Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights

The electrochemical nitrate reduction reaction (NO 3 RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 2338 - 12
Main Authors Gao, Qiang, Pillai, Hemanth Somarajan, Huang, Yang, Liu, Shikai, Mu, Qingmin, Han, Xue, Yan, Zihao, Zhou, Hua, He, Qian, Xin, Hongliang, Zhu, Huiyuan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.04.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrochemical nitrate reduction reaction (NO 3 RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d -states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO 3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO 3 RR to ammonia with a Faradaic efficiency of 92.5% at −0.5 V RHE and a yield rate of 6.25 mol h −1 g −1 at −0.6 V RHE . This study provides machine-learned design rules besides the d -band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations. Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate reduction to ammonia.
AbstractList The electrochemical nitrate reduction reaction (NO 3 RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d -states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO 3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO 3 RR to ammonia with a Faradaic efficiency of 92.5% at −0.5 V RHE and a yield rate of 6.25 mol h −1 g −1 at −0.6 V RHE . This study provides machine-learned design rules besides the d -band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations. Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate reduction to ammonia.
The electrochemical nitrate reduction reaction (NO 3 RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d -states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO 3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO 3 RR to ammonia with a Faradaic efficiency of 92.5% at −0.5 V RHE and a yield rate of 6.25 mol h −1 g −1 at −0.6 V RHE . This study provides machine-learned design rules besides the d -band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.
The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at −0.5 VRHE and a yield rate of 6.25 mol h−1 g−1 at −0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate reduction to ammonia.
Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate reduction to ammonia.
The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at -0.5 VRHE and a yield rate of 6.25 mol h-1 g-1 at -0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at -0.5 VRHE and a yield rate of 6.25 mol h-1 g-1 at -0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.
The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at –0.5 VRHE and a yield rate of 6.25 mol h–1 g–1 at –0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.
The electrochemical nitrate reduction reaction (NO RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO RR to ammonia with a Faradaic efficiency of 92.5% at -0.5 V and a yield rate of 6.25 mol h g at -0.6 V . This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.
ArticleNumber 2338
Author Mu, Qingmin
Zhou, Hua
Huang, Yang
Zhu, Huiyuan
Yan, Zihao
Liu, Shikai
Pillai, Hemanth Somarajan
Gao, Qiang
Han, Xue
He, Qian
Xin, Hongliang
Author_xml – sequence: 1
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
  organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University
– sequence: 2
  givenname: Hemanth Somarajan
  surname: Pillai
  fullname: Pillai, Hemanth Somarajan
  organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University
– sequence: 3
  givenname: Yang
  surname: Huang
  fullname: Huang, Yang
  organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University
– sequence: 4
  givenname: Shikai
  surname: Liu
  fullname: Liu, Shikai
  organization: Department of Materials Science and Engineering, National University of Singapore
– sequence: 5
  givenname: Qingmin
  surname: Mu
  fullname: Mu, Qingmin
  organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University
– sequence: 6
  givenname: Xue
  surname: Han
  fullname: Han, Xue
  organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University
– sequence: 7
  givenname: Zihao
  surname: Yan
  fullname: Yan, Zihao
  organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University
– sequence: 8
  givenname: Hua
  orcidid: 0000-0001-9642-8674
  surname: Zhou
  fullname: Zhou, Hua
  organization: X-ray Science Division, Advanced Photon Source, Argonne National Laboratory
– sequence: 9
  givenname: Qian
  orcidid: 0000-0003-4891-3581
  surname: He
  fullname: He, Qian
  email: heqian@nus.edu.sg
  organization: Department of Materials Science and Engineering, National University of Singapore
– sequence: 10
  givenname: Hongliang
  orcidid: 0000-0001-9344-1697
  surname: Xin
  fullname: Xin, Hongliang
  email: hxin@vt.edu
  organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University
– sequence: 11
  givenname: Huiyuan
  orcidid: 0000-0002-9962-1661
  surname: Zhu
  fullname: Zhu, Huiyuan
  email: huiyuanz@vt.edu
  organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35487883$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1896789$$D View this record in Osti.gov
BookMark eNp9ks1u1DAUhSNUREvpC7BAEWzYBPyX2NkgwYifSpVgAWvLcW4yHhy72A7VvAWPjNMMpe2iViRHvt85vr46T4sj5x0UxXOM3mBExdvIMGt4hQipSNuSprp6VJwQxHCFOaFHt_6Pi7MYdygv2mLB2JPimNZMcCHoSfHnQwD107ixVH304TIZ7ypwEMZ9GbWyS8WaySS1VGLphxIs6BS8VknZfTK6dCYFlaAM0M96wcr8GZcgTJAZm5HN_K0vnXJezx3EstuXk9Jb46CyoIKDPvPRjNsUnxWPB2UjnB320-LHp4_fN1-qi6-fzzfvLyrdUJqqTtQ1aoiivcBEdajFhApECe8x7kgutA1FuB461FOiCGuVpq2CQZBBUY5qelqcr769Vzt5Gcykwl56ZeT1gQ-jVCG_zoIc-gYjUXPEkWCUdm3dIQWsR3V27DVkr3er1-XcTcuJywOxd0zvVpzZytH_li2qGRc8G7xcDXxMRkZtEuit9s7lSUss2oaLNkOvD7cE_2uGmORkogZrlQM_R0maWhDSCMoy-uoeuvNzcHmeC9W0nDO6GL643fZNv__SkQGyAjr4GAMMNwhGckmhXFMocwrldQrlVRaJeyJ9SE9-urEPS-kqjfkeN0L43_YDqr9V0fQe
CitedBy_id crossref_primary_10_1002_anie_202415259
crossref_primary_10_1021_acsnanoscienceau_2c00045
crossref_primary_10_1038_s41467_023_43179_1
crossref_primary_10_1016_j_cej_2023_143889
crossref_primary_10_1002_adma_202310455
crossref_primary_10_1002_aenm_202302274
crossref_primary_10_1021_acscatal_3c00999
crossref_primary_10_1021_acsenergylett_3c01226
crossref_primary_10_1021_acsestengg_3c00415
crossref_primary_10_1002_anie_202410251
crossref_primary_10_1038_s41467_024_45534_2
crossref_primary_10_1002_smll_202401327
crossref_primary_10_1016_j_ccr_2024_215936
crossref_primary_10_1002_adma_202415632
crossref_primary_10_1021_acs_jpcc_2c07813
crossref_primary_10_1016_j_chemphys_2024_112311
crossref_primary_10_1016_j_cej_2024_152072
crossref_primary_10_1021_acs_jpcc_4c06598
crossref_primary_10_1002_adma_202207305
crossref_primary_10_1021_jacs_4c14498
crossref_primary_10_1016_j_cjsc_2023_100067
crossref_primary_10_1002_adfm_202420153
crossref_primary_10_1002_cctc_202402050
crossref_primary_10_1002_smll_202403515
crossref_primary_10_1002_adma_202303018
crossref_primary_10_1007_s11244_024_01949_1
crossref_primary_10_1088_1361_6528_ad86c8
crossref_primary_10_1038_s41467_025_55889_9
crossref_primary_10_1002_ange_202313434
crossref_primary_10_1021_acs_nanolett_3c04738
crossref_primary_10_1021_jacs_4c06098
crossref_primary_10_1016_j_apcatb_2023_122360
crossref_primary_10_1016_j_cej_2024_157518
crossref_primary_10_1002_smll_202308311
crossref_primary_10_1039_D2TA06354A
crossref_primary_10_1039_D4TA03246B
crossref_primary_10_1039_D4CP02303J
crossref_primary_10_1002_aenm_202301409
crossref_primary_10_1016_j_checat_2023_100595
crossref_primary_10_1039_D3TA01063E
crossref_primary_10_1002_adma_202415739
crossref_primary_10_1039_D3CY01160G
crossref_primary_10_1002_cssc_202300202
crossref_primary_10_1002_ange_202422072
crossref_primary_10_1002_celc_202300419
crossref_primary_10_1021_acscatal_3c04541
crossref_primary_10_1021_acsestengg_3c00207
crossref_primary_10_1021_acscatal_3c02740
crossref_primary_10_1007_s12633_024_02944_7
crossref_primary_10_1016_j_wasec_2023_100147
crossref_primary_10_1002_chem_202303249
crossref_primary_10_1002_adfm_202305372
crossref_primary_10_1002_ange_202315238
crossref_primary_10_1016_j_mser_2024_100796
crossref_primary_10_1039_D4NJ02343A
crossref_primary_10_1007_s12274_023_5885_6
crossref_primary_10_1021_acscatal_4c05434
crossref_primary_10_1002_adma_202407889
crossref_primary_10_3390_app14198986
crossref_primary_10_1021_acs_est_3c09198
crossref_primary_10_1016_j_nanoen_2025_110708
crossref_primary_10_3866_PKU_WHXB202403008
crossref_primary_10_1016_j_cej_2024_151519
crossref_primary_10_1002_anie_202307952
crossref_primary_10_1016_j_nxener_2024_100125
crossref_primary_10_1016_j_gee_2025_01_005
crossref_primary_10_1021_jacs_4c04023
crossref_primary_10_1016_j_jes_2024_12_037
crossref_primary_10_1016_j_ijhydene_2024_06_038
crossref_primary_10_1007_s12274_023_5798_4
crossref_primary_10_12677_japc_2024_134062
crossref_primary_10_1016_j_jcis_2022_11_069
crossref_primary_10_1039_D3EY00058C
crossref_primary_10_1039_D3SC05793C
crossref_primary_10_1016_j_jechem_2023_12_024
crossref_primary_10_1016_j_jallcom_2024_177180
crossref_primary_10_1002_smll_202207743
crossref_primary_10_1016_j_ccr_2024_215802
crossref_primary_10_1016_j_mtsust_2024_100903
crossref_primary_10_1021_acs_est_4c09037
crossref_primary_10_1002_adma_202402979
crossref_primary_10_1016_j_apcatb_2023_122687
crossref_primary_10_1039_D2TA07475C
crossref_primary_10_1002_adma_202313548
crossref_primary_10_1002_aesr_202300173
crossref_primary_10_1007_s11244_023_01837_0
crossref_primary_10_1002_advs_202416053
crossref_primary_10_1016_j_colsurfa_2024_133557
crossref_primary_10_1002_adma_202303050
crossref_primary_10_1016_j_cej_2025_161014
crossref_primary_10_1039_D4TA04389H
crossref_primary_10_1016_j_cogsc_2024_100995
crossref_primary_10_1002_adma_202304021
crossref_primary_10_1002_adfm_202400773
crossref_primary_10_1021_acssuschemeng_2c06525
crossref_primary_10_1002_anie_202315238
crossref_primary_10_1039_D4SC05936K
crossref_primary_10_1007_s12274_023_5402_y
crossref_primary_10_1021_acs_inorgchem_4c01264
crossref_primary_10_1021_acs_inorgchem_4c02353
crossref_primary_10_1016_j_nanoen_2024_110088
crossref_primary_10_1002_aesr_202300284
crossref_primary_10_1016_j_ijhydene_2022_11_329
crossref_primary_10_1021_acs_chemrev_3c00382
crossref_primary_10_1073_pnas_2319525121
crossref_primary_10_1002_ange_202309930
crossref_primary_10_1016_j_jallcom_2025_178694
crossref_primary_10_1021_jacs_3c03432
crossref_primary_10_1039_D4TA03851G
crossref_primary_10_1039_D3QM01038D
crossref_primary_10_1002_advs_202407599
crossref_primary_10_1021_acsnano_4c17163
crossref_primary_10_1038_s41467_025_57463_9
crossref_primary_10_1016_j_ccr_2025_216473
crossref_primary_10_1039_D3QI00554B
crossref_primary_10_1002_anie_202422072
crossref_primary_10_1021_jacs_4c12240
crossref_primary_10_1002_anie_202409526
crossref_primary_10_1021_acs_nanolett_3c02259
crossref_primary_10_1016_j_jmrt_2024_06_037
crossref_primary_10_1016_j_surfin_2025_106078
crossref_primary_10_1021_acsami_4c07339
crossref_primary_10_1021_acs_chemmater_4c03111
crossref_primary_10_1002_ange_202300054
crossref_primary_10_1016_j_apsusc_2023_157118
crossref_primary_10_1002_anie_202309930
crossref_primary_10_1016_j_nanoen_2023_108434
crossref_primary_10_1039_D4NR00474D
crossref_primary_10_1073_pnas_2306461120
crossref_primary_10_1016_j_jechem_2023_02_004
crossref_primary_10_1063_5_0230248
crossref_primary_10_1016_j_ces_2025_121573
crossref_primary_10_1021_acs_nanolett_4c03218
crossref_primary_10_1039_D3TA08054D
crossref_primary_10_1002_asia_202401796
crossref_primary_10_1021_acs_jpcc_4c01056
crossref_primary_10_1016_j_jcis_2024_06_020
crossref_primary_10_1016_j_mtcomm_2023_107758
crossref_primary_10_1021_acs_nanolett_3c01978
crossref_primary_10_1002_ange_202408758
crossref_primary_10_1016_j_jechem_2023_03_037
crossref_primary_10_1002_ange_202411123
crossref_primary_10_1007_s11426_024_2286_7
crossref_primary_10_1016_j_cej_2023_148238
crossref_primary_10_1021_accountsmr_3c00131
crossref_primary_10_1002_advs_202406843
crossref_primary_10_1021_jacsau_4c00054
crossref_primary_10_1002_adma_202417623
crossref_primary_10_1021_acs_jpcc_4c06088
crossref_primary_10_1002_smll_202311336
crossref_primary_10_1016_j_cej_2024_152460
crossref_primary_10_1016_j_apcatb_2024_123810
crossref_primary_10_1016_j_jece_2023_110927
crossref_primary_10_1016_j_cclet_2024_110657
crossref_primary_10_1016_j_jcis_2024_02_211
crossref_primary_10_1002_ange_202415259
crossref_primary_10_1002_adfm_202303803
crossref_primary_10_1039_D2EE02647C
crossref_primary_10_1016_j_apcatb_2024_124467
crossref_primary_10_1126_sciadv_adm9325
crossref_primary_10_1007_s40843_024_3017_4
crossref_primary_10_1021_acsanm_4c05751
crossref_primary_10_1016_j_jechem_2024_12_011
crossref_primary_10_1038_s41467_023_44469_4
crossref_primary_10_1039_D4GC06030J
crossref_primary_10_3390_catal14110817
crossref_primary_10_1002_adfm_202303480
crossref_primary_10_1016_j_chempr_2023_05_037
crossref_primary_10_1039_D2EY00038E
crossref_primary_10_1016_j_jpowsour_2022_232523
crossref_primary_10_1016_j_checat_2024_101060
crossref_primary_10_1021_acscatal_4c05225
crossref_primary_10_1002_smll_202300794
crossref_primary_10_1002_ange_202307952
crossref_primary_10_1002_ange_202410251
crossref_primary_10_1002_adma_202307913
crossref_primary_10_1016_j_cej_2023_145861
crossref_primary_10_1360_SSC_2023_0081
crossref_primary_10_1002_adfm_202300512
crossref_primary_10_1016_j_eng_2023_07_021
crossref_primary_10_1002_adfm_202417486
crossref_primary_10_1021_acsami_4c11747
crossref_primary_10_1039_D4CC04024D
crossref_primary_10_1002_cctc_202401549
crossref_primary_10_1039_D3CY01232H
crossref_primary_10_1002_anie_202408758
crossref_primary_10_1021_acs_jpclett_3c03462
crossref_primary_10_1016_j_ijhydene_2024_03_119
crossref_primary_10_1002_adfm_202211537
crossref_primary_10_1016_j_jechem_2023_07_006
crossref_primary_10_1016_j_jechem_2023_08_050
crossref_primary_10_1002_anie_202313434
crossref_primary_10_1038_s41893_024_01407_6
crossref_primary_10_1002_ange_202409526
crossref_primary_10_1016_j_cej_2024_158536
crossref_primary_10_1155_2024_5685619
crossref_primary_10_1016_j_jechem_2024_05_001
crossref_primary_10_1002_cssc_202402331
crossref_primary_10_1016_j_ijhydene_2025_03_221
crossref_primary_10_1016_j_jhazmat_2022_130651
crossref_primary_10_1021_acsenergylett_4c01247
crossref_primary_10_1038_s41929_023_00911_w
crossref_primary_10_1039_D2CE01129H
crossref_primary_10_1103_PhysRevMaterials_8_055406
crossref_primary_10_1016_j_jhazmat_2022_130534
crossref_primary_10_1016_j_mtener_2022_101112
crossref_primary_10_1002_anie_202300054
crossref_primary_10_1016_j_ese_2023_100383
crossref_primary_10_1016_j_seppur_2023_125129
crossref_primary_10_1039_D4EE03156C
crossref_primary_10_1038_s41467_024_52780_x
crossref_primary_10_1016_j_nanoen_2023_109183
crossref_primary_10_1002_smll_202403399
crossref_primary_10_1002_smll_202404124
crossref_primary_10_1021_acssuschemeng_4c02310
crossref_primary_10_1039_D4CC04046E
crossref_primary_10_1002_aenm_202401717
crossref_primary_10_1002_ange_202403633
crossref_primary_10_1039_D3CC01428B
crossref_primary_10_1039_D2QI02757G
crossref_primary_10_1039_D4EE03678F
crossref_primary_10_1021_acscatal_4c00365
crossref_primary_10_1021_acscatal_4c04048
crossref_primary_10_1039_D3QI01113E
crossref_primary_10_1002_smm2_1210
crossref_primary_10_1002_anie_202411123
crossref_primary_10_1002_adfm_202301493
crossref_primary_10_1039_D5CY00055F
crossref_primary_10_1039_D4EE03970J
crossref_primary_10_1021_acsenergylett_4c00256
crossref_primary_10_1002_advs_202308979
crossref_primary_10_1002_anie_202403633
crossref_primary_10_1021_acsnano_3c01862
crossref_primary_10_1021_acssuschemeng_3c03763
crossref_primary_10_1002_cssc_202301050
crossref_primary_10_1007_s40843_023_2552_1
crossref_primary_10_1016_j_nanoen_2023_108543
Cites_doi 10.1038/nchem.2595
10.1038/s41557-020-0481-9
10.1073/pnas.1815643116
10.1021/jacs.9b13347
10.1021/acscatal.7b03597
10.1021/ja403041g
10.1038/s41929-018-0054-0
10.1021/acsnano.6b02669
10.1038/s41467-017-01258-0
10.1021/acs.jpclett.6b00358
10.1103/PhysRevB.59.7413
10.1021/jp503756g
10.1007/s12678-017-0437-z
10.1038/s41929-019-0376-6
10.1016/j.pnsc.2017.10.004
10.1038/s41467-020-19524-z
10.1021/jacs.7b12101
10.1021/acs.jpclett.6b00382
10.1103/PhysRevB.54.11169
10.1021/acscatal.9b04313
10.1021/cm0484450
10.1093/nsr/nwv023
10.1038/srep24603
10.1002/anie.201915992
10.1063/1.4865107
10.1002/anie.201603022
10.1002/cssc.201300404
10.1021/jacs.7b12829
10.1016/0039-6028(96)80007-0
10.1021/acscatal.0c04021
10.1126/science.287.5460.1989
10.1021/ja1009629
10.1038/nmat3458
10.1021/acs.accounts.9b00172
10.1039/D0TA08693B
10.1021/la990638s
10.1063/1.5132354
10.1016/j.cej.2020.126269
10.1088/0953-8984/21/39/395502
10.1002/cctc.201402864
10.1016/0927-0256(96)00008-0
10.1021/cr8003696
10.1021/acscatal.8b00201
10.1021/acscatal.9b02179
10.1016/j.jcat.2020.12.031
10.1021/jacs.7b03516
10.1016/j.ijhydene.2020.08.257
10.1021/jacs.0c00418
10.1063/1.3437609
10.1103/PhysRevLett.99.016105
10.1021/acs.jpclett.5b02247
10.1038/s41467-021-23115-x
10.1002/anie.201605956
10.1007/s12274-010-0051-3
10.1002/adma.201302820
10.1002/anie.202003071
10.1021/jp5014187
10.1016/j.electacta.2008.03.048
10.1016/j.electacta.2016.12.147
10.1021/acsenergylett.0c01959
10.1021/acs.iecr.9b01471
10.1021/acscatal.1c03666
10.1016/j.cattod.2017.01.050
10.1039/D1CS00116G
10.1021/acs.iecr.1c03072
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-022-29926-w
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_fd6108570708433b95b0ae4d059aedce
PMC9054787
1896789
35487883
10_1038_s41467_022_29926_w
Genre Journal Article
GrantInformation_xml – fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Chemistry (CHE)
  grantid: CHE-2102363
  funderid: https://doi.org/10.13039/100000165
– fundername: NSF | Directorate for Engineering (ENG/OAD)
  grantid: CBET- 2143710; CBET-1845531
  funderid: https://doi.org/10.13039/100000084
– fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Chemistry (CHE)
  grantid: CHE-2102363
– fundername: NSF | Directorate for Engineering (ENG/OAD)
  grantid: CBET-1845531
– fundername: NSF | Directorate for Engineering (ENG/OAD)
  grantid: CBET- 2143710
– fundername: ;
  grantid: CHE-2102363
– fundername: ;
  grantid: CBET- 2143710; CBET-1845531
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c633t-b855062a3d812ab0912380327d11b262a963015fb0d32a249ac39aef82fa37053
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:43 EDT 2025
Thu Aug 21 14:11:00 EDT 2025
Fri May 19 02:26:14 EDT 2023
Fri Jul 11 08:05:12 EDT 2025
Wed Aug 13 09:51:54 EDT 2025
Wed Feb 19 02:26:34 EST 2025
Tue Jul 01 04:17:48 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Fri Feb 21 02:38:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-b855062a3d812ab0912380327d11b262a963015fb0d32a249ac39aef82fa37053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-06CH11357; CHE-2102363; CBET-2143710; CBET-1845531; NRF-NRFF11-2019-0002
National Science Foundation (NSF)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Singapore National Science Foundation
ORCID 0000-0001-9642-8674
0000-0001-9344-1697
0000-0003-4891-3581
0000-0002-9962-1661
0000000348913581
0000000299621661
0000000196428674
0000000193441697
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-29926-w
PMID 35487883
PQID 2656977439
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_fd6108570708433b95b0ae4d059aedce
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9054787
osti_scitechconnect_1896789
proquest_miscellaneous_2658226834
proquest_journals_2656977439
pubmed_primary_35487883
crossref_primary_10_1038_s41467_022_29926_w
crossref_citationtrail_10_1038_s41467_022_29926_w
springer_journals_10_1038_s41467_022_29926_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-29
PublicationDateYYYYMMDD 2022-04-29
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li (CR41) 2018; 140
Li, Sun (CR21) 2019; 52
Yao, Zhu, Wang, Li, Shao (CR51) 2020; 59
Mathew, Kolluru, Mula, Steinmann, Hennig (CR62) 2019; 151
Doyle, Montoya, Vojvodic (CR14) 2015; 7
Wang, Chen, Sang, Unocic, Skrabalak (CR16) 2016; 10
Jiang (CR19) 2016; 55
Reyter, Bélanger, Roué (CR25) 2008; 53
Pillai, Xin (CR64) 2019; 58
Hammer, Nørskov (CR66) 1995; 343
Wu (CR46) 2021; 12
Gani, Kulik (CR13) 2018; 8
da Cunha, De Souza, Nart (CR50) 2000; 16
Kim (CR20) 2017; 139
Tang (CR32) 2017; 27
CR2
Sra, Ewers, Schaak (CR35) 2005; 17
CR4
Khorshidi, Violet, Hashemi, Peterson (CR10) 2018; 1
Akhade, Bernstein, Esopi, Regula, Janik (CR26) 2017; 288
Gao (CR55) 2019; 2019
Kresse, Furthmüller (CR56) 1996; 54
Vojvodic, Nørskov (CR31) 2015; 2
Rosca, Duca, de Groot, Koper (CR3) 2009; 109
Guo (CR53) 2014; 118
Zhu, Bu, Shao, Huang (CR18) 2020; 10
Chan, Nørskov (CR27) 2016; 7
Xiong (CR36) 2019; 116
Jin (CR54) 2011; 4
Jiang (CR33) 2016; 55
Sun, Murray, Weller, Folks, Moser (CR43) 2000; 287
Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR63) 2014; 140
Kim, Lee, Sun (CR42) 2010; 132
Michalsky, Zhang, Medford, Peterson (CR11) 2014; 118
Mirzaei (CR7) 2018; 9
Tianou (CR39) 2017; 8
Zhu, Zhang, Guo, Su, Sun (CR45) 2013; 135
Li (CR48) 2020; 142
Schumann (CR61) 2018; 8
Pérez-Gallent, Figueiredo, Katsounaros, Koper (CR5) 2017; 227
Wang (CR6) 2020; 142
Yao, Zhu, Wang, Li, Shao (CR49) 2018; 140
Wang, Pillai, Xin (CR22) 2020; 11
Zhao (CR15) 2021; 11
Wang (CR12) 2017; 9
Wang, Zhou, Jia, Yu, Zhang (CR47) 2020; 59
Cheng, Xiao, Goddard (CR28) 2015; 6
Chen (CR38) 2020; 12
Zhang (CR1) 2021; 403
Abild-Pedersen (CR29) 2007; 99
Gao (CR52) 2013; 6
Ye, Bai, Jiang, Fang (CR37) 2020; 45
Xia, Wang, Ruditskiy, Xia (CR40) 2013; 25
Ravikumar, Baby, Lin, Brivio, Fratesi (CR60) 2016; 6
Wang (CR17) 2013; 12
Flores Espinosa (CR34) 2020; 5
Liu, Richards, Singh, Goldsmith (CR24) 2019; 9
Hu, Wang, Wang, Li, Guo (CR23) 2021; 11
Hammer, Hansen, Nørskov (CR59) 1999; 59
Kresse, Furthmüller (CR57) 1996; 6
Pérez-Ramírez, López (CR9) 2019; 2
Wang, Young, Goldsmith, Singh (CR8) 2021; 395
Goodpaster, Bell, Head-Gordon (CR65) 2016; 7
Xin, Linic (CR30) 2010; 132
Giannozzi (CR58) 2009; 21
Gao (CR44) 2020; 8
TZH Gani (29926_CR13) 2018; 8
D Reyter (29926_CR25) 2008; 53
Y Wang (29926_CR6) 2020; 142
A Khorshidi (29926_CR10) 2018; 1
N Ye (29926_CR37) 2020; 45
J Kim (29926_CR42) 2010; 132
AD Doyle (29926_CR14) 2015; 7
SA Akhade (29926_CR26) 2017; 288
J Pérez-Ramírez (29926_CR9) 2019; 2
MCPM da Cunha (29926_CR50) 2000; 16
Z Wang (29926_CR8) 2021; 395
A Ravikumar (29926_CR60) 2016; 6
S Wang (29926_CR22) 2020; 11
Y Xiong (29926_CR36) 2019; 116
Y Yao (29926_CR49) 2018; 140
B Hammer (29926_CR66) 1995; 343
Y Wang (29926_CR47) 2020; 59
F Abild-Pedersen (29926_CR29) 2007; 99
J-X Liu (29926_CR24) 2019; 9
V Rosca (29926_CR3) 2009; 109
P Wang (29926_CR12) 2017; 9
P Giannozzi (29926_CR58) 2009; 21
K Jiang (29926_CR19) 2016; 55
Q Gao (29926_CR55) 2019; 2019
M Jin (29926_CR54) 2011; 4
K Mathew (29926_CR62) 2019; 151
P Mirzaei (29926_CR7) 2018; 9
J Li (29926_CR21) 2019; 52
C Wang (29926_CR16) 2016; 10
X Zhang (29926_CR1) 2021; 403
H Zhu (29926_CR45) 2013; 135
C Chen (29926_CR38) 2020; 12
AK Sra (29926_CR35) 2005; 17
G Kresse (29926_CR57) 1996; 6
29926_CR2
K Chan (29926_CR27) 2016; 7
Y Yao (29926_CR51) 2020; 59
MM Flores Espinosa (29926_CR34) 2020; 5
29926_CR4
Y Zhu (29926_CR18) 2020; 10
D Kim (29926_CR20) 2017; 139
A Vojvodic (29926_CR31) 2015; 2
B Hammer (29926_CR59) 1999; 59
Q Gao (29926_CR44) 2020; 8
Z-Y Wu (29926_CR46) 2021; 12
HS Pillai (29926_CR64) 2019; 58
E Pérez-Gallent (29926_CR5) 2017; 227
J Schumann (29926_CR61) 2018; 8
M Tang (29926_CR32) 2017; 27
Y Jiang (29926_CR33) 2016; 55
D Wang (29926_CR17) 2013; 12
T Cheng (29926_CR28) 2015; 6
G Kresse (29926_CR56) 1996; 54
H Guo (29926_CR53) 2014; 118
T Hu (29926_CR23) 2021; 11
Q Gao (29926_CR52) 2013; 6
XH Xia (29926_CR40) 2013; 25
H Tianou (29926_CR39) 2017; 8
K Mathew (29926_CR63) 2014; 140
X Zhao (29926_CR15) 2021; 11
R Michalsky (29926_CR11) 2014; 118
S Sun (29926_CR43) 2000; 287
JD Goodpaster (29926_CR65) 2016; 7
H Xin (29926_CR30) 2010; 132
J Li (29926_CR48) 2020; 142
J Li (29926_CR41) 2018; 140
References_xml – volume: 9
  start-page: 64
  year: 2017
  end-page: 70
  ident: CR12
  article-title: Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2595
– volume: 12
  start-page: 717
  year: 2020
  end-page: 724
  ident: CR38
  article-title: Coupling N and CO in H O to synthesize urea under ambient conditions
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0481-9
– volume: 116
  start-page: 1974
  year: 2019
  end-page: 1983
  ident: CR36
  article-title: Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1815643116
– volume: 142
  start-page: 5702
  year: 2020
  end-page: 5708
  ident: CR6
  article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13347
– ident: CR4
– volume: 8
  start-page: 975
  year: 2018
  end-page: 986
  ident: CR13
  article-title: Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by Fe ═O
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.7b03597
– volume: 135
  start-page: 7130
  year: 2013
  end-page: 7133
  ident: CR45
  article-title: Synthetic control of FePtM nanorods (M=Cu, Ni) to enhance the oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403041g
– volume: 1
  start-page: 263
  year: 2018
  end-page: 268
  ident: CR10
  article-title: How strain can break the scaling relations of catalysis
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0054-0
– volume: 10
  start-page: 6345
  year: 2016
  end-page: 6353
  ident: CR16
  article-title: Size-dependent disorder–order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02669
– volume: 8
  year: 2017
  ident: CR39
  article-title: Inflating hollow nanocrystals through a repeated Kirkendall cavitation process
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01258-0
– volume: 7
  start-page: 1471
  year: 2016
  end-page: 1477
  ident: CR65
  article-title: Identification of possible pathways for C–C bond formation during electrochemical reduction of CO : new theoretical insights from an improved electrochemical model
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00358
– volume: 59
  start-page: 7413
  year: 1999
  end-page: 7421
  ident: CR59
  article-title: Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.7413
– volume: 118
  start-page: 13026
  year: 2014
  end-page: 13034
  ident: CR11
  article-title: Departures from the adsorption energy scaling relations for metal carbide catalysts
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp503756g
– volume: 9
  start-page: 343
  year: 2018
  end-page: 351
  ident: CR7
  article-title: Electrocatalytic reduction of nitrate and nitrite at CuRh nanoparticles/C composite electrodes
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-017-0437-z
– volume: 2
  start-page: 971
  year: 2019
  end-page: 976
  ident: CR9
  article-title: Strategies to break linear scaling relationships
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0376-6
– volume: 27
  start-page: 709
  year: 2017
  end-page: 713
  ident: CR32
  article-title: First-principles study of the interactions of hydrogen with low-index surfaces of PdCu ordered alloy
  publication-title: Prog. Nat. Sci. Mater. Int
  doi: 10.1016/j.pnsc.2017.10.004
– volume: 11
  year: 2020
  ident: CR22
  article-title: Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19524-z
– volume: 140
  start-page: 1496
  year: 2018
  end-page: 1501
  ident: CR49
  article-title: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12101
– volume: 7
  start-page: 1686
  year: 2016
  end-page: 1690
  ident: CR27
  article-title: Potential dependence of electrochemical barriers from ab initio calculations
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00382
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR56
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 10
  start-page: 3455
  year: 2020
  end-page: 3461
  ident: CR18
  article-title: Structurally ordered Pt Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.9b04313
– volume: 17
  start-page: 758
  year: 2005
  end-page: 766
  ident: CR35
  article-title: Direct solution synthesis of intermetallic AuCu and AuCu nanocrystals and nanowire networks
  publication-title: Chem. Mater.
  doi: 10.1021/cm0484450
– volume: 2
  start-page: 140
  year: 2015
  end-page: 143
  ident: CR31
  article-title: New design paradigm for heterogeneous catalysts
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwv023
– volume: 6
  year: 2016
  ident: CR60
  article-title: Femtomagnetism in graphene induced by core level excitation of organic adsorbates
  publication-title: Sci. Rep.
  doi: 10.1038/srep24603
– volume: 59
  start-page: 5350
  year: 2020
  end-page: 5354
  ident: CR47
  article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915992
– volume: 140
  start-page: 084106
  year: 2014
  ident: CR63
  article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 55
  start-page: 9030
  year: 2016
  end-page: 9035
  ident: CR19
  article-title: Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201603022
– volume: 6
  start-page: 1878
  year: 2013
  end-page: 1882
  ident: CR52
  article-title: Shape-controlled synthesis of monodisperse PdCu nanocubes and their electrocatalytic properties
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300404
– volume: 140
  start-page: 2926
  year: 2018
  end-page: 2932
  ident: CR41
  article-title: Fe stabilization by intermetallic L -FePt and Pt catalysis enhancement in L -FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12829
– volume: 343
  start-page: 211
  year: 1995
  end-page: 220
  ident: CR66
  article-title: Electronic factors determining the reactivity of metal surfaces
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)80007-0
– volume: 11
  start-page: 184
  year: 2021
  end-page: 192
  ident: CR15
  article-title: Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.0c04021
– volume: 287
  start-page: 1989
  year: 2000
  end-page: 1992
  ident: CR43
  article-title: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices
  publication-title: Science
  doi: 10.1126/science.287.5460.1989
– volume: 132
  start-page: 4996
  year: 2010
  end-page: 4997
  ident: CR42
  article-title: Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1009629
– volume: 12
  start-page: 81
  year: 2013
  end-page: 87
  ident: CR17
  article-title: Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3458
– volume: 52
  start-page: 2015
  year: 2019
  end-page: 2025
  ident: CR21
  article-title: Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00172
– volume: 8
  start-page: 20931
  year: 2020
  end-page: 20938
  ident: CR44
  article-title: Monodisperse PdSn/SnO core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08693B
– volume: 16
  start-page: 771
  year: 2000
  end-page: 777
  ident: CR50
  article-title: Reaction pathways for reduction of nitrate ions on platinum, rhodium, and platinum−rhodium alloy electrodes
  publication-title: Langmuir
  doi: 10.1021/la990638s
– volume: 151
  start-page: 234101
  year: 2019
  ident: CR62
  article-title: Implicit self-consistent electrolyte model in plane-wave density-functional theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5132354
– volume: 403
  start-page: 126269
  year: 2021
  ident: CR1
  article-title: Recent advances in non-noble metal electrocatalysts for nitrate reduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126269
– volume: 21
  start-page: 395502
  year: 2009
  ident: CR58
  article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 7
  start-page: 738
  year: 2015
  end-page: 742
  ident: CR14
  article-title: Improving oxygen electrochemistry through nanoscopic confinement
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402864
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR57
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 109
  start-page: 2209
  year: 2009
  end-page: 2244
  ident: CR3
  article-title: Nitrogen cycle electrocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr8003696
– volume: 8
  start-page: 3447
  year: 2018
  end-page: 3453
  ident: CR61
  article-title: Selectivity of synthesis gas conversion to C oxygenates on fcc(111) transition-metal surfaces
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.8b00201
– volume: 9
  start-page: 7052
  year: 2019
  end-page: 7064
  ident: CR24
  article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.9b02179
– volume: 395
  start-page: 143
  year: 2021
  end-page: 154
  ident: CR8
  article-title: Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.12.031
– volume: 139
  start-page: 8329
  year: 2017
  end-page: 8336
  ident: CR20
  article-title: Electrochemical activation of CO through atomic ordering transformations of AuCu nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03516
– ident: CR2
– volume: 45
  start-page: 32022
  year: 2020
  end-page: 32038
  ident: CR37
  article-title: Component-dependent activity of bimetallic PdCu and PdNi electrocatalysts for methanol oxidation reaction in alkaline media
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.08.257
– volume: 142
  start-page: 7036
  year: 2020
  end-page: 7046
  ident: CR48
  article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00418
– volume: 132
  start-page: 221101
  year: 2010
  ident: CR30
  article-title: Communications: Exceptions to the d-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal -states
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3437609
– volume: 99
  start-page: 016105
  year: 2007
  ident: CR29
  article-title: Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.016105
– volume: 6
  start-page: 4767
  year: 2015
  end-page: 4773
  ident: CR28
  article-title: Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu(100) surface, including multiple layers of explicit solvent at pH 0
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02247
– volume: 12
  year: 2021
  ident: CR46
  article-title: Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23115-x
– volume: 55
  start-page: 12427
  year: 2016
  end-page: 12430
  ident: CR33
  article-title: In situ observation of hydrogen-induced surface faceting for palladium–copper nanocrystals at atmospheric pressure
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605956
– volume: 4
  start-page: 83
  year: 2011
  end-page: 91
  ident: CR54
  article-title: Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0051-3
– volume: 25
  start-page: 6313
  year: 2013
  end-page: 6333
  ident: CR40
  article-title: 25th Anniversary Article: Galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302820
– volume: 59
  start-page: 10479
  year: 2020
  end-page: 10483
  ident: CR51
  article-title: A spectroscopic study of electrochemical nitrogen and nitrate reduction on rhodium surfaces
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003071
– volume: 118
  start-page: 9801
  year: 2014
  end-page: 9808
  ident: CR53
  article-title: Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp5014187
– volume: 53
  start-page: 5977
  year: 2008
  ident: CR25
  article-title: Study of the electroreduction of nitrate on copper in alkaline solution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.03.048
– volume: 227
  start-page: 77
  year: 2017
  end-page: 84
  ident: CR5
  article-title: Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.147
– volume: 5
  start-page: 3672
  year: 2020
  end-page: 3680
  ident: CR34
  article-title: Compressed intermetallic PdCu for enhanced electrocatalysis
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01959
– volume: 2019
  start-page: 8078549
  year: 2019
  ident: CR55
  article-title: Synthesis of PdS -mediated polydymite heteronanorods and their long-range activation for enhanced water electroreduction
  publication-title: Research
– volume: 58
  start-page: 10819
  year: 2019
  end-page: 10828
  ident: CR64
  article-title: New insights into electrochemical ammonia oxidation on Pt(100) from first principles
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b01471
– volume: 11
  start-page: 14417
  year: 2021
  end-page: 14427
  ident: CR23
  article-title: Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.1c03666
– volume: 288
  start-page: 63
  year: 2017
  end-page: 73
  ident: CR26
  article-title: A simple method to approximate electrode potential-dependent activation energies using density functional theory
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.01.050
– volume: 11
  start-page: 14417
  year: 2021
  ident: 29926_CR23
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.1c03666
– volume: 2
  start-page: 140
  year: 2015
  ident: 29926_CR31
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwv023
– volume: 59
  start-page: 10479
  year: 2020
  ident: 29926_CR51
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003071
– volume: 343
  start-page: 211
  year: 1995
  ident: 29926_CR66
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)80007-0
– volume: 8
  year: 2017
  ident: 29926_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01258-0
– volume: 59
  start-page: 7413
  year: 1999
  ident: 29926_CR59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.7413
– volume: 403
  start-page: 126269
  year: 2021
  ident: 29926_CR1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126269
– volume: 4
  start-page: 83
  year: 2011
  ident: 29926_CR54
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0051-3
– volume: 9
  start-page: 343
  year: 2018
  ident: 29926_CR7
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-017-0437-z
– volume: 2
  start-page: 971
  year: 2019
  ident: 29926_CR9
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0376-6
– volume: 142
  start-page: 7036
  year: 2020
  ident: 29926_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00418
– volume: 54
  start-page: 11169
  year: 1996
  ident: 29926_CR56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 55
  start-page: 12427
  year: 2016
  ident: 29926_CR33
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605956
– volume: 142
  start-page: 5702
  year: 2020
  ident: 29926_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13347
– volume: 10
  start-page: 6345
  year: 2016
  ident: 29926_CR16
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02669
– volume: 118
  start-page: 13026
  year: 2014
  ident: 29926_CR11
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp503756g
– volume: 6
  year: 2016
  ident: 29926_CR60
  publication-title: Sci. Rep.
  doi: 10.1038/srep24603
– volume: 6
  start-page: 15
  year: 1996
  ident: 29926_CR57
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– ident: 29926_CR2
  doi: 10.1039/D1CS00116G
– volume: 12
  start-page: 717
  year: 2020
  ident: 29926_CR38
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0481-9
– volume: 7
  start-page: 738
  year: 2015
  ident: 29926_CR14
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402864
– volume: 17
  start-page: 758
  year: 2005
  ident: 29926_CR35
  publication-title: Chem. Mater.
  doi: 10.1021/cm0484450
– volume: 7
  start-page: 1471
  year: 2016
  ident: 29926_CR65
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00358
– volume: 55
  start-page: 9030
  year: 2016
  ident: 29926_CR19
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201603022
– volume: 10
  start-page: 3455
  year: 2020
  ident: 29926_CR18
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.9b04313
– volume: 16
  start-page: 771
  year: 2000
  ident: 29926_CR50
  publication-title: Langmuir
  doi: 10.1021/la990638s
– volume: 135
  start-page: 7130
  year: 2013
  ident: 29926_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403041g
– volume: 58
  start-page: 10819
  year: 2019
  ident: 29926_CR64
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b01471
– volume: 11
  start-page: 184
  year: 2021
  ident: 29926_CR15
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.0c04021
– volume: 9
  start-page: 7052
  year: 2019
  ident: 29926_CR24
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.9b02179
– ident: 29926_CR4
  doi: 10.1021/acs.iecr.1c03072
– volume: 227
  start-page: 77
  year: 2017
  ident: 29926_CR5
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.147
– volume: 52
  start-page: 2015
  year: 2019
  ident: 29926_CR21
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00172
– volume: 7
  start-page: 1686
  year: 2016
  ident: 29926_CR27
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00382
– volume: 12
  year: 2021
  ident: 29926_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23115-x
– volume: 12
  start-page: 81
  year: 2013
  ident: 29926_CR17
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3458
– volume: 287
  start-page: 1989
  year: 2000
  ident: 29926_CR43
  publication-title: Science
  doi: 10.1126/science.287.5460.1989
– volume: 8
  start-page: 20931
  year: 2020
  ident: 29926_CR44
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08693B
– volume: 59
  start-page: 5350
  year: 2020
  ident: 29926_CR47
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915992
– volume: 118
  start-page: 9801
  year: 2014
  ident: 29926_CR53
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp5014187
– volume: 8
  start-page: 3447
  year: 2018
  ident: 29926_CR61
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.8b00201
– volume: 6
  start-page: 4767
  year: 2015
  ident: 29926_CR28
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02247
– volume: 139
  start-page: 8329
  year: 2017
  ident: 29926_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03516
– volume: 27
  start-page: 709
  year: 2017
  ident: 29926_CR32
  publication-title: Prog. Nat. Sci. Mater. Int
  doi: 10.1016/j.pnsc.2017.10.004
– volume: 25
  start-page: 6313
  year: 2013
  ident: 29926_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302820
– volume: 288
  start-page: 63
  year: 2017
  ident: 29926_CR26
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.01.050
– volume: 5
  start-page: 3672
  year: 2020
  ident: 29926_CR34
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01959
– volume: 395
  start-page: 143
  year: 2021
  ident: 29926_CR8
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.12.031
– volume: 132
  start-page: 221101
  year: 2010
  ident: 29926_CR30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3437609
– volume: 151
  start-page: 234101
  year: 2019
  ident: 29926_CR62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5132354
– volume: 116
  start-page: 1974
  year: 2019
  ident: 29926_CR36
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1815643116
– volume: 2019
  start-page: 8078549
  year: 2019
  ident: 29926_CR55
  publication-title: Research
– volume: 8
  start-page: 975
  year: 2018
  ident: 29926_CR13
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.7b03597
– volume: 6
  start-page: 1878
  year: 2013
  ident: 29926_CR52
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300404
– volume: 1
  start-page: 263
  year: 2018
  ident: 29926_CR10
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0054-0
– volume: 21
  start-page: 395502
  year: 2009
  ident: 29926_CR58
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 140
  start-page: 1496
  year: 2018
  ident: 29926_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12101
– volume: 53
  start-page: 5977
  year: 2008
  ident: 29926_CR25
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.03.048
– volume: 99
  start-page: 016105
  year: 2007
  ident: 29926_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.016105
– volume: 140
  start-page: 084106
  year: 2014
  ident: 29926_CR63
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 140
  start-page: 2926
  year: 2018
  ident: 29926_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12829
– volume: 45
  start-page: 32022
  year: 2020
  ident: 29926_CR37
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.08.257
– volume: 9
  start-page: 64
  year: 2017
  ident: 29926_CR12
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2595
– volume: 11
  year: 2020
  ident: 29926_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19524-z
– volume: 132
  start-page: 4996
  year: 2010
  ident: 29926_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1009629
– volume: 109
  start-page: 2209
  year: 2009
  ident: 29926_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/cr8003696
SSID ssj0000391844
Score 2.7053788
Snippet The electrochemical nitrate reduction reaction (NO 3 RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of...
The electrochemical nitrate reduction reaction (NO RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of...
The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of...
Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2338
SubjectTerms 119/118
140/131
140/146
147/137
639/301/299/886
639/638/161/886
639/638/563
Active sites
Adsorbates
Adsorption
Ammonia
Chemical reduction
Electrocatalysts
Electrochemistry
Energy
Humanities and Social Sciences
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Intermetallic compounds
Learning algorithms
Machine learning
multidisciplinary
Nanocrystals
Nitrate reduction
Nitrates
Nitrogen
Nitrogen cycle
Scaling
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOiltEkfbpKiQm-tiK2RLfmYhIYQaOmhgdyEZMm0sLHDepew_6I_uTOyd5vt81JYdmE1NpZmRvNJGn_D2JvgvIbGgzAIVwXG21q4snaiqWMsWl2qNtKJ7oeP1cWVurwur--V-qKcsJEeeBy44zZURWJh17lRAL4ufe6iCggLHGUw0uyLMe_eYirNwVDj0kVNb8nkYI4HleYESl7HGVhW4m4rEiXCfvzp0bF-BzZ_zZn86eA0xaPzx-zRBCT5ydiBJ-xB7PbY7lhacrXPvp0iGqRtcO7C0M_TxCBietGPD6gXapnRy03jjh3vWz5VxEkbOiu8K0dvJyIJPid6VxLj-CF-iflNRJkZipwtPwXeua5vlj4O3K_4TcrOjCKVo4gB5Qda_w9P2dX5-89nF2KqviCaCmAhPFGdVdJBQAzgPI4xRvccpA5F4SU2oOsilmh9HkA6XMW5BlAlrZGtA42-_YztdH0XXzCee1VLTdEyGtWaEi-VUvuyCBV-Q8xYsdaEbaaOU4WMmU1H5GDsqD2L2rNJe_YuY28319yOxBx_lT4lBW8kiVQ7_YGmZidTs_8ytYwdkHlYxCZEsNtQJlKzsIWpMeLXGTtcW42d5oHBSoTLhLABm19vmtGD6VjGdbFfJhlEaZUBlbHno5FtnhNoQWkMZExvmd9WR7Zbuq9fEkt4nRNVm87Yu7Wh_nisPw_Uy_8xUAfsoSRHyxX62iHbWcyX8Qix28K_Sm76HbRgQZE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifl-9UyL4puHaJG2SJ_EOj0NQfPBg30LSpCrstWe7y7H_hX-yM2m3x_pxsOzCZro0OzOZXyeT3xDyOjivRO0F0wBXGcRbw1xpHKtNjEWjStlE3NH99Lk6O5cfF-ViSrgNU1nldk1MC3XoasyRH3EAHohVhHl3-ZNh1yjcXZ1aaNwmd5C6DEu61ELNORZkP9dSTmdlcqGPBplWBixhh3WYV-xqJx4l2n746MC9_gU5_66c_GP7NEWl0wfk_gQn6ftR_w_Jrdg-InfHBpObx-TXMWBCTIZTF4auT8sDi-m4Hx1AOziyxCNOY96Odg2d-uKktM4GfpWCzyOdBO2R5BXFKLyQZaK_iCCzBJGT9ZdAW9d29drHgfoNvUg1mpGlphQxgPyAWYDhCTk__fD15IxNPRhYXQmxYh4JzyruRAAk4DygC4jxueAqFIXnMAAODIii8XkQ3MGznKuFcbHRvHFCgYc_JXtt18Z9QnMvDVcYM6OWjS7hUs6VL4tQwbuIGSm2mrD1NHHsk7G0aaNcaDtqz4L2bNKevcrIm_may5Ge40bpY1TwLInU2umLrv9mJ0-1TaiKRPuvci2F8Kb0uYsyAA51qPiMHKB5WEAoSLNbYz1SvbKFNhD3TUYOt1Zjp9VgsNe2m5FX8zD4MW7OuDZ26yQDWK3SQmbk2Whk830KfKzUWmRE7ZjfzkR2R9of3xNXuMmRsE1l5O3WUK9v6_9_1PObZ3FA7nF0oVyCFx2SvVW_ji8Am638y-SAvwFytzkk
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dt6p0TwTYNtkrbpo7d4HILigwf3FpImVWGvlXaXY_8L_2Rn0g9ZPQVh2YXNZEl3ZjK_JJPfALz01pWydpJrhKsc423FbV5ZXlchZE2ZqybQie6Hj8XZuXp_kV8cgJjvwsSk_UhpGafpOTvszaCiS1PuOU6gouBXN-AmUbeTVa-K1bKvQoznWqnpfkwq9TVd92JQpOrHjw5d6jqY-We25G9HpjESnd6FOxOEZG_HQd-Dg9Deh1tjUcndA_hxgjiQNsCZ9UPXxymBh3jFjw2oEWpZ07Wmca-OdQ2bauHErZwd_ipDPycKCdYTsSuJMXwRs0R_GVBmjSKr7SfPWtt29daFgbkdu4x5mYHHQhTBo_xAK__hIZyfvvu8OuNT3QVeF1JuuCOSs0JY6TH6W4eIAuN6KkXps8wJbECnRRTRuNRLYXH9ZmtZ2dBo0VhZolc_gsO2a8MTYKlTlSgpTgatGp1jVyFKl2e-wHcZEshmTZh6enCqjbE28XBcajNqz6D2TNSeuUrg1dLn-0jJ8U_pE1LwIkl02vGLrv9iJvMyjS-ySPVfplpJ6arcpTYoj9jTkuITOCLzMIhKiFq3phykemMyXWGsrxI4nq3GTDPAYAQCZcLWEptfLM3ou3QgY9vQbaMM4rNCS5XA49HIlnFKWkpqLRMo98xv70H2W9pvXyM_eJUSSVuZwOvZUH8N6-9_1NP_Ez-C24JcKlXoVcdwuOm34Rnis417Hh3yJ1J3N14
  priority: 102
  providerName: Springer Nature
Title Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights
URI https://link.springer.com/article/10.1038/s41467-022-29926-w
https://www.ncbi.nlm.nih.gov/pubmed/35487883
https://www.proquest.com/docview/2656977439
https://www.proquest.com/docview/2658226834
https://www.osti.gov/servlets/purl/1896789
https://pubmed.ncbi.nlm.nih.gov/PMC9054787
https://doaj.org/article/fd6108570708433b95b0ae4d059aedce
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELb2IdBeEG_CLpWRuEEgsZPYOSDUVltWlXa1Air1ZtmJsyB1E0haLf0X_GRmnKSoUDggVYkUj9MkM5_n82uGkBe5NoJnhvsS6KoP_jb1dZxqP0utDQsRR4XFGd3zi-RsFk3n8XyP9OmOug_Y7OzaYT6pWb14_f3b-h0A_m27ZVy-aSIHd1yXDo0rS_ybfXIInkkgUM87uu9aZp5Chybq9s7srnpEbnNk8VLyLVflIvrDqQLk7WKjfy6q_G1m1TmsyV1yp2OadNiaxj2yZ8v75Fabe3L9gPwYAV3EcXKq86aqXcvhW7cTkDagOCxZ4O6ndkiPVgXtUua4EZ813JVCc4CRJmiN8V9RjMIPA1DU1xZkFiAyXl3mtNRlla2MbahZ02u3fNP6Ll-FzUG-wQGC5iGZTU4_jc_8Lj2DnyWcL32DsdASpnkOJEEbIB7g_gPORB6GhkEBYBvIRmGCnDMN3Tyd8VTbQrJCcwHgf0QOyqq0TwgNTJQyge7UyqiQMVRlTJg4zBM4cuuRsNeEyroXxxQaC-Xm0LlUrSIVKFI5Raobj7zc1PnaRu74p_QIFbyRxKjb7kJVX6kOxKrIk9BlBBCBjDg3aWwCbaMcKKpGxXvkGM1DAXnBCLwZLlXKliqUKVCC1CMnvdWo3s4VAz6NFJxD8fNNMUAc5210aauVkwEal0geeeRxa2Sb5-xt1SNiy_y2XmS7pPzy2YURTwOM5SY88qo31F-P9fcP9fS__-iYHDEEWhAB1k7IwbJe2WfA6JZmQPbFXMBRTt4PyOFwOP04hfPo9OLyA1wdJ-OBGysZODj_BHBUUKQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuhBYwEJ4ia2E7sHBCihWpLH-LQSr0ZO3YAaZuUza5W-y_4JfxGZpxkq-XRW6VVVlpPVnHm9XnGniHkpTNW8tLyWAFcjcHfFrHJChOXhfdpJTNReczoHh3no1Px6Sw7WyO_hrMwuK1ysInBULumxBj5NgPggViFF-8ufsTYNQqzq0MLjU4sDvxiDku29u3-B-DvK8b2Pp7sjuK-q0Bc5pxPY4slvHJmuAPfZiz4S_BaCWfSpallMAAiCT6ysonjzMDqxJS8ML5SrDJcJtglAkz-DXC8CWqUPJPLmA5WW1dC9GdzEq62WxEsEW6ZB7vP8ni-4v9CmwD4akCd_wVx_96p-Ue6NnjBvbvkTg9f6ftO3u6RNV_fJze7hpaLB-TnDmBQDL5T49pmEsxR7MPxQtqCNODIGI9UdXFC2lS078MTwkgL-FcKNgbLV9AJFpVFMgofrGoxOfdAMwaS3dlnR2tTN-XM-pbaBT0Pe0J9HJpgeAf0LUYd2ofk9Fq484is103tNwhNrCiYRB_tlahUBrcyJm2Wuhyu3EckHTihy37i2JdjrENinivdcU8D93Tgnp5H5PXynouuHMiV1DvI4CUllvIOPzSTr7q3DLpyeRraDMhECc5tkdnEeOEA9xpkfEQ2UTw0ICIs61vi_qdyqlNVAM4oIrI1SI3urU-rL3UlIi-Ww2A3MBlkat_MAg1gw1xxEZHHnZAtn5PjMlYpHhG5In4rE1kdqb9_C7XJiwQLxMmIvBkE9fKx_v-inlw9i-fk1ujk6FAf7h8fbJLbDNUpEaBRW2R9Opn5p4ALp_ZZUEZKvly39v8GClxzkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAviG_CBhgJnsBqYjux84AQ25g2BtMemNQ3YycOIHXJaFpV_S_4e_jruHOSTuVjb5OqVKovVZz7-vl8viPkRWmdEoUTTANcZeBvc2bT3LIi9z6pVCorjzu6n46zg1P5YZyON8iv4SwMplUONjEY6rIpMEY-4gA8EKuIfFT1aREne_tvz38w7CCFO61DO41ORI78cgHLt_bN4R7w-iXn--8_7x6wvsMAKzIhZsxhOa-MW1GCn7MOfCd4sFhwVSaJ4zAA4gn-snJxKbiFlYotRG59pXllhYqxYwSY_2tKpAnqmBqrVXwHK69rKftzOrHQo1YGq4Tp8-ADeMYWa74wtAyArwZU-19w9--szT-2boNH3L9NbvVQlr7rZO8O2fD1XXK9a265vEd-7gAexUA8tWXbTINpYj4cNaQtSAaOTPB4VRczpE1F-548IaS0hH-lYG-wlAWdYoFZJKPwwQoX0zMPNBMg2Z2flLS2dVPMnW-pW9KzkB_qWWiI4UugbzEC0d4np1fCnQdks25q_4jQ2MmcK_TXXstKp3Ar58qlSZnBVfiIJAMnTNFPHHt0TEzYpBfadNwzwD0TuGcWEXm1uue8Kw1yKfUOMnhFiWW9ww_N9KvprYSpyiwJLQdUrKUQLk9dbL0sAQNbZHxEtlA8DKAjLPFbYC5UMTOJzgFz5BHZHqTG9JaoNRd6E5Hnq2GwIbgxZGvfzAMN4MRMCxmRh52QrZ5T4JJWaxERtSZ-axNZH6m_fwt1yvMYi8WpiLweBPXisf7_oh5fPotn5Abovfl4eHy0RW5y1KZYgkJtk83ZdO6fAEScuadBFyn5ctXK_xuH-nfJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+adsorption-energy+scaling+limitations+of+electrocatalytic+nitrate+reduction+on+intermetallic+CuPd+nanocubes+by+machine-learned+insights&rft.jtitle=Nature+communications&rft.au=Gao%2C+Qiang&rft.au=Pillai%2C+Hemanth+Somarajan&rft.au=Huang%2C+Yang&rft.au=Liu%2C+Shikai&rft.date=2022-04-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-29926-w&rft_id=info%3Apmid%2F35487883&rft.externalDocID=PMC9054787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon