Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights
The electrochemical nitrate reduction reaction (NO 3 RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 2338 - 12 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.04.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrochemical nitrate reduction reaction (NO
3
RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal
d
-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO
3
is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO
3
RR to ammonia with a Faradaic efficiency of 92.5% at −0.5 V
RHE
and a yield rate of 6.25 mol h
−1
g
−1
at −0.6 V
RHE
. This study provides machine-learned design rules besides the
d
-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.
Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate reduction to ammonia. |
---|---|
AbstractList | The electrochemical nitrate reduction reaction (NO
3
RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal
d
-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO
3
is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO
3
RR to ammonia with a Faradaic efficiency of 92.5% at −0.5 V
RHE
and a yield rate of 6.25 mol h
−1
g
−1
at −0.6 V
RHE
. This study provides machine-learned design rules besides the
d
-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.
Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate reduction to ammonia. The electrochemical nitrate reduction reaction (NO 3 RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d -states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO 3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO 3 RR to ammonia with a Faradaic efficiency of 92.5% at −0.5 V RHE and a yield rate of 6.25 mol h −1 g −1 at −0.6 V RHE . This study provides machine-learned design rules besides the d -band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations. The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at −0.5 VRHE and a yield rate of 6.25 mol h−1 g−1 at −0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate reduction to ammonia. Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate reduction to ammonia. The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at -0.5 VRHE and a yield rate of 6.25 mol h-1 g-1 at -0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at -0.5 VRHE and a yield rate of 6.25 mol h-1 g-1 at -0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations. The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at –0.5 VRHE and a yield rate of 6.25 mol h–1 g–1 at –0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations. The electrochemical nitrate reduction reaction (NO RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO RR to ammonia with a Faradaic efficiency of 92.5% at -0.5 V and a yield rate of 6.25 mol h g at -0.6 V . This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations. |
ArticleNumber | 2338 |
Author | Mu, Qingmin Zhou, Hua Huang, Yang Zhu, Huiyuan Yan, Zihao Liu, Shikai Pillai, Hemanth Somarajan Gao, Qiang Han, Xue He, Qian Xin, Hongliang |
Author_xml | – sequence: 1 givenname: Qiang surname: Gao fullname: Gao, Qiang organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University – sequence: 2 givenname: Hemanth Somarajan surname: Pillai fullname: Pillai, Hemanth Somarajan organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University – sequence: 3 givenname: Yang surname: Huang fullname: Huang, Yang organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University – sequence: 4 givenname: Shikai surname: Liu fullname: Liu, Shikai organization: Department of Materials Science and Engineering, National University of Singapore – sequence: 5 givenname: Qingmin surname: Mu fullname: Mu, Qingmin organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University – sequence: 6 givenname: Xue surname: Han fullname: Han, Xue organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University – sequence: 7 givenname: Zihao surname: Yan fullname: Yan, Zihao organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University – sequence: 8 givenname: Hua orcidid: 0000-0001-9642-8674 surname: Zhou fullname: Zhou, Hua organization: X-ray Science Division, Advanced Photon Source, Argonne National Laboratory – sequence: 9 givenname: Qian orcidid: 0000-0003-4891-3581 surname: He fullname: He, Qian email: heqian@nus.edu.sg organization: Department of Materials Science and Engineering, National University of Singapore – sequence: 10 givenname: Hongliang orcidid: 0000-0001-9344-1697 surname: Xin fullname: Xin, Hongliang email: hxin@vt.edu organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University – sequence: 11 givenname: Huiyuan orcidid: 0000-0002-9962-1661 surname: Zhu fullname: Zhu, Huiyuan email: huiyuanz@vt.edu organization: Department of Chemical Engineering, Virginia Polytechnic Institute and State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35487883$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1896789$$D View this record in Osti.gov |
BookMark | eNp9ks1u1DAUhSNUREvpC7BAEWzYBPyX2NkgwYifSpVgAWvLcW4yHhy72A7VvAWPjNMMpe2iViRHvt85vr46T4sj5x0UxXOM3mBExdvIMGt4hQipSNuSprp6VJwQxHCFOaFHt_6Pi7MYdygv2mLB2JPimNZMcCHoSfHnQwD107ixVH304TIZ7ypwEMZ9GbWyS8WaySS1VGLphxIs6BS8VknZfTK6dCYFlaAM0M96wcr8GZcgTJAZm5HN_K0vnXJezx3EstuXk9Jb46CyoIKDPvPRjNsUnxWPB2UjnB320-LHp4_fN1-qi6-fzzfvLyrdUJqqTtQ1aoiivcBEdajFhApECe8x7kgutA1FuB461FOiCGuVpq2CQZBBUY5qelqcr769Vzt5Gcykwl56ZeT1gQ-jVCG_zoIc-gYjUXPEkWCUdm3dIQWsR3V27DVkr3er1-XcTcuJywOxd0zvVpzZytH_li2qGRc8G7xcDXxMRkZtEuit9s7lSUss2oaLNkOvD7cE_2uGmORkogZrlQM_R0maWhDSCMoy-uoeuvNzcHmeC9W0nDO6GL643fZNv__SkQGyAjr4GAMMNwhGckmhXFMocwrldQrlVRaJeyJ9SE9-urEPS-kqjfkeN0L43_YDqr9V0fQe |
CitedBy_id | crossref_primary_10_1002_anie_202415259 crossref_primary_10_1021_acsnanoscienceau_2c00045 crossref_primary_10_1038_s41467_023_43179_1 crossref_primary_10_1016_j_cej_2023_143889 crossref_primary_10_1002_adma_202310455 crossref_primary_10_1002_aenm_202302274 crossref_primary_10_1021_acscatal_3c00999 crossref_primary_10_1021_acsenergylett_3c01226 crossref_primary_10_1021_acsestengg_3c00415 crossref_primary_10_1002_anie_202410251 crossref_primary_10_1038_s41467_024_45534_2 crossref_primary_10_1002_smll_202401327 crossref_primary_10_1016_j_ccr_2024_215936 crossref_primary_10_1002_adma_202415632 crossref_primary_10_1021_acs_jpcc_2c07813 crossref_primary_10_1016_j_chemphys_2024_112311 crossref_primary_10_1016_j_cej_2024_152072 crossref_primary_10_1021_acs_jpcc_4c06598 crossref_primary_10_1002_adma_202207305 crossref_primary_10_1021_jacs_4c14498 crossref_primary_10_1016_j_cjsc_2023_100067 crossref_primary_10_1002_adfm_202420153 crossref_primary_10_1002_cctc_202402050 crossref_primary_10_1002_smll_202403515 crossref_primary_10_1002_adma_202303018 crossref_primary_10_1007_s11244_024_01949_1 crossref_primary_10_1088_1361_6528_ad86c8 crossref_primary_10_1038_s41467_025_55889_9 crossref_primary_10_1002_ange_202313434 crossref_primary_10_1021_acs_nanolett_3c04738 crossref_primary_10_1021_jacs_4c06098 crossref_primary_10_1016_j_apcatb_2023_122360 crossref_primary_10_1016_j_cej_2024_157518 crossref_primary_10_1002_smll_202308311 crossref_primary_10_1039_D2TA06354A crossref_primary_10_1039_D4TA03246B crossref_primary_10_1039_D4CP02303J crossref_primary_10_1002_aenm_202301409 crossref_primary_10_1016_j_checat_2023_100595 crossref_primary_10_1039_D3TA01063E crossref_primary_10_1002_adma_202415739 crossref_primary_10_1039_D3CY01160G crossref_primary_10_1002_cssc_202300202 crossref_primary_10_1002_ange_202422072 crossref_primary_10_1002_celc_202300419 crossref_primary_10_1021_acscatal_3c04541 crossref_primary_10_1021_acsestengg_3c00207 crossref_primary_10_1021_acscatal_3c02740 crossref_primary_10_1007_s12633_024_02944_7 crossref_primary_10_1016_j_wasec_2023_100147 crossref_primary_10_1002_chem_202303249 crossref_primary_10_1002_adfm_202305372 crossref_primary_10_1002_ange_202315238 crossref_primary_10_1016_j_mser_2024_100796 crossref_primary_10_1039_D4NJ02343A crossref_primary_10_1007_s12274_023_5885_6 crossref_primary_10_1021_acscatal_4c05434 crossref_primary_10_1002_adma_202407889 crossref_primary_10_3390_app14198986 crossref_primary_10_1021_acs_est_3c09198 crossref_primary_10_1016_j_nanoen_2025_110708 crossref_primary_10_3866_PKU_WHXB202403008 crossref_primary_10_1016_j_cej_2024_151519 crossref_primary_10_1002_anie_202307952 crossref_primary_10_1016_j_nxener_2024_100125 crossref_primary_10_1016_j_gee_2025_01_005 crossref_primary_10_1021_jacs_4c04023 crossref_primary_10_1016_j_jes_2024_12_037 crossref_primary_10_1016_j_ijhydene_2024_06_038 crossref_primary_10_1007_s12274_023_5798_4 crossref_primary_10_12677_japc_2024_134062 crossref_primary_10_1016_j_jcis_2022_11_069 crossref_primary_10_1039_D3EY00058C crossref_primary_10_1039_D3SC05793C crossref_primary_10_1016_j_jechem_2023_12_024 crossref_primary_10_1016_j_jallcom_2024_177180 crossref_primary_10_1002_smll_202207743 crossref_primary_10_1016_j_ccr_2024_215802 crossref_primary_10_1016_j_mtsust_2024_100903 crossref_primary_10_1021_acs_est_4c09037 crossref_primary_10_1002_adma_202402979 crossref_primary_10_1016_j_apcatb_2023_122687 crossref_primary_10_1039_D2TA07475C crossref_primary_10_1002_adma_202313548 crossref_primary_10_1002_aesr_202300173 crossref_primary_10_1007_s11244_023_01837_0 crossref_primary_10_1002_advs_202416053 crossref_primary_10_1016_j_colsurfa_2024_133557 crossref_primary_10_1002_adma_202303050 crossref_primary_10_1016_j_cej_2025_161014 crossref_primary_10_1039_D4TA04389H crossref_primary_10_1016_j_cogsc_2024_100995 crossref_primary_10_1002_adma_202304021 crossref_primary_10_1002_adfm_202400773 crossref_primary_10_1021_acssuschemeng_2c06525 crossref_primary_10_1002_anie_202315238 crossref_primary_10_1039_D4SC05936K crossref_primary_10_1007_s12274_023_5402_y crossref_primary_10_1021_acs_inorgchem_4c01264 crossref_primary_10_1021_acs_inorgchem_4c02353 crossref_primary_10_1016_j_nanoen_2024_110088 crossref_primary_10_1002_aesr_202300284 crossref_primary_10_1016_j_ijhydene_2022_11_329 crossref_primary_10_1021_acs_chemrev_3c00382 crossref_primary_10_1073_pnas_2319525121 crossref_primary_10_1002_ange_202309930 crossref_primary_10_1016_j_jallcom_2025_178694 crossref_primary_10_1021_jacs_3c03432 crossref_primary_10_1039_D4TA03851G crossref_primary_10_1039_D3QM01038D crossref_primary_10_1002_advs_202407599 crossref_primary_10_1021_acsnano_4c17163 crossref_primary_10_1038_s41467_025_57463_9 crossref_primary_10_1016_j_ccr_2025_216473 crossref_primary_10_1039_D3QI00554B crossref_primary_10_1002_anie_202422072 crossref_primary_10_1021_jacs_4c12240 crossref_primary_10_1002_anie_202409526 crossref_primary_10_1021_acs_nanolett_3c02259 crossref_primary_10_1016_j_jmrt_2024_06_037 crossref_primary_10_1016_j_surfin_2025_106078 crossref_primary_10_1021_acsami_4c07339 crossref_primary_10_1021_acs_chemmater_4c03111 crossref_primary_10_1002_ange_202300054 crossref_primary_10_1016_j_apsusc_2023_157118 crossref_primary_10_1002_anie_202309930 crossref_primary_10_1016_j_nanoen_2023_108434 crossref_primary_10_1039_D4NR00474D crossref_primary_10_1073_pnas_2306461120 crossref_primary_10_1016_j_jechem_2023_02_004 crossref_primary_10_1063_5_0230248 crossref_primary_10_1016_j_ces_2025_121573 crossref_primary_10_1021_acs_nanolett_4c03218 crossref_primary_10_1039_D3TA08054D crossref_primary_10_1002_asia_202401796 crossref_primary_10_1021_acs_jpcc_4c01056 crossref_primary_10_1016_j_jcis_2024_06_020 crossref_primary_10_1016_j_mtcomm_2023_107758 crossref_primary_10_1021_acs_nanolett_3c01978 crossref_primary_10_1002_ange_202408758 crossref_primary_10_1016_j_jechem_2023_03_037 crossref_primary_10_1002_ange_202411123 crossref_primary_10_1007_s11426_024_2286_7 crossref_primary_10_1016_j_cej_2023_148238 crossref_primary_10_1021_accountsmr_3c00131 crossref_primary_10_1002_advs_202406843 crossref_primary_10_1021_jacsau_4c00054 crossref_primary_10_1002_adma_202417623 crossref_primary_10_1021_acs_jpcc_4c06088 crossref_primary_10_1002_smll_202311336 crossref_primary_10_1016_j_cej_2024_152460 crossref_primary_10_1016_j_apcatb_2024_123810 crossref_primary_10_1016_j_jece_2023_110927 crossref_primary_10_1016_j_cclet_2024_110657 crossref_primary_10_1016_j_jcis_2024_02_211 crossref_primary_10_1002_ange_202415259 crossref_primary_10_1002_adfm_202303803 crossref_primary_10_1039_D2EE02647C crossref_primary_10_1016_j_apcatb_2024_124467 crossref_primary_10_1126_sciadv_adm9325 crossref_primary_10_1007_s40843_024_3017_4 crossref_primary_10_1021_acsanm_4c05751 crossref_primary_10_1016_j_jechem_2024_12_011 crossref_primary_10_1038_s41467_023_44469_4 crossref_primary_10_1039_D4GC06030J crossref_primary_10_3390_catal14110817 crossref_primary_10_1002_adfm_202303480 crossref_primary_10_1016_j_chempr_2023_05_037 crossref_primary_10_1039_D2EY00038E crossref_primary_10_1016_j_jpowsour_2022_232523 crossref_primary_10_1016_j_checat_2024_101060 crossref_primary_10_1021_acscatal_4c05225 crossref_primary_10_1002_smll_202300794 crossref_primary_10_1002_ange_202307952 crossref_primary_10_1002_ange_202410251 crossref_primary_10_1002_adma_202307913 crossref_primary_10_1016_j_cej_2023_145861 crossref_primary_10_1360_SSC_2023_0081 crossref_primary_10_1002_adfm_202300512 crossref_primary_10_1016_j_eng_2023_07_021 crossref_primary_10_1002_adfm_202417486 crossref_primary_10_1021_acsami_4c11747 crossref_primary_10_1039_D4CC04024D crossref_primary_10_1002_cctc_202401549 crossref_primary_10_1039_D3CY01232H crossref_primary_10_1002_anie_202408758 crossref_primary_10_1021_acs_jpclett_3c03462 crossref_primary_10_1016_j_ijhydene_2024_03_119 crossref_primary_10_1002_adfm_202211537 crossref_primary_10_1016_j_jechem_2023_07_006 crossref_primary_10_1016_j_jechem_2023_08_050 crossref_primary_10_1002_anie_202313434 crossref_primary_10_1038_s41893_024_01407_6 crossref_primary_10_1002_ange_202409526 crossref_primary_10_1016_j_cej_2024_158536 crossref_primary_10_1155_2024_5685619 crossref_primary_10_1016_j_jechem_2024_05_001 crossref_primary_10_1002_cssc_202402331 crossref_primary_10_1016_j_ijhydene_2025_03_221 crossref_primary_10_1016_j_jhazmat_2022_130651 crossref_primary_10_1021_acsenergylett_4c01247 crossref_primary_10_1038_s41929_023_00911_w crossref_primary_10_1039_D2CE01129H crossref_primary_10_1103_PhysRevMaterials_8_055406 crossref_primary_10_1016_j_jhazmat_2022_130534 crossref_primary_10_1016_j_mtener_2022_101112 crossref_primary_10_1002_anie_202300054 crossref_primary_10_1016_j_ese_2023_100383 crossref_primary_10_1016_j_seppur_2023_125129 crossref_primary_10_1039_D4EE03156C crossref_primary_10_1038_s41467_024_52780_x crossref_primary_10_1016_j_nanoen_2023_109183 crossref_primary_10_1002_smll_202403399 crossref_primary_10_1002_smll_202404124 crossref_primary_10_1021_acssuschemeng_4c02310 crossref_primary_10_1039_D4CC04046E crossref_primary_10_1002_aenm_202401717 crossref_primary_10_1002_ange_202403633 crossref_primary_10_1039_D3CC01428B crossref_primary_10_1039_D2QI02757G crossref_primary_10_1039_D4EE03678F crossref_primary_10_1021_acscatal_4c00365 crossref_primary_10_1021_acscatal_4c04048 crossref_primary_10_1039_D3QI01113E crossref_primary_10_1002_smm2_1210 crossref_primary_10_1002_anie_202411123 crossref_primary_10_1002_adfm_202301493 crossref_primary_10_1039_D5CY00055F crossref_primary_10_1039_D4EE03970J crossref_primary_10_1021_acsenergylett_4c00256 crossref_primary_10_1002_advs_202308979 crossref_primary_10_1002_anie_202403633 crossref_primary_10_1021_acsnano_3c01862 crossref_primary_10_1021_acssuschemeng_3c03763 crossref_primary_10_1002_cssc_202301050 crossref_primary_10_1007_s40843_023_2552_1 crossref_primary_10_1016_j_nanoen_2023_108543 |
Cites_doi | 10.1038/nchem.2595 10.1038/s41557-020-0481-9 10.1073/pnas.1815643116 10.1021/jacs.9b13347 10.1021/acscatal.7b03597 10.1021/ja403041g 10.1038/s41929-018-0054-0 10.1021/acsnano.6b02669 10.1038/s41467-017-01258-0 10.1021/acs.jpclett.6b00358 10.1103/PhysRevB.59.7413 10.1021/jp503756g 10.1007/s12678-017-0437-z 10.1038/s41929-019-0376-6 10.1016/j.pnsc.2017.10.004 10.1038/s41467-020-19524-z 10.1021/jacs.7b12101 10.1021/acs.jpclett.6b00382 10.1103/PhysRevB.54.11169 10.1021/acscatal.9b04313 10.1021/cm0484450 10.1093/nsr/nwv023 10.1038/srep24603 10.1002/anie.201915992 10.1063/1.4865107 10.1002/anie.201603022 10.1002/cssc.201300404 10.1021/jacs.7b12829 10.1016/0039-6028(96)80007-0 10.1021/acscatal.0c04021 10.1126/science.287.5460.1989 10.1021/ja1009629 10.1038/nmat3458 10.1021/acs.accounts.9b00172 10.1039/D0TA08693B 10.1021/la990638s 10.1063/1.5132354 10.1016/j.cej.2020.126269 10.1088/0953-8984/21/39/395502 10.1002/cctc.201402864 10.1016/0927-0256(96)00008-0 10.1021/cr8003696 10.1021/acscatal.8b00201 10.1021/acscatal.9b02179 10.1016/j.jcat.2020.12.031 10.1021/jacs.7b03516 10.1016/j.ijhydene.2020.08.257 10.1021/jacs.0c00418 10.1063/1.3437609 10.1103/PhysRevLett.99.016105 10.1021/acs.jpclett.5b02247 10.1038/s41467-021-23115-x 10.1002/anie.201605956 10.1007/s12274-010-0051-3 10.1002/adma.201302820 10.1002/anie.202003071 10.1021/jp5014187 10.1016/j.electacta.2008.03.048 10.1016/j.electacta.2016.12.147 10.1021/acsenergylett.0c01959 10.1021/acs.iecr.9b01471 10.1021/acscatal.1c03666 10.1016/j.cattod.2017.01.050 10.1039/D1CS00116G 10.1021/acs.iecr.1c03072 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-022-29926-w |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_fd6108570708433b95b0ae4d059aedce PMC9054787 1896789 35487883 10_1038_s41467_022_29926_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Chemistry (CHE) grantid: CHE-2102363 funderid: https://doi.org/10.13039/100000165 – fundername: NSF | Directorate for Engineering (ENG/OAD) grantid: CBET- 2143710; CBET-1845531 funderid: https://doi.org/10.13039/100000084 – fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Chemistry (CHE) grantid: CHE-2102363 – fundername: NSF | Directorate for Engineering (ENG/OAD) grantid: CBET-1845531 – fundername: NSF | Directorate for Engineering (ENG/OAD) grantid: CBET- 2143710 – fundername: ; grantid: CHE-2102363 – fundername: ; grantid: CBET- 2143710; CBET-1845531 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c633t-b855062a3d812ab0912380327d11b262a963015fb0d32a249ac39aef82fa37053 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:43 EDT 2025 Thu Aug 21 14:11:00 EDT 2025 Fri May 19 02:26:14 EDT 2023 Fri Jul 11 08:05:12 EDT 2025 Wed Aug 13 09:51:54 EDT 2025 Wed Feb 19 02:26:34 EST 2025 Tue Jul 01 04:17:48 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Fri Feb 21 02:38:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-b855062a3d812ab0912380327d11b262a963015fb0d32a249ac39aef82fa37053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-06CH11357; CHE-2102363; CBET-2143710; CBET-1845531; NRF-NRFF11-2019-0002 National Science Foundation (NSF) USDOE Office of Science (SC), Basic Energy Sciences (BES) Singapore National Science Foundation |
ORCID | 0000-0001-9642-8674 0000-0001-9344-1697 0000-0003-4891-3581 0000-0002-9962-1661 0000000348913581 0000000299621661 0000000196428674 0000000193441697 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-29926-w |
PMID | 35487883 |
PQID | 2656977439 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fd6108570708433b95b0ae4d059aedce pubmedcentral_primary_oai_pubmedcentral_nih_gov_9054787 osti_scitechconnect_1896789 proquest_miscellaneous_2658226834 proquest_journals_2656977439 pubmed_primary_35487883 crossref_primary_10_1038_s41467_022_29926_w crossref_citationtrail_10_1038_s41467_022_29926_w springer_journals_10_1038_s41467_022_29926_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-29 |
PublicationDateYYYYMMDD | 2022-04-29 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li (CR41) 2018; 140 Li, Sun (CR21) 2019; 52 Yao, Zhu, Wang, Li, Shao (CR51) 2020; 59 Mathew, Kolluru, Mula, Steinmann, Hennig (CR62) 2019; 151 Doyle, Montoya, Vojvodic (CR14) 2015; 7 Wang, Chen, Sang, Unocic, Skrabalak (CR16) 2016; 10 Jiang (CR19) 2016; 55 Reyter, Bélanger, Roué (CR25) 2008; 53 Pillai, Xin (CR64) 2019; 58 Hammer, Nørskov (CR66) 1995; 343 Wu (CR46) 2021; 12 Gani, Kulik (CR13) 2018; 8 da Cunha, De Souza, Nart (CR50) 2000; 16 Kim (CR20) 2017; 139 Tang (CR32) 2017; 27 CR2 Sra, Ewers, Schaak (CR35) 2005; 17 CR4 Khorshidi, Violet, Hashemi, Peterson (CR10) 2018; 1 Akhade, Bernstein, Esopi, Regula, Janik (CR26) 2017; 288 Gao (CR55) 2019; 2019 Kresse, Furthmüller (CR56) 1996; 54 Vojvodic, Nørskov (CR31) 2015; 2 Rosca, Duca, de Groot, Koper (CR3) 2009; 109 Guo (CR53) 2014; 118 Zhu, Bu, Shao, Huang (CR18) 2020; 10 Chan, Nørskov (CR27) 2016; 7 Xiong (CR36) 2019; 116 Jin (CR54) 2011; 4 Jiang (CR33) 2016; 55 Sun, Murray, Weller, Folks, Moser (CR43) 2000; 287 Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR63) 2014; 140 Kim, Lee, Sun (CR42) 2010; 132 Michalsky, Zhang, Medford, Peterson (CR11) 2014; 118 Mirzaei (CR7) 2018; 9 Tianou (CR39) 2017; 8 Zhu, Zhang, Guo, Su, Sun (CR45) 2013; 135 Li (CR48) 2020; 142 Schumann (CR61) 2018; 8 Pérez-Gallent, Figueiredo, Katsounaros, Koper (CR5) 2017; 227 Wang (CR6) 2020; 142 Yao, Zhu, Wang, Li, Shao (CR49) 2018; 140 Wang, Pillai, Xin (CR22) 2020; 11 Zhao (CR15) 2021; 11 Wang (CR12) 2017; 9 Wang, Zhou, Jia, Yu, Zhang (CR47) 2020; 59 Cheng, Xiao, Goddard (CR28) 2015; 6 Chen (CR38) 2020; 12 Zhang (CR1) 2021; 403 Abild-Pedersen (CR29) 2007; 99 Gao (CR52) 2013; 6 Ye, Bai, Jiang, Fang (CR37) 2020; 45 Xia, Wang, Ruditskiy, Xia (CR40) 2013; 25 Ravikumar, Baby, Lin, Brivio, Fratesi (CR60) 2016; 6 Wang (CR17) 2013; 12 Flores Espinosa (CR34) 2020; 5 Liu, Richards, Singh, Goldsmith (CR24) 2019; 9 Hu, Wang, Wang, Li, Guo (CR23) 2021; 11 Hammer, Hansen, Nørskov (CR59) 1999; 59 Kresse, Furthmüller (CR57) 1996; 6 Pérez-Ramírez, López (CR9) 2019; 2 Wang, Young, Goldsmith, Singh (CR8) 2021; 395 Goodpaster, Bell, Head-Gordon (CR65) 2016; 7 Xin, Linic (CR30) 2010; 132 Giannozzi (CR58) 2009; 21 Gao (CR44) 2020; 8 TZH Gani (29926_CR13) 2018; 8 D Reyter (29926_CR25) 2008; 53 Y Wang (29926_CR6) 2020; 142 A Khorshidi (29926_CR10) 2018; 1 N Ye (29926_CR37) 2020; 45 J Kim (29926_CR42) 2010; 132 AD Doyle (29926_CR14) 2015; 7 SA Akhade (29926_CR26) 2017; 288 J Pérez-Ramírez (29926_CR9) 2019; 2 MCPM da Cunha (29926_CR50) 2000; 16 Z Wang (29926_CR8) 2021; 395 A Ravikumar (29926_CR60) 2016; 6 S Wang (29926_CR22) 2020; 11 Y Xiong (29926_CR36) 2019; 116 Y Yao (29926_CR49) 2018; 140 B Hammer (29926_CR66) 1995; 343 Y Wang (29926_CR47) 2020; 59 F Abild-Pedersen (29926_CR29) 2007; 99 J-X Liu (29926_CR24) 2019; 9 V Rosca (29926_CR3) 2009; 109 P Wang (29926_CR12) 2017; 9 P Giannozzi (29926_CR58) 2009; 21 K Jiang (29926_CR19) 2016; 55 Q Gao (29926_CR55) 2019; 2019 M Jin (29926_CR54) 2011; 4 K Mathew (29926_CR62) 2019; 151 P Mirzaei (29926_CR7) 2018; 9 J Li (29926_CR21) 2019; 52 C Wang (29926_CR16) 2016; 10 X Zhang (29926_CR1) 2021; 403 H Zhu (29926_CR45) 2013; 135 C Chen (29926_CR38) 2020; 12 AK Sra (29926_CR35) 2005; 17 G Kresse (29926_CR57) 1996; 6 29926_CR2 K Chan (29926_CR27) 2016; 7 Y Yao (29926_CR51) 2020; 59 MM Flores Espinosa (29926_CR34) 2020; 5 29926_CR4 Y Zhu (29926_CR18) 2020; 10 D Kim (29926_CR20) 2017; 139 A Vojvodic (29926_CR31) 2015; 2 B Hammer (29926_CR59) 1999; 59 Q Gao (29926_CR44) 2020; 8 Z-Y Wu (29926_CR46) 2021; 12 HS Pillai (29926_CR64) 2019; 58 E Pérez-Gallent (29926_CR5) 2017; 227 J Schumann (29926_CR61) 2018; 8 M Tang (29926_CR32) 2017; 27 Y Jiang (29926_CR33) 2016; 55 D Wang (29926_CR17) 2013; 12 T Cheng (29926_CR28) 2015; 6 G Kresse (29926_CR56) 1996; 54 H Guo (29926_CR53) 2014; 118 T Hu (29926_CR23) 2021; 11 Q Gao (29926_CR52) 2013; 6 XH Xia (29926_CR40) 2013; 25 H Tianou (29926_CR39) 2017; 8 K Mathew (29926_CR63) 2014; 140 X Zhao (29926_CR15) 2021; 11 R Michalsky (29926_CR11) 2014; 118 S Sun (29926_CR43) 2000; 287 JD Goodpaster (29926_CR65) 2016; 7 H Xin (29926_CR30) 2010; 132 J Li (29926_CR48) 2020; 142 J Li (29926_CR41) 2018; 140 |
References_xml | – volume: 9 start-page: 64 year: 2017 end-page: 70 ident: CR12 article-title: Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation publication-title: Nat. Chem. doi: 10.1038/nchem.2595 – volume: 12 start-page: 717 year: 2020 end-page: 724 ident: CR38 article-title: Coupling N and CO in H O to synthesize urea under ambient conditions publication-title: Nat. Chem. doi: 10.1038/s41557-020-0481-9 – volume: 116 start-page: 1974 year: 2019 end-page: 1983 ident: CR36 article-title: Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1815643116 – volume: 142 start-page: 5702 year: 2020 end-page: 5708 ident: CR6 article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13347 – ident: CR4 – volume: 8 start-page: 975 year: 2018 end-page: 986 ident: CR13 article-title: Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by Fe ═O publication-title: Acs Catal. doi: 10.1021/acscatal.7b03597 – volume: 135 start-page: 7130 year: 2013 end-page: 7133 ident: CR45 article-title: Synthetic control of FePtM nanorods (M=Cu, Ni) to enhance the oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403041g – volume: 1 start-page: 263 year: 2018 end-page: 268 ident: CR10 article-title: How strain can break the scaling relations of catalysis publication-title: Nat. Catal. doi: 10.1038/s41929-018-0054-0 – volume: 10 start-page: 6345 year: 2016 end-page: 6353 ident: CR16 article-title: Size-dependent disorder–order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts publication-title: ACS Nano doi: 10.1021/acsnano.6b02669 – volume: 8 year: 2017 ident: CR39 article-title: Inflating hollow nanocrystals through a repeated Kirkendall cavitation process publication-title: Nat. Commun. doi: 10.1038/s41467-017-01258-0 – volume: 7 start-page: 1471 year: 2016 end-page: 1477 ident: CR65 article-title: Identification of possible pathways for C–C bond formation during electrochemical reduction of CO : new theoretical insights from an improved electrochemical model publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00358 – volume: 59 start-page: 7413 year: 1999 end-page: 7421 ident: CR59 article-title: Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.7413 – volume: 118 start-page: 13026 year: 2014 end-page: 13034 ident: CR11 article-title: Departures from the adsorption energy scaling relations for metal carbide catalysts publication-title: J. Phys. Chem. C. doi: 10.1021/jp503756g – volume: 9 start-page: 343 year: 2018 end-page: 351 ident: CR7 article-title: Electrocatalytic reduction of nitrate and nitrite at CuRh nanoparticles/C composite electrodes publication-title: Electrocatalysis doi: 10.1007/s12678-017-0437-z – volume: 2 start-page: 971 year: 2019 end-page: 976 ident: CR9 article-title: Strategies to break linear scaling relationships publication-title: Nat. Catal. doi: 10.1038/s41929-019-0376-6 – volume: 27 start-page: 709 year: 2017 end-page: 713 ident: CR32 article-title: First-principles study of the interactions of hydrogen with low-index surfaces of PdCu ordered alloy publication-title: Prog. Nat. Sci. Mater. Int doi: 10.1016/j.pnsc.2017.10.004 – volume: 11 year: 2020 ident: CR22 article-title: Bayesian learning of chemisorption for bridging the complexity of electronic descriptors publication-title: Nat. Commun. doi: 10.1038/s41467-020-19524-z – volume: 140 start-page: 1496 year: 2018 end-page: 1501 ident: CR49 article-title: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12101 – volume: 7 start-page: 1686 year: 2016 end-page: 1690 ident: CR27 article-title: Potential dependence of electrochemical barriers from ab initio calculations publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00382 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR56 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 10 start-page: 3455 year: 2020 end-page: 3461 ident: CR18 article-title: Structurally ordered Pt Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts publication-title: Acs Catal. doi: 10.1021/acscatal.9b04313 – volume: 17 start-page: 758 year: 2005 end-page: 766 ident: CR35 article-title: Direct solution synthesis of intermetallic AuCu and AuCu nanocrystals and nanowire networks publication-title: Chem. Mater. doi: 10.1021/cm0484450 – volume: 2 start-page: 140 year: 2015 end-page: 143 ident: CR31 article-title: New design paradigm for heterogeneous catalysts publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwv023 – volume: 6 year: 2016 ident: CR60 article-title: Femtomagnetism in graphene induced by core level excitation of organic adsorbates publication-title: Sci. Rep. doi: 10.1038/srep24603 – volume: 59 start-page: 5350 year: 2020 end-page: 5354 ident: CR47 article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915992 – volume: 140 start-page: 084106 year: 2014 ident: CR63 article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 55 start-page: 9030 year: 2016 end-page: 9035 ident: CR19 article-title: Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603022 – volume: 6 start-page: 1878 year: 2013 end-page: 1882 ident: CR52 article-title: Shape-controlled synthesis of monodisperse PdCu nanocubes and their electrocatalytic properties publication-title: ChemSusChem doi: 10.1002/cssc.201300404 – volume: 140 start-page: 2926 year: 2018 end-page: 2932 ident: CR41 article-title: Fe stabilization by intermetallic L -FePt and Pt catalysis enhancement in L -FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12829 – volume: 343 start-page: 211 year: 1995 end-page: 220 ident: CR66 article-title: Electronic factors determining the reactivity of metal surfaces publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)80007-0 – volume: 11 start-page: 184 year: 2021 end-page: 192 ident: CR15 article-title: Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction publication-title: Acs Catal. doi: 10.1021/acscatal.0c04021 – volume: 287 start-page: 1989 year: 2000 end-page: 1992 ident: CR43 article-title: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices publication-title: Science doi: 10.1126/science.287.5460.1989 – volume: 132 start-page: 4996 year: 2010 end-page: 4997 ident: CR42 article-title: Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1009629 – volume: 12 start-page: 81 year: 2013 end-page: 87 ident: CR17 article-title: Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts publication-title: Nat. Mater. doi: 10.1038/nmat3458 – volume: 52 start-page: 2015 year: 2019 end-page: 2025 ident: CR21 article-title: Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00172 – volume: 8 start-page: 20931 year: 2020 end-page: 20938 ident: CR44 article-title: Monodisperse PdSn/SnO core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08693B – volume: 16 start-page: 771 year: 2000 end-page: 777 ident: CR50 article-title: Reaction pathways for reduction of nitrate ions on platinum, rhodium, and platinum−rhodium alloy electrodes publication-title: Langmuir doi: 10.1021/la990638s – volume: 151 start-page: 234101 year: 2019 ident: CR62 article-title: Implicit self-consistent electrolyte model in plane-wave density-functional theory publication-title: J. Chem. Phys. doi: 10.1063/1.5132354 – volume: 403 start-page: 126269 year: 2021 ident: CR1 article-title: Recent advances in non-noble metal electrocatalysts for nitrate reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126269 – volume: 21 start-page: 395502 year: 2009 ident: CR58 article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 7 start-page: 738 year: 2015 end-page: 742 ident: CR14 article-title: Improving oxygen electrochemistry through nanoscopic confinement publication-title: ChemCatChem doi: 10.1002/cctc.201402864 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR57 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 109 start-page: 2209 year: 2009 end-page: 2244 ident: CR3 article-title: Nitrogen cycle electrocatalysis publication-title: Chem. Rev. doi: 10.1021/cr8003696 – volume: 8 start-page: 3447 year: 2018 end-page: 3453 ident: CR61 article-title: Selectivity of synthesis gas conversion to C oxygenates on fcc(111) transition-metal surfaces publication-title: Acs Catal. doi: 10.1021/acscatal.8b00201 – volume: 9 start-page: 7052 year: 2019 end-page: 7064 ident: CR24 article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals publication-title: Acs Catal. doi: 10.1021/acscatal.9b02179 – volume: 395 start-page: 143 year: 2021 end-page: 154 ident: CR8 article-title: Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying publication-title: J. Catal. doi: 10.1016/j.jcat.2020.12.031 – volume: 139 start-page: 8329 year: 2017 end-page: 8336 ident: CR20 article-title: Electrochemical activation of CO through atomic ordering transformations of AuCu nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03516 – ident: CR2 – volume: 45 start-page: 32022 year: 2020 end-page: 32038 ident: CR37 article-title: Component-dependent activity of bimetallic PdCu and PdNi electrocatalysts for methanol oxidation reaction in alkaline media publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.08.257 – volume: 142 start-page: 7036 year: 2020 end-page: 7046 ident: CR48 article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00418 – volume: 132 start-page: 221101 year: 2010 ident: CR30 article-title: Communications: Exceptions to the d-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal -states publication-title: J. Chem. Phys. doi: 10.1063/1.3437609 – volume: 99 start-page: 016105 year: 2007 ident: CR29 article-title: Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.016105 – volume: 6 start-page: 4767 year: 2015 end-page: 4773 ident: CR28 article-title: Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu(100) surface, including multiple layers of explicit solvent at pH 0 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02247 – volume: 12 year: 2021 ident: CR46 article-title: Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-021-23115-x – volume: 55 start-page: 12427 year: 2016 end-page: 12430 ident: CR33 article-title: In situ observation of hydrogen-induced surface faceting for palladium–copper nanocrystals at atmospheric pressure publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605956 – volume: 4 start-page: 83 year: 2011 end-page: 91 ident: CR54 article-title: Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation publication-title: Nano Res. doi: 10.1007/s12274-010-0051-3 – volume: 25 start-page: 6313 year: 2013 end-page: 6333 ident: CR40 article-title: 25th Anniversary Article: Galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties publication-title: Adv. Mater. doi: 10.1002/adma.201302820 – volume: 59 start-page: 10479 year: 2020 end-page: 10483 ident: CR51 article-title: A spectroscopic study of electrochemical nitrogen and nitrate reduction on rhodium surfaces publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003071 – volume: 118 start-page: 9801 year: 2014 end-page: 9808 ident: CR53 article-title: Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties publication-title: J. Phys. Chem. C. doi: 10.1021/jp5014187 – volume: 53 start-page: 5977 year: 2008 ident: CR25 article-title: Study of the electroreduction of nitrate on copper in alkaline solution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.03.048 – volume: 227 start-page: 77 year: 2017 end-page: 84 ident: CR5 article-title: Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.147 – volume: 5 start-page: 3672 year: 2020 end-page: 3680 ident: CR34 article-title: Compressed intermetallic PdCu for enhanced electrocatalysis publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01959 – volume: 2019 start-page: 8078549 year: 2019 ident: CR55 article-title: Synthesis of PdS -mediated polydymite heteronanorods and their long-range activation for enhanced water electroreduction publication-title: Research – volume: 58 start-page: 10819 year: 2019 end-page: 10828 ident: CR64 article-title: New insights into electrochemical ammonia oxidation on Pt(100) from first principles publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01471 – volume: 11 start-page: 14417 year: 2021 end-page: 14427 ident: CR23 article-title: Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts publication-title: Acs Catal. doi: 10.1021/acscatal.1c03666 – volume: 288 start-page: 63 year: 2017 end-page: 73 ident: CR26 article-title: A simple method to approximate electrode potential-dependent activation energies using density functional theory publication-title: Catal. Today doi: 10.1016/j.cattod.2017.01.050 – volume: 11 start-page: 14417 year: 2021 ident: 29926_CR23 publication-title: Acs Catal. doi: 10.1021/acscatal.1c03666 – volume: 2 start-page: 140 year: 2015 ident: 29926_CR31 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwv023 – volume: 59 start-page: 10479 year: 2020 ident: 29926_CR51 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003071 – volume: 343 start-page: 211 year: 1995 ident: 29926_CR66 publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)80007-0 – volume: 8 year: 2017 ident: 29926_CR39 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01258-0 – volume: 59 start-page: 7413 year: 1999 ident: 29926_CR59 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.7413 – volume: 403 start-page: 126269 year: 2021 ident: 29926_CR1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126269 – volume: 4 start-page: 83 year: 2011 ident: 29926_CR54 publication-title: Nano Res. doi: 10.1007/s12274-010-0051-3 – volume: 9 start-page: 343 year: 2018 ident: 29926_CR7 publication-title: Electrocatalysis doi: 10.1007/s12678-017-0437-z – volume: 2 start-page: 971 year: 2019 ident: 29926_CR9 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0376-6 – volume: 142 start-page: 7036 year: 2020 ident: 29926_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00418 – volume: 54 start-page: 11169 year: 1996 ident: 29926_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 55 start-page: 12427 year: 2016 ident: 29926_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605956 – volume: 142 start-page: 5702 year: 2020 ident: 29926_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13347 – volume: 10 start-page: 6345 year: 2016 ident: 29926_CR16 publication-title: ACS Nano doi: 10.1021/acsnano.6b02669 – volume: 118 start-page: 13026 year: 2014 ident: 29926_CR11 publication-title: J. Phys. Chem. C. doi: 10.1021/jp503756g – volume: 6 year: 2016 ident: 29926_CR60 publication-title: Sci. Rep. doi: 10.1038/srep24603 – volume: 6 start-page: 15 year: 1996 ident: 29926_CR57 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – ident: 29926_CR2 doi: 10.1039/D1CS00116G – volume: 12 start-page: 717 year: 2020 ident: 29926_CR38 publication-title: Nat. Chem. doi: 10.1038/s41557-020-0481-9 – volume: 7 start-page: 738 year: 2015 ident: 29926_CR14 publication-title: ChemCatChem doi: 10.1002/cctc.201402864 – volume: 17 start-page: 758 year: 2005 ident: 29926_CR35 publication-title: Chem. Mater. doi: 10.1021/cm0484450 – volume: 7 start-page: 1471 year: 2016 ident: 29926_CR65 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00358 – volume: 55 start-page: 9030 year: 2016 ident: 29926_CR19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603022 – volume: 10 start-page: 3455 year: 2020 ident: 29926_CR18 publication-title: Acs Catal. doi: 10.1021/acscatal.9b04313 – volume: 16 start-page: 771 year: 2000 ident: 29926_CR50 publication-title: Langmuir doi: 10.1021/la990638s – volume: 135 start-page: 7130 year: 2013 ident: 29926_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403041g – volume: 58 start-page: 10819 year: 2019 ident: 29926_CR64 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01471 – volume: 11 start-page: 184 year: 2021 ident: 29926_CR15 publication-title: Acs Catal. doi: 10.1021/acscatal.0c04021 – volume: 9 start-page: 7052 year: 2019 ident: 29926_CR24 publication-title: Acs Catal. doi: 10.1021/acscatal.9b02179 – ident: 29926_CR4 doi: 10.1021/acs.iecr.1c03072 – volume: 227 start-page: 77 year: 2017 ident: 29926_CR5 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.147 – volume: 52 start-page: 2015 year: 2019 ident: 29926_CR21 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00172 – volume: 7 start-page: 1686 year: 2016 ident: 29926_CR27 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00382 – volume: 12 year: 2021 ident: 29926_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23115-x – volume: 12 start-page: 81 year: 2013 ident: 29926_CR17 publication-title: Nat. Mater. doi: 10.1038/nmat3458 – volume: 287 start-page: 1989 year: 2000 ident: 29926_CR43 publication-title: Science doi: 10.1126/science.287.5460.1989 – volume: 8 start-page: 20931 year: 2020 ident: 29926_CR44 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08693B – volume: 59 start-page: 5350 year: 2020 ident: 29926_CR47 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915992 – volume: 118 start-page: 9801 year: 2014 ident: 29926_CR53 publication-title: J. Phys. Chem. C. doi: 10.1021/jp5014187 – volume: 8 start-page: 3447 year: 2018 ident: 29926_CR61 publication-title: Acs Catal. doi: 10.1021/acscatal.8b00201 – volume: 6 start-page: 4767 year: 2015 ident: 29926_CR28 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02247 – volume: 139 start-page: 8329 year: 2017 ident: 29926_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03516 – volume: 27 start-page: 709 year: 2017 ident: 29926_CR32 publication-title: Prog. Nat. Sci. Mater. Int doi: 10.1016/j.pnsc.2017.10.004 – volume: 25 start-page: 6313 year: 2013 ident: 29926_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.201302820 – volume: 288 start-page: 63 year: 2017 ident: 29926_CR26 publication-title: Catal. Today doi: 10.1016/j.cattod.2017.01.050 – volume: 5 start-page: 3672 year: 2020 ident: 29926_CR34 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01959 – volume: 395 start-page: 143 year: 2021 ident: 29926_CR8 publication-title: J. Catal. doi: 10.1016/j.jcat.2020.12.031 – volume: 132 start-page: 221101 year: 2010 ident: 29926_CR30 publication-title: J. Chem. Phys. doi: 10.1063/1.3437609 – volume: 151 start-page: 234101 year: 2019 ident: 29926_CR62 publication-title: J. Chem. Phys. doi: 10.1063/1.5132354 – volume: 116 start-page: 1974 year: 2019 ident: 29926_CR36 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1815643116 – volume: 2019 start-page: 8078549 year: 2019 ident: 29926_CR55 publication-title: Research – volume: 8 start-page: 975 year: 2018 ident: 29926_CR13 publication-title: Acs Catal. doi: 10.1021/acscatal.7b03597 – volume: 6 start-page: 1878 year: 2013 ident: 29926_CR52 publication-title: ChemSusChem doi: 10.1002/cssc.201300404 – volume: 1 start-page: 263 year: 2018 ident: 29926_CR10 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0054-0 – volume: 21 start-page: 395502 year: 2009 ident: 29926_CR58 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 140 start-page: 1496 year: 2018 ident: 29926_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12101 – volume: 53 start-page: 5977 year: 2008 ident: 29926_CR25 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.03.048 – volume: 99 start-page: 016105 year: 2007 ident: 29926_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.016105 – volume: 140 start-page: 084106 year: 2014 ident: 29926_CR63 publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 140 start-page: 2926 year: 2018 ident: 29926_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12829 – volume: 45 start-page: 32022 year: 2020 ident: 29926_CR37 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.08.257 – volume: 9 start-page: 64 year: 2017 ident: 29926_CR12 publication-title: Nat. Chem. doi: 10.1038/nchem.2595 – volume: 11 year: 2020 ident: 29926_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19524-z – volume: 132 start-page: 4996 year: 2010 ident: 29926_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1009629 – volume: 109 start-page: 2209 year: 2009 ident: 29926_CR3 publication-title: Chem. Rev. doi: 10.1021/cr8003696 |
SSID | ssj0000391844 |
Score | 2.7053788 |
Snippet | The electrochemical nitrate reduction reaction (NO
3
RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of... The electrochemical nitrate reduction reaction (NO RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of... The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of... Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2338 |
SubjectTerms | 119/118 140/131 140/146 147/137 639/301/299/886 639/638/161/886 639/638/563 Active sites Adsorbates Adsorption Ammonia Chemical reduction Electrocatalysts Electrochemistry Energy Humanities and Social Sciences INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Intermetallic compounds Learning algorithms Machine learning multidisciplinary Nanocrystals Nitrate reduction Nitrates Nitrogen Nitrogen cycle Scaling Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOiltEkfbpKiQm-tiK2RLfmYhIYQaOmhgdyEZMm0sLHDepew_6I_uTOyd5vt81JYdmE1NpZmRvNJGn_D2JvgvIbGgzAIVwXG21q4snaiqWMsWl2qNtKJ7oeP1cWVurwur--V-qKcsJEeeBy44zZURWJh17lRAL4ufe6iCggLHGUw0uyLMe_eYirNwVDj0kVNb8nkYI4HleYESl7HGVhW4m4rEiXCfvzp0bF-BzZ_zZn86eA0xaPzx-zRBCT5ydiBJ-xB7PbY7lhacrXPvp0iGqRtcO7C0M_TxCBietGPD6gXapnRy03jjh3vWz5VxEkbOiu8K0dvJyIJPid6VxLj-CF-iflNRJkZipwtPwXeua5vlj4O3K_4TcrOjCKVo4gB5Qda_w9P2dX5-89nF2KqviCaCmAhPFGdVdJBQAzgPI4xRvccpA5F4SU2oOsilmh9HkA6XMW5BlAlrZGtA42-_YztdH0XXzCee1VLTdEyGtWaEi-VUvuyCBV-Q8xYsdaEbaaOU4WMmU1H5GDsqD2L2rNJe_YuY28319yOxBx_lT4lBW8kiVQ7_YGmZidTs_8ytYwdkHlYxCZEsNtQJlKzsIWpMeLXGTtcW42d5oHBSoTLhLABm19vmtGD6VjGdbFfJhlEaZUBlbHno5FtnhNoQWkMZExvmd9WR7Zbuq9fEkt4nRNVm87Yu7Wh_nisPw_Uy_8xUAfsoSRHyxX62iHbWcyX8Qix28K_Sm76HbRgQZE priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifl-9UyL4puHaJG2SJ_EOj0NQfPBg30LSpCrstWe7y7H_hX-yM2m3x_pxsOzCZro0OzOZXyeT3xDyOjivRO0F0wBXGcRbw1xpHKtNjEWjStlE3NH99Lk6O5cfF-ViSrgNU1nldk1MC3XoasyRH3EAHohVhHl3-ZNh1yjcXZ1aaNwmd5C6DEu61ELNORZkP9dSTmdlcqGPBplWBixhh3WYV-xqJx4l2n746MC9_gU5_66c_GP7NEWl0wfk_gQn6ftR_w_Jrdg-InfHBpObx-TXMWBCTIZTF4auT8sDi-m4Hx1AOziyxCNOY96Odg2d-uKktM4GfpWCzyOdBO2R5BXFKLyQZaK_iCCzBJGT9ZdAW9d29drHgfoNvUg1mpGlphQxgPyAWYDhCTk__fD15IxNPRhYXQmxYh4JzyruRAAk4DygC4jxueAqFIXnMAAODIii8XkQ3MGznKuFcbHRvHFCgYc_JXtt18Z9QnMvDVcYM6OWjS7hUs6VL4tQwbuIGSm2mrD1NHHsk7G0aaNcaDtqz4L2bNKevcrIm_may5Ge40bpY1TwLInU2umLrv9mJ0-1TaiKRPuvci2F8Kb0uYsyAA51qPiMHKB5WEAoSLNbYz1SvbKFNhD3TUYOt1Zjp9VgsNe2m5FX8zD4MW7OuDZ26yQDWK3SQmbk2Whk830KfKzUWmRE7ZjfzkR2R9of3xNXuMmRsE1l5O3WUK9v6_9_1PObZ3FA7nF0oVyCFx2SvVW_ji8Am638y-SAvwFytzkk priority: 102 providerName: ProQuest – databaseName: Springer Nature OA/Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dt6p0TwTYNtkrbpo7d4HILigwf3FpImVWGvlXaXY_8L_2Rn0g9ZPQVh2YXNZEl3ZjK_JJPfALz01pWydpJrhKsc423FbV5ZXlchZE2ZqybQie6Hj8XZuXp_kV8cgJjvwsSk_UhpGafpOTvszaCiS1PuOU6gouBXN-AmUbeTVa-K1bKvQoznWqnpfkwq9TVd92JQpOrHjw5d6jqY-We25G9HpjESnd6FOxOEZG_HQd-Dg9Deh1tjUcndA_hxgjiQNsCZ9UPXxymBh3jFjw2oEWpZ07Wmca-OdQ2bauHErZwd_ipDPycKCdYTsSuJMXwRs0R_GVBmjSKr7SfPWtt29daFgbkdu4x5mYHHQhTBo_xAK__hIZyfvvu8OuNT3QVeF1JuuCOSs0JY6TH6W4eIAuN6KkXps8wJbECnRRTRuNRLYXH9ZmtZ2dBo0VhZolc_gsO2a8MTYKlTlSgpTgatGp1jVyFKl2e-wHcZEshmTZh6enCqjbE28XBcajNqz6D2TNSeuUrg1dLn-0jJ8U_pE1LwIkl02vGLrv9iJvMyjS-ySPVfplpJ6arcpTYoj9jTkuITOCLzMIhKiFq3phykemMyXWGsrxI4nq3GTDPAYAQCZcLWEptfLM3ou3QgY9vQbaMM4rNCS5XA49HIlnFKWkpqLRMo98xv70H2W9pvXyM_eJUSSVuZwOvZUH8N6-9_1NP_Ez-C24JcKlXoVcdwuOm34Rnis417Hh3yJ1J3N14 priority: 102 providerName: Springer Nature |
Title | Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights |
URI | https://link.springer.com/article/10.1038/s41467-022-29926-w https://www.ncbi.nlm.nih.gov/pubmed/35487883 https://www.proquest.com/docview/2656977439 https://www.proquest.com/docview/2658226834 https://www.osti.gov/servlets/purl/1896789 https://pubmed.ncbi.nlm.nih.gov/PMC9054787 https://doaj.org/article/fd6108570708433b95b0ae4d059aedce |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELb2IdBeEG_CLpWRuEEgsZPYOSDUVltWlXa1Air1ZtmJsyB1E0haLf0X_GRmnKSoUDggVYkUj9MkM5_n82uGkBe5NoJnhvsS6KoP_jb1dZxqP0utDQsRR4XFGd3zi-RsFk3n8XyP9OmOug_Y7OzaYT6pWb14_f3b-h0A_m27ZVy-aSIHd1yXDo0rS_ybfXIInkkgUM87uu9aZp5Chybq9s7srnpEbnNk8VLyLVflIvrDqQLk7WKjfy6q_G1m1TmsyV1yp2OadNiaxj2yZ8v75Fabe3L9gPwYAV3EcXKq86aqXcvhW7cTkDagOCxZ4O6ndkiPVgXtUua4EZ813JVCc4CRJmiN8V9RjMIPA1DU1xZkFiAyXl3mtNRlla2MbahZ02u3fNP6Ll-FzUG-wQGC5iGZTU4_jc_8Lj2DnyWcL32DsdASpnkOJEEbIB7g_gPORB6GhkEBYBvIRmGCnDMN3Tyd8VTbQrJCcwHgf0QOyqq0TwgNTJQyge7UyqiQMVRlTJg4zBM4cuuRsNeEyroXxxQaC-Xm0LlUrSIVKFI5Raobj7zc1PnaRu74p_QIFbyRxKjb7kJVX6kOxKrIk9BlBBCBjDg3aWwCbaMcKKpGxXvkGM1DAXnBCLwZLlXKliqUKVCC1CMnvdWo3s4VAz6NFJxD8fNNMUAc5210aauVkwEal0geeeRxa2Sb5-xt1SNiy_y2XmS7pPzy2YURTwOM5SY88qo31F-P9fcP9fS__-iYHDEEWhAB1k7IwbJe2WfA6JZmQPbFXMBRTt4PyOFwOP04hfPo9OLyA1wdJ-OBGysZODj_BHBUUKQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuhBYwEJ4ia2E7sHBCihWpLH-LQSr0ZO3YAaZuUza5W-y_4JfxGZpxkq-XRW6VVVlpPVnHm9XnGniHkpTNW8tLyWAFcjcHfFrHJChOXhfdpJTNReczoHh3no1Px6Sw7WyO_hrMwuK1ysInBULumxBj5NgPggViFF-8ufsTYNQqzq0MLjU4sDvxiDku29u3-B-DvK8b2Pp7sjuK-q0Bc5pxPY4slvHJmuAPfZiz4S_BaCWfSpallMAAiCT6ysonjzMDqxJS8ML5SrDJcJtglAkz-DXC8CWqUPJPLmA5WW1dC9GdzEq62WxEsEW6ZB7vP8ni-4v9CmwD4akCd_wVx_96p-Ue6NnjBvbvkTg9f6ftO3u6RNV_fJze7hpaLB-TnDmBQDL5T49pmEsxR7MPxQtqCNODIGI9UdXFC2lS078MTwkgL-FcKNgbLV9AJFpVFMgofrGoxOfdAMwaS3dlnR2tTN-XM-pbaBT0Pe0J9HJpgeAf0LUYd2ofk9Fq484is103tNwhNrCiYRB_tlahUBrcyJm2Wuhyu3EckHTihy37i2JdjrENinivdcU8D93Tgnp5H5PXynouuHMiV1DvI4CUllvIOPzSTr7q3DLpyeRraDMhECc5tkdnEeOEA9xpkfEQ2UTw0ICIs61vi_qdyqlNVAM4oIrI1SI3urU-rL3UlIi-Ww2A3MBlkat_MAg1gw1xxEZHHnZAtn5PjMlYpHhG5In4rE1kdqb9_C7XJiwQLxMmIvBkE9fKx_v-inlw9i-fk1ujk6FAf7h8fbJLbDNUpEaBRW2R9Opn5p4ALp_ZZUEZKvly39v8GClxzkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAviG_CBhgJnsBqYjux84AQ25g2BtMemNQ3YycOIHXJaFpV_S_4e_jruHOSTuVjb5OqVKovVZz7-vl8viPkRWmdEoUTTANcZeBvc2bT3LIi9z6pVCorjzu6n46zg1P5YZyON8iv4SwMplUONjEY6rIpMEY-4gA8EKuIfFT1aREne_tvz38w7CCFO61DO41ORI78cgHLt_bN4R7w-iXn--8_7x6wvsMAKzIhZsxhOa-MW1GCn7MOfCd4sFhwVSaJ4zAA4gn-snJxKbiFlYotRG59pXllhYqxYwSY_2tKpAnqmBqrVXwHK69rKftzOrHQo1YGq4Tp8-ADeMYWa74wtAyArwZU-19w9--szT-2boNH3L9NbvVQlr7rZO8O2fD1XXK9a265vEd-7gAexUA8tWXbTINpYj4cNaQtSAaOTPB4VRczpE1F-548IaS0hH-lYG-wlAWdYoFZJKPwwQoX0zMPNBMg2Z2flLS2dVPMnW-pW9KzkB_qWWiI4UugbzEC0d4np1fCnQdks25q_4jQ2MmcK_TXXstKp3Ar58qlSZnBVfiIJAMnTNFPHHt0TEzYpBfadNwzwD0TuGcWEXm1uue8Kw1yKfUOMnhFiWW9ww_N9KvprYSpyiwJLQdUrKUQLk9dbL0sAQNbZHxEtlA8DKAjLPFbYC5UMTOJzgFz5BHZHqTG9JaoNRd6E5Hnq2GwIbgxZGvfzAMN4MRMCxmRh52QrZ5T4JJWaxERtSZ-axNZH6m_fwt1yvMYi8WpiLweBPXisf7_oh5fPotn5Abovfl4eHy0RW5y1KZYgkJtk83ZdO6fAEScuadBFyn5ctXK_xuH-nfJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+adsorption-energy+scaling+limitations+of+electrocatalytic+nitrate+reduction+on+intermetallic+CuPd+nanocubes+by+machine-learned+insights&rft.jtitle=Nature+communications&rft.au=Gao%2C+Qiang&rft.au=Pillai%2C+Hemanth+Somarajan&rft.au=Huang%2C+Yang&rft.au=Liu%2C+Shikai&rft.date=2022-04-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-29926-w&rft_id=info%3Apmid%2F35487883&rft.externalDocID=PMC9054787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |