Unsupervised single-image super-resolution for infant brain MRI

Acquiring high-resolution (HR) MR images of infant brains is challenging due to lengthy scan times and limited subject compliance. Image super-resolution (SR) techniques can generate HR images from low-resolution (LR) inputs, reducing the need for extended acquisitions. However, most existing SR met...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 317; p. 121293
Main Authors Tsai, Cheng Che, Chen, Xiaoyang, Ahmad, Sahar, Yap, Pew-Thian
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.08.2025
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2025.121293

Cover

Abstract Acquiring high-resolution (HR) MR images of infant brains is challenging due to lengthy scan times and limited subject compliance. Image super-resolution (SR) techniques can generate HR images from low-resolution (LR) inputs, reducing the need for extended acquisitions. However, most existing SR methods require HR images for training, limiting their practical use in real-world scenarios. To overcome this limitation, we propose an unsupervised single-image SR approach that requires only a single LR image for training. By integrating image space regularity with k-space consistency, our method enhances training stability and mitigates overfitting. Additionally, we introduce joint self-supervised learning to improve the fidelity of low-frequency content in the generated images. Our approach demonstrates both quantitative and qualitative improvements in MRI resolution for infants aged 1 week to 1 year, offering robust performance without manual hyperparameter tuning across diverse inputs. This innovation enables fully automated, high-throughput MRI resolution enhancement, addressing a critical need in pediatric neuroimaging. [Display omitted] •KC-DIP can be trained unsupervised on a single image for super-resolution.•KC-DIP employs various strategies to ensure good properties in the frequency space.•Training is stable with minimal hyperparameter adjustments across diverse images.•KC-DIP performs well on brain MR images of infants from 1 week to 1 year of age.
AbstractList Acquiring high-resolution (HR) MR images of infant brains is challenging due to lengthy scan times and limited subject compliance. Image super-resolution (SR) techniques can generate HR images from low-resolution (LR) inputs, reducing the need for extended acquisitions. However, most existing SR methods require HR images for training, limiting their practical use in real-world scenarios. To overcome this limitation, we propose an unsupervised single-image SR approach that requires only a single LR image for training. By integrating image space regularity with k-space consistency, our method enhances training stability and mitigates overfitting. Additionally, we introduce joint self-supervised learning to improve the fidelity of low-frequency content in the generated images. Our approach demonstrates both quantitative and qualitative improvements in MRI resolution for infants aged 1 week to 1 year, offering robust performance without manual hyperparameter tuning across diverse inputs. This innovation enables fully automated, high-throughput MRI resolution enhancement, addressing a critical need in pediatric neuroimaging.
Acquiring high-resolution (HR) MR images of infant brains is challenging due to lengthy scan times and limited subject compliance. Image super-resolution (SR) techniques can generate HR images from low-resolution (LR) inputs, reducing the need for extended acquisitions. However, most existing SR methods require HR images for training, limiting their practical use in real-world scenarios. To overcome this limitation, we propose an unsupervised single-image SR approach that requires only a single LR image for training. By integrating image space regularity with k-space consistency, our method enhances training stability and mitigates overfitting. Additionally, we introduce joint self-supervised learning to improve the fidelity of low-frequency content in the generated images. Our approach demonstrates both quantitative and qualitative improvements in MRI resolution for infants aged 1 week to 1 year, offering robust performance without manual hyperparameter tuning across diverse inputs. This innovation enables fully automated, high-throughput MRI resolution enhancement, addressing a critical need in pediatric neuroimaging. [Display omitted] •KC-DIP can be trained unsupervised on a single image for super-resolution.•KC-DIP employs various strategies to ensure good properties in the frequency space.•Training is stable with minimal hyperparameter adjustments across diverse images.•KC-DIP performs well on brain MR images of infants from 1 week to 1 year of age.
Acquiring high-resolution (HR) MRI of infant brains is challenging due to lengthy scan times and limited subject compliance. Image super-resolution (SR) techniques can generate HR images from low-resolution (LR) inputs, reducing the need for extended acquisitions. However, most existing SR methods require HR images for training, limiting their practical use in real-world scenarios. To overcome this limitation, we propose an unsupervised single-image SR approach that requires only a single LR image for training. By integrating image space regularity with k-space consistency, our method enhances training stability and mitigates overfitting. Additionally, we introduce joint self-supervised learning to improve the fidelity of low-frequency content in the generated images. Our approach demonstrates both quantitative and qualitative improvements in MRI resolution for infants aged 1 week to 1 year, offering robust performance without manual hyperparameter tuning across diverse inputs. This innovation enables fully automated, high-throughput MRI resolution enhancement, addressing a critical need in pediatric neuroimaging.Acquiring high-resolution (HR) MRI of infant brains is challenging due to lengthy scan times and limited subject compliance. Image super-resolution (SR) techniques can generate HR images from low-resolution (LR) inputs, reducing the need for extended acquisitions. However, most existing SR methods require HR images for training, limiting their practical use in real-world scenarios. To overcome this limitation, we propose an unsupervised single-image SR approach that requires only a single LR image for training. By integrating image space regularity with k-space consistency, our method enhances training stability and mitigates overfitting. Additionally, we introduce joint self-supervised learning to improve the fidelity of low-frequency content in the generated images. Our approach demonstrates both quantitative and qualitative improvements in MRI resolution for infants aged 1 week to 1 year, offering robust performance without manual hyperparameter tuning across diverse inputs. This innovation enables fully automated, high-throughput MRI resolution enhancement, addressing a critical need in pediatric neuroimaging.
AbstractAcquiring high-resolution (HR) MR images of infant brains is challenging due to lengthy scan times and limited subject compliance. Image super-resolution (SR) techniques can generate HR images from low-resolution (LR) inputs, reducing the need for extended acquisitions. However, most existing SR methods require HR images for training, limiting their practical use in real-world scenarios. To overcome this limitation, we propose an unsupervised single-image SR approach that requires only a single LR image for training. By integrating image space regularity with k-space consistency, our method enhances training stability and mitigates overfitting. Additionally, we introduce joint self-supervised learning to improve the fidelity of low-frequency content in the generated images. Our approach demonstrates both quantitative and qualitative improvements in MRI resolution for infants aged 1 week to 1 year, offering robust performance without manual hyperparameter tuning across diverse inputs. This innovation enables fully automated, high-throughput MRI resolution enhancement, addressing a critical need in pediatric neuroimaging.
ArticleNumber 121293
Author Yap, Pew-Thian
Chen, Xiaoyang
Tsai, Cheng Che
Ahmad, Sahar
AuthorAffiliation b Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
c Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
a Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
AuthorAffiliation_xml – name: b Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– name: a Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– name: c Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Author_xml – sequence: 1
  givenname: Cheng Che
  orcidid: 0009-0002-0979-3855
  surname: Tsai
  fullname: Tsai, Cheng Che
  organization: Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– sequence: 2
  givenname: Xiaoyang
  orcidid: 0000-0003-2390-9797
  surname: Chen
  fullname: Chen, Xiaoyang
  organization: Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– sequence: 3
  givenname: Sahar
  orcidid: 0000-0001-7243-9977
  surname: Ahmad
  fullname: Ahmad, Sahar
  organization: Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– sequence: 4
  givenname: Pew-Thian
  orcidid: 0000-0003-1489-2102
  surname: Yap
  fullname: Yap, Pew-Thian
  email: ptyap@med.unc.edu
  organization: Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40550405$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURNuBv4AisWGTwe_EGwpUPEYqQgK6tmznZvCQsQc7Gan_HmdSBloJqVnYjnPul-vjc16c-OChKEqMlhhh8Wqz9DDG4LZ6DUuCCF9igomkj4ozjCSvJK_JybTmtGowlqfFeUobhJDErHlSnDLEOcrDWXFx7dO4g7h3CdoyOb_uoTpwy8N-FSGFfhxc8GUXYul8p_1QmqidLz9_XT0tHne6T_Dsdl4U1x_ef7_8VF19-bi6fHtVWUHpULW8wTWShuQHUCuMra1omBUgWyRbzgUjQDGhBnNsWitrJi0mreGdYUJ3dFGsZm4b9EbtYm4x3qignTpshLhWOg7O9qCkYVh0EpDRNcs_nt4bZjqkwWBBWGZdzKzdaLbQWvBD1P0d6N0v3v1Q67BXmJC6zr5lwstbQgy_RkiD2rpkoe-1hzAmRQmhgvJsf5a-uCfdhDH67FVWUcpEg_K8KJ7_29Kxlz8XlQXNLLAxpBShO0owUlMm1Eb9zYSaMqHmTOTSd3Mp5PvZO4gqWQfeQusi2CEb6B4CeX0PYnvnndX9T7iBdDwTVokopL5N0ZuSRzhCRIrJ9Df_Bzysh9_TKO3G
Cites_doi 10.1155/2021/8865582
10.1109/TPAMI.2020.2982166
10.1109/JBHI.2022.3232511
10.1109/TIP.2013.2293423
10.1109/CVPR.2017.243
10.1016/j.image.2019.115701
10.1109/CVPR.2017.618
10.1109/LSP.2020.3005043
10.1007/s11263-021-01572-7
10.1007/s00247-018-4116-x
10.1038/s41597-023-02400-y
10.1118/1.4935149
10.1016/j.neuroimage.2015.06.018
10.1109/CVPR.2018.00984
10.1016/j.media.2023.102877
10.1016/j.neuroimage.2018.04.044
10.1109/ACCESS.2019.2918926
10.1109/TCYB.2017.2786161
10.1109/TBME.2018.2821699
10.1109/TMI.2015.2437894
10.1016/j.compbiomed.2018.06.010
10.1109/TETCI.2022.3215137
10.1016/j.inffus.2021.09.005
10.1002/mrm.27420
10.1109/TMM.2019.2919431
10.1109/TPAMI.2022.3204527
10.1002/mrm.21132
10.1109/CVPRW.2018.00113
10.1016/j.neuroimage.2019.116324
10.1016/j.neuroimage.2018.03.049
10.1109/CVPR.2018.00329
10.1109/TIP.2003.819861
10.1038/nrn.2018.1
10.1145/3442188.3445932
10.1186/s13634-016-0315-5
10.1109/TMI.2020.3037187
10.1109/TCI.2016.2601296
10.1109/42.79473
10.1016/j.compbiomed.2020.103755
10.1109/TMI.2019.2927101
ContentType Journal Article
Copyright 2025 The Author(s)
The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2025.121293
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE


MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 121293
ExternalDocumentID oai_doaj_org_article_9b416f9e0ba74d589b4184bf0aeb1624
PMC12277040
40550405
10_1016_j_neuroimage_2025_121293
S1053811925002964
1_s2_0_S1053811925002964
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH125479
– fundername: NIMH NIH HHS
  grantid: R01 MH133836
– fundername: NINDS NIH HHS
  grantid: R01 NS134849
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIBIB NIH HHS
  grantid: R01 EB035160
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HCIFZ
IHE
J1W
KOM
LG5
LX8
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
TEORI
UV1
YK3
Z5R
ZU3
~G-
29N
53G
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAQFI
AAQXK
ABUWG
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFKRA
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
AZQEC
BBNVY
BPHCQ
BVXVI
CAG
CCPQU
COF
DWQXO
EJD
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
LK8
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
R2-
SNS
UKHRP
WUQ
XPP
ZMT
6I.
AAFTH
AAYXX
CITATION
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
P64
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c633t-d581709b2222e0d6bc7c684c6e9d09d55642e3123b151bdc9749c12db5fb46af3
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:27:37 EDT 2025
Thu Aug 21 18:25:43 EDT 2025
Fri Sep 05 15:49:27 EDT 2025
Sat Aug 23 13:31:00 EDT 2025
Fri Aug 01 03:41:23 EDT 2025
Wed Aug 20 07:45:34 EDT 2025
Sat Sep 06 17:20:35 EDT 2025
Fri Aug 22 09:50:48 EDT 2025
Tue Aug 26 17:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Unsupervised single-image super-resolution
Trustworthy reconstruction
Infant brain MRI
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-d581709b2222e0d6bc7c684c6e9d09d55642e3123b151bdc9749c12db5fb46af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
C.C. Tsai and X. Chen are co-first authors
ORCID 0009-0002-0979-3855
0000-0003-2390-9797
0000-0001-7243-9977
0000-0003-1489-2102
OpenAccessLink https://doaj.org/article/9b416f9e0ba74d589b4184bf0aeb1624
PMID 40550405
PQID 3233468032
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_9b416f9e0ba74d589b4184bf0aeb1624
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12277040
proquest_miscellaneous_3223635053
proquest_journals_3233468032
pubmed_primary_40550405
crossref_primary_10_1016_j_neuroimage_2025_121293
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2025_121293
elsevier_clinicalkeyesjournals_1_s2_0_S1053811925002964
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2025_121293
PublicationCentury 2000
PublicationDate 2025-08-15
PublicationDateYYYYMMDD 2025-08-15
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2025
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Gilmore, Knickmeyer, Gao (b13) 2018; 19
Qayyum, Ilahi, Shamshad, Boussaid, Bennamoun, Qadir (b31) 2022
Darestani, Mohammad Zalbagi, Heckel, Reinhard, 2021. Can un-trained networks compete with trained ones for accelerated MRI?. In: Annual Meeting of the International Society for Magnetic Resonance in Medicine. ISMRM.
Jin, Lee, Ye (b20) 2016; 2
Wang, Su, Ying, Peng, Zhu, Liang, Feng, Liang (b44) 2016
Shi, Cheng, Wang, Yap, Shen (b33) 2015; 34
Steed, Ryan, Caliskan, Aylin, 2021. Image representations learned with unsupervised pre-training contain human-like biases. In: ACM Conference on Fairness, Accountability, and Transparency. pp. 701–713.
Liu, Sun, Xu, Kamilov (b28) 2019
Iwamoto, Takeda, Li, Shiino, Chen (b18) 2022; 7
Tsai, Chen, Ahmad, Yap (b40) 2023
Chen, Qu, Xie, Ahmad, Yap (b5) 2023; 10
Zeng, Zheng, Cai, Yang, Zhang, Chen (b52) 2018; 99
Tourbier, Bresson, Hagmann, Thiran, Meuli, Cuadra (b39) 2015; 118
Chen, Xie, Zhou, Shi, Christodoulou, Li (b6) 2018
Ulyanov, Dmitry, Vedaldi, Andrea, Lempitsky, Victor, 2018. Deep image prior. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 9446–9454.
Chen, He, Qing, Wu, Ren, Sheriff, Zhu (b4) 2022; 79
Pham, Ducournau, Fablet, Rousseau (b30) 2017
Noll, Nishimura, Macovski (b29) 1991; 10
Deka, Mullah, Datta, Lakshmi, Ganesan (b9) 2019
Barkovich, Li, Desikan, Barkovich, Xu (b2) 2019; 185
Charbonnier, Blanc-Feraud, Aubert, Barlaud (b3) 1994; 2
Storey, Frigo, Hinks, Mock, Collick, Baker, Marmurek, Graham (b37) 2007; 57
Liu, Li, Huang, Ahn, Han, Razi, Xiang, Kim, Feng (b27) 2022
Zhang, Shi, Cheng, Wang, Yap, Shen (b54) 2018; 49
Wang, Bovik, Sheikh, Simoncelli (b42) 2004; 13
Zeng, Peng, Wang, Liu (b51) 2020; 81
Zhao, Carass, Dewey, Woo, Oh, Calabresi, Reich, Sati, Pham, Prince (b56) 2018
Gu, Li, Wang, Yang, Qiao, Yu (b14) 2019; 7
Howell, Styner, Gao, Yap, Wang, Baluyot, Yacoub, Chen, Potts, Salzwedel (b16) 2019; 185
Tang, Fang (b38) 2016; 2016
Lee, Yoo, Tak, Ye (b24) 2018; 65
Yazdanpanah, Afacan, Warfield (b49) 2019; vol. 10949
Zhang, He, Guo, Ettehadi, Aw, Semanek, Posner, Laine, Wang (b53) 2021
Jaimes, Kirsch, Gee (b19) 2018; 48
Zhao, Carass, Dewey, Prince (b55) 2018
Gholipour, Afacan, Aganj, Scherrer, Prabhu, Sahin, Warfield (b12) 2015; 42
Ebner, Wang, Li, Aertsen, Patel, Aughwane, Melbourne, Doel, Dymarkowski, De Coppi (b11) 2020; 206
Liu, Chen, Chen, Chen, Sun (b26) 2023
Shocher, Assaf, Cohen, Nadav, Irani, Michal, 2018. “Zero-shot” super-resolution using deep internal learning. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 3118–3126.
Han, Sunwoo, Ye (b15) 2019; 39
Kim, Jung, Kim (b22) 2020; 27
Zhou, Huang, Li, Zhou, Zheng (b59) 2022; 27
Zhao, Huang, Zhao, Qin, Zheng (b58) 2021; 2021
Lai, Wei-Sheng, Huang, Jia-Bin, Ahuja, Narendra, Yang, Ming-Hsuan, 2017. Deep laplacian pyramid networks for fast and accurate super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 624–632.
Wang, Chen, Hoi (b43) 2020; 43
Liang, Lauterbur (b25) 2000
Akçakaya, Moeller, Weingärtner, Uğurbil (b1) 2019; 81
Delannoy, Pham, Cazorla, Tor-Díez, Dollé, Meunier, Bednarek, Fablet, Passat, Rousseau (b10) 2020; 120
Yaman, Hosseini, Akçakaya (b47) 2021
Yang, Zhang, Tian, Wang, Xue, Liao (b48) 2019; 21
Wu, Chen, Li, Wang, Wang, Wei, Zhang (b45) 2023
Huang, Gao, Liu, Zhuang, Van Der Maaten, Laurens, Weinberger, Kilian Q, 2017. Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 4700–4708.
Jog, Carass, Prince (b21) 2016
Cui, Jia, Cao, Zhu, Liu, Qiu, Liu, Cheng, Wang, Zhu (b7) 2023; 88
Yuan, Yuan, Liu, Siyuan, Zhang, Jiawei, Zhang, Yongbing, Dong, Chao, Lin, Liang, 2018. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop. pp. 701–710.
Shi, Mettes, Maji, Snoek (b34) 2022; 130
Xue, Zhang, Mou, Bovik (b46) 2013; 23
Senouf, Vedula, Weiss, Bronstein, Michailovich, Zibulevsky (b32) 2019
Zhao, Dewey, Pham, Calabresi, Reich, Prince (b57) 2020; 40
Zhao (10.1016/j.neuroimage.2025.121293_b55) 2018
Chen (10.1016/j.neuroimage.2025.121293_b6) 2018
Iwamoto (10.1016/j.neuroimage.2025.121293_b18) 2022; 7
Yazdanpanah (10.1016/j.neuroimage.2025.121293_b49) 2019; vol. 10949
Wang (10.1016/j.neuroimage.2025.121293_b44) 2016
Jin (10.1016/j.neuroimage.2025.121293_b20) 2016; 2
10.1016/j.neuroimage.2025.121293_b17
Tang (10.1016/j.neuroimage.2025.121293_b38) 2016; 2016
Gholipour (10.1016/j.neuroimage.2025.121293_b12) 2015; 42
Zhou (10.1016/j.neuroimage.2025.121293_b59) 2022; 27
Cui (10.1016/j.neuroimage.2025.121293_b7) 2023; 88
10.1016/j.neuroimage.2025.121293_b23
Charbonnier (10.1016/j.neuroimage.2025.121293_b3) 1994; 2
Shi (10.1016/j.neuroimage.2025.121293_b33) 2015; 34
Xue (10.1016/j.neuroimage.2025.121293_b46) 2013; 23
Liu (10.1016/j.neuroimage.2025.121293_b26) 2023
Liang (10.1016/j.neuroimage.2025.121293_b25) 2000
Zhang (10.1016/j.neuroimage.2025.121293_b54) 2018; 49
Howell (10.1016/j.neuroimage.2025.121293_b16) 2019; 185
10.1016/j.neuroimage.2025.121293_b8
Zeng (10.1016/j.neuroimage.2025.121293_b51) 2020; 81
Senouf (10.1016/j.neuroimage.2025.121293_b32) 2019
Tsai (10.1016/j.neuroimage.2025.121293_b40) 2023
Shi (10.1016/j.neuroimage.2025.121293_b34) 2022; 130
Chen (10.1016/j.neuroimage.2025.121293_b4) 2022; 79
Zhao (10.1016/j.neuroimage.2025.121293_b57) 2020; 40
Han (10.1016/j.neuroimage.2025.121293_b15) 2019; 39
Jog (10.1016/j.neuroimage.2025.121293_b21) 2016
Zeng (10.1016/j.neuroimage.2025.121293_b52) 2018; 99
Zhang (10.1016/j.neuroimage.2025.121293_b53) 2021
Chen (10.1016/j.neuroimage.2025.121293_b5) 2023; 10
Wang (10.1016/j.neuroimage.2025.121293_b43) 2020; 43
Ebner (10.1016/j.neuroimage.2025.121293_b11) 2020; 206
Kim (10.1016/j.neuroimage.2025.121293_b22) 2020; 27
10.1016/j.neuroimage.2025.121293_b35
10.1016/j.neuroimage.2025.121293_b36
Wang (10.1016/j.neuroimage.2025.121293_b42) 2004; 13
Pham (10.1016/j.neuroimage.2025.121293_b30) 2017
10.1016/j.neuroimage.2025.121293_b41
Liu (10.1016/j.neuroimage.2025.121293_b28) 2019
Gu (10.1016/j.neuroimage.2025.121293_b14) 2019; 7
Lee (10.1016/j.neuroimage.2025.121293_b24) 2018; 65
Deka (10.1016/j.neuroimage.2025.121293_b9) 2019
Storey (10.1016/j.neuroimage.2025.121293_b37) 2007; 57
Zhao (10.1016/j.neuroimage.2025.121293_b56) 2018
Yang (10.1016/j.neuroimage.2025.121293_b48) 2019; 21
Noll (10.1016/j.neuroimage.2025.121293_b29) 1991; 10
Delannoy (10.1016/j.neuroimage.2025.121293_b10) 2020; 120
Yaman (10.1016/j.neuroimage.2025.121293_b47) 2021
Jaimes (10.1016/j.neuroimage.2025.121293_b19) 2018; 48
Qayyum (10.1016/j.neuroimage.2025.121293_b31) 2022
Wu (10.1016/j.neuroimage.2025.121293_b45) 2023
Zhao (10.1016/j.neuroimage.2025.121293_b58) 2021; 2021
Barkovich (10.1016/j.neuroimage.2025.121293_b2) 2019; 185
Gilmore (10.1016/j.neuroimage.2025.121293_b13) 2018; 19
Liu (10.1016/j.neuroimage.2025.121293_b27) 2022
10.1016/j.neuroimage.2025.121293_b50
Akçakaya (10.1016/j.neuroimage.2025.121293_b1) 2019; 81
Tourbier (10.1016/j.neuroimage.2025.121293_b39) 2015; 118
References_xml – volume: 130
  start-page: 885
  year: 2022
  end-page: 908
  ident: b34
  article-title: On measuring and controlling the spectral bias of the deep image prior
  publication-title: Int. J. Comput. Vis.
– volume: 120
  year: 2020
  ident: b10
  article-title: SegSRGAN: Super-resolution and segmentation using generative adversarial networks—Application to neonatal brain MRI
  publication-title: Comput. Biol. Med.
– start-page: 100
  year: 2018
  end-page: 108
  ident: b56
  article-title: A deep learning based anti-aliasing self super-resolution algorithm for MRI
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: Darestani, Mohammad Zalbagi, Heckel, Reinhard, 2021. Can un-trained networks compete with trained ones for accelerated MRI?. In: Annual Meeting of the International Society for Magnetic Resonance in Medicine. ISMRM.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 21
  ident: b38
  article-title: Edge and contrast preserving in total variation image denoising
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 7
  start-page: 426
  year: 2022
  end-page: 435
  ident: b18
  article-title: Unsupervised MRI super resolution using deep external learning and guided residual dense network with multimodal image priors
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– start-page: 78
  year: 2019
  end-page: 86
  ident: b9
  article-title: Sparse representation based super-resolution of MRI images with non-local total variation regularization
  publication-title: International Conference on Pattern Recognition and Machine Intelligence
– year: 2021
  ident: b47
  article-title: Zero-shot self-supervised learning for MRI reconstruction
– volume: 118
  start-page: 584
  year: 2015
  end-page: 597
  ident: b39
  article-title: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization
  publication-title: NeuroImage
– volume: 40
  start-page: 805
  year: 2020
  end-page: 817
  ident: b57
  article-title: SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 88
  year: 2023
  ident: b7
  article-title: K-UNN: k-space interpolation with untrained neural network
  publication-title: Med. Image Anal.
– year: 2022
  ident: b27
  article-title: Unsupervised representation learning for 3D MRI super resolution with degradation adaptation
– reference: Ulyanov, Dmitry, Vedaldi, Andrea, Lempitsky, Victor, 2018. Deep image prior. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 9446–9454.
– volume: 42
  start-page: 6919
  year: 2015
  end-page: 6932
  ident: b12
  article-title: Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI
  publication-title: Med. Phys.
– reference: Steed, Ryan, Caliskan, Aylin, 2021. Image representations learned with unsupervised pre-training contain human-like biases. In: ACM Conference on Fairness, Accountability, and Transparency. pp. 701–713.
– year: 2021
  ident: b53
  article-title: PTNet: A high-resolution infant MRI synthesizer based on transformer
– volume: 49
  start-page: 662
  year: 2018
  end-page: 674
  ident: b54
  article-title: Longitudinally guided super-resolution of neonatal brain magnetic resonance images
  publication-title: IEEE Trans. Cybern.
– volume: 10
  start-page: 489
  year: 2023
  ident: b5
  article-title: A paired dataset of T1-and T2-weighted MRI at 3 Tesla and 7 Tesla
  publication-title: Sci. Data
– volume: 2
  start-page: 168
  year: 1994
  end-page: 172
  ident: b3
  article-title: Two deterministic half-quadratic regularization algorithms for computed imaging
  publication-title: International Conference on Image Processing
– volume: 2
  start-page: 480
  year: 2016
  end-page: 495
  ident: b20
  article-title: A general framework for compressed sensing and parallel MRI using annihilating filter based low-rank Hankel matrix
  publication-title: IEEE Trans. Comput. Imaging
– start-page: 197
  year: 2017
  end-page: 200
  ident: b30
  article-title: Brain MRI super-resolution using deep 3D convolutional networks
  publication-title: International Symposium on Biomedical Imaging
– volume: 79
  start-page: 124
  year: 2022
  end-page: 145
  ident: b4
  article-title: Real-world single image super-resolution: A brief review
  publication-title: Inf. Fusion
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b42
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 23
  start-page: 684
  year: 2013
  end-page: 695
  ident: b46
  article-title: Gradient magnitude similarity deviation: A highly efficient perceptual image quality index
  publication-title: IEEE Trans. Image Process.
– reference: Yuan, Yuan, Liu, Siyuan, Zhang, Jiawei, Zhang, Yongbing, Dong, Chao, Lin, Liang, 2018. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop. pp. 701–710.
– reference: Huang, Gao, Liu, Zhuang, Van Der Maaten, Laurens, Weinberger, Kilian Q, 2017. Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 4700–4708.
– volume: 185
  start-page: 891
  year: 2019
  end-page: 905
  ident: b16
  article-title: The UNC/UMN baby connectome project (BCP): An overview of the study design and protocol development
  publication-title: NeuroImage
– year: 2022
  ident: b31
  article-title: Untrained neural network priors for inverse imaging problems: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 553
  year: 2016
  end-page: 560
  ident: b21
  article-title: Self super-resolution for magnetic resonance images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2000
  ident: b25
  article-title: Principles of Magnetic Resonance Imaging
– start-page: 1
  year: 2023
  end-page: 5
  ident: b45
  article-title: Assured: A self-supervised deep decoder network for fetus brain MRI reconstruction
  publication-title: International Symposium on Biomedical Imaging
– volume: 81
  start-page: 439
  year: 2019
  end-page: 453
  ident: b1
  article-title: Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging
  publication-title: Magn. Reson. Med.
– volume: 2021
  year: 2021
  ident: b58
  article-title: Reference-driven undersampled MR image reconstruction using wavelet sparsity-constrained deep image prior
  publication-title: Comput. Math. Methods Med.
– start-page: 739
  year: 2018
  end-page: 742
  ident: b6
  article-title: Brain MRI super resolution using 3D deep densely connected neural networks
  publication-title: International Symposium on Biomedical Imaging
– volume: 7
  start-page: 68290
  year: 2019
  end-page: 68304
  ident: b14
  article-title: Deep generative adversarial networks for thin-section infant MR image reconstruction
  publication-title: IEEE Access
– reference: Shocher, Assaf, Cohen, Nadav, Irani, Michal, 2018. “Zero-shot” super-resolution using deep internal learning. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 3118–3126.
– volume: 99
  start-page: 133
  year: 2018
  end-page: 141
  ident: b52
  article-title: Simultaneous single-and multi-contrast super-resolution for brain MRI images based on a convolutional neural network
  publication-title: Comput. Biol. Med.
– volume: 48
  start-page: 1197
  year: 2018
  end-page: 1208
  ident: b19
  article-title: Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging
  publication-title: Pediatr. Radiol.
– volume: 65
  start-page: 1985
  year: 2018
  end-page: 1995
  ident: b24
  article-title: Deep residual learning for accelerated MRI using magnitude and phase networks
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 365
  year: 2018
  end-page: 368
  ident: b55
  article-title: Self super-resolution for magnetic resonance images using deep networks
  publication-title: International Symposium on Biomedical Imaging
– volume: 57
  start-page: 614
  year: 2007
  end-page: 619
  ident: b37
  article-title: Partial k-space reconstruction in single-shot diffusion-weighted echo-planar imaging
  publication-title: Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med.
– reference: Lai, Wei-Sheng, Huang, Jia-Bin, Ahuja, Narendra, Yang, Ming-Hsuan, 2017. Deep laplacian pyramid networks for fast and accurate super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 624–632.
– volume: 185
  start-page: 793
  year: 2019
  end-page: 801
  ident: b2
  article-title: Challenges in pediatric neuroimaging
  publication-title: NeuroImage
– start-page: 111
  year: 2019
  end-page: 119
  ident: b32
  article-title: Self-supervised learning of inverse problem solvers in medical imaging
  publication-title: MICCAI Workshop on Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data
– volume: 39
  start-page: 377
  year: 2019
  end-page: 386
  ident: b15
  article-title: K-space deep learning for accelerated MRI
  publication-title: IEEE Trans. Med. Imaging
– start-page: 514
  year: 2016
  end-page: 517
  ident: b44
  article-title: Accelerating magnetic resonance imaging via deep learning
  publication-title: International Symposium on Biomedical Imaging
– volume: 10
  start-page: 154
  year: 1991
  end-page: 163
  ident: b29
  article-title: Homodyne detection in magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 81
  year: 2020
  ident: b51
  article-title: A comparative study of CNN-based super-resolution methods in MRI reconstruction and its beyond
  publication-title: Signal Process., Image Commun.
– volume: 19
  start-page: 123
  year: 2018
  end-page: 137
  ident: b13
  article-title: Imaging structural and functional brain development in early childhood
  publication-title: Nature Rev. Neurosci.
– volume: 27
  start-page: 1409
  year: 2022
  end-page: 1418
  ident: b59
  article-title: Blind super-resolution of 3D MRI via unsupervised domain transformation
  publication-title: IEEE J. Biomed. Heal. Inform.
– volume: 21
  start-page: 3106
  year: 2019
  end-page: 3121
  ident: b48
  article-title: Deep learning for single image super-resolution: A brief review
  publication-title: IEEE Trans. Multimed.
– volume: 206
  year: 2020
  ident: b11
  article-title: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
  publication-title: NeuroImage
– volume: vol. 10949
  start-page: 21
  year: 2019
  end-page: 27
  ident: b49
  article-title: Non-learning based deep parallel MRI reconstruction
  publication-title: SPIE Medical Imaging
– volume: 27
  start-page: 1190
  year: 2020
  end-page: 1194
  ident: b22
  article-title: Dual back-projection-based internal learning for blind super-resolution
  publication-title: IEEE Signal Process. Lett.
– start-page: 42
  year: 2023
  end-page: 51
  ident: b40
  article-title: Robust unsupervised super-resolution of infant MRI via dual-modal deep image prior
  publication-title: MICCAI Workshop on Machine Learning in Medical Imaging
– volume: 34
  start-page: 2459
  year: 2015
  end-page: 2466
  ident: b33
  article-title: LRTV: MR image super-resolution with low-rank and total variation regularizations
  publication-title: IEEE Trans. Med. Imaging
– volume: 43
  start-page: 3365
  year: 2020
  end-page: 3387
  ident: b43
  article-title: Deep learning for image super-resolution: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 403
  year: 2023
  end-page: 414
  ident: b26
  article-title: An unsupervised framework for joint MRI super resolution and Gibbs artifact removal
  publication-title: International Conference on Information Processing in Medical Imaging
– start-page: 7715
  year: 2019
  end-page: 7719
  ident: b28
  article-title: Image restoration using total variation regularized deep image prior
  publication-title: International Conference on Acoustics, Speech and Signal Processing
– volume: 2021
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121293_b58
  article-title: Reference-driven undersampled MR image reconstruction using wavelet sparsity-constrained deep image prior
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/8865582
– start-page: 739
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121293_b6
  article-title: Brain MRI super resolution using 3D deep densely connected neural networks
– volume: 43
  start-page: 3365
  issue: 10
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121293_b43
  article-title: Deep learning for image super-resolution: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2982166
– volume: 27
  start-page: 1409
  issue: 3
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121293_b59
  article-title: Blind super-resolution of 3D MRI via unsupervised domain transformation
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2022.3232511
– volume: 23
  start-page: 684
  issue: 2
  year: 2013
  ident: 10.1016/j.neuroimage.2025.121293_b46
  article-title: Gradient magnitude similarity deviation: A highly efficient perceptual image quality index
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2293423
– ident: 10.1016/j.neuroimage.2025.121293_b17
  doi: 10.1109/CVPR.2017.243
– start-page: 553
  year: 2016
  ident: 10.1016/j.neuroimage.2025.121293_b21
  article-title: Self super-resolution for magnetic resonance images
– volume: 81
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121293_b51
  article-title: A comparative study of CNN-based super-resolution methods in MRI reconstruction and its beyond
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2019.115701
– ident: 10.1016/j.neuroimage.2025.121293_b23
  doi: 10.1109/CVPR.2017.618
– volume: vol. 10949
  start-page: 21
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121293_b49
  article-title: Non-learning based deep parallel MRI reconstruction
– volume: 27
  start-page: 1190
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121293_b22
  article-title: Dual back-projection-based internal learning for blind super-resolution
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.3005043
– volume: 130
  start-page: 885
  issue: 4
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121293_b34
  article-title: On measuring and controlling the spectral bias of the deep image prior
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01572-7
– volume: 48
  start-page: 1197
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121293_b19
  article-title: Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-018-4116-x
– volume: 10
  start-page: 489
  issue: 1
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121293_b5
  article-title: A paired dataset of T1-and T2-weighted MRI at 3 Tesla and 7 Tesla
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02400-y
– year: 2022
  ident: 10.1016/j.neuroimage.2025.121293_b27
– volume: 2
  start-page: 168
  year: 1994
  ident: 10.1016/j.neuroimage.2025.121293_b3
  article-title: Two deterministic half-quadratic regularization algorithms for computed imaging
– volume: 42
  start-page: 6919
  issue: 12
  year: 2015
  ident: 10.1016/j.neuroimage.2025.121293_b12
  article-title: Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI
  publication-title: Med. Phys.
  doi: 10.1118/1.4935149
– volume: 118
  start-page: 584
  year: 2015
  ident: 10.1016/j.neuroimage.2025.121293_b39
  article-title: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.06.018
– ident: 10.1016/j.neuroimage.2025.121293_b41
  doi: 10.1109/CVPR.2018.00984
– volume: 88
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121293_b7
  article-title: K-UNN: k-space interpolation with untrained neural network
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102877
– volume: 185
  start-page: 793
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121293_b2
  article-title: Challenges in pediatric neuroimaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.04.044
– ident: 10.1016/j.neuroimage.2025.121293_b8
– volume: 7
  start-page: 68290
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121293_b14
  article-title: Deep generative adversarial networks for thin-section infant MR image reconstruction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918926
– start-page: 1
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121293_b45
  article-title: Assured: A self-supervised deep decoder network for fetus brain MRI reconstruction
– volume: 49
  start-page: 662
  issue: 2
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121293_b54
  article-title: Longitudinally guided super-resolution of neonatal brain magnetic resonance images
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2786161
– year: 2021
  ident: 10.1016/j.neuroimage.2025.121293_b53
– start-page: 403
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121293_b26
  article-title: An unsupervised framework for joint MRI super resolution and Gibbs artifact removal
– volume: 65
  start-page: 1985
  issue: 9
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121293_b24
  article-title: Deep residual learning for accelerated MRI using magnitude and phase networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2821699
– volume: 34
  start-page: 2459
  issue: 12
  year: 2015
  ident: 10.1016/j.neuroimage.2025.121293_b33
  article-title: LRTV: MR image super-resolution with low-rank and total variation regularizations
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2437894
– start-page: 42
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121293_b40
  article-title: Robust unsupervised super-resolution of infant MRI via dual-modal deep image prior
– volume: 99
  start-page: 133
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121293_b52
  article-title: Simultaneous single-and multi-contrast super-resolution for brain MRI images based on a convolutional neural network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.010
– volume: 7
  start-page: 426
  issue: 2
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121293_b18
  article-title: Unsupervised MRI super resolution using deep external learning and guided residual dense network with multimodal image priors
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2022.3215137
– volume: 79
  start-page: 124
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121293_b4
  article-title: Real-world single image super-resolution: A brief review
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.09.005
– start-page: 514
  year: 2016
  ident: 10.1016/j.neuroimage.2025.121293_b44
  article-title: Accelerating magnetic resonance imaging via deep learning
– volume: 81
  start-page: 439
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121293_b1
  article-title: Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27420
– start-page: 7715
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121293_b28
  article-title: Image restoration using total variation regularized deep image prior
– volume: 21
  start-page: 3106
  issue: 12
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121293_b48
  article-title: Deep learning for single image super-resolution: A brief review
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2919431
– year: 2022
  ident: 10.1016/j.neuroimage.2025.121293_b31
  article-title: Untrained neural network priors for inverse imaging problems: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3204527
– volume: 57
  start-page: 614
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2025.121293_b37
  article-title: Partial k-space reconstruction in single-shot diffusion-weighted echo-planar imaging
  publication-title: Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med.
  doi: 10.1002/mrm.21132
– ident: 10.1016/j.neuroimage.2025.121293_b50
  doi: 10.1109/CVPRW.2018.00113
– start-page: 78
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121293_b9
  article-title: Sparse representation based super-resolution of MRI images with non-local total variation regularization
– start-page: 197
  year: 2017
  ident: 10.1016/j.neuroimage.2025.121293_b30
  article-title: Brain MRI super-resolution using deep 3D convolutional networks
– volume: 206
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121293_b11
  article-title: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116324
– volume: 185
  start-page: 891
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121293_b16
  article-title: The UNC/UMN baby connectome project (BCP): An overview of the study design and protocol development
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.03.049
– start-page: 111
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121293_b32
  article-title: Self-supervised learning of inverse problem solvers in medical imaging
– ident: 10.1016/j.neuroimage.2025.121293_b35
  doi: 10.1109/CVPR.2018.00329
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2025.121293_b42
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 19
  start-page: 123
  issue: 3
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121293_b13
  article-title: Imaging structural and functional brain development in early childhood
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn.2018.1
– year: 2021
  ident: 10.1016/j.neuroimage.2025.121293_b47
– ident: 10.1016/j.neuroimage.2025.121293_b36
  doi: 10.1145/3442188.3445932
– volume: 2016
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2025.121293_b38
  article-title: Edge and contrast preserving in total variation image denoising
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-016-0315-5
– volume: 40
  start-page: 805
  issue: 3
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121293_b57
  article-title: SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3037187
– start-page: 100
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121293_b56
  article-title: A deep learning based anti-aliasing self super-resolution algorithm for MRI
– volume: 2
  start-page: 480
  issue: 4
  year: 2016
  ident: 10.1016/j.neuroimage.2025.121293_b20
  article-title: A general framework for compressed sensing and parallel MRI using annihilating filter based low-rank Hankel matrix
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2016.2601296
– volume: 10
  start-page: 154
  issue: 2
  year: 1991
  ident: 10.1016/j.neuroimage.2025.121293_b29
  article-title: Homodyne detection in magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.79473
– volume: 120
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121293_b10
  article-title: SegSRGAN: Super-resolution and segmentation using generative adversarial networks—Application to neonatal brain MRI
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103755
– start-page: 365
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121293_b55
  article-title: Self super-resolution for magnetic resonance images using deep networks
– volume: 39
  start-page: 377
  issue: 2
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121293_b15
  article-title: K-space deep learning for accelerated MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2927101
– year: 2000
  ident: 10.1016/j.neuroimage.2025.121293_b25
SSID ssj0009148
Score 2.4841456
Snippet Acquiring high-resolution (HR) MR images of infant brains is challenging due to lengthy scan times and limited subject compliance. Image super-resolution (SR)...
AbstractAcquiring high-resolution (HR) MR images of infant brains is challenging due to lengthy scan times and limited subject compliance. Image...
Acquiring high-resolution (HR) MRI of infant brains is challenging due to lengthy scan times and limited subject compliance. Image super-resolution (SR)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 121293
SubjectTerms Babies
Brain
Brain - diagnostic imaging
Female
Humans
Image Processing, Computer-Assisted - methods
Infant
Infant brain MRI
Infant, Newborn
Infants
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Neuroimaging
Neuroimaging - methods
Pediatrics
Radiology/Diagnostic Imaging
Random variables
Trustworthy reconstruction
Unsupervised Machine Learning
Unsupervised single-image super-resolution
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrYS4oPIOFBQkrtYmfiUWB9RWrbag7QFYqTcrjh0aBNlVs_v_GSdO2lAOlTjGsWPn83jmm3g8AfhQJNbRonIkQ_JAeE4dKdANITlqwtJTdln4w8nLC7lY8c-X4nIPToazMD6sMuj-Xqd32jqUzAOa801dz78hM0BzgwxF-K0lyR_APmVKihnsH51_WVzc5N5NeX8iTjDiG4SAnj7Mq0sbWf_GxYvOIhU-2wJVbGKlumT-E2N1l4z-HVN5y0idHcDjwC7jo_4FnsCea57Cw2XYP38Gn1ZNu9t49dA6G_vPBL8c6YYVd-UEne8gizGy2RjFD5GPjf-PRLz8ev4cVmen308WJPxCgZSSsS2xwifgUwZZAHWJlabMSpnzUjplE2WFQPfDMbReBi2_sSV6F6pMqTWiMlwWFXsBs2bduFcQl5XJeMULic_klcUqrDIWdQBjRubWRZAOkOlNnylDDyFkP_UNzNrDrHuYIzj22I71fa7rrmB9_UOHydbKIGmslEtMkXHs3F_n3FRJgXZGUh6BGmZGD8dJUQHig-p7DCD7V1vXhpXc6lS3VCf6jrRF8HFsORHYe_Z7OIiQHrtilDEu84TRCN6Pt3G5-z2conHrna9DGXJEHEwEL3uJG9FD7i1wPkQE-UQWJ_BO7zT1VZdSPKU0y7Dt6_96qzfwyF_5T-6pOITZ9nrn3iJn25p3YU3-AYC9QIg
  priority: 102
  providerName: Elsevier
Title Unsupervised single-image super-resolution for infant brain MRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811925002964
https://www.clinicalkey.es/playcontent/1-s2.0-S1053811925002964
https://dx.doi.org/10.1016/j.neuroimage.2025.121293
https://www.ncbi.nlm.nih.gov/pubmed/40550405
https://www.proquest.com/docview/3233468032
https://www.proquest.com/docview/3223635053
https://pubmed.ncbi.nlm.nih.gov/PMC12277040
https://doaj.org/article/9b416f9e0ba74d589b4184bf0aeb1624
Volume 317
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BkRAXxJuUsgoSV4PjV2JxQAVRbUHbA7BSb5Yd22IRpFWze-W3M86LBpDogeMmduz9ZsbzTTwZAzy31AdmYyAlkgciKhaIxTCEVLgS1omyK5s-Tl6dqOVavD-Vp5eO-ko5YX154B64l9ohZYg6UGdL4WWVflfCRWpxlVGsqwRKNR2DqbHcLrL8IW-nz-bqqkNuvqONYkzIZCqqwDSfOaOuZv_MJ_3JOX9Pnbzki47uwO2BROaH_eTvwrXQ3IObq2Gb_D68Xjft7jytAm3weXob8C2Qblp5d51gjD2oXI6kNUctQ4Bzl46LyFcfjx_A-ujd57dLMpyUQGrF-ZYgLkVJtUNnzwL1ytVlrSpRq6A91V5KjDICRyfl0ME7X2MQoeuCeSejE8pG_hD2mrMmPIa8jq4UUViFzxTRYxMenUdT59ypyocMihEyc94XxDBjpthX8wtmk2A2PcwZvEnYTu1TSevuAgraDII2_xJ0BnqUjBm_GsV1Dh-0ucIEyr_1De1gsK0pTMsMNZ-QbiKHQdor036lwlFfTT0HTtJzjSuOezCqkJmG4oxzoSrKWQbPptto1WmrxjbhbJfaMI5UECeTwaNe4yb0kGJLlIfMoJrp4gze-Z1m86WrHF4wVpbYd_9_COQJ3Ep_Nb1gL-QB7G0vduEpMrStW8D1Fz-KBdw4PP6wPFl0pvkTWnY9Qw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXxLuBAkHiajbxK7E4IKiottDtAbpSb1YcOxBUsqtm98pvZ5w4KaEcKnFcP2Lv5_HMN_F4AvC6SKyjReVIhuSB8Jw6UqAbQnLUhKWn7LLwl5MXJ3K-5J_OxNkOHAx3YXxYZdD9vU7vtHUomQU0Z-u6nn1FZoDmBhmK8EdLkt-Am1ywzMf1vfl1GeehUt7fhxOM-OYhnKcP8uqSRtY_ceuiq0iFz7VAFZvYqC6V_8RUXaWif0dU_mGiDu_B3cAt4_f99O_DjmsewK1FOD1_CO-WTbtde-XQOhv7lwTnjnTTirtygq53kMQYuWyMwoe4x8Z_RSJefDl6BMvDj6cHcxI-oEBKydiGWOHT7ymDHIC6xEpTZqXMeSmdsomyQqDz4RjaLoN239gSfQtVptQaURkui4o9ht1m1bg9iMvKZLzihcRn8spiE1YZixqAMSNz6yJIB8j0us-ToYcAsh_6EmbtYdY9zBF88NiO7X2m665gdfFNh6XWyiBlrJRLTJFxHNz_zrmpkgKtjKQ8AjWsjB4uk6L6wwfV15hA9q--rg37uNWpbqlO9BVZi-Dt2HMirtccd38QIT0OxShjXOYJoxG8Gqtxs_sTnKJxq61vQxkyRJxMBE96iRvRQ-YtcD1EBPlEFifwTmua-nuXUDylNMuw79P_-lcv4fb8dHGsj49OPj-DO77Gv3xPxT7sbi627jmyt4150e3O38kLQlE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+single-image+super-resolution+for+infant+brain+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Tsai%2C+Cheng+Che&rft.au=Chen%2C+Xiaoyang&rft.au=Ahmad%2C+Sahar&rft.au=Yap%2C+Pew-Thian&rft.date=2025-08-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=317&rft.spage=121293&rft.epage=121293&rft_id=info:doi/10.1016%2Fj.neuroimage.2025.121293&rft_id=info%3Apmid%2F40550405&rft.externalDocID=PMC12277040
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10538119%2FS1053811925X00100%2Fcov150h.gif