RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms
Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate t...
Saved in:
Published in | PLoS pathogens Vol. 10; no. 9; p. e1004358 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.09.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms. |
---|---|
AbstractList | Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms. Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms. Virus infection induces the host cells to produce type I interferons, which are secreted proteins important for the host to clear viruses. Previously, we identified a cellular protein called MITA, which is essential for virus-triggered induction of interferons. In this study, we found an enzyme called RNF26 could covalently modify MITA with one type of polypeptide, called polyubiquitin. This modification caused increased stability of MITA after viral infection. RNF26 also caused disability of IRF3, another important component required for virus-triggered interferon induction. Thus, RNF26 could temporally regulate virus-triggered interferon induction by two distinct mechanisms. This discovery helps to understand how the antiviral response is delicately regulated. Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms. |
Audience | Academic |
Author | Hu, Yun-Hong Qin, Yue Zhang, Jing Shu, Hong-Bing Zhong, Bo Hu, Ming-Ming Zhou, Mao-Tian Guo, Lin |
AuthorAffiliation | Harvard Medical School, United States of America State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China |
AuthorAffiliation_xml | – name: Harvard Medical School, United States of America – name: State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China |
Author_xml | – sequence: 1 givenname: Yue surname: Qin fullname: Qin, Yue – sequence: 2 givenname: Mao-Tian surname: Zhou fullname: Zhou, Mao-Tian – sequence: 3 givenname: Ming-Ming surname: Hu fullname: Hu, Ming-Ming – sequence: 4 givenname: Yun-Hong surname: Hu fullname: Hu, Yun-Hong – sequence: 5 givenname: Jing surname: Zhang fullname: Zhang, Jing – sequence: 6 givenname: Lin surname: Guo fullname: Guo, Lin – sequence: 7 givenname: Bo surname: Zhong fullname: Zhong, Bo – sequence: 8 givenname: Hong-Bing surname: Shu fullname: Shu, Hong-Bing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25254379$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkktv1DAUhSNURB_wDxBEYgOLGfyI7XhTqaoojFQVqcDacuyb1KMkDrZTmH-Ph5lWHYkN8sJX9neP7eNzWhyNfoSieI3RElOBP679HEbdL6dJpyVGqKKsflacYMboQlBRHT2pj4vTGNeZwRTzF8UxYYRVVMiTQt_eXBFeJhgmH3Tfb8oA3dzrBLG8d2GOixRc10EAW6bNBOWqdGOC0ELwYy7tbJLLVbMp0y9fWheTG00qBzB3enRxiC-L563uI7zaz2fFj6tP3y-_LK6_fl5dXlwvDKc0LQzjUkgMBBpT1VIyqxupKRP5XUYjbBuDcAMGScEp05ZTghpe4dZSZNu6pWfF253u1Puo9u5EhXnNCJIYs0ysdoT1eq2m4AYdNsprp_4u-NApHZIzPSjNOUV1QxDPRnFBNbEtQTWtBaUWiMla5_vT5mYAa2BM2b4D0cOd0d2pzt-rCgshicgC7_cCwf-cISY1uGig7_UIfs73ZpxXCNeyyui7HdrpfDU3tj4rmi2uLmjNKsSYRJla_oPKw8LgTM5O6_L6QcOHg4bMJPidOj3HqFbfbv-DvTlkqx1rgo8xQPvoCkZqG92Hz1Hb6Kp9dHPbm6eOPjY9ZJX-AY6D7GA |
CitedBy_id | crossref_primary_10_15252_embj_201797858 crossref_primary_10_1093_jmcb_mjv068 crossref_primary_10_1016_j_celrep_2023_112306 crossref_primary_10_1002_JLB_4MIR1018_397RR crossref_primary_10_1186_s12879_023_08016_2 crossref_primary_10_1016_j_cellsig_2016_08_002 crossref_primary_10_1016_j_bbapap_2022_140792 crossref_primary_10_1074_jbc_RA119_009172 crossref_primary_10_1126_sciimmunol_aah7119 crossref_primary_10_1038_cr_2016_125 crossref_primary_10_1074_mcp_M115_048413 crossref_primary_10_1111_febs_16137 crossref_primary_10_3389_fimmu_2024_1403070 crossref_primary_10_4049_jimmunol_1800656 crossref_primary_10_3389_fimmu_2022_898724 crossref_primary_10_1016_j_semcdb_2021_11_016 crossref_primary_10_3390_cells11193043 crossref_primary_10_1084_jem_20161387 crossref_primary_10_1111_imm_12561 crossref_primary_10_3390_ijms232314601 crossref_primary_10_1038_s41598_017_11016_3 crossref_primary_10_3389_fcell_2019_00392 crossref_primary_10_1172_JCI120406 crossref_primary_10_3389_fimmu_2022_1065211 crossref_primary_10_15252_embj_2022111252 crossref_primary_10_1016_j_omto_2021_12_024 crossref_primary_10_1186_s11658_020_00245_6 crossref_primary_10_1038_cmi_2016_51 crossref_primary_10_1038_s41419_021_04260_z crossref_primary_10_1126_sciadv_abh0496 crossref_primary_10_1146_annurev_immunol_070119_115052 crossref_primary_10_1038_ncomms11267 crossref_primary_10_3389_fimmu_2022_888147 crossref_primary_10_1093_rheumatology_keac016 crossref_primary_10_1093_jxb_erac239 crossref_primary_10_3389_fimmu_2023_1324516 crossref_primary_10_14336_AD_2021_0304 crossref_primary_10_1016_j_ijbiomac_2024_132104 crossref_primary_10_1371_journal_ppat_1007435 crossref_primary_10_1016_j_cellimm_2019_04_003 crossref_primary_10_4049_jimmunol_1500339 crossref_primary_10_1038_s41467_023_42939_3 crossref_primary_10_1128_JVI_02417_16 crossref_primary_10_1038_s41423_023_01086_x crossref_primary_10_1186_s43556_021_00043_2 crossref_primary_10_1016_j_virol_2015_02_033 crossref_primary_10_1016_j_cytogfr_2015_03_001 crossref_primary_10_1093_nar_gky186 crossref_primary_10_3934_Allergy_2017_3_143 crossref_primary_10_1038_ncb3358 crossref_primary_10_3390_ijms24109032 crossref_primary_10_1038_cr_2016_40 crossref_primary_10_3389_fimmu_2018_01083 crossref_primary_10_1152_physrev_00026_2016 crossref_primary_10_3389_fimmu_2020_00615 crossref_primary_10_1016_j_dci_2023_104712 crossref_primary_10_3389_fcell_2020_582361 crossref_primary_10_1038_s41418_018_0251_z crossref_primary_10_1016_j_bbrc_2017_08_121 crossref_primary_10_14348_molcells_2017_0115 crossref_primary_10_1146_annurev_biophys_070816_033719 crossref_primary_10_1186_s13046_021_01850_9 crossref_primary_10_1038_s41416_024_02750_3 crossref_primary_10_1016_j_coph_2022_102310 crossref_primary_10_1016_j_cytogfr_2022_08_006 crossref_primary_10_1038_ncomms10592 crossref_primary_10_1038_s41392_022_01152_2 crossref_primary_10_1016_j_micpath_2019_103950 crossref_primary_10_1128_jvi_00095_23 crossref_primary_10_1016_j_ejmech_2020_113113 crossref_primary_10_1002_iub_1566 crossref_primary_10_1371_journal_ppat_1010544 crossref_primary_10_1016_j_chom_2016_01_010 crossref_primary_10_3389_fcell_2021_717610 crossref_primary_10_3389_fcimb_2022_954581 crossref_primary_10_1002_advs_202002484 crossref_primary_10_1007_s40588_016_0043_5 crossref_primary_10_1186_s12920_022_01254_4 crossref_primary_10_1016_j_immuni_2016_06_020 crossref_primary_10_1016_j_cytogfr_2020_06_004 crossref_primary_10_3390_v13040584 crossref_primary_10_1038_ncomms15534 crossref_primary_10_1038_s41392_020_0107_0 crossref_primary_10_1371_journal_pone_0264527 crossref_primary_10_4049_jimmunol_1601647 crossref_primary_10_1371_journal_ppat_1008178 crossref_primary_10_1371_journal_ppat_1011186 crossref_primary_10_1038_s41401_023_01185_5 crossref_primary_10_1038_ni_3510 crossref_primary_10_2174_1381612826666200610183048 crossref_primary_10_1016_j_tibs_2017_09_002 crossref_primary_10_1002_advs_201902599 crossref_primary_10_1016_j_celrep_2015_06_061 crossref_primary_10_1002_ctm2_770 crossref_primary_10_1038_s41392_022_01252_z crossref_primary_10_1002_pmic_201700403 crossref_primary_10_1016_j_celrep_2020_108659 crossref_primary_10_15252_embr_202051932 crossref_primary_10_1128_MMBR_00061_14 crossref_primary_10_1038_s41580_020_0244_x crossref_primary_10_3389_fimmu_2020_02064 crossref_primary_10_1146_annurev_cellbio_100617_062903 crossref_primary_10_1371_journal_ppat_1006156 crossref_primary_10_3390_ijms21114088 crossref_primary_10_1161_HYPERTENSIONAHA_116_07392 crossref_primary_10_1128_jvi_00200_22 crossref_primary_10_3390_cells10123309 crossref_primary_10_1002_eji_201746959 crossref_primary_10_1128_jvi_01815_23 crossref_primary_10_1111_imr_12765 crossref_primary_10_1360_SSV_2022_0065 crossref_primary_10_3390_ijms23010492 crossref_primary_10_1155_2018_5214187 crossref_primary_10_1002_1873_3468_13583 crossref_primary_10_1038_s41576_019_0151_1 crossref_primary_10_1038_cmi_2014_125 crossref_primary_10_1080_1040841X_2017_1368999 crossref_primary_10_15252_embj_2021109845 crossref_primary_10_1016_j_trecan_2019_03_004 crossref_primary_10_1038_cmi_2016_66 crossref_primary_10_1186_s12964_024_01543_8 crossref_primary_10_1038_s41421_021_00277_y crossref_primary_10_7554_eLife_57306 crossref_primary_10_1016_j_cell_2016_05_078 crossref_primary_10_1038_s41418_021_00803_1 crossref_primary_10_1126_scisignal_add0082 crossref_primary_10_1016_j_nlm_2020_107286 crossref_primary_10_1093_abbs_gmu133 crossref_primary_10_1517_14728222_2015_1067303 crossref_primary_10_1038_s41467_018_04759_8 crossref_primary_10_1016_j_celrep_2018_11_097 crossref_primary_10_1371_journal_ppat_1009918 crossref_primary_10_3390_ijms24087448 crossref_primary_10_1038_s41392_020_0198_7 crossref_primary_10_1016_j_bbrc_2018_04_117 crossref_primary_10_3390_v13050763 crossref_primary_10_1016_j_cytogfr_2022_09_003 crossref_primary_10_1016_j_immuni_2014_12_002 crossref_primary_10_1038_s12276_023_00965_7 crossref_primary_10_1038_cddis_2017_149 crossref_primary_10_1002_mco2_511 crossref_primary_10_1016_j_it_2016_10_008 crossref_primary_10_1128_JVI_01824_16 crossref_primary_10_3390_v13040575 crossref_primary_10_4049_jimmunol_1600212 crossref_primary_10_1111_1348_0421_12669 crossref_primary_10_15252_embr_201439637 crossref_primary_10_1002_cmdc_202300405 |
Cites_doi | 10.1016/j.molcel.2005.08.014 10.1016/j.cell.2013.09.049 10.1074/jbc.273.51.33889 10.1126/science.1232458 10.1038/nature08476 10.1038/nature06013 10.1073/pnas.1222694110 10.1038/ni1243 10.1038/icb.2012.11 10.1016/j.immuni.2009.01.008 10.1038/nature04193 10.1038/nature07317 10.4161/cc.20643 10.1111/j.1600-065X.2011.01048.x 10.1038/ni.1932 10.1016/j.tcb.2011.08.008 10.1074/jbc.M112.362608 10.1038/nsmb.1873 10.1007/978-1-4419-6676-6_9 10.4049/jimmunol.1100088 10.1128/MCB.00640-08 10.1126/science.1229963 10.1073/pnas.0911267106 10.1016/j.cell.2005.08.012 10.1016/j.cell.2011.09.022 10.1126/scisignal.2002521 10.1016/j.cell.2010.01.022 10.1038/ni.2091 10.1016/j.immuni.2008.09.003 10.1016/j.immuni.2010.10.013 10.1016/j.immuni.2013.05.004 10.1073/pnas.1203405109 10.1073/pnas.0900850106 10.1073/pnas.1318227111 10.1073/pnas.0912802107 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Qin et al 2014 Qin et al 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Qin Y, Zhou M-T, Hu M-M, Hu Y-H, Zhang J, Guo L, et al. (2014) RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms. PLoS Pathog 10(9): e1004358. doi:10.1371/journal.ppat.1004358 |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Qin et al 2014 Qin et al – notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Qin Y, Zhou M-T, Hu M-M, Hu Y-H, Zhang J, Guo L, et al. (2014) RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms. PLoS Pathog 10(9): e1004358. doi:10.1371/journal.ppat.1004358 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1004358 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | RNF26 Mediates K11-Linked Polyubiquitination of MITA |
EISSN | 1553-7374 |
Editor | Gack, Michaela U. |
Editor_xml | – sequence: 1 givenname: Michaela U. surname: Gack fullname: Gack, Michaela U. |
EndPage | e1004358 |
ExternalDocumentID | 1685209115 oai_doaj_org_article_a66308b206254673a2df20838733de2c A385405590 10_1371_journal_ppat_1004358 25254379 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ ABDBF ABUWG ACGFO ACIHN ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAP EAS EBD ECM EIF EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR IPNFZ ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RIG RNS RPM RZL SV3 TR2 TUS UKHRP WOQ WOW ~8M AAYXX CITATION 7X8 5PM - AAPBV ABPTK ADACO BBAFP PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c633t-c569791e2ebc48995dab9a357435ca01dbc01bec097635ad6320b641fd30df8f3 |
IEDL.DBID | RPM |
ISSN | 1553-7374 1553-7366 |
IngestDate | Fri Nov 26 17:14:17 EST 2021 Tue Oct 22 15:15:43 EDT 2024 Tue Sep 17 21:15:00 EDT 2024 Fri Oct 25 10:57:31 EDT 2024 Tue Nov 19 20:50:40 EST 2024 Tue Nov 12 23:31:26 EST 2024 Thu Aug 01 20:20:53 EDT 2024 Thu Aug 01 20:40:53 EDT 2024 Fri Aug 23 01:14:53 EDT 2024 Sat Sep 28 08:27:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-c569791e2ebc48995dab9a357435ca01dbc01bec097635ad6320b641fd30df8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: YQ HBS. Performed the experiments: YQ MTZ MMH YHH JZ. Analyzed the data: YQ LG BZ HBS. Wrote the paper: YQ BZ HBS. The authors have declared that no competing interests exist. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177927/ |
PMID | 25254379 |
PQID | 1566401894 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685209115 doaj_primary_oai_doaj_org_article_a66308b206254673a2df20838733de2c pubmedcentral_primary_oai_pubmedcentral_nih_gov_4177927 proquest_miscellaneous_1566401894 gale_infotracmisc_A385405590 gale_infotracacademiconefile_A385405590 gale_incontextgauss_ISR_A385405590 gale_incontextgauss_ISN_A385405590 crossref_primary_10_1371_journal_ppat_1004358 pubmed_primary_25254379 |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | E Meylan (ref5) 2005; 437 J Zhang (ref27) 2012; 287 H Ishikawa (ref8) 2008; 455 Z Zhang (ref13) 2011; 12 T Cavlar (ref24) 2012; 90 RB Seth (ref4) 2005; 122 T Kondo (ref14) 2013; 110 T Tsuchida (ref26) 2010; 33 B Zhong (ref7) 2008; 29 Y Tanaka (ref20) 2012; 5 A Takaoka (ref11) 2007; 448 T Kawai (ref6) 2005; 6 T Kawasaki (ref1) 2011; 243 O Takeuchi (ref2) 2010; 140 H Ishikawa (ref17) 2009; 461 H Konno (ref21) 2013; 155 L Sun (ref15) 2013; 339 L Jin (ref9) 2008; 28 W Sun (ref10) 2009; 106 LG Xu (ref3) 2005; 19 H Chen (ref19) 2011; 147 N Mizushima (ref28) 1998; 273 KE Wickliffe (ref32) 2011; 21 A Bremm (ref29) 2010; 17 T Saitoh (ref18) 2009; 106 T Wu (ref31) 2010; 107 L Unterholzner (ref12) 2010; 11 J Wu (ref23) 2013; 339 L Jin (ref22) 2011; 187 MM Hu (ref34) 2014; 111 SR Paludan (ref16) 2013; 38 Y Li (ref35) 2012; 109 B Zhong (ref25) 2009; 30 VN Budhavarapu (ref33) 2012; 11 M Rape (ref30) 2010; 54 |
References_xml | – volume: 19 start-page: 727 year: 2005 ident: ref3 article-title: VISA is an adapter protein required for virus-triggered IFN-beta signaling publication-title: Mol Cell doi: 10.1016/j.molcel.2005.08.014 contributor: fullname: LG Xu – volume: 155 start-page: 688 year: 2013 ident: ref21 article-title: Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling publication-title: Cell doi: 10.1016/j.cell.2013.09.049 contributor: fullname: H Konno – volume: 273 start-page: 33889 year: 1998 ident: ref28 article-title: A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy publication-title: J Biol Chem doi: 10.1074/jbc.273.51.33889 contributor: fullname: N Mizushima – volume: 339 start-page: 786 year: 2013 ident: ref15 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 contributor: fullname: L Sun – volume: 461 start-page: 788 year: 2009 ident: ref17 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 contributor: fullname: H Ishikawa – volume: 448 start-page: 501 year: 2007 ident: ref11 article-title: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response publication-title: Nature doi: 10.1038/nature06013 contributor: fullname: A Takaoka – volume: 110 start-page: 2969 year: 2013 ident: ref14 article-title: DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1222694110 contributor: fullname: T Kondo – volume: 6 start-page: 981 year: 2005 ident: ref6 article-title: IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction publication-title: Nat Immunol doi: 10.1038/ni1243 contributor: fullname: T Kawai – volume: 90 start-page: 474 year: 2012 ident: ref24 article-title: Induction of type I IFNs by intracellular DNA-sensing pathways publication-title: Immunol Cell Biol doi: 10.1038/icb.2012.11 contributor: fullname: T Cavlar – volume: 30 start-page: 397 year: 2009 ident: ref25 article-title: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA publication-title: Immunity doi: 10.1016/j.immuni.2009.01.008 contributor: fullname: B Zhong – volume: 437 start-page: 1167 year: 2005 ident: ref5 article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus publication-title: Nature doi: 10.1038/nature04193 contributor: fullname: E Meylan – volume: 455 start-page: 674 year: 2008 ident: ref8 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature doi: 10.1038/nature07317 contributor: fullname: H Ishikawa – volume: 11 start-page: 2030 year: 2012 ident: ref33 article-title: Regulation of E2F1 by APC/C Cdh1 via K11 linkage-specific ubiquitin chain formation publication-title: Cell Cycle doi: 10.4161/cc.20643 contributor: fullname: VN Budhavarapu – volume: 243 start-page: 61 year: 2011 ident: ref1 article-title: Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2011.01048.x contributor: fullname: T Kawasaki – volume: 11 start-page: 997 year: 2010 ident: ref12 article-title: IFI16 is an innate immune sensor for intracellular DNA publication-title: Nat Immunol doi: 10.1038/ni.1932 contributor: fullname: L Unterholzner – volume: 21 start-page: 656 year: 2011 ident: ref32 article-title: K11-linked ubiquitin chains as novel regulators of cell division publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2011.08.008 contributor: fullname: KE Wickliffe – volume: 287 start-page: 28646 year: 2012 ident: ref27 article-title: TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination publication-title: J Biol Chem doi: 10.1074/jbc.M112.362608 contributor: fullname: J Zhang – volume: 17 start-page: 939 year: 2010 ident: ref29 article-title: Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1873 contributor: fullname: A Bremm – volume: 54 start-page: 107 year: 2010 ident: ref30 article-title: Assembly of k11-linked ubiquitin chains by the anaphase-promoting complex publication-title: Subcell Biochem doi: 10.1007/978-1-4419-6676-6_9 contributor: fullname: M Rape – volume: 187 start-page: 2595 year: 2011 ident: ref22 article-title: MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP publication-title: J Immunol doi: 10.4049/jimmunol.1100088 contributor: fullname: L Jin – volume: 28 start-page: 5014 year: 2008 ident: ref9 article-title: MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals publication-title: Mol Cell Biol doi: 10.1128/MCB.00640-08 contributor: fullname: L Jin – volume: 339 start-page: 826 year: 2013 ident: ref23 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 contributor: fullname: J Wu – volume: 106 start-page: 20842 year: 2009 ident: ref18 article-title: Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0911267106 contributor: fullname: T Saitoh – volume: 122 start-page: 669 year: 2005 ident: ref4 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3 publication-title: Cell doi: 10.1016/j.cell.2005.08.012 contributor: fullname: RB Seth – volume: 147 start-page: 436 year: 2011 ident: ref19 article-title: Activation of STAT6 by STING is critical for antiviral innate immunity publication-title: Cell doi: 10.1016/j.cell.2011.09.022 contributor: fullname: H Chen – volume: 5 start-page: ra20 year: 2012 ident: ref20 article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway publication-title: Sci Signal doi: 10.1126/scisignal.2002521 contributor: fullname: Y Tanaka – volume: 140 start-page: 805 year: 2010 ident: ref2 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 contributor: fullname: O Takeuchi – volume: 12 start-page: 959 year: 2011 ident: ref13 article-title: The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells publication-title: Nat Immunol doi: 10.1038/ni.2091 contributor: fullname: Z Zhang – volume: 29 start-page: 538 year: 2008 ident: ref7 article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation publication-title: Immunity doi: 10.1016/j.immuni.2008.09.003 contributor: fullname: B Zhong – volume: 33 start-page: 765 year: 2010 ident: ref26 article-title: The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA publication-title: Immunity doi: 10.1016/j.immuni.2010.10.013 contributor: fullname: T Tsuchida – volume: 38 start-page: 870 year: 2013 ident: ref16 article-title: Immune sensing of DNA publication-title: Immunity doi: 10.1016/j.immuni.2013.05.004 contributor: fullname: SR Paludan – volume: 109 start-page: 11770 year: 2012 ident: ref35 article-title: LSm14A is a processing body-associated sensor of viral nucleic acids that initiates cellular antiviral response in the early phase of viral infection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1203405109 contributor: fullname: Y Li – volume: 106 start-page: 8653 year: 2009 ident: ref10 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0900850106 contributor: fullname: W Sun – volume: 111 start-page: 1509 year: 2014 ident: ref34 article-title: TRIM38 inhibits TNFalpha- and IL-1beta-triggered NF-kappaB activation by mediating lysosome-dependent degradation of TAB2/3 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1318227111 contributor: fullname: MM Hu – volume: 107 start-page: 1355 year: 2010 ident: ref31 article-title: UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0912802107 contributor: fullname: T Wu |
SSID | ssj0041316 |
Score | 2.5525753 |
Snippet | Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation... Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1004358 |
SubjectTerms | Antiviral Agents - metabolism Biological response modifiers Biology and Life Sciences Blotting, Western Cells, Cultured Genes Health aspects Humans Immunity, Innate - immunology Immunoenzyme Techniques Immunoprecipitation Interferon Interferon Regulatory Factor-3 - genetics Interferon Regulatory Factor-3 - metabolism Interferon Type I - genetics Interferon Type I - metabolism Kinases Medicine and Health Sciences Membrane Proteins - genetics Membrane Proteins - metabolism Neoplasm Proteins - antagonists & inhibitors Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Nucleic acids Protein Processing, Post-Translational Real-Time Polymerase Chain Reaction Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics RNA, Small Interfering - genetics Sensors Signal Transduction Ubiquitin-Protein Ligases - antagonists & inhibitors Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination Viral infections Virus Activation Virus diseases Virus Diseases - immunology Virus Diseases - virology Virus Replication Viruses - immunology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yIPgifl_1lCiCT_XSpknax1Nc7gT34fTg3kKaj3Nhr122XWX_e2ea7nIVxRdfSmmm0MxMJ79pJ78h5G3Nma2sCKkrjEoLaavU5IGnPFhYsDPGQoX7nb8s5Nll8flKXN1q9YU1YZEeOCruxMCSyMo6ZxKZ2xU3uQs54IZSce58bofoyw7JVIzBEJmHpqfYFCdVXMpx0xxX2cloo_frtUH6aAZ4oZwsSgN3_yFCz9artvsT_Py9ivLWsjR_QO6PeJKexnk8JHd884jcjR0md4-JuVjMc0lHAqrVakc3sfm87-iP5WbbpT2k59fYsJPi11h6TpFAYhP8pm3g1EVyWVrvaP-zpQ4jQmN7euNxx_Cyu-mekMv5p28fz9Kxq0JqJed9aoWsVJX53Ne2gGxLOFNXhguAEsIalrnasgwsyyrkqjNO8pzVssiC48yFMvCnZNa0jT8itKwhHpQFhPsARyNqJ4zNvHCF4wADsoSke7XqdSTP0MMfNAVJR9SPRjPo0QwJ-YC6P8gi9fVwARxCjw6h_-UQCXmDltNIbtFg9cy12XadPv-60KfwVABQRcX-KnQxEXo3CoUWLGzNuGMBJo-kWRPJ44kkvKJ2MnyEXrSfc6czWWL5EaDxhLzee5bGu7DkrfHtFmQAaEPyW1ZFQp5FTzsoJhfIYaCqhKiJD040Nx1plt8H8vAiU6rK1fP_oeoX5B7gxyKW3B2TWb_Z-peA0fr61fA6_gJNnDdE priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGERIviN8LDGQQEk-ZnNixkweEBqLakNaHQaW9WY7tdJW6pCQp0P-euyStCNokXqqouUTN3dn-rjl_HyHvcs5sZpMidMKoUEibhSYueMgLCwt2xFiR4X7n85k8nYuvl8nlAdlptg4ObG4s7VBPal6vjn__2H6EAf-hU21Q0e6i4_XaICE0AwSQ3iF3Y8E7yHQu9u8VYMbuxFBRLCdUXMphM91tdxktVh2n_37mnqxXVXMTLP23u_Kv5Wr6kDwYcCY96RPjETnw5WNyr1ee3D4h5mI2jSUdiKlWqy2te1F639Cfy3rThC2U7QsU8qT4Ly09o0gsURe-rko4dD3pLM23tP1VUYczRWlbeu1xJ_GyuW6ekvn0y_fPp-GgthBayXkb2kRmKot87HMroApLnMkzwxOAGIk1LHK5ZRFEnGXIYWec5DHLpYgKx5kr0oI_I5OyKv0hoWkO80QqYBko4NMkuUuMjXzihOMAD6KAhDu36nVPqqG7N2sKipHePxrDoIcwBOQT-n5vi5TY3RdVvdDDCNMGsBNL85hJpPhX3MSuiAFgpopz52MbkLcYOY2kFyV21SzMpmn02beZPoFfBcA1yditRhcjo_eDUVFBhK0ZdjLAwyOZ1sjyaGQJQ9eOTh9iFu2eudGRTLEtCVB6QN7sMkvjVdgKV_pqAzYAwKEoTjMRkOd9pu0dEyfIbaCygKhRDo48Nz5TLq86UnERKZXF6sX_OOAluQ-4UfStdkdk0tYb_wqwWZu_7obbH05jOBs priority: 102 providerName: Scholars Portal |
Title | RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25254379 https://search.proquest.com/docview/1566401894 https://pubmed.ncbi.nlm.nih.gov/PMC4177927 https://doaj.org/article/a66308b206254673a2df20838733de2c http://dx.doi.org/10.1371/journal.ppat.1004358 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELbaTJP2Mu132brImybticRgjOGx7Rq1kxJVWTrlDRmD00gJRCHRlP9-dwaiMm0ve-EBDgnuzufv4O47Qr6knOlYC-NmgZJuEOrYVb7hLjcaNmyPMRNjv_N4Et7cB9_nYn5CRNsLY4v2dbocFKv1oFg-2NrKzVoP2zqx4d34KvCkjCFnPyWn0o_aFL0OvxCU7bxTnIfjSh6GTb8cl96wMc9gs1HIHM0AKuC8Pl9gRzgWcz3amiyD_zFO9zarsvobCP2zlvLR5jR6QZ43qJJe1E__kpzkxSvytJ4zeXhN1HQy8kM6q2moVqsDndYj6POK_lxu95U7gyR9gWM7KSam9JbaL4Um35YFxeketvuBpgc6-1XSbxgXCr2j4xz7hpfVunpD7kfXs6sbt5mt4OqQ852rRRjL2Mv9PNUB5FwiU2msuABAIbRiXpZq5oF9WYyMdSoLuc_SMPBMxllmIsPfkl5RFvkZoVEKUSEKIOgbOCqRZkJpLxdZkHEAA55D3Fatyaam0EjsfzQJqUetnwQtkjQWccgl6v4oiwTY9kS5XSSNGyQKkBKLUp-FSOgvufIz4wOcjCTnWe5rh3xGyyVIcVFgDc1C7asquf0xSS7gqQCmipj9U2jaEfraCJkSLKxV07cAL4_UWR3J844kLFTduXyGXtS-c5V4YYRFSIDJHfKp9awE78LCtyIv9yADcBtS4CgOHPKu9rSjYlq_dYjs-GBHc90rsKIshXizgt7_950fyDOAjkFdbXdOervtPv8I8GyX9mFRzmWfPLm8ntxN-_YjBxzHQdS3C_U3F4I8WQ |
link.rule.ids | 230,315,728,781,785,865,886,2103,2222,24323,27929,27930,31725,33750,53796,53798 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWIgQXxHM3sIBBSJzSOnFsJ8dloWphW6HSRXuzHCcpldqkalqh_ntm8qg2CC5cckgmUjIzHn-TzHxDyPuYMxtZkblJYJQbSBu5xs-4yzMLG7bHWBZhv_NkKkfXwZcbcXNCRNsLUxXt23jZz1frfr78WdVWbtZ20NaJDb5NLgNPqQhy9jvkruAqkm2SXgdgCMvVxFOciOMqLmXTMceVN2gM1N9sDHJHMwALOLHPF9gTjuVctzanisP_GKl7m1VR_g2G_llNeWt7Gj4iDxtcSS_q539MTtL8CblXT5o8PCVmNh36ks5rIqrV6kBn9RD6tKQ_ltt96c4hTV_g4E6KqSkd0-pbYZZui5zifI-q_4HGBzr_VdBPGBlyu6OTFDuHl-W6fEauh5_nlyO3ma7gWsn5zrVCRiryUj-NbQBZl0hMHBkuAFIIa5iXxJZ5YGEWIWedSST3WSwDL0s4S7Iw489JLy_y9IzQMIa4EAYQ9jM4GhEnwlgvFUmQcIADnkPcVq16U5No6OpPmoLko9aPRovoxiIO-Yi6P8oiBXZ1otgudOMI2gBWYmHsM4mU_oobP8l8AJSh4jxJfeuQd2g5jSQXOVbRLMy-LPX4-1RfwFMBUBUR-6fQrCP0oRHKCrCwNU3nArw8kmd1JM87krBUbefyGXpR-86l9mSIZUiAyh3ytvUsjXdh6VueFnuQAcANSXAYBQ45rT3tqJjWbx2iOj7Y0Vz3CqypikS8WUMv_vvON-T-aD650lfj6deX5AEAyaCuvTsnvd12n74CsLaLX1dL8zfDsjti |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagCMQF8dwNLGAQEqe0ThzncVx2qbZAq1Xpor1Zjh2XSm0SNa1Q_z0zSVo1CC5ccmgmUjwzHn-TznxDyIeUM51oYV0TqMgNQp24yrfc5VbDge0xZhPsdx5Pwqub4MutuD0a9VUX7et00c-Xq36--FnXVpYrPdjXiQ2uxxeBF0UJ5OylsYO75J7gURLvE_UmCENorqee4lQcN-Jh2HbN8cgbtEbql6VC_mgGgAGn9vkC-8KxpOvogKp5_A_Rulcui-pvUPTPisqjI2r4mDxqsSU9b9bwhNzJ8qfkfjNtcveMqOlk6Id01pBRLZc7Om0G0WcV_bFYbyt3Bqn6HId3UkxP6YjW3wttti5yijM-6h4Imu7o7FdBLzE65HpDxxl2Dy-qVfWc3Aw_zy6u3HbCgqtDzjeuFmESJV7mZ6kOIPMSRqWJ4gJghdCKeSbVzAMrswR565QJuc_SMPCs4czY2PIXpJcXeXZKaJxCbIgDCP0WrkqkRijtZcIEhgMk8Bzi7tUqy4ZIQ9b_pkWQgDT6kWgR2VrEIZ9Q9wdZpMGufyjWc9k6g1SAl1ic-ixEWv-IK99YH0BlHHFuMl875D1aTiLRRY6VNHO1rSo5-j6R5_BWAFZFwv4pNO0IfWyFbAEW1qrtXoDFI4FWR_KsIwnbVXdun6IX7ddcSS-MsRQJkLlD3u09S-JTWP6WZ8UWZAB0QyIcJ4FDThpPOyhm77cOiTo-2NFc9w7sq5pIvN1HL__7ybfkwfXlUH4bTb6-Ig8BSwZN-d0Z6W3W2-w14LVN-qbemb8BQTA8dQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNF26+temporally+regulates+virus-triggered+type+I+interferon+induction+by+two+distinct+mechanisms&rft.jtitle=PLoS+pathogens&rft.au=Qin%2C+Yue&rft.au=Zhou%2C+Mao-Tian&rft.au=Hu%2C+Ming-Ming&rft.au=Hu%2C+Yun-Hong&rft.date=2014-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=10&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.ppat.1004358&rft.externalDBID=ISR&rft.externalDocID=A385405590 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |