RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms

Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate t...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 10; no. 9; p. e1004358
Main Authors Qin, Yue, Zhou, Mao-Tian, Hu, Ming-Ming, Hu, Yun-Hong, Zhang, Jing, Guo, Lin, Zhong, Bo, Shu, Hong-Bing
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.09.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms.
AbstractList Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms.
Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms. Virus infection induces the host cells to produce type I interferons, which are secreted proteins important for the host to clear viruses. Previously, we identified a cellular protein called MITA, which is essential for virus-triggered induction of interferons. In this study, we found an enzyme called RNF26 could covalently modify MITA with one type of polypeptide, called polyubiquitin. This modification caused increased stability of MITA after viral infection. RNF26 also caused disability of IRF3, another important component required for virus-triggered interferon induction. Thus, RNF26 could temporally regulate virus-triggered interferon induction by two distinct mechanisms. This discovery helps to understand how the antiviral response is delicately regulated.
  Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms.
Audience Academic
Author Hu, Yun-Hong
Qin, Yue
Zhang, Jing
Shu, Hong-Bing
Zhong, Bo
Hu, Ming-Ming
Zhou, Mao-Tian
Guo, Lin
AuthorAffiliation Harvard Medical School, United States of America
State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
AuthorAffiliation_xml – name: Harvard Medical School, United States of America
– name: State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
Author_xml – sequence: 1
  givenname: Yue
  surname: Qin
  fullname: Qin, Yue
– sequence: 2
  givenname: Mao-Tian
  surname: Zhou
  fullname: Zhou, Mao-Tian
– sequence: 3
  givenname: Ming-Ming
  surname: Hu
  fullname: Hu, Ming-Ming
– sequence: 4
  givenname: Yun-Hong
  surname: Hu
  fullname: Hu, Yun-Hong
– sequence: 5
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
– sequence: 6
  givenname: Lin
  surname: Guo
  fullname: Guo, Lin
– sequence: 7
  givenname: Bo
  surname: Zhong
  fullname: Zhong, Bo
– sequence: 8
  givenname: Hong-Bing
  surname: Shu
  fullname: Shu, Hong-Bing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25254379$$D View this record in MEDLINE/PubMed
BookMark eNqVkktv1DAUhSNURB_wDxBEYgOLGfyI7XhTqaoojFQVqcDacuyb1KMkDrZTmH-Ph5lWHYkN8sJX9neP7eNzWhyNfoSieI3RElOBP679HEbdL6dJpyVGqKKsflacYMboQlBRHT2pj4vTGNeZwRTzF8UxYYRVVMiTQt_eXBFeJhgmH3Tfb8oA3dzrBLG8d2GOixRc10EAW6bNBOWqdGOC0ELwYy7tbJLLVbMp0y9fWheTG00qBzB3enRxiC-L563uI7zaz2fFj6tP3y-_LK6_fl5dXlwvDKc0LQzjUkgMBBpT1VIyqxupKRP5XUYjbBuDcAMGScEp05ZTghpe4dZSZNu6pWfF253u1Puo9u5EhXnNCJIYs0ysdoT1eq2m4AYdNsprp_4u-NApHZIzPSjNOUV1QxDPRnFBNbEtQTWtBaUWiMla5_vT5mYAa2BM2b4D0cOd0d2pzt-rCgshicgC7_cCwf-cISY1uGig7_UIfs73ZpxXCNeyyui7HdrpfDU3tj4rmi2uLmjNKsSYRJla_oPKw8LgTM5O6_L6QcOHg4bMJPidOj3HqFbfbv-DvTlkqx1rgo8xQPvoCkZqG92Hz1Hb6Kp9dHPbm6eOPjY9ZJX-AY6D7GA
CitedBy_id crossref_primary_10_15252_embj_201797858
crossref_primary_10_1093_jmcb_mjv068
crossref_primary_10_1016_j_celrep_2023_112306
crossref_primary_10_1002_JLB_4MIR1018_397RR
crossref_primary_10_1186_s12879_023_08016_2
crossref_primary_10_1016_j_cellsig_2016_08_002
crossref_primary_10_1016_j_bbapap_2022_140792
crossref_primary_10_1074_jbc_RA119_009172
crossref_primary_10_1126_sciimmunol_aah7119
crossref_primary_10_1038_cr_2016_125
crossref_primary_10_1074_mcp_M115_048413
crossref_primary_10_1111_febs_16137
crossref_primary_10_3389_fimmu_2024_1403070
crossref_primary_10_4049_jimmunol_1800656
crossref_primary_10_3389_fimmu_2022_898724
crossref_primary_10_1016_j_semcdb_2021_11_016
crossref_primary_10_3390_cells11193043
crossref_primary_10_1084_jem_20161387
crossref_primary_10_1111_imm_12561
crossref_primary_10_3390_ijms232314601
crossref_primary_10_1038_s41598_017_11016_3
crossref_primary_10_3389_fcell_2019_00392
crossref_primary_10_1172_JCI120406
crossref_primary_10_3389_fimmu_2022_1065211
crossref_primary_10_15252_embj_2022111252
crossref_primary_10_1016_j_omto_2021_12_024
crossref_primary_10_1186_s11658_020_00245_6
crossref_primary_10_1038_cmi_2016_51
crossref_primary_10_1038_s41419_021_04260_z
crossref_primary_10_1126_sciadv_abh0496
crossref_primary_10_1146_annurev_immunol_070119_115052
crossref_primary_10_1038_ncomms11267
crossref_primary_10_3389_fimmu_2022_888147
crossref_primary_10_1093_rheumatology_keac016
crossref_primary_10_1093_jxb_erac239
crossref_primary_10_3389_fimmu_2023_1324516
crossref_primary_10_14336_AD_2021_0304
crossref_primary_10_1016_j_ijbiomac_2024_132104
crossref_primary_10_1371_journal_ppat_1007435
crossref_primary_10_1016_j_cellimm_2019_04_003
crossref_primary_10_4049_jimmunol_1500339
crossref_primary_10_1038_s41467_023_42939_3
crossref_primary_10_1128_JVI_02417_16
crossref_primary_10_1038_s41423_023_01086_x
crossref_primary_10_1186_s43556_021_00043_2
crossref_primary_10_1016_j_virol_2015_02_033
crossref_primary_10_1016_j_cytogfr_2015_03_001
crossref_primary_10_1093_nar_gky186
crossref_primary_10_3934_Allergy_2017_3_143
crossref_primary_10_1038_ncb3358
crossref_primary_10_3390_ijms24109032
crossref_primary_10_1038_cr_2016_40
crossref_primary_10_3389_fimmu_2018_01083
crossref_primary_10_1152_physrev_00026_2016
crossref_primary_10_3389_fimmu_2020_00615
crossref_primary_10_1016_j_dci_2023_104712
crossref_primary_10_3389_fcell_2020_582361
crossref_primary_10_1038_s41418_018_0251_z
crossref_primary_10_1016_j_bbrc_2017_08_121
crossref_primary_10_14348_molcells_2017_0115
crossref_primary_10_1146_annurev_biophys_070816_033719
crossref_primary_10_1186_s13046_021_01850_9
crossref_primary_10_1038_s41416_024_02750_3
crossref_primary_10_1016_j_coph_2022_102310
crossref_primary_10_1016_j_cytogfr_2022_08_006
crossref_primary_10_1038_ncomms10592
crossref_primary_10_1038_s41392_022_01152_2
crossref_primary_10_1016_j_micpath_2019_103950
crossref_primary_10_1128_jvi_00095_23
crossref_primary_10_1016_j_ejmech_2020_113113
crossref_primary_10_1002_iub_1566
crossref_primary_10_1371_journal_ppat_1010544
crossref_primary_10_1016_j_chom_2016_01_010
crossref_primary_10_3389_fcell_2021_717610
crossref_primary_10_3389_fcimb_2022_954581
crossref_primary_10_1002_advs_202002484
crossref_primary_10_1007_s40588_016_0043_5
crossref_primary_10_1186_s12920_022_01254_4
crossref_primary_10_1016_j_immuni_2016_06_020
crossref_primary_10_1016_j_cytogfr_2020_06_004
crossref_primary_10_3390_v13040584
crossref_primary_10_1038_ncomms15534
crossref_primary_10_1038_s41392_020_0107_0
crossref_primary_10_1371_journal_pone_0264527
crossref_primary_10_4049_jimmunol_1601647
crossref_primary_10_1371_journal_ppat_1008178
crossref_primary_10_1371_journal_ppat_1011186
crossref_primary_10_1038_s41401_023_01185_5
crossref_primary_10_1038_ni_3510
crossref_primary_10_2174_1381612826666200610183048
crossref_primary_10_1016_j_tibs_2017_09_002
crossref_primary_10_1002_advs_201902599
crossref_primary_10_1016_j_celrep_2015_06_061
crossref_primary_10_1002_ctm2_770
crossref_primary_10_1038_s41392_022_01252_z
crossref_primary_10_1002_pmic_201700403
crossref_primary_10_1016_j_celrep_2020_108659
crossref_primary_10_15252_embr_202051932
crossref_primary_10_1128_MMBR_00061_14
crossref_primary_10_1038_s41580_020_0244_x
crossref_primary_10_3389_fimmu_2020_02064
crossref_primary_10_1146_annurev_cellbio_100617_062903
crossref_primary_10_1371_journal_ppat_1006156
crossref_primary_10_3390_ijms21114088
crossref_primary_10_1161_HYPERTENSIONAHA_116_07392
crossref_primary_10_1128_jvi_00200_22
crossref_primary_10_3390_cells10123309
crossref_primary_10_1002_eji_201746959
crossref_primary_10_1128_jvi_01815_23
crossref_primary_10_1111_imr_12765
crossref_primary_10_1360_SSV_2022_0065
crossref_primary_10_3390_ijms23010492
crossref_primary_10_1155_2018_5214187
crossref_primary_10_1002_1873_3468_13583
crossref_primary_10_1038_s41576_019_0151_1
crossref_primary_10_1038_cmi_2014_125
crossref_primary_10_1080_1040841X_2017_1368999
crossref_primary_10_15252_embj_2021109845
crossref_primary_10_1016_j_trecan_2019_03_004
crossref_primary_10_1038_cmi_2016_66
crossref_primary_10_1186_s12964_024_01543_8
crossref_primary_10_1038_s41421_021_00277_y
crossref_primary_10_7554_eLife_57306
crossref_primary_10_1016_j_cell_2016_05_078
crossref_primary_10_1038_s41418_021_00803_1
crossref_primary_10_1126_scisignal_add0082
crossref_primary_10_1016_j_nlm_2020_107286
crossref_primary_10_1093_abbs_gmu133
crossref_primary_10_1517_14728222_2015_1067303
crossref_primary_10_1038_s41467_018_04759_8
crossref_primary_10_1016_j_celrep_2018_11_097
crossref_primary_10_1371_journal_ppat_1009918
crossref_primary_10_3390_ijms24087448
crossref_primary_10_1038_s41392_020_0198_7
crossref_primary_10_1016_j_bbrc_2018_04_117
crossref_primary_10_3390_v13050763
crossref_primary_10_1016_j_cytogfr_2022_09_003
crossref_primary_10_1016_j_immuni_2014_12_002
crossref_primary_10_1038_s12276_023_00965_7
crossref_primary_10_1038_cddis_2017_149
crossref_primary_10_1002_mco2_511
crossref_primary_10_1016_j_it_2016_10_008
crossref_primary_10_1128_JVI_01824_16
crossref_primary_10_3390_v13040575
crossref_primary_10_4049_jimmunol_1600212
crossref_primary_10_1111_1348_0421_12669
crossref_primary_10_15252_embr_201439637
crossref_primary_10_1002_cmdc_202300405
Cites_doi 10.1016/j.molcel.2005.08.014
10.1016/j.cell.2013.09.049
10.1074/jbc.273.51.33889
10.1126/science.1232458
10.1038/nature08476
10.1038/nature06013
10.1073/pnas.1222694110
10.1038/ni1243
10.1038/icb.2012.11
10.1016/j.immuni.2009.01.008
10.1038/nature04193
10.1038/nature07317
10.4161/cc.20643
10.1111/j.1600-065X.2011.01048.x
10.1038/ni.1932
10.1016/j.tcb.2011.08.008
10.1074/jbc.M112.362608
10.1038/nsmb.1873
10.1007/978-1-4419-6676-6_9
10.4049/jimmunol.1100088
10.1128/MCB.00640-08
10.1126/science.1229963
10.1073/pnas.0911267106
10.1016/j.cell.2005.08.012
10.1016/j.cell.2011.09.022
10.1126/scisignal.2002521
10.1016/j.cell.2010.01.022
10.1038/ni.2091
10.1016/j.immuni.2008.09.003
10.1016/j.immuni.2010.10.013
10.1016/j.immuni.2013.05.004
10.1073/pnas.1203405109
10.1073/pnas.0900850106
10.1073/pnas.1318227111
10.1073/pnas.0912802107
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Qin et al 2014 Qin et al
2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Qin Y, Zhou M-T, Hu M-M, Hu Y-H, Zhang J, Guo L, et al. (2014) RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms. PLoS Pathog 10(9): e1004358. doi:10.1371/journal.ppat.1004358
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Qin et al 2014 Qin et al
– notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Qin Y, Zhou M-T, Hu M-M, Hu Y-H, Zhang J, Guo L, et al. (2014) RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms. PLoS Pathog 10(9): e1004358. doi:10.1371/journal.ppat.1004358
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1004358
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate RNF26 Mediates K11-Linked Polyubiquitination of MITA
EISSN 1553-7374
Editor Gack, Michaela U.
Editor_xml – sequence: 1
  givenname: Michaela U.
  surname: Gack
  fullname: Gack, Michaela U.
EndPage e1004358
ExternalDocumentID 1685209115
oai_doaj_org_article_a66308b206254673a2df20838733de2c
A385405590
10_1371_journal_ppat_1004358
25254379
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
ECM
EIF
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RIG
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
CITATION
7X8
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c633t-c569791e2ebc48995dab9a357435ca01dbc01bec097635ad6320b641fd30df8f3
IEDL.DBID RPM
ISSN 1553-7374
1553-7366
IngestDate Fri Nov 26 17:14:17 EST 2021
Tue Oct 22 15:15:43 EDT 2024
Tue Sep 17 21:15:00 EDT 2024
Fri Oct 25 10:57:31 EDT 2024
Tue Nov 19 20:50:40 EST 2024
Tue Nov 12 23:31:26 EST 2024
Thu Aug 01 20:20:53 EDT 2024
Thu Aug 01 20:40:53 EDT 2024
Fri Aug 23 01:14:53 EDT 2024
Sat Sep 28 08:27:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-c569791e2ebc48995dab9a357435ca01dbc01bec097635ad6320b641fd30df8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: YQ HBS. Performed the experiments: YQ MTZ MMH YHH JZ. Analyzed the data: YQ LG BZ HBS. Wrote the paper: YQ BZ HBS.
The authors have declared that no competing interests exist.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177927/
PMID 25254379
PQID 1566401894
PQPubID 23479
ParticipantIDs plos_journals_1685209115
doaj_primary_oai_doaj_org_article_a66308b206254673a2df20838733de2c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4177927
proquest_miscellaneous_1566401894
gale_infotracmisc_A385405590
gale_infotracacademiconefile_A385405590
gale_incontextgauss_ISR_A385405590
gale_incontextgauss_ISN_A385405590
crossref_primary_10_1371_journal_ppat_1004358
pubmed_primary_25254379
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References E Meylan (ref5) 2005; 437
J Zhang (ref27) 2012; 287
H Ishikawa (ref8) 2008; 455
Z Zhang (ref13) 2011; 12
T Cavlar (ref24) 2012; 90
RB Seth (ref4) 2005; 122
T Kondo (ref14) 2013; 110
T Tsuchida (ref26) 2010; 33
B Zhong (ref7) 2008; 29
Y Tanaka (ref20) 2012; 5
A Takaoka (ref11) 2007; 448
T Kawai (ref6) 2005; 6
T Kawasaki (ref1) 2011; 243
O Takeuchi (ref2) 2010; 140
H Ishikawa (ref17) 2009; 461
H Konno (ref21) 2013; 155
L Sun (ref15) 2013; 339
L Jin (ref9) 2008; 28
W Sun (ref10) 2009; 106
LG Xu (ref3) 2005; 19
H Chen (ref19) 2011; 147
N Mizushima (ref28) 1998; 273
KE Wickliffe (ref32) 2011; 21
A Bremm (ref29) 2010; 17
T Saitoh (ref18) 2009; 106
T Wu (ref31) 2010; 107
L Unterholzner (ref12) 2010; 11
J Wu (ref23) 2013; 339
L Jin (ref22) 2011; 187
MM Hu (ref34) 2014; 111
SR Paludan (ref16) 2013; 38
Y Li (ref35) 2012; 109
B Zhong (ref25) 2009; 30
VN Budhavarapu (ref33) 2012; 11
M Rape (ref30) 2010; 54
References_xml – volume: 19
  start-page: 727
  year: 2005
  ident: ref3
  article-title: VISA is an adapter protein required for virus-triggered IFN-beta signaling
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2005.08.014
  contributor:
    fullname: LG Xu
– volume: 155
  start-page: 688
  year: 2013
  ident: ref21
  article-title: Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.049
  contributor:
    fullname: H Konno
– volume: 273
  start-page: 33889
  year: 1998
  ident: ref28
  article-title: A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.51.33889
  contributor:
    fullname: N Mizushima
– volume: 339
  start-page: 786
  year: 2013
  ident: ref15
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
  contributor:
    fullname: L Sun
– volume: 461
  start-page: 788
  year: 2009
  ident: ref17
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
  doi: 10.1038/nature08476
  contributor:
    fullname: H Ishikawa
– volume: 448
  start-page: 501
  year: 2007
  ident: ref11
  article-title: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response
  publication-title: Nature
  doi: 10.1038/nature06013
  contributor:
    fullname: A Takaoka
– volume: 110
  start-page: 2969
  year: 2013
  ident: ref14
  article-title: DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1222694110
  contributor:
    fullname: T Kondo
– volume: 6
  start-page: 981
  year: 2005
  ident: ref6
  article-title: IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction
  publication-title: Nat Immunol
  doi: 10.1038/ni1243
  contributor:
    fullname: T Kawai
– volume: 90
  start-page: 474
  year: 2012
  ident: ref24
  article-title: Induction of type I IFNs by intracellular DNA-sensing pathways
  publication-title: Immunol Cell Biol
  doi: 10.1038/icb.2012.11
  contributor:
    fullname: T Cavlar
– volume: 30
  start-page: 397
  year: 2009
  ident: ref25
  article-title: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.01.008
  contributor:
    fullname: B Zhong
– volume: 437
  start-page: 1167
  year: 2005
  ident: ref5
  article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
  publication-title: Nature
  doi: 10.1038/nature04193
  contributor:
    fullname: E Meylan
– volume: 455
  start-page: 674
  year: 2008
  ident: ref8
  article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
  publication-title: Nature
  doi: 10.1038/nature07317
  contributor:
    fullname: H Ishikawa
– volume: 11
  start-page: 2030
  year: 2012
  ident: ref33
  article-title: Regulation of E2F1 by APC/C Cdh1 via K11 linkage-specific ubiquitin chain formation
  publication-title: Cell Cycle
  doi: 10.4161/cc.20643
  contributor:
    fullname: VN Budhavarapu
– volume: 243
  start-page: 61
  year: 2011
  ident: ref1
  article-title: Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2011.01048.x
  contributor:
    fullname: T Kawasaki
– volume: 11
  start-page: 997
  year: 2010
  ident: ref12
  article-title: IFI16 is an innate immune sensor for intracellular DNA
  publication-title: Nat Immunol
  doi: 10.1038/ni.1932
  contributor:
    fullname: L Unterholzner
– volume: 21
  start-page: 656
  year: 2011
  ident: ref32
  article-title: K11-linked ubiquitin chains as novel regulators of cell division
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2011.08.008
  contributor:
    fullname: KE Wickliffe
– volume: 287
  start-page: 28646
  year: 2012
  ident: ref27
  article-title: TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.362608
  contributor:
    fullname: J Zhang
– volume: 17
  start-page: 939
  year: 2010
  ident: ref29
  article-title: Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1873
  contributor:
    fullname: A Bremm
– volume: 54
  start-page: 107
  year: 2010
  ident: ref30
  article-title: Assembly of k11-linked ubiquitin chains by the anaphase-promoting complex
  publication-title: Subcell Biochem
  doi: 10.1007/978-1-4419-6676-6_9
  contributor:
    fullname: M Rape
– volume: 187
  start-page: 2595
  year: 2011
  ident: ref22
  article-title: MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1100088
  contributor:
    fullname: L Jin
– volume: 28
  start-page: 5014
  year: 2008
  ident: ref9
  article-title: MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00640-08
  contributor:
    fullname: L Jin
– volume: 339
  start-page: 826
  year: 2013
  ident: ref23
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
  doi: 10.1126/science.1229963
  contributor:
    fullname: J Wu
– volume: 106
  start-page: 20842
  year: 2009
  ident: ref18
  article-title: Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0911267106
  contributor:
    fullname: T Saitoh
– volume: 122
  start-page: 669
  year: 2005
  ident: ref4
  article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.012
  contributor:
    fullname: RB Seth
– volume: 147
  start-page: 436
  year: 2011
  ident: ref19
  article-title: Activation of STAT6 by STING is critical for antiviral innate immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.022
  contributor:
    fullname: H Chen
– volume: 5
  start-page: ra20
  year: 2012
  ident: ref20
  article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2002521
  contributor:
    fullname: Y Tanaka
– volume: 140
  start-page: 805
  year: 2010
  ident: ref2
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
  contributor:
    fullname: O Takeuchi
– volume: 12
  start-page: 959
  year: 2011
  ident: ref13
  article-title: The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells
  publication-title: Nat Immunol
  doi: 10.1038/ni.2091
  contributor:
    fullname: Z Zhang
– volume: 29
  start-page: 538
  year: 2008
  ident: ref7
  article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.09.003
  contributor:
    fullname: B Zhong
– volume: 33
  start-page: 765
  year: 2010
  ident: ref26
  article-title: The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.10.013
  contributor:
    fullname: T Tsuchida
– volume: 38
  start-page: 870
  year: 2013
  ident: ref16
  article-title: Immune sensing of DNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.05.004
  contributor:
    fullname: SR Paludan
– volume: 109
  start-page: 11770
  year: 2012
  ident: ref35
  article-title: LSm14A is a processing body-associated sensor of viral nucleic acids that initiates cellular antiviral response in the early phase of viral infection
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1203405109
  contributor:
    fullname: Y Li
– volume: 106
  start-page: 8653
  year: 2009
  ident: ref10
  article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0900850106
  contributor:
    fullname: W Sun
– volume: 111
  start-page: 1509
  year: 2014
  ident: ref34
  article-title: TRIM38 inhibits TNFalpha- and IL-1beta-triggered NF-kappaB activation by mediating lysosome-dependent degradation of TAB2/3
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1318227111
  contributor:
    fullname: MM Hu
– volume: 107
  start-page: 1355
  year: 2010
  ident: ref31
  article-title: UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0912802107
  contributor:
    fullname: T Wu
SSID ssj0041316
Score 2.5525753
Snippet Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation...
  Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1004358
SubjectTerms Antiviral Agents - metabolism
Biological response modifiers
Biology and Life Sciences
Blotting, Western
Cells, Cultured
Genes
Health aspects
Humans
Immunity, Innate - immunology
Immunoenzyme Techniques
Immunoprecipitation
Interferon
Interferon Regulatory Factor-3 - genetics
Interferon Regulatory Factor-3 - metabolism
Interferon Type I - genetics
Interferon Type I - metabolism
Kinases
Medicine and Health Sciences
Membrane Proteins - genetics
Membrane Proteins - metabolism
Neoplasm Proteins - antagonists & inhibitors
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Nucleic acids
Protein Processing, Post-Translational
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA, Small Interfering - genetics
Sensors
Signal Transduction
Ubiquitin-Protein Ligases - antagonists & inhibitors
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Viral infections
Virus Activation
Virus diseases
Virus Diseases - immunology
Virus Diseases - virology
Virus Replication
Viruses - immunology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yIPgifl_1lCiCT_XSpknax1Nc7gT34fTg3kKaj3Nhr122XWX_e2ea7nIVxRdfSmmm0MxMJ79pJ78h5G3Nma2sCKkrjEoLaavU5IGnPFhYsDPGQoX7nb8s5Nll8flKXN1q9YU1YZEeOCruxMCSyMo6ZxKZ2xU3uQs54IZSce58bofoyw7JVIzBEJmHpqfYFCdVXMpx0xxX2cloo_frtUH6aAZ4oZwsSgN3_yFCz9artvsT_Py9ivLWsjR_QO6PeJKexnk8JHd884jcjR0md4-JuVjMc0lHAqrVakc3sfm87-iP5WbbpT2k59fYsJPi11h6TpFAYhP8pm3g1EVyWVrvaP-zpQ4jQmN7euNxx_Cyu-mekMv5p28fz9Kxq0JqJed9aoWsVJX53Ne2gGxLOFNXhguAEsIalrnasgwsyyrkqjNO8pzVssiC48yFMvCnZNa0jT8itKwhHpQFhPsARyNqJ4zNvHCF4wADsoSke7XqdSTP0MMfNAVJR9SPRjPo0QwJ-YC6P8gi9fVwARxCjw6h_-UQCXmDltNIbtFg9cy12XadPv-60KfwVABQRcX-KnQxEXo3CoUWLGzNuGMBJo-kWRPJ44kkvKJ2MnyEXrSfc6czWWL5EaDxhLzee5bGu7DkrfHtFmQAaEPyW1ZFQp5FTzsoJhfIYaCqhKiJD040Nx1plt8H8vAiU6rK1fP_oeoX5B7gxyKW3B2TWb_Z-peA0fr61fA6_gJNnDdE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGERIviN8LDGQQEk-ZnNixkweEBqLakNaHQaW9WY7tdJW6pCQp0P-euyStCNokXqqouUTN3dn-rjl_HyHvcs5sZpMidMKoUEibhSYueMgLCwt2xFiR4X7n85k8nYuvl8nlAdlptg4ObG4s7VBPal6vjn__2H6EAf-hU21Q0e6i4_XaICE0AwSQ3iF3Y8E7yHQu9u8VYMbuxFBRLCdUXMphM91tdxktVh2n_37mnqxXVXMTLP23u_Kv5Wr6kDwYcCY96RPjETnw5WNyr1ee3D4h5mI2jSUdiKlWqy2te1F639Cfy3rThC2U7QsU8qT4Ly09o0gsURe-rko4dD3pLM23tP1VUYczRWlbeu1xJ_GyuW6ekvn0y_fPp-GgthBayXkb2kRmKot87HMroApLnMkzwxOAGIk1LHK5ZRFEnGXIYWec5DHLpYgKx5kr0oI_I5OyKv0hoWkO80QqYBko4NMkuUuMjXzihOMAD6KAhDu36nVPqqG7N2sKipHePxrDoIcwBOQT-n5vi5TY3RdVvdDDCNMGsBNL85hJpPhX3MSuiAFgpopz52MbkLcYOY2kFyV21SzMpmn02beZPoFfBcA1yditRhcjo_eDUVFBhK0ZdjLAwyOZ1sjyaGQJQ9eOTh9iFu2eudGRTLEtCVB6QN7sMkvjVdgKV_pqAzYAwKEoTjMRkOd9pu0dEyfIbaCygKhRDo48Nz5TLq86UnERKZXF6sX_OOAluQ-4UfStdkdk0tYb_wqwWZu_7obbH05jOBs
  priority: 102
  providerName: Scholars Portal
Title RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms
URI https://www.ncbi.nlm.nih.gov/pubmed/25254379
https://search.proquest.com/docview/1566401894
https://pubmed.ncbi.nlm.nih.gov/PMC4177927
https://doaj.org/article/a66308b206254673a2df20838733de2c
http://dx.doi.org/10.1371/journal.ppat.1004358
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELbaTJP2Mu132brImybticRgjOGx7Rq1kxJVWTrlDRmD00gJRCHRlP9-dwaiMm0ve-EBDgnuzufv4O47Qr6knOlYC-NmgZJuEOrYVb7hLjcaNmyPMRNjv_N4Et7cB9_nYn5CRNsLY4v2dbocFKv1oFg-2NrKzVoP2zqx4d34KvCkjCFnPyWn0o_aFL0OvxCU7bxTnIfjSh6GTb8cl96wMc9gs1HIHM0AKuC8Pl9gRzgWcz3amiyD_zFO9zarsvobCP2zlvLR5jR6QZ43qJJe1E__kpzkxSvytJ4zeXhN1HQy8kM6q2moVqsDndYj6POK_lxu95U7gyR9gWM7KSam9JbaL4Um35YFxeketvuBpgc6-1XSbxgXCr2j4xz7hpfVunpD7kfXs6sbt5mt4OqQ852rRRjL2Mv9PNUB5FwiU2msuABAIbRiXpZq5oF9WYyMdSoLuc_SMPBMxllmIsPfkl5RFvkZoVEKUSEKIOgbOCqRZkJpLxdZkHEAA55D3Fatyaam0EjsfzQJqUetnwQtkjQWccgl6v4oiwTY9kS5XSSNGyQKkBKLUp-FSOgvufIz4wOcjCTnWe5rh3xGyyVIcVFgDc1C7asquf0xSS7gqQCmipj9U2jaEfraCJkSLKxV07cAL4_UWR3J844kLFTduXyGXtS-c5V4YYRFSIDJHfKp9awE78LCtyIv9yADcBtS4CgOHPKu9rSjYlq_dYjs-GBHc90rsKIshXizgt7_950fyDOAjkFdbXdOervtPv8I8GyX9mFRzmWfPLm8ntxN-_YjBxzHQdS3C_U3F4I8WQ
link.rule.ids 230,315,728,781,785,865,886,2103,2222,24323,27929,27930,31725,33750,53796,53798
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWIgQXxHM3sIBBSJzSOnFsJ8dloWphW6HSRXuzHCcpldqkalqh_ntm8qg2CC5cckgmUjIzHn-TzHxDyPuYMxtZkblJYJQbSBu5xs-4yzMLG7bHWBZhv_NkKkfXwZcbcXNCRNsLUxXt23jZz1frfr78WdVWbtZ20NaJDb5NLgNPqQhy9jvkruAqkm2SXgdgCMvVxFOciOMqLmXTMceVN2gM1N9sDHJHMwALOLHPF9gTjuVctzanisP_GKl7m1VR_g2G_llNeWt7Gj4iDxtcSS_q539MTtL8CblXT5o8PCVmNh36ks5rIqrV6kBn9RD6tKQ_ltt96c4hTV_g4E6KqSkd0-pbYZZui5zifI-q_4HGBzr_VdBPGBlyu6OTFDuHl-W6fEauh5_nlyO3ma7gWsn5zrVCRiryUj-NbQBZl0hMHBkuAFIIa5iXxJZ5YGEWIWedSST3WSwDL0s4S7Iw489JLy_y9IzQMIa4EAYQ9jM4GhEnwlgvFUmQcIADnkPcVq16U5No6OpPmoLko9aPRovoxiIO-Yi6P8oiBXZ1otgudOMI2gBWYmHsM4mU_oobP8l8AJSh4jxJfeuQd2g5jSQXOVbRLMy-LPX4-1RfwFMBUBUR-6fQrCP0oRHKCrCwNU3nArw8kmd1JM87krBUbefyGXpR-86l9mSIZUiAyh3ytvUsjXdh6VueFnuQAcANSXAYBQ45rT3tqJjWbx2iOj7Y0Vz3CqypikS8WUMv_vvON-T-aD650lfj6deX5AEAyaCuvTsnvd12n74CsLaLX1dL8zfDsjti
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagCMQF8dwNLGAQEqe0ThzncVx2qbZAq1Xpor1Zjh2XSm0SNa1Q_z0zSVo1CC5ccmgmUjwzHn-TznxDyIeUM51oYV0TqMgNQp24yrfc5VbDge0xZhPsdx5Pwqub4MutuD0a9VUX7et00c-Xq36--FnXVpYrPdjXiQ2uxxeBF0UJ5OylsYO75J7gURLvE_UmCENorqee4lQcN-Jh2HbN8cgbtEbql6VC_mgGgAGn9vkC-8KxpOvogKp5_A_Rulcui-pvUPTPisqjI2r4mDxqsSU9b9bwhNzJ8qfkfjNtcveMqOlk6Id01pBRLZc7Om0G0WcV_bFYbyt3Bqn6HId3UkxP6YjW3wttti5yijM-6h4Imu7o7FdBLzE65HpDxxl2Dy-qVfWc3Aw_zy6u3HbCgqtDzjeuFmESJV7mZ6kOIPMSRqWJ4gJghdCKeSbVzAMrswR565QJuc_SMPCs4czY2PIXpJcXeXZKaJxCbIgDCP0WrkqkRijtZcIEhgMk8Bzi7tUqy4ZIQ9b_pkWQgDT6kWgR2VrEIZ9Q9wdZpMGufyjWc9k6g1SAl1ic-ixEWv-IK99YH0BlHHFuMl875D1aTiLRRY6VNHO1rSo5-j6R5_BWAFZFwv4pNO0IfWyFbAEW1qrtXoDFI4FWR_KsIwnbVXdun6IX7ddcSS-MsRQJkLlD3u09S-JTWP6WZ8UWZAB0QyIcJ4FDThpPOyhm77cOiTo-2NFc9w7sq5pIvN1HL__7ybfkwfXlUH4bTb6-Ig8BSwZN-d0Z6W3W2-w14LVN-qbemb8BQTA8dQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNF26+temporally+regulates+virus-triggered+type+I+interferon+induction+by+two+distinct+mechanisms&rft.jtitle=PLoS+pathogens&rft.au=Qin%2C+Yue&rft.au=Zhou%2C+Mao-Tian&rft.au=Hu%2C+Ming-Ming&rft.au=Hu%2C+Yun-Hong&rft.date=2014-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=10&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.ppat.1004358&rft.externalDBID=ISR&rft.externalDocID=A385405590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon