Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages

Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 16; pp. 5925 - 5926
Main Authors Schroder, Kate, Irvine, Katharine M., Taylor, Martin S., Bokil, Nilesh J., Le Cao, Kim-Anh, Masterman, Kelly-Anne, Labzin, Larisa I., Semple, Colin A., Kapetanovic, Ronan, Fairbairn, Lynsey, Akalin, Altuna, Faulkner, Geoffrey J., Baillie, John Kenneth, Gongora, Milena, Daub, Carsten O., Kawaji, Hideya, McLachlan, Geoffrey J., Goldman, Nick, Grimmond, Sean M., Carninci, Piero, Suzuki, Harukazu, Hayashizaki, Yoshihide, Lenhard, Boris, Hume, David A., Sweet, Matthew J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 17.04.2012
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1110156109

Cover

Loading…
Abstract Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)–4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5′ ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as “divergently regulated”). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular “inputs” such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional “outputs” such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.
AbstractList Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)-4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change. [PUBLICATION ABSTRACT]
Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)–4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.
Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)-4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7R alpha ) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.
Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)–4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5′ ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as “divergently regulated”). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular “inputs” such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional “outputs” such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change. We have performed the most stringent human–mouse comparison of innate immune gene regulation and promoter architecture reported to date, as far as we are aware. Importantly, our findings show that transcriptional plasticity in response to a stimulus within a species and variability between species are intrinsically linked. The capacity for expression variation in both cases is associated with specific promoter properties. Our analyses indicate that dynamically regulated genes, controlled by complex and highly conserved promoters, are exquisitely sensitive to evolutionary changes. Functional analyses of TLR4 target genes uniquely regulated in human macrophages are likely to provide important insights into human immunology that are not able to be observed in mouse models of infectious and inflammatory disease. We next hypothesized that interspecies evolution in gene regulation would be associated with specific promoter architectural features. Indeed, we found that, compared with non-DR genes, DR gene promoters were significantly enriched for the presence of one regulatory feature, the TATA box motif, and significantly depleted for another, CpG islands. Work from others has associated such TATA-containing, CpG-island-less promoter architectures with complex promoters that integrate a high degree of regulatory input. Such associations are consistent with our own data. TATA enrichment and CpG island depletion were also associated with the magnitude of change in gene expression over the course of a response to LPS stimulation (i.e., a large dynamic range). In keeping with this, a gene's dynamic range of expression was also clearly associated with regulatory divergence, such that the most highly regulated genes were among the most evolvable, and vice versa. In total, these results indicate that complex, sensitive promoters confer an inherent plasticity in gene transcription, in the magnitude of mRNA response to LPS and in expression divergence between species ( Fig. P1 ). We precisely defined macrophage transcription start sites (TSSs) by using genome-wide Cap Analysis of Gene Expression ( 3 , 4 ), a method that identifies mRNA 5′ ends by deep sequencing of transcript fragments (i.e., tags) trapped by the 5′ cap modification. This was performed in parallel with expression profiling of LPS-regulated genes by using our focused, custom microarray ( Fig. P1 ). Cap Analysis of Gene Expression analysis yielded 5.3 million human macrophage and 2.6 million mouse macrophage tags that define TSSs, and therefore proximal promoter regions. Hypothesizing that evolution in these gene-regulatory sequences drives regulatory divergence, we analyzed human–mouse sequence conservation in promoters of DR vs. non-DR genes. Several approaches confirmed the very surprising finding that promoters driving DR genes are demonstrably more conserved than non-DR promoters: ( i ) the region surrounding DR gene TSSs exhibited a greater fraction of nucleotides that align between human and mouse, compared with non-DR genes; ( ii ) DR genes were significantly associated with conserved, noncoding regions compared with non-DR genes; and ( iii ) core promoter sequences of DR genes have undergone fewer nucleotide substitutions than non-DR genes over the approximately 70 million years since humans and mice diverged. Together, these data indicate that DR promoter sequences are under greater evolutionary constraint than those of non-DR genes. This in turn supports the conclusion the promoters controlling DR gene expression are highly complex, that is, they contain more functional sequences that have been conserved throughout evolution ( Fig. P1 ). Specific classes of molecules appeared to be under differential evolutionary pressure. Intracellular factors that participate in the TLR signaling pathway were generally conserved in their regulation, whereas secreted molecules and membrane proteins, such as the TLRs themselves, showed widespread regulatory divergence. Functional consequences of divergent gene regulation were confirmed by demonstrating that LPS pretreatment boosts subsequent TLR6 responses in mouse but not in human macrophages, in keeping with mouse-specific TLR6 induction by LPS. We also validated human-specific induction of the IL-7 receptor, and secretion of the cytokines CCL20 and CXCL13, which are likely to further modulate immune defense in vivo. Of particular interest, given the evolutionary arms race between host and pathogen, our analyses identified regulatory divergence in orthologues with antimicrobial functions (e.g., LCN2 and P2X7R ). To determine the extent of interspecies regulatory divergence in this setting, we designed custom microarray platforms that enable interspecies comparisons (human vs. mouse) of LPS-regulated gene (mRNA) expression. We adopted a stringent approach to identifying regulatory divergence, requiring any gene classified as “divergently regulated” (DR) to exhibit significantly divergent regulation between human macrophages and two different mouse macrophage populations. We directly compared regulation of “orthologous” human and mouse genes, that is, pairs of genes in the two species that evolved from the same ancestral gene. We found that 23.9% (598 of 2,505) of LPS-regulated orthologous gene pairs exhibited significant regulatory divergence between species, whereas significant regulatory conservation was apparent for 30.3% (759 of 2,505) of orthologues. Interestingly, we demonstrate that human-specific LPS-target genes are concordantly regulated in primary pig macrophages. Macrophages are cells of the immune system that use pattern-recognition receptors such as Toll-like receptors (TLRs) to recognize distinct microbial products. For example, TLR4 detects LPS, a cell-wall component of Gram-negative bacteria, triggering a signaling cascade that leads to changes in gene expression, activating immune defenses ( 1 ). Although the TLR4 signaling pathway is broadly conserved between humans and mice, several examples of divergent gene regulation downstream of TLR stimulation have been described ( 2 ). Moreover, humans are more sensitive to LPS-mediated toxicity than mice ( 2 ), suggesting fundamental differences in the species’ responses to this bacterial stimulus. However, the extent of regulatory divergence and the underlying evolutionary mechanisms have not been investigated. Mice are widely used as experimental models for human immunology, but these species are distant relatives. Moreover, as rapidly evolving pathogens exert intense pressure on the immune system to coevolve, substantial differences between these species’ immune systems are likely. To help address these differences, we compared regulated gene expression in human and mouse immune cells in response to the archetypal inflammatory stimulus lipopolysaccharide (LPS). We identified marked divergence in gene regulation between species ( http://www.macgate.qfab.org/index.htm ), and found that dynamically regulated genes are exquisitely sensitive to evolutionary changes. Our study maps the strengths and weaknesses of the mouse model and identifies human-specific responses as therapeutic targets for infectious and inflammatory diseases.
Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)-4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)-4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.
Author Taylor, Martin S.
Carninci, Piero
Labzin, Larisa I.
Masterman, Kelly-Anne
Schroder, Kate
Baillie, John Kenneth
Le Cao, Kim-Anh
Suzuki, Harukazu
McLachlan, Geoffrey J.
Gongora, Milena
Hayashizaki, Yoshihide
Daub, Carsten O.
Sweet, Matthew J.
Grimmond, Sean M.
Irvine, Katharine M.
Semple, Colin A.
Lenhard, Boris
Bokil, Nilesh J.
Kapetanovic, Ronan
Faulkner, Geoffrey J.
Goldman, Nick
Akalin, Altuna
Kawaji, Hideya
Hume, David A.
Fairbairn, Lynsey
Author_xml – sequence: 1
  givenname: Kate
  surname: Schroder
  fullname: Schroder, Kate
– sequence: 2
  givenname: Katharine M.
  surname: Irvine
  fullname: Irvine, Katharine M.
– sequence: 3
  givenname: Martin S.
  surname: Taylor
  fullname: Taylor, Martin S.
– sequence: 4
  givenname: Nilesh J.
  surname: Bokil
  fullname: Bokil, Nilesh J.
– sequence: 5
  givenname: Kim-Anh
  surname: Le Cao
  fullname: Le Cao, Kim-Anh
– sequence: 6
  givenname: Kelly-Anne
  surname: Masterman
  fullname: Masterman, Kelly-Anne
– sequence: 7
  givenname: Larisa I.
  surname: Labzin
  fullname: Labzin, Larisa I.
– sequence: 8
  givenname: Colin A.
  surname: Semple
  fullname: Semple, Colin A.
– sequence: 9
  givenname: Ronan
  surname: Kapetanovic
  fullname: Kapetanovic, Ronan
– sequence: 10
  givenname: Lynsey
  surname: Fairbairn
  fullname: Fairbairn, Lynsey
– sequence: 11
  givenname: Altuna
  surname: Akalin
  fullname: Akalin, Altuna
– sequence: 12
  givenname: Geoffrey J.
  surname: Faulkner
  fullname: Faulkner, Geoffrey J.
– sequence: 13
  givenname: John Kenneth
  surname: Baillie
  fullname: Baillie, John Kenneth
– sequence: 14
  givenname: Milena
  surname: Gongora
  fullname: Gongora, Milena
– sequence: 15
  givenname: Carsten O.
  surname: Daub
  fullname: Daub, Carsten O.
– sequence: 16
  givenname: Hideya
  surname: Kawaji
  fullname: Kawaji, Hideya
– sequence: 17
  givenname: Geoffrey J.
  surname: McLachlan
  fullname: McLachlan, Geoffrey J.
– sequence: 18
  givenname: Nick
  surname: Goldman
  fullname: Goldman, Nick
– sequence: 19
  givenname: Sean M.
  surname: Grimmond
  fullname: Grimmond, Sean M.
– sequence: 20
  givenname: Piero
  surname: Carninci
  fullname: Carninci, Piero
– sequence: 21
  givenname: Harukazu
  surname: Suzuki
  fullname: Suzuki, Harukazu
– sequence: 22
  givenname: Yoshihide
  surname: Hayashizaki
  fullname: Hayashizaki, Yoshihide
– sequence: 23
  givenname: Boris
  surname: Lenhard
  fullname: Lenhard, Boris
– sequence: 24
  givenname: David A.
  surname: Hume
  fullname: Hume, David A.
– sequence: 25
  givenname: Matthew J.
  surname: Sweet
  fullname: Sweet, Matthew J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22451944$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-04387254$$DView record in HAL
BookMark eNqNksFv0zAUxi00xLrBmRNgiQscstmxndiXSVM1GFIlLuNsuc5Lm5LYwU4K--_n0NJBD4APtmT_vs_Pz98ZOnHeAUIvKbmgpGSXvTPxglJKqCgoUU_QLM00K7giJ2hGSF5mkuf8FJ3FuCGEKCHJM3Sa51xQxfkMfZ97FyFszdB4h42rcNVsIazAWcCNw3e-bbO2-Qo4gIV-8AHzLMBqbM0AFU4cYPjRB4hxMkiKPjSdCfd4PXbG4eQVx4g7P0bAnbHB92uzgvgcPa1NG-HFfj1HXz7c3M1vs8Xnj5_m14vMFowNmZXUcFsTSYSSUEtZV4oVyihai6UhlnFGlrmSomalXdYiZwZsvqw4LyWnOWXn6Grn24_LDioLbgim1fsitTeN_vPENWu98lvNGKeETwbvdwbrI9nt9UJPe4QzWeaCbyf23f6y4L-NEAfdNdFC2xoHqQGaqjTKkgrxb5TQUhVEqvI_0PTNKpUrE_r2CN34MbjU4ImSBS-U4Il6_XtPDq_6lYoEXO6A9F0xBqgPCCV6yp2ecqcfc5cU4khhm-FnplJTm_Yvujf7UqaDx1uUpoW-2dXyakdsYgrfAeFUSMl5wR4A_gjwbQ
CitedBy_id crossref_primary_10_1021_acsbiomaterials_2c00373
crossref_primary_10_1042_BST20200987
crossref_primary_10_3724_abbs_2024013
crossref_primary_10_1016_j_it_2021_10_007
crossref_primary_10_3389_fimmu_2019_01283
crossref_primary_10_1016_j_molimm_2016_11_009
crossref_primary_10_1242_dmm_049266
crossref_primary_10_1161_ATVBAHA_117_309195
crossref_primary_10_1016_j_metabol_2018_01_014
crossref_primary_10_1038_srep12524
crossref_primary_10_3390_ijms23031496
crossref_primary_10_1038_s41590_024_02024_3
crossref_primary_10_3390_vaccines13010033
crossref_primary_10_3389_fimmu_2020_593300
crossref_primary_10_1080_21592799_2016_1140615
crossref_primary_10_1007_s00439_024_02642_9
crossref_primary_10_1007_s00109_015_1286_y
crossref_primary_10_1016_j_smim_2015_02_001
crossref_primary_10_1186_1471_2164_14_581
crossref_primary_10_3389_fimmu_2020_01964
crossref_primary_10_1186_1471_2164_14_332
crossref_primary_10_1016_j_dci_2014_07_001
crossref_primary_10_1177_1753425919855420
crossref_primary_10_1126_scisignal_aao5820
crossref_primary_10_3389_fgene_2019_01355
crossref_primary_10_1189_jlb_4VMA0716_316R
crossref_primary_10_3389_fimmu_2019_02031
crossref_primary_10_1016_j_neures_2024_01_004
crossref_primary_10_3389_fimmu_2022_912899
crossref_primary_10_1111_evj_12584
crossref_primary_10_1186_s12967_016_1111_6
crossref_primary_10_1016_j_jsbmb_2020_105590
crossref_primary_10_3390_ijms24076234
crossref_primary_10_4049_jimmunol_1300365
crossref_primary_10_3389_fimmu_2017_01871
crossref_primary_10_1016_j_chembiol_2024_04_012
crossref_primary_10_1016_j_biologicals_2012_10_005
crossref_primary_10_2139_ssrn_4020525
crossref_primary_10_1165_rcmb_2022_0237ED
crossref_primary_10_1016_j_jneuroim_2021_577496
crossref_primary_10_1021_nn402145t
crossref_primary_10_1038_s41467_023_40937_z
crossref_primary_10_3390_cells12020227
crossref_primary_10_1016_j_imbio_2012_07_020
crossref_primary_10_1016_j_freeradbiomed_2019_04_024
crossref_primary_10_26508_lsa_202301908
crossref_primary_10_1111_bph_15311
crossref_primary_10_1016_j_bcp_2018_02_010
crossref_primary_10_18632_oncotarget_10889
crossref_primary_10_1096_fj_201500061
crossref_primary_10_1128_mcb_00452_21
crossref_primary_10_1128_MCB_01168_12
crossref_primary_10_1080_09205063_2016_1155881
crossref_primary_10_1016_j_it_2012_11_001
crossref_primary_10_1016_j_cyto_2012_11_014
crossref_primary_10_1038_s41586_018_0657_2
crossref_primary_10_1007_s10875_012_9844_3
crossref_primary_10_1038_srep25520
crossref_primary_10_1038_s41416_019_0441_6
crossref_primary_10_1016_j_micpath_2020_104234
crossref_primary_10_1002_JLB_3MR0720_513R
crossref_primary_10_1159_000511260
crossref_primary_10_3389_fimmu_2021_700009
crossref_primary_10_4049_jimmunol_1502336
crossref_primary_10_1189_jlb_3CE0314_163R
crossref_primary_10_1126_science_aad5497
crossref_primary_10_4049_jimmunol_1301355
crossref_primary_10_1038_cti_2015_46
crossref_primary_10_1189_jlb_2AB0815_339R
crossref_primary_10_1016_j_vetmic_2016_05_013
crossref_primary_10_1016_j_celrep_2018_07_027
crossref_primary_10_1016_j_cytogfr_2013_03_007
crossref_primary_10_1038_s41588_023_01421_y
crossref_primary_10_1055_s_0040_1717088
crossref_primary_10_1016_j_biopha_2023_114298
crossref_primary_10_1152_ajprenal_00063_2018
crossref_primary_10_1002_advs_202104372
crossref_primary_10_1016_j_expneurol_2017_08_015
crossref_primary_10_1111_evj_13341
crossref_primary_10_1002_JLB_MR0519_143R
crossref_primary_10_1016_j_ekir_2022_11_015
crossref_primary_10_1038_s41467_024_45615_2
crossref_primary_10_1002_trc2_12114
crossref_primary_10_1007_s11011_019_00399_z
crossref_primary_10_1038_cmi_2016_11
crossref_primary_10_1016_j_intimp_2023_109852
crossref_primary_10_1038_icb_2012_40
crossref_primary_10_1007_s12031_021_01815_9
crossref_primary_10_1016_j_addr_2017_05_010
crossref_primary_10_1038_s41467_020_16889_z
crossref_primary_10_1101_cshperspect_a028902
crossref_primary_10_1111_ajt_13749
crossref_primary_10_1016_j_mib_2013_03_002
crossref_primary_10_3389_fimmu_2014_00316
crossref_primary_10_1186_s12915_023_01590_6
crossref_primary_10_3390_genes11060631
crossref_primary_10_1371_journal_pgen_1006641
crossref_primary_10_1080_14728222_2019_1676416
crossref_primary_10_1002_eji_201545655
crossref_primary_10_1038_icb_2017_64
crossref_primary_10_1002_JLB_2AB0420_151RR
crossref_primary_10_1371_journal_pone_0118017
crossref_primary_10_1146_annurev_cancerbio_030419_033333
crossref_primary_10_1083_jcb_201707027
crossref_primary_10_1038_s41598_020_70248_y
crossref_primary_10_1016_j_isci_2023_107435
crossref_primary_10_1080_08830185_2018_1506780
crossref_primary_10_1371_journal_pone_0273810
crossref_primary_10_1007_s43032_022_00934_x
crossref_primary_10_1186_1471_2164_14_632
crossref_primary_10_1038_s41589_019_0277_7
crossref_primary_10_1084_jem_20201452
crossref_primary_10_3389_fimmu_2018_02246
crossref_primary_10_1038_s41598_019_40503_y
crossref_primary_10_1016_j_dci_2019_03_020
crossref_primary_10_1016_j_semcancer_2018_02_010
crossref_primary_10_1155_2015_909406
crossref_primary_10_1038_srep28952
crossref_primary_10_1038_ni_3324
crossref_primary_10_1128_JVI_01813_16
crossref_primary_10_1101_gr_190546_115
crossref_primary_10_1161_HYPERTENSIONAHA_119_13469
crossref_primary_10_1038_s41577_024_01080_y
crossref_primary_10_1016_j_isci_2020_101770
crossref_primary_10_1097_CCE_0000000000000126
crossref_primary_10_3390_ani9070399
crossref_primary_10_1002_wrna_1441
crossref_primary_10_1007_s40264_015_0350_4
crossref_primary_10_1016_j_immuni_2014_01_006
crossref_primary_10_1016_j_celrep_2022_110769
crossref_primary_10_1186_s12859_023_05198_z
crossref_primary_10_1016_j_gene_2018_07_044
crossref_primary_10_1189_jlb_6HI0313_169R
crossref_primary_10_3390_ijms21197229
crossref_primary_10_1002_JLB_MA0318_112RR
crossref_primary_10_1073_pnas_2212813120
crossref_primary_10_1128_mbio_02823_23
crossref_primary_10_12688_f1000research_15274_1
crossref_primary_10_3390_v12101089
crossref_primary_10_4049_jimmunol_1502009
crossref_primary_10_4049_jimmunol_1700760
crossref_primary_10_1002_bies_201500192
crossref_primary_10_3389_fimmu_2019_02887
crossref_primary_10_1016_j_yexcr_2015_10_017
crossref_primary_10_1111_febs_14348
crossref_primary_10_1111_imr_12211
crossref_primary_10_1093_molbev_mst190
crossref_primary_10_3389_fimmu_2020_594594
crossref_primary_10_1038_s41577_025_01142_9
crossref_primary_10_4049_immunohorizons_1700073
crossref_primary_10_4049_jimmunol_1302138
crossref_primary_10_1038_nrg_2017_19
crossref_primary_10_1101_gr_255679_119
crossref_primary_10_1371_journal_pone_0054935
crossref_primary_10_1016_j_jff_2024_106198
crossref_primary_10_1371_journal_pone_0148984
crossref_primary_10_1007_s00018_024_05158_7
crossref_primary_10_3389_fphar_2016_00441
crossref_primary_10_1038_s41467_021_27245_0
crossref_primary_10_1016_j_celrep_2014_06_028
crossref_primary_10_1091_mbc_E14_10_1457
crossref_primary_10_3389_fgene_2019_01080
crossref_primary_10_3389_fimmu_2020_01426
crossref_primary_10_1186_s12859_017_1714_9
crossref_primary_10_1002_eji_202250242
crossref_primary_10_1073_pnas_1218599110
crossref_primary_10_1128_mBio_02054_21
crossref_primary_10_3389_fimmu_2018_00022
crossref_primary_10_1002_JLB_2RI1117_474R
crossref_primary_10_1038_ncomms5407
crossref_primary_10_1186_s12864_015_2111_2
crossref_primary_10_1016_j_devcel_2023_12_017
crossref_primary_10_1002_cmdc_201700270
crossref_primary_10_1016_j_it_2013_02_008
crossref_primary_10_1016_j_immuni_2015_02_001
crossref_primary_10_1107_S0907444913001558
crossref_primary_10_3389_fgene_2020_00817
crossref_primary_10_1093_hmg_ddab239
crossref_primary_10_3389_fimmu_2020_01016
crossref_primary_10_1007_s13238_013_3905_0
crossref_primary_10_1016_j_biologicals_2013_08_006
crossref_primary_10_1210_en_2013_1102
crossref_primary_10_1242_jcs_252973
crossref_primary_10_3389_fimmu_2023_1336393
crossref_primary_10_3390_biomedicines10123095
crossref_primary_10_1016_j_dci_2016_04_016
crossref_primary_10_1189_jlb_0312166
crossref_primary_10_1093_infdis_jix279
crossref_primary_10_1111_imcb_12363
crossref_primary_10_1371_journal_pone_0068306
crossref_primary_10_1161_CIRCRESAHA_115_306424
crossref_primary_10_1113_jphysiol_2014_277277
crossref_primary_10_1002_JLB_3A0617_261R
crossref_primary_10_1038_ni_2391
crossref_primary_10_26508_lsa_201800237
crossref_primary_10_1084_jem_20211191
crossref_primary_10_1007_s00018_021_04041_z
crossref_primary_10_1016_j_stemcr_2021_04_010
crossref_primary_10_1038_s41565_021_00988_z
crossref_primary_10_1038_s41577_024_01075_9
crossref_primary_10_4049_jimmunol_1401982
crossref_primary_10_1016_j_tins_2024_05_009
crossref_primary_10_1016_j_intimp_2017_11_032
crossref_primary_10_3390_pharmaceutics14122557
crossref_primary_10_1111_pim_12728
crossref_primary_10_1038_s41467_022_31892_2
crossref_primary_10_1371_journal_pone_0243807
crossref_primary_10_1016_j_immuni_2014_06_008
crossref_primary_10_1042_BSR20210455
crossref_primary_10_1016_j_smim_2016_10_004
crossref_primary_10_1016_j_bbrc_2014_01_069
crossref_primary_10_1128_JVI_03576_14
crossref_primary_10_3389_fcell_2020_00661
crossref_primary_10_1016_j_trsl_2016_08_001
crossref_primary_10_3389_fvets_2024_1428713
crossref_primary_10_1016_j_bcp_2020_113899
crossref_primary_10_1016_j_dci_2017_06_007
crossref_primary_10_1128_microbiolspec_MCHD_0024_2015
crossref_primary_10_3390_immuno1010001
crossref_primary_10_3389_fimmu_2015_00370
crossref_primary_10_1016_j_it_2018_11_007
crossref_primary_10_1186_s12865_017_0223_y
crossref_primary_10_1038_mtm_2014_10
crossref_primary_10_1002_JLB_4RI0917_358R
crossref_primary_10_1371_journal_pcbi_1003017
crossref_primary_10_1002_advs_202201452
crossref_primary_10_1016_j_imbio_2013_07_001
crossref_primary_10_1084_jem_20172222
crossref_primary_10_1128_AAC_01876_15
crossref_primary_10_4103_1673_5374_293134
crossref_primary_10_1111_imm_13708
crossref_primary_10_1007_s11010_024_05099_6
crossref_primary_10_3390_ijms21134733
crossref_primary_10_1002_eji_201545943
crossref_primary_10_4049_jimmunol_2100136
crossref_primary_10_1007_s11481_020_09927_6
crossref_primary_10_1016_j_neubiorev_2021_09_018
crossref_primary_10_1124_jpet_115_229328
Cites_doi 10.1016/j.cytogfr.2008.11.006
10.1073/pnas.0812009106
10.2144/000112814
10.1016/j.immuni.2008.12.003
10.1038/ng1291
10.1371/journal.pbio.0020132
10.1126/science.1140247
10.1038/nature08872
10.1016/j.ygeno.2006.09.010
10.4049/jimmunol.175.10.6570
10.1164/rccm.200607-970OC
10.1126/science.1090005
10.1371/journal.pgen.1000144
10.1038/ng1819
10.4049/jimmunol.0901937
10.1097/SHK.0b013e318181a343
10.1016/j.cell.2006.02.015
10.1371/journal.pgen.0020030
10.4049/jimmunol.172.5.2731
10.1186/1745-7580-4-5
10.1038/nature01262
10.1093/molbev/msj054
10.1126/science.1077136
10.1002/bies.201000063
10.1182/blood-2004-02-0701
10.1101/gr.076059.108
10.1371/journal.pgen.1000698
10.1126/science.1179050
10.1093/molbev/msi122
10.4049/jimmunol.1102649
10.1038/nature03104
10.1038/nature04768
10.1126/science.1112014
10.1038/ni0608-575
10.1126/science.1174148
10.1038/ni1087
10.1534/genetics.108.089623
10.1016/j.immuni.2008.08.016
10.1093/infdis/167.6.1358
10.1038/ng2103
10.1073/pnas.2136655100
10.1016/j.ygeno.2007.11.003
10.1016/j.ygeno.2006.03.022
10.1002/9780470062128.ch8
10.1002/art.30493
10.1371/journal.pgen.1001249
10.1097/01.CCM.0000105581.01815.C6
10.1126/science.1186176
10.1126/science.1130738
10.1126/science.1123933
10.1038/nature06246
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 17, 2012
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 17, 2012
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7ST
7U6
7S9
L.6
1XC
5PM
DOI 10.1073/pnas.1110156109
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
Sustainability Science Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts
AGRICOLA

Genetics Abstracts

MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 5926
ExternalDocumentID PMC3341041
oai_HAL_hal_04387254v1
2639961711
22451944
10_1073_pnas_1110156109
109_16_E944
41588446
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/I024801/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/D/20251969
– fundername: Medical Research Council
  grantid: MC_U127597124
– fundername: Medical Research Council
  grantid: MC_PC_U127597124
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7ST
7U6
7S9
L.6
1XC
UMC
5PM
ID FETCH-LOGICAL-c633t-c81a4cf080598ef88fd9369a91f5ba0c3430b2985f37cbf523aec2bd447841213
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:32:48 EDT 2025
Fri May 09 12:17:44 EDT 2025
Fri Jul 11 04:44:30 EDT 2025
Fri Jul 11 07:17:03 EDT 2025
Fri Jul 11 12:21:07 EDT 2025
Mon Jun 30 08:31:21 EDT 2025
Sat May 31 02:13:27 EDT 2025
Tue Jul 01 03:39:14 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Wed Nov 11 00:30:37 EST 2020
Thu May 29 08:40:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Innate immunity
Inflammation
evolution
Transcriptional regulation
Pattern-recognition receptor
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c633t-c81a4cf080598ef88fd9369a91f5ba0c3430b2985f37cbf523aec2bd447841213
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: K.S., K.M.I., M.S.T., D.A.H., and M.J.S. designed research; K.S., K.M.I., N.J.B., K.-A.M., L.I.L., R.K., and L.F. performed research; K.S., K.M.I., M.S.T., G.J.F., M.G., C.O.D., H.K., G.J.M., N.G., S.M.G., P.C., H.S., and Y.H. contributed new reagents/analytic tools; K.S., K.M.I., M.S.T., K.-A.L.C., C.A.S., A.A., J.K.B., B.L., D.A.H., and M.J.S. analyzed data; and K.S., K.M.I., M.S.T., D.A.H., and M.J.S. wrote the paper.
Edited by Shizuo Akira, Osaka University, Osaka, Japan, and approved February 24, 2012 (received for review June 23, 2011)
1K.S., K.M.I., and M.S.T. contributed equally to this work.
ORCID 0000-0002-2908-1014
OpenAccessLink https://www.pnas.org/content/pnas/109/16/E944.full.pdf
PMID 22451944
PQID 1008646954
PQPubID 42026
PageCount 2
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3341041
crossref_primary_10_1073_pnas_1110156109
proquest_miscellaneous_1999977155
pubmed_primary_22451944
crossref_citationtrail_10_1073_pnas_1110156109
jstor_primary_41588446
proquest_miscellaneous_1002793418
proquest_miscellaneous_1017960897
pnas_primary_109_16_E944
hal_primary_oai_HAL_hal_04387254v1
proquest_journals_1008646954
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-17
PublicationDateYYYYMMDD 2012-04-17
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Christophides GK (e_1_3_4_19_2) 2002; 298
Taylor MS (e_1_3_4_30_2) 2006; 2
Faulkner GJ (e_1_3_4_51_2) 2008; 91
Britton WJ (e_1_3_4_38_2) 2007; 281
Poli-de-Figueiredo LF (e_1_3_4_10_2) 2008; 30
Khader SA (e_1_3_4_39_2) 2009; 183
Liao BY (e_1_3_4_16_2) 2006; 23
Landry CR (e_1_3_4_17_2) 2007; 317
Medzhitov R (e_1_3_4_5_2) 2007; 449
Tirosh I (e_1_3_4_14_2) 2006; 38
Lemos B (e_1_3_4_25_2) 2005; 22
Pickens SR (e_1_3_4_32_2) 2011; 63
Lattin JE (e_1_3_4_26_2) 2008; 4
Copeland S (e_1_3_4_9_2) 2005; 12
Hayday AC (e_1_3_4_4_2) 2008; 9
Waterston RH (e_1_3_4_1_2) 2002; 420
Smith AJ (e_1_3_4_44_2) 2009; 20
Pickrell JK (e_1_3_4_43_2) 2010; 464
López A (e_1_3_4_11_2) 2004; 32
e_1_1_2_17_11_3_2
Chaix R (e_1_3_4_41_2) 2008; 180
Comerford I (e_1_3_4_34_2) 2010; 32
e_1_1_2_17_11_1_2
Obbard DJ (e_1_3_4_21_2) 2009; 5
Kosiol C (e_1_3_4_20_2) 2008; 4
Carlsen HS (e_1_3_4_33_2) 2004; 104
Lehtonen A (e_1_3_4_49_2) 2005; 175
Khaitovich P (e_1_3_4_15_2) 2004; 2
Nilsson R (e_1_3_4_23_2) 2006; 88
Davis MM (e_1_3_4_3_2) 2008; 29
Maeda N (e_1_3_4_50_2) 2008; 45
Liu PT (e_1_3_4_8_2) 2006; 311
Bedford T (e_1_3_4_24_2) 2009; 106
Schmidt D (e_1_3_4_31_2) 2010; 328
Jesch NK (e_1_3_4_7_2) 1997; 105
Sun Y (e_1_3_4_40_2) 2007; 89
Gilchrist M (e_1_3_4_22_2) 2006; 441
Gregory SG (e_1_3_4_36_2) 2007; 39
Fernando SL (e_1_3_4_35_2) 2007; 175
McCarroll SA (e_1_3_4_13_2) 2004; 36
Flo TH (e_1_3_4_37_2) 2004; 432
Hu X (e_1_3_4_48_2) 2008; 29
Prabhakar S (e_1_3_4_29_2) 2006; 314
Mestas J (e_1_3_4_2_2) 2004; 172
Dimas AS (e_1_3_4_42_2) 2009; 325
Tirosh I (e_1_3_4_46_2) 2008; 18
Kapetanovic R (e_1_3_4_28_2) 2012
King MC (e_1_3_4_12_2) 1975; 188
Schneemann M (e_1_3_4_6_2) 1993; 167
Yoneyama M (e_1_3_4_45_2) 2004; 5
e_1_1_2_17_11_2_2
Barreiro LB (e_1_3_4_18_2) 2010; 6
e_1_1_2_17_11_4_2
Carninci P (e_1_3_4_27_2) 2005; 309
Amit I (e_1_3_4_47_2) 2009; 326
References_xml – volume: 20
  start-page: 43
  year: 2009
  ident: e_1_3_4_44_2
  article-title: Cytokine and cytokine receptor gene polymorphisms and their functionality
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2008.11.006
– volume: 106
  start-page: 1133
  year: 2009
  ident: e_1_3_4_24_2
  article-title: Optimization of gene expression by natural selection
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0812009106
– ident: e_1_1_2_17_11_3_2
  doi: 10.2144/000112814
– volume: 29
  start-page: 835
  year: 2008
  ident: e_1_3_4_3_2
  article-title: A prescription for human immunology
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.12.003
– volume: 36
  start-page: 197
  year: 2004
  ident: e_1_3_4_13_2
  article-title: Comparing genomic expression patterns across species identifies shared transcriptional profile in aging
  publication-title: Nat Genet
  doi: 10.1038/ng1291
– volume: 2
  start-page: E132
  year: 2004
  ident: e_1_3_4_15_2
  article-title: A neutral model of transcriptome evolution
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020132
– volume: 317
  start-page: 118
  year: 2007
  ident: e_1_3_4_17_2
  article-title: Genetic properties influencing the evolvability of gene expression
  publication-title: Science
  doi: 10.1126/science.1140247
– volume: 464
  start-page: 768
  year: 2010
  ident: e_1_3_4_43_2
  article-title: Understanding mechanisms underlying human gene expression variation with RNA sequencing
  publication-title: Nature
  doi: 10.1038/nature08872
– volume: 89
  start-page: 22
  year: 2007
  ident: e_1_3_4_40_2
  article-title: Cross-species transcriptional profiles establish a functional portrait of embryonic stem cells
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2006.09.010
– volume: 175
  start-page: 6570
  year: 2005
  ident: e_1_3_4_49_2
  article-title: Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages
  publication-title: J Immunol
  doi: 10.4049/jimmunol.175.10.6570
– volume: 175
  start-page: 360
  year: 2007
  ident: e_1_3_4_35_2
  article-title: A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200607-970OC
– volume: 188
  start-page: 107
  year: 1975
  ident: e_1_3_4_12_2
  article-title: Evolution at two levels in humans and chimpanzees
  publication-title: Science
  doi: 10.1126/science.1090005
– volume: 4
  start-page: e1000144
  year: 2008
  ident: e_1_3_4_20_2
  article-title: Patterns of positive selection in six Mammalian genomes
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000144
– volume: 38
  start-page: 830
  year: 2006
  ident: e_1_3_4_14_2
  article-title: A genetic signature of interspecies variations in gene expression
  publication-title: Nat Genet
  doi: 10.1038/ng1819
– volume: 183
  start-page: 8004
  year: 2009
  ident: e_1_3_4_39_2
  article-title: In a murine tuberculosis model, the absence of homeostatic chemokines delays granuloma formation and protective immunity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0901937
– volume: 30
  start-page: 53
  year: 2008
  ident: e_1_3_4_10_2
  article-title: Experimental models of sepsis and their clinical relevance
  publication-title: Shock
  doi: 10.1097/SHK.0b013e318181a343
– ident: e_1_1_2_17_11_1_2
  doi: 10.1016/j.cell.2006.02.015
– volume: 2
  start-page: e30
  year: 2006
  ident: e_1_3_4_30_2
  article-title: Heterotachy in mammalian promoter evolution
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020030
– ident: e_1_1_2_17_11_2_2
  doi: 10.4049/jimmunol.172.5.2731
– volume: 4
  start-page: 5
  year: 2008
  ident: e_1_3_4_26_2
  article-title: Expression analysis of G protein-coupled receptors in mouse macrophages
  publication-title: Immunome Res
  doi: 10.1186/1745-7580-4-5
– volume: 420
  start-page: 520
  year: 2002
  ident: e_1_3_4_1_2
  article-title: Initial sequencing and comparative analysis of the mouse genome
  publication-title: Nature
  doi: 10.1038/nature01262
– volume: 23
  start-page: 530
  year: 2006
  ident: e_1_3_4_16_2
  article-title: Evolutionary conservation of expression profiles between human and mouse orthologous genes
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msj054
– volume: 298
  start-page: 159
  year: 2002
  ident: e_1_3_4_19_2
  article-title: Immunity-related genes and gene families in Anopheles gambiae
  publication-title: Science
  doi: 10.1126/science.1077136
– volume: 12
  start-page: 60
  year: 2005
  ident: e_1_3_4_9_2
  article-title: Acute inflammatory response to endotoxin in mice and humans
  publication-title: Clin Diagn Lab Immunol
– volume: 172
  start-page: 2731
  year: 2004
  ident: e_1_3_4_2_2
  article-title: Of mice and not men: Differences between mouse and human immunology
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.5.2731
– volume: 32
  start-page: 1067
  year: 2010
  ident: e_1_3_4_34_2
  article-title: An immune paradox: How can the same chemokine axis regulate both immune tolerance and activation?: CCR6/CCL20: A chemokine axis balancing immunological tolerance and inflammation in autoimmune disease
  publication-title: Bioessays
  doi: 10.1002/bies.201000063
– volume: 104
  start-page: 3021
  year: 2004
  ident: e_1_3_4_33_2
  article-title: Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis
  publication-title: Blood
  doi: 10.1182/blood-2004-02-0701
– volume: 45
  start-page: 95
  year: 2008
  ident: e_1_3_4_50_2
  article-title: Development of a DNA barcode tagging method for monitoring dynamic changes in gene expression by using an ultra high-throughput sequencer
  publication-title: Biotechniques
  doi: 10.2144/000112814
– volume: 18
  start-page: 1084
  year: 2008
  ident: e_1_3_4_46_2
  article-title: Two strategies for gene regulation by promoter nucleosomes
  publication-title: Genome Res
  doi: 10.1101/gr.076059.108
– volume: 5
  start-page: e1000698
  year: 2009
  ident: e_1_3_4_21_2
  article-title: Quantifying adaptive evolution in the Drosophila immune system
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000698
– volume: 326
  start-page: 257
  year: 2009
  ident: e_1_3_4_47_2
  article-title: Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses
  publication-title: Science
  doi: 10.1126/science.1179050
– volume: 22
  start-page: 1345
  year: 2005
  ident: e_1_3_4_25_2
  article-title: Evolution of proteins and gene expression levels are coupled in Drosophila and are independently associated with mRNA abundance, protein length, and number of protein-protein interactions
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msi122
– year: 2012
  ident: e_1_3_4_28_2
  article-title: Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1102649
– volume: 432
  start-page: 917
  year: 2004
  ident: e_1_3_4_37_2
  article-title: Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron
  publication-title: Nature
  doi: 10.1038/nature03104
– volume: 441
  start-page: 173
  year: 2006
  ident: e_1_3_4_22_2
  article-title: Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4
  publication-title: Nature
  doi: 10.1038/nature04768
– volume: 309
  start-page: 1559
  year: 2005
  ident: e_1_3_4_27_2
  article-title: The transcriptional landscape of the mammalian genome
  publication-title: Science
  doi: 10.1126/science.1112014
– volume: 9
  start-page: 575
  year: 2008
  ident: e_1_3_4_4_2
  article-title: The habitual, diverse and surmountable obstacles to human immunology research
  publication-title: Nat Immunol
  doi: 10.1038/ni0608-575
– volume: 325
  start-page: 1246
  year: 2009
  ident: e_1_3_4_42_2
  article-title: Common regulatory variation impacts gene expression in a cell type-dependent manner
  publication-title: Science
  doi: 10.1126/science.1174148
– volume: 5
  start-page: 730
  year: 2004
  ident: e_1_3_4_45_2
  article-title: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
  publication-title: Nat Immunol
  doi: 10.1038/ni1087
– volume: 180
  start-page: 1379
  year: 2008
  ident: e_1_3_4_41_2
  article-title: Evolution of primate gene expression: drift and corrective sweeps?
  publication-title: Genetics
  doi: 10.1534/genetics.108.089623
– volume: 29
  start-page: 691
  year: 2008
  ident: e_1_3_4_48_2
  article-title: Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.08.016
– volume: 167
  start-page: 1358
  year: 1993
  ident: e_1_3_4_6_2
  article-title: Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes
  publication-title: J Infect Dis
  doi: 10.1093/infdis/167.6.1358
– volume: 39
  start-page: 1083
  year: 2007
  ident: e_1_3_4_36_2
  article-title: Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis
  publication-title: Nat Genet
  doi: 10.1038/ng2103
– ident: e_1_1_2_17_11_4_2
  doi: 10.1073/pnas.2136655100
– volume: 91
  start-page: 281
  year: 2008
  ident: e_1_3_4_51_2
  article-title: A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2007.11.003
– volume: 88
  start-page: 133
  year: 2006
  ident: e_1_3_4_23_2
  article-title: Transcriptional network dynamics in macrophage activation
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2006.03.022
– volume: 281
  start-page: 79
  year: 2007
  ident: e_1_3_4_38_2
  article-title: The genetic control of susceptibility to Mycobacterium tuberculosis
  publication-title: Novartis Found Symp
  doi: 10.1002/9780470062128.ch8
– volume: 63
  start-page: 2884
  year: 2011
  ident: e_1_3_4_32_2
  article-title: Characterization of interleukin-7 and interleukin-7 receptor in the pathogenesis of rheumatoid arthritis
  publication-title: Arthritis Rheum
  doi: 10.1002/art.30493
– volume: 6
  start-page: e1001249
  year: 2010
  ident: e_1_3_4_18_2
  article-title: Functional comparison of innate immune signaling pathways in primates
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001249
– volume: 32
  start-page: 21
  year: 2004
  ident: e_1_3_4_11_2
  article-title: Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000105581.01815.C6
– volume: 328
  start-page: 1036
  year: 2010
  ident: e_1_3_4_31_2
  article-title: Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding
  publication-title: Science
  doi: 10.1126/science.1186176
– volume: 105
  start-page: 1297
  year: 1997
  ident: e_1_3_4_7_2
  article-title: Expression of inducible nitric oxide synthase and formation of nitric oxide by alveolar macrophages: An interspecies comparison
  publication-title: Environ Health Perspect
– volume: 314
  start-page: 786
  year: 2006
  ident: e_1_3_4_29_2
  article-title: Accelerated evolution of conserved noncoding sequences in humans
  publication-title: Science
  doi: 10.1126/science.1130738
– volume: 311
  start-page: 1770
  year: 2006
  ident: e_1_3_4_8_2
  article-title: Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response
  publication-title: Science
  doi: 10.1126/science.1123933
– volume: 449
  start-page: 819
  year: 2007
  ident: e_1_3_4_5_2
  article-title: Recognition of microorganisms and activation of the immune response
  publication-title: Nature
  doi: 10.1038/nature06246
SSID ssj0009580
Score 2.5143905
Snippet Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5925
SubjectTerms agonists
Animals
Biological Sciences
Cell Line
Cells, Cultured
Chemokine CCL20
Chemokine CCL20 - genetics
Chemokine CXCL13
Chemokine CXCL13 - genetics
chemokines
drug effects
Evolution
Evolution, Molecular
Female
Gene expression
Gene Expression Profiling
gene expression regulation
Gene Expression Regulation - drug effects
genes
Genetic Variation
genetics
genomic islands
high-throughput nucleotide sequencing
Host-Pathogen Interactions
Human subjects
Humans
Immunology
Leukocytes
Life Sciences
lipopolysaccharides
Lipopolysaccharides - pharmacology
macrophages
Macrophages - drug effects
Macrophages - metabolism
Macrophages - microbiology
Male
messenger RNA
metabolism
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Mice, Knockout
microbiology
Microbiology and Parasitology
Oligonucleotide Array Sequence Analysis
pharmacology
physiology
PNAS Plus
PNAS PLUS (AUTHOR SUMMARIES)
receptors
Reverse Transcriptase Polymerase Chain Reaction
Rodents
Salmonella typhimurium
Salmonella typhimurium - physiology
Signal transduction
Species Specificity
Swine
TATA box
Toll-Like Receptor 4
Toll-Like Receptor 4 - agonists
Toll-Like Receptor 4 - genetics
Title Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages
URI https://www.jstor.org/stable/41588446
http://www.pnas.org/content/109/16/E944.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22451944
https://www.proquest.com/docview/1008646954
https://www.proquest.com/docview/1002793418
https://www.proquest.com/docview/1017960897
https://www.proquest.com/docview/1999977155
https://hal.inrae.fr/hal-04387254
https://pubmed.ncbi.nlm.nih.gov/PMC3341041
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYxkAG8TBUeeTDTuzHgjoKqsokWqlvUeIkarUpnZoWJP4B_m3u4nx1jGnwUlXJxXF9v57vzvdByFvOI5FxrVisUsl4GgVMpUIzW0mdiMRzRFRG-U780Yx_mYt5r_erE7W03cRn-ueteSX_w1W4BnzFLNl_4GwzKFyA78Bf-AQOw-e9eIzdNmunankKkGCUhSmvucz7U-Axu1peYmcUjF5ZrfucrU3zedAzgS7FCv8mEraMeLyuak-Yzn0YsbHFZjnbAsNcsdnXAsRP0VVoL5oNsKjDDSa1f3HQZqtUIqTos_7FpO19_E0v1qukietoQPYZBJhxtWK0R4QZiq3btnUymBoIrff2w-rSuLQnIOuwUlPXp4HBIZyZFM4mxwD2Tm6yqxs5basuIP3-9dlQcc6GypQb_mMzAOmFHYzzqMCNAXPG6yF2ym5Pvobns_E4nA7n0z3ywAV7A1thfJo7nerN0uQyVdOqa0QF3vsbw--oN3sLDK41ca5YPBdIbzNkbsbjdhSc6WPyqLJM6MDA7ID00vwJOagZR0-rAuXvnpIfXdxRwB1tcUeXOW1wR2vc0Q7uKOKOtrjDJyrc0RJ31OCOlrijHdw9I7Pz4fTjiFUNPJj2PW_DtHQirjMwSoSSaSZllmD_yEg5mYgjW3vcs2NXSZF5gY4z4XpRqt044RxPw13HOyT7-SpPjwi1s0xr301FomOeBTL2A1DEXdeOBQ9S27XIWb3uoa6q22OTlauwjLIIvBBXP2wZZZHT5oHqR_6d9A0wsqHCguyjwTjEa3iOHriCf3cscljyuSEDzVhKzn2LHJXjtS9RoeOHCF2LnNRgCCuxUmARcelzXwm4_bq5DUIfT_KiPIW1RxoXNlbuyLtoYK_1bamCO2jAPAQDEGwKizw3GGzmCbo9WHc4yWAHnTvrsHsnXy7KAvUezMzmzvE93vuCPGwFwAnZ36y36UtQ8zfxq_Iv-BshjADE
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conservation+and+divergence+in+Toll-like+receptor+4-regulated+gene+expression+in+primary+human+versus+mouse+macrophages&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Schroder%2C+Kate&rft.au=Irvine%2C+Katharine+M&rft.au=Taylor%2C+Martin+S&rft.au=Bokil%2C+Nilesh+J&rft.date=2012-04-17&rft.issn=0027-8424&rft.volume=109&rft.issue=16+p.E944-E953&rft_id=info:doi/10.1073%2Fpnas.1110156109&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F16.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F16.cover.gif