbiomech.2016.11.001 10.1088/1361-6579/aae8a0 10.3390/s18061894 10.1152/ajpheart.00175.2015 10.1002/cnm.1466 10.1214/aos/1176347963 10.1136/hrt.51.1.54 10.1152/japplphysiol.00657.2005 10.1097/HJH.0000000000001886 10.1080/01621459.1987.10478410 10.1007/s11517-014-1192-4 10.1007/s10439-015-1313-8 10.1152/ajpheart.1999.276.1.H257 10.1038/s41598-017-06339-0 10.1093/ajh/hpw075 10.1114/1.1326031 10.14814/phy2.12768 10.1016/j.jbiomech.2011.05.041 10.1088/1361-6579/aada72 10.1371/journal.pone.0204105 10.1111/1467-9868.00294 10.1097/HJH.0b013e328360275d 10.1146/annurev-fluid-122109-160730 10.1109/EMBC.2014.6944640 10.1016/j.jbiomech.2007.05.027 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Public Library of Science 2019 Huttunen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Huttunen et al 2019 Huttunen et al |
Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Huttunen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Huttunen et al 2019 Huttunen et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1007259 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Canada in Context In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Technology Collection Natural Science Collection (ProQuest) ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological science database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Statistics |
DocumentTitleAlternate | Pulse transit time estimation of cardiac indices using simulated training data |
EISSN | 1553-7358 |
ExternalDocumentID | 2291473504 oai_doaj_org_article_a87a605bbbc34951a5493b1985c000cc PMC6711549 A600426401 31415554 10_1371_journal_pcbi_1007259 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Finland |
GeographicLocations_xml | – name: Finland |
GrantInformation_xml | – fundername: ; grantid: 1939/31/2015 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ M0N M~E NPM PGMZT RIG WOQ PMFND 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 7X8 5PM PUEGO - AAPBV ABPTK ADACO BBAFP PRINS |
ID | FETCH-LOGICAL-c633t-dd5df68782eb4516ceddd7c3ca3a15ee79db711f0d3e384d088fd488aafb0c7c3 |
IEDL.DBID | 7X7 |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:12:20 EST 2021 Wed Aug 27 01:26:24 EDT 2025 Thu Aug 21 18:41:24 EDT 2025 Fri Jul 11 11:32:19 EDT 2025 Fri Jul 25 12:11:18 EDT 2025 Tue Jun 10 20:15:49 EDT 2025 Fri Jun 27 04:25:22 EDT 2025 Fri Jun 27 05:01:51 EDT 2025 Wed Feb 19 02:30:22 EST 2025 Tue Jul 01 02:23:17 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-dd5df68782eb4516ceddd7c3ca3a15ee79db711f0d3e384d088fd488aafb0c7c3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Authors are employed by Nokia Bell Labs. No related patent applications have been submitted by authors. Nokia can have commercial interest in possible applications of the methods in future. |
ORCID | 0000-0002-4549-0272 |
OpenAccessLink | https://www.proquest.com/docview/2291473504?pq-origsite=%requestingapplication% |
PMID | 31415554 |
PQID | 2291473504 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_2291473504 doaj_primary_oai_doaj_org_article_a87a605bbbc34951a5493b1985c000cc pubmedcentral_primary_oai_pubmedcentral_nih_gov_6711549 proquest_miscellaneous_2275254974 proquest_journals_2291473504 gale_infotracacademiconefile_A600426401 gale_incontextgauss_ISR_A600426401 gale_incontextgauss_ISN_A600426401 pubmed_primary_31415554 crossref_primary_10_1371_journal_pcbi_1007259 crossref_citationtrail_10_1371_journal_pcbi_1007259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-15 |
PublicationDateYYYYMMDD | 2019-08-15 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2019 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Alastruey (pcbi.1007259.ref016) 2011; 44 MC Kennedy (pcbi.1007259.ref027) 2001; 63 KS Matthys (pcbi.1007259.ref017) 2007; 40 CE Rasmussen (pcbi.1007259.ref025) 2006 MS Olufsen (pcbi.1007259.ref023) 1999; 276 B Casas (pcbi.1007259.ref030) 2017; 7 S Scarsoglio (pcbi.1007259.ref024) 2014; 52 JH Friedman (pcbi.1007259.ref028) 1991; 19 M Willemet (pcbi.1007259.ref012) 2015; 309 J Sugawara (pcbi.1007259.ref021) 2016; 29 M Negoita (pcbi.1007259.ref003) 2018; 39 FN van de Vosse (pcbi.1007259.ref015) 2011; 43 J Balmer (pcbi.1007259.ref007) 2018; 39 AN Lyle (pcbi.1007259.ref001) 2017; 37 R Mukkamala (pcbi.1007259.ref009) 2015; 62 JP Mynard (pcbi.1007259.ref020) 2012; 28 F Rader (pcbi.1007259.ref011) 2017; 2 pcbi.1007259.ref014 M Gao (pcbi.1007259.ref006) 2016; 4 MS Olufsen (pcbi.1007259.ref018) 2000; 28 Y Rubin (pcbi.1007259.ref026) 2003 JL Moraes (pcbi.1007259.ref005) 2018; 18 H Ihlen (pcbi.1007259.ref004) 1984; 51 MC Kortekaas (pcbi.1007259.ref008) 2018; 13 pcbi.1007259.ref031 B Efron (pcbi.1007259.ref029) 1987; 82 Y Lia (pcbi.1007259.ref002) 2019; 37 RA Payne (pcbi.1007259.ref010) 2006; 100 J Bossuyta (pcbi.1007259.ref022) 2013; 31 JP Mynard (pcbi.1007259.ref019) 2015; 43 M Willemet (pcbi.1007259.ref013) 2016; 49 |
References_xml | – volume: 62 start-page: 1879 issue: 8 year: 2015 ident: pcbi.1007259.ref009 article-title: Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2441951 – volume: 49 start-page: 3908 year: 2016 ident: pcbi.1007259.ref013 article-title: Computational assessment of hemodynamics-based diagnostic tools using a database of virtual subjects: Application to three case studies publication-title: J Biomech doi: 10.1016/j.jbiomech.2016.11.001 – volume: 39 start-page: 114009 year: 2018 ident: pcbi.1007259.ref003 article-title: A method for determining local pulse wave velocity in human ascending aorta from sequential ultrasound measurements of diameter and velocity publication-title: Physiological Measurement doi: 10.1088/1361-6579/aae8a0 – volume: 2 start-page: 643 issue: 6 year: 2017 ident: pcbi.1007259.ref011 article-title: The Slow Evolution of Blood Pressure Monitoring publication-title: JACC: Basic to Translational Science – volume: 18 start-page: 1894 issue: 6 year: 2018 ident: pcbi.1007259.ref005 article-title: Advances in Photopletysmography Signal Analysis for Biomedical Applications publication-title: Sensors doi: 10.3390/s18061894 – volume: 309 start-page: H663 year: 2015 ident: pcbi.1007259.ref012 article-title: A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00175.2015 – volume: 28 start-page: 626 year: 2012 ident: pcbi.1007259.ref020 article-title: A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models publication-title: Int J Numer Meth Biomed Engng doi: 10.1002/cnm.1466 – ident: pcbi.1007259.ref014 – volume: 19 start-page: 1 issue: 1 year: 1991 ident: pcbi.1007259.ref028 article-title: Multivariate adaptive regression splines publication-title: Annals of Statistics doi: 10.1214/aos/1176347963 – volume: 51 start-page: 54 year: 1984 ident: pcbi.1007259.ref004 article-title: Determination of cardiac output by Dopler echocardiography publication-title: British Heart Journal doi: 10.1136/hrt.51.1.54 – volume: 100 start-page: 136 year: 2006 ident: pcbi.1007259.ref010 article-title: Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00657.2005 – volume: 37 start-page: 347 year: 2019 ident: pcbi.1007259.ref002 article-title: Stiffening and ventricular—arterial interaction in the ascending aorta using MRI: ageing effects in healthy humans publication-title: Journal of Hypertension doi: 10.1097/HJH.0000000000001886 – volume: 82 start-page: 171 issue: 397 year: 1987 ident: pcbi.1007259.ref029 article-title: Better Bootstrap Confidence Intervals publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1987.10478410 – volume: 52 start-page: 905 issue: 11 year: 2014 ident: pcbi.1007259.ref024 article-title: Impact of atrial fibrillation on the cardiovascular system through a lumped-parameter approach publication-title: Med Biol Eng Comput doi: 10.1007/s11517-014-1192-4 – volume: 43 start-page: 1443 issue: 6 year: 2015 ident: pcbi.1007259.ref019 article-title: One-Dimensional Haemodynamic Modeling and Wave Dynamics in the Entire Adult Circulation publication-title: Ann Biomed Eng doi: 10.1007/s10439-015-1313-8 – volume: 276 start-page: H257 year: 1999 ident: pcbi.1007259.ref023 article-title: Structured tree outflow condition for blood flow in larger systemic arteries publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.1999.276.1.H257 – volume: 37 start-page: e1 issue: 2 year: 2017 ident: pcbi.1007259.ref001 article-title: Killing me unsoftly: causes and mechanisms of arterial stiffness publication-title: Arter Thromb Vasc Biol – volume: 7 start-page: 6214 year: 2017 ident: pcbi.1007259.ref030 article-title: Bridging the gap between measurements and modelling: a cardiovascular functional avatar publication-title: Sci Rep doi: 10.1038/s41598-017-06339-0 – volume: 29 start-page: 1237 issue: 11 year: 2016 ident: pcbi.1007259.ref021 article-title: Arterial Path Length for Arterial Stiffness: Methodological Consideration publication-title: Am J Hypertens doi: 10.1093/ajh/hpw075 – volume: 28 start-page: 1281 year: 2000 ident: pcbi.1007259.ref018 article-title: Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions publication-title: Ann Biomed Eng doi: 10.1114/1.1326031 – year: 2003 ident: pcbi.1007259.ref026 – volume: 4 start-page: e12768 issue: 10 year: 2016 ident: pcbi.1007259.ref006 article-title: Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference publication-title: Physiol Rep doi: 10.14814/phy2.12768 – volume: 44 start-page: 2250 year: 2011 ident: pcbi.1007259.ref016 article-title: Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.05.041 – volume-title: Adaptive Computation and Machine Learning year: 2006 ident: pcbi.1007259.ref025 – volume: 39 start-page: 095005 issue: 9 year: 2018 ident: pcbi.1007259.ref007 article-title: Pre-ejection period, the reason why the electrocardiogram Q-wave is an unreliable indicator of pulse wave initialization publication-title: Physiol Meas doi: 10.1088/1361-6579/aada72 – volume: 13 start-page: e0204105 issue: 10 year: 2018 ident: pcbi.1007259.ref008 article-title: Small intra-individual variability of the pre-ejection period justifies the use of pulse transit time as approximation of the vascular transit publication-title: PLoS One doi: 10.1371/journal.pone.0204105 – volume: 63 start-page: 425 issue: 3 year: 2001 ident: pcbi.1007259.ref027 article-title: Bayesian calibration of computer models publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00294 – volume: 31 start-page: 946 year: 2013 ident: pcbi.1007259.ref022 article-title: Noninvasive assessment of carotid-femoral pulse wave velocity: the influence of body side and body contours publication-title: J Hypertens doi: 10.1097/HJH.0b013e328360275d – volume: 43 start-page: 467 year: 2011 ident: pcbi.1007259.ref015 article-title: Pulse Wave Propagation in the Arterial Tree publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-122109-160730 – ident: pcbi.1007259.ref031 doi: 10.1109/EMBC.2014.6944640 – volume: 40 start-page: 3476 issue: 15 year: 2007 ident: pcbi.1007259.ref017 article-title: Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.05.027 |
SSID | ssj0035896 |
Score | 2.439285 |
Snippet | Recent developments in cardiovascular modelling allow us to simulate blood flow in an entire human body. Such model can also be used to create databases of... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1007259 |
SubjectTerms | Accuracy Aorta Aorta - physiology Aortic valve Artificial intelligence Biology and Life Sciences Blood flow Blood Flow Velocity - physiology Blood pressure Blood Pressure - physiology Blood pressure measurement Carotid artery Computational Biology Computer applications Computer Simulation Coronary vessels Data collection Databases, Factual Feet Gaussian process Heart Heart rate Humans Laboratories Learning algorithms Machine Learning Medical examination Medicine and Health Sciences Methods Models, Cardiovascular Normal Distribution Patient simulation Photoplethysmography - statistics & numerical data Propagation Pulse diagnosis Pulse Wave Analysis - statistics & numerical data Signal processing Statistics Stroke Stroke volume Stroke Volume - physiology Technology application Transit time Ultrasonic imaging User-Computer Interface Vascular Stiffness Veins & arteries Velocity Wave velocity Wearable Electronic Devices - statistics & numerical data |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF7kQPBF_N2rVVYRfIrN3mazl8cqlipYRC3cW9if50GbHE2i9LH_uTObTbhIpS--3n4Lt7OT2Zlk9vsIeZNqpnyuTLLwViaZtkWiCqETgfWFXiibBjGYL6f5yVn2eSVWO1Jf2BPW0wP3hjtUS6kg5dZaGw7JPFNQ0HANpbIw8DQbg9EXzryhmOpjMBfLoMyFojiJ5NkqXprjkh3GPXq3NXoTegQWyFO6cygF7v4xQs-253VzU_r5dxflzrF0_IDcj_kkPerX8ZDccdUjcrdXmLx6TK6_dnD20RZPpE1LUUmeIq9Gf2GR1p6qGqfSbcD9Vr8cxS4iA8k5VZWlobGdhm7Z7tJRbJNf04vQgelolJxYB2SzuUApMGfpIDtBsf30CTk7_vjjw0kSVRcSk3PeJtYK6_MlZA5Oo4qvcdZaabhRXDHhnCysloz51HLHl5mFMOUthAGlvE4NAJ-SWVVXbo9QmYKfZgb2SzjMBBRMyvLcC8eUVKmfEz6YvTSRkhz_4nkZvrNJKE16K5a4WWXcrDlJxlnbnpLjFvx73NERi4Ta4QdwszK6WXmbm83Ja_SHEikzKuzJWauuacpP30_LozwUolCo_hP0bQJ6G0G-hsUaFe9BgMmQimuC3EPnGxbVlItFwVAqOs3m5GBwyJuHX43DEC7wG5CqXN0hRgp8JyAB86z339EwnGF2KWBETjx7YrnpSLX5GSjJc4m0TsX-_zD1c3IPstICX9wzcUBm7WXnXkDm1-qX4SH_AwsMWTk priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbKIiQuiHcXCjIIiVOqeB3HyQGhgqgKUisErLS3yK8sK22TZZO09Mg_Z8Z5iKAtXOPPUTIee2bs8XyEvAo1U3msTDDLrQwibdNApUIHAuMLPVM29GQwp2fxyTz6tBCLPdJztnYCrHaGdsgnNd-uD3_-uHoLE_6NZ22QrO90uDF65U_9waW_QW6CbZI4VU-j4VyBi8QzdiFZTiB5tOgu0133lpGx8jX9h5V7slmX1S639O_syj_M1fFdcqfzM-lRqxj3yJ4r7pNbLfPk1QPy63MDNpHWaKlWNUWGeYr1NtqLjLTMqSqxK9143KW6cBSziww47VQVlvqEd-qzaJuto5g-v6TnPjPT0Y6KYumR1eocKcKcpT0dBcW01Idkfvzh2_uToGNjCEzMeR1YK2weJ-BROI3svsZZa6XhRnHFhHMytVoyloeWO55EFpav3MLyoFSuQwPAR2RSlIXbJ1SGoL-RSbkWDj0EBZ2iOM6FY0qqMJ8S3os9M12pcvzEdebP3ySELK0UMxysrBusKQmGXpu2VMd_8O9wRAcsFtr2D8rtMuvmbaYSqSDi01obDrEkUxBPc83SRBgwJsZMyUvUhwxLaRSYq7NUTVVlH7-eZUexD1AhgL0W9GUEet2B8hJ-1qjufgSIDEt0jZD7qHz9T1XZbJYypJAOoyk56BVyd_OLoRmWETwbUoUrG8RIgXsFEjCPW_0dBMMZep0CWuRIs0eSG7cUq---VHkssdxT-uTfn_WU3AY_NMWteiYOyKTeNu4Z-Hq1fu6n72_WXVbY priority: 102 providerName: Scholars Portal |
Title | Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31415554 https://www.proquest.com/docview/2291473504 https://www.proquest.com/docview/2275254974 https://pubmed.ncbi.nlm.nih.gov/PMC6711549 https://doaj.org/article/a87a605bbbc34951a5493b1985c000cc http://dx.doi.org/10.1371/journal.pcbi.1007259 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegExIviO8VRmUQEk9hcR3HyRNqYWUgrZoGk_oW-Sul0paUpgXxyH_OneOGFQ14SaX6LCX2-Xx3_vl-hLyMNVNlqkw0LK2MEm3zSOVCRwLjCz1UNvZkMCfT9Pg8-TgTs5BwawKscmsTvaG2tcEc-eFwmDOkyY2TN8uvEbJG4elqoNC4SfawdBlCuuSsC7i4yDw_F1LjRJIns3B1jkt2GGbq9dLohUcKDLFa6ZWtyVfw7-x0b3lRN9c5oX9iKa9sTpO75E7wKumoVYN75Iar7pNbLc_kjwfk5-kGdkC6xn1psabIJ0-xukZ7bZHWJVU1dqVLL_ddfXMUsUQGXHSqKks9vJ16zOxm5SiC5ef00uMwHQ3EE3Mv2SwukRDMWboln6AIQn1IzidHn98eR4F7ITIp5-vIWmHLNAP_wWnk8jXOWisNN4orJpyTudWSsTK23PEssWCsSgvGQKlSxwYEH5FeVVdun1AZg7YmJudaOPQHFHRK0rQUjimp4rJP-HbYCxMKk-MrXhT-tE1CgNKOYoGTVYTJ6pOo67VsC3P8R36MM9rJYllt_0e9mhdhlRYqkwriO6214RA5MgXRM9csz4SBrcOYPnmB-lBg4YwKkTlztWma4sOnaTFKfTgK4epfhc52hF4FobKGjzUq3IaAIcOCXDuS-6h8249qit8roU8Otgp5ffPzrhmMBp4EqcrVG5SRAjMDEmQet_rbDQxn6GMKaJE7mr0zcrst1eKLL0yeSizulD_592s9JbfB68wxMc_EAemtVxv3DDy7tR745QvPbPJ-QPZG43fjCfyOj6anZwOfLYHnSZL9AgK6Vtk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAQXxLuBAgsCcTL1er3e-IBQeVQpbSMErZSb2ZdDpNYOcULVI3-I38jM-kGDCpx6zX4b2Tuz8_DOzkfIs1AzlSfKBFFuZRBrmwYqFToQmF_oSNnQk8Hsj5LhYfxhLMZr5Gd7FwbLKlub6A21LQ1-I9-MopQhTW4Yv559C5A1Ck9XWwqNWi123ekJpGzVq513IN_nUbT9_uDtMGhYBQKTcL4IrBU2TwbgGZ1GllrjrLXScKO4YsI5mVotGctDyx0fxBa2YW5BzZXKdWgACP97iVwGxxvijpLjLsHjYuD5wJCKJ5A8HjdX9bhkm41mvJwZPfWVCRF2Rz3jCj1jQOcXerOjsjov6P2zdvOMM9y-Qa43USzdqtXuJllzxS1ypea1PL1NfnxcgselC_SD0wVF_nqK3Tzqa5K0zKkqcSqdedyJ-u4o1i4ZSAmoKiz15fTU1-gu545icf6EHvu6T0cboouJR1bTYyQgc5a2ZBcUi17vkMMLkcpd0ivKwq0TKkPYHbFJuRYO4w8Fk-IkyYVjSqow7xPeLntmmkbo-IhHmT_dk5AQ1auYobCyRlh9EnSzZnUjkP_g36BEOyy28fY_lPNJ1liFTA2kgnxSa204ZKpMQbbONUsHwoCrMqZPnqI-ZNioo8BKoIlaVlW283mUbSU-_YX0-K-gTyugFw0oL-FljWpuX8CSYQOwFeQ6Kl_7UlX2e-f1yUarkOcPP-mGwUjhyZMqXLlEjBT4JUIC5l6tv93CcIYxrYARuaLZKyu3OlJMv_pG6InEZlLp_X8_1mNydXiwv5ft7Yx2H5BrEPGmeCjAxAbpLeZL9xCiyoV-5LcyJV8u2nb8Am_0kGs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIhAXxLsLBQwCcUo3juN4c0CoUFZdCqsKqLS34FeWldpk2QdVj_wtfh0zzoMuKnDqNf4cOfZ4HvF4PkKehZqpPFEmiHIrg1jbNFCp0IHA-EJHyoaeDObDKNk7jN-NxXiD_GzuwmBaZaMTvaK2pcF_5L0oShnS5IZxL6_TIg52B69m3wJkkMKT1oZOoxKRfXd6AuHb4uVwF9b6eRQN3n5-sxfUDAOBSThfBtYKmyd9sJJOI2OtcdZaabhRXDHhnEytlozloeWO92MLWzK3IPJK5To0AIT3XiKXYVgM95gct8EeF33PDYa0PIHk8bi-tscl69VSsj0zeuqzFCKslHrGLHr2gNZGdGZH5eI8B_jPPM4zhnFwg1yvPVq6U4ngTbLhilvkSsVxeXqb_DhYgfWlS7SJ0yVFLnuKlT2qK5O0zKkqsSudedyJ-u4o5jEZCA-oKiz1qfXU5-uu5o5iov6EHvscUEdr0ouJRy6mx0hG5ixtiC8oJsDeIYcXsip3SacoC7dJqAxhp8Qm5Vo49EUUdIqTJBeOKanCvEt4M-2ZqYui4xCPMn_SJyE4qmYxw8XK6sXqkqDtNauKgvwH_xpXtMViSW__oJxPslpDZKovFcSWWmvDIWplCiJ3rlnaFwbMljFd8hTlIcOiHQWK_0StFots-GmU7SQ-FIZQ-a-gj2ugFzUoL-FjjapvYsCUYTGwNeQmCl_zUYvs9y7skq1GIM9vftI2g8LCUyhVuHKFGCnwr4QEzL1KftuJ4Qz9WwEtck2y12ZuvaWYfvVF0ROJhaXS-_8e1mNyFbRG9n442n9AroHzm-L5ABNbpLOcr9xDcDCX-pHfyZR8uWjV8QvtWJSh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulse+transit+time+estimation+of+aortic+pulse+wave+velocity+and+blood+pressure+using+machine+learning+and+simulated+training+data&rft.jtitle=PLoS+computational+biology&rft.au=Huttunen%2C+Janne+M+J&rft.au=Lindholm%2C+Harri&rft.date=2019-08-15&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=15&rft.issue=8&rft.spage=e1007259&rft_id=info:doi/10.1371%2Fjournal.pcbi.1007259&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |