A molecular design approach towards elastic and multifunctional polymer electronics
Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 5701 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.09.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm
2
V
−1
s
−1
after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.
Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and facile patternability. Here, the authors show a molecular design concept that simultaneously achieves all these requirements by covalently linking an in-situ formed rubber matrix with polymer electronic materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 National Science Foundation (NSF) FA9550-21-1-0413; FA9550-18-1-0143; ECCS-2026822; DMR-2047689; DGE-1656518 USDOE Office of Science (SC), Basic Energy Sciences (BES) US Air Force Office of Scientific Research (AFOSR) |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-25719-9 |