A molecular design approach towards elastic and multifunctional polymer electronics

Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 5701 - 11
Main Authors Zheng, Yu, Yu, Zhiao, Zhang, Song, Kong, Xian, Michaels, Wesley, Wang, Weichen, Chen, Gan, Liu, Deyu, Lai, Jian-Cheng, Prine, Nathaniel, Zhang, Weimin, Nikzad, Shayla, Cooper, Christopher B., Zhong, Donglai, Mun, Jaewan, Zhang, Zhitao, Kang, Jiheong, Tok, Jeffrey B.-H., McCulloch, Iain, Qin, Jian, Gu, Xiaodan, Bao, Zhenan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.09.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm 2 V −1 s −1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics. Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and facile patternability. Here, the authors show a molecular design concept that simultaneously achieves all these requirements by covalently linking an in-situ formed rubber matrix with polymer electronic materials.
AbstractList Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V−1 s−1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and facile patternability. Here, the authors show a molecular design concept that simultaneously achieves all these requirements by covalently linking an in-situ formed rubber matrix with polymer electronic materials.
Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm V s after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.
Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm 2 V −1 s −1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics. Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and facile patternability. Here, the authors show a molecular design concept that simultaneously achieves all these requirements by covalently linking an in-situ formed rubber matrix with polymer electronic materials.
Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm 2 V −1 s −1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.
Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and facile patternability. Here, the authors show a molecular design concept that simultaneously achieves all these requirements by covalently linking an in-situ formed rubber matrix with polymer electronic materials.
Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.
Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.
ArticleNumber 5701
Author Lai, Jian-Cheng
Nikzad, Shayla
Cooper, Christopher B.
McCulloch, Iain
Zhong, Donglai
Kang, Jiheong
Bao, Zhenan
Prine, Nathaniel
Michaels, Wesley
Wang, Weichen
Zheng, Yu
Zhang, Zhitao
Gu, Xiaodan
Liu, Deyu
Tok, Jeffrey B.-H.
Zhang, Song
Kong, Xian
Mun, Jaewan
Chen, Gan
Zhang, Weimin
Qin, Jian
Yu, Zhiao
Author_xml – sequence: 1
  givenname: Yu
  surname: Zheng
  fullname: Zheng, Yu
  organization: Department of Chemical Engineering, Stanford University, Department of Chemistry, Stanford University
– sequence: 2
  givenname: Zhiao
  orcidid: 0000-0001-8746-1640
  surname: Yu
  fullname: Yu, Zhiao
  organization: Department of Chemical Engineering, Stanford University, Department of Chemistry, Stanford University
– sequence: 3
  givenname: Song
  orcidid: 0000-0001-9815-7046
  surname: Zhang
  fullname: Zhang, Song
  organization: School of Polymer Science and Engineering, The University of Southern Mississippi
– sequence: 4
  givenname: Xian
  orcidid: 0000-0001-5602-6347
  surname: Kong
  fullname: Kong, Xian
  organization: Department of Chemical Engineering, Stanford University
– sequence: 5
  givenname: Wesley
  surname: Michaels
  fullname: Michaels, Wesley
  organization: Department of Chemical Engineering, Stanford University
– sequence: 6
  givenname: Weichen
  surname: Wang
  fullname: Wang, Weichen
  organization: Department of Chemical Engineering, Stanford University, Department of Materials Science and Engineering, Stanford University
– sequence: 7
  givenname: Gan
  orcidid: 0000-0001-5541-6212
  surname: Chen
  fullname: Chen, Gan
  organization: Department of Chemical Engineering, Stanford University, Department of Materials Science and Engineering, Stanford University
– sequence: 8
  givenname: Deyu
  surname: Liu
  fullname: Liu, Deyu
  organization: Department of Chemical Engineering, Stanford University
– sequence: 9
  givenname: Jian-Cheng
  orcidid: 0000-0001-9290-678X
  surname: Lai
  fullname: Lai, Jian-Cheng
  organization: Department of Chemical Engineering, Stanford University
– sequence: 10
  givenname: Nathaniel
  surname: Prine
  fullname: Prine, Nathaniel
  organization: School of Polymer Science and Engineering, The University of Southern Mississippi
– sequence: 11
  givenname: Weimin
  surname: Zhang
  fullname: Zhang, Weimin
  organization: King Abdullah University of Science and Technology (KAUST), Kaust Solar Center (KSC), Department of Chemistry, Chemistry Research Laboratory, University of Oxford
– sequence: 12
  givenname: Shayla
  surname: Nikzad
  fullname: Nikzad, Shayla
  organization: Department of Chemical Engineering, Stanford University
– sequence: 13
  givenname: Christopher B.
  orcidid: 0000-0002-4783-7778
  surname: Cooper
  fullname: Cooper, Christopher B.
  organization: Department of Chemical Engineering, Stanford University
– sequence: 14
  givenname: Donglai
  orcidid: 0000-0002-0876-414X
  surname: Zhong
  fullname: Zhong, Donglai
  organization: Department of Chemical Engineering, Stanford University
– sequence: 15
  givenname: Jaewan
  surname: Mun
  fullname: Mun, Jaewan
  organization: Department of Chemical Engineering, Stanford University
– sequence: 16
  givenname: Zhitao
  surname: Zhang
  fullname: Zhang, Zhitao
  organization: Department of Chemical Engineering, Stanford University
– sequence: 17
  givenname: Jiheong
  surname: Kang
  fullname: Kang, Jiheong
  organization: Department of Chemical Engineering, Stanford University, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 18
  givenname: Jeffrey B.-H.
  orcidid: 0000-0002-2794-0663
  surname: Tok
  fullname: Tok, Jeffrey B.-H.
  organization: Department of Chemical Engineering, Stanford University
– sequence: 19
  givenname: Iain
  orcidid: 0000-0002-6340-7217
  surname: McCulloch
  fullname: McCulloch, Iain
  organization: King Abdullah University of Science and Technology (KAUST), Kaust Solar Center (KSC), Department of Chemistry, Chemistry Research Laboratory, University of Oxford
– sequence: 20
  givenname: Jian
  orcidid: 0000-0001-6271-068X
  surname: Qin
  fullname: Qin, Jian
  organization: Department of Chemical Engineering, Stanford University
– sequence: 21
  givenname: Xiaodan
  orcidid: 0000-0002-1123-3673
  surname: Gu
  fullname: Gu, Xiaodan
  organization: School of Polymer Science and Engineering, The University of Southern Mississippi
– sequence: 22
  givenname: Zhenan
  orcidid: 0000-0002-0972-1715
  surname: Bao
  fullname: Bao, Zhenan
  email: zbao@stanford.edu
  organization: Department of Chemical Engineering, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34588448$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1903996$$D View this record in Osti.gov
BookMark eNp9kktv1DAUhSNUREvpH2CBItiwCfiZ2BukquJRqRILYG05zvWMR44d7KSo_x7PpIW2i2YTy_7O8fG992V1FGKAqnqN0QeMqPiYGWZt1yCCG8I7LBv5rDohiOEGd4Qe3VsfV2c571D5qMSCsRfVMWVclJU4qX6c12P0YBavUz1AdptQ62lKUZttPcc_Og25Bq_z7Eytw1CPi5-dXYKZXQza11P0NyOkwoCZUwzO5FfVc6t9hrPb_2n168vnnxffmqvvXy8vzq8a01I6N1pbRoELLRlue9rqngrLemw5EzBY3HdIagMIeswZwUK0xrYIA6Vc8tYKelpdrr5D1Ds1JTfqdKOiduqwEdNG6VRye1BYEmKsASIRZ7R49VZziXtkBLN8IMXr0-o1Lf0Ig4EwJ-0fmD48CW6rNvFaCSYwYV0xeLsaxFIqlY2bwWxNDKGUpVxfai_bAr2_vSXF3wvkWY0uG_BeB4hLVqWTAnNCuz367hG6i0sqFT9QXYtaxnih3tyP_S_vXYMLIFbApJhzAqtKMr3vXXmF8wojtR8ntY6TKuOkDuOkZJGSR9I79ydFdBXlAocNpP-xn1D9BUfl3Gk
CitedBy_id crossref_primary_10_1021_jacs_2c00072
crossref_primary_10_1002_admt_202200848
crossref_primary_10_1021_acssensors_3c01835
crossref_primary_10_1039_D4MH00574K
crossref_primary_10_1002_adfm_202303031
crossref_primary_10_1039_D4MH00587B
crossref_primary_10_1002_marc_202300624
crossref_primary_10_1016_j_cej_2025_161112
crossref_primary_10_1016_j_reactfunctpolym_2022_105236
crossref_primary_10_1038_s41467_022_31051_7
crossref_primary_10_34133_2022_9867378
crossref_primary_10_1021_acsaelm_2c01791
crossref_primary_10_1002_smll_202207879
crossref_primary_10_1021_acscentsci_4c01541
crossref_primary_10_6023_A23050213
crossref_primary_10_1002_advs_202105146
crossref_primary_10_1016_j_cej_2023_142945
crossref_primary_10_1016_j_nanoen_2024_110062
crossref_primary_10_1002_adma_202313312
crossref_primary_10_1021_jacs_4c07174
crossref_primary_10_1002_anie_202302837
crossref_primary_10_1021_acsami_3c08330
crossref_primary_10_1039_D3TC04821G
crossref_primary_10_1039_D2CS00618A
crossref_primary_10_1038_s41586_024_07096_7
crossref_primary_10_20517_ss_2024_26
crossref_primary_10_1021_acs_macromol_3c01693
crossref_primary_10_1016_j_nanoms_2022_08_003
crossref_primary_10_1039_D4PY00180J
crossref_primary_10_1002_adma_202201303
crossref_primary_10_1002_smll_202200875
crossref_primary_10_1021_acs_chemmater_3c02394
crossref_primary_10_1002_admi_202202053
crossref_primary_10_1021_jacs_3c14310
crossref_primary_10_1016_j_wees_2024_05_001
crossref_primary_10_1021_acs_macromol_5c00316
crossref_primary_10_1002_admt_202300247
crossref_primary_10_1021_acsami_1c21092
crossref_primary_10_1002_marc_202300240
crossref_primary_10_1038_s41467_022_35271_9
crossref_primary_10_1038_s44222_024_00194_1
crossref_primary_10_1039_D1CS01136G
crossref_primary_10_1038_s41565_023_01418_y
crossref_primary_10_1016_j_mtcomm_2022_104489
crossref_primary_10_1038_s41467_024_50257_5
crossref_primary_10_1038_s41565_024_01718_x
crossref_primary_10_1002_rpm_20230022
crossref_primary_10_1016_j_polymer_2023_125912
crossref_primary_10_1021_acsbiomaterials_4c00877
crossref_primary_10_1039_D3TC00442B
crossref_primary_10_1021_acs_chemmater_3c02498
crossref_primary_10_1002_adma_202309779
crossref_primary_10_1007_s11426_022_1279_x
crossref_primary_10_1038_s41467_023_44099_w
crossref_primary_10_1021_acs_chemmater_3c02131
crossref_primary_10_1002_ange_202302837
crossref_primary_10_1002_adma_202403961
crossref_primary_10_1021_acs_chemmater_3c02417
crossref_primary_10_1039_D3NR01657A
crossref_primary_10_1016_j_trac_2024_118027
crossref_primary_10_1021_acsami_2c10245
crossref_primary_10_1073_pnas_2403879121
crossref_primary_10_1021_acsnano_4c14026
crossref_primary_10_1021_acs_chemmater_3c00485
crossref_primary_10_1002_idm2_12223
crossref_primary_10_1007_s12274_022_4622_x
crossref_primary_10_1002_adma_202305987
crossref_primary_10_1021_acs_macromol_3c01986
crossref_primary_10_1016_j_est_2024_112006
crossref_primary_10_1016_j_jclepro_2025_145265
crossref_primary_10_1039_D3TC01579C
crossref_primary_10_1002_admt_202201067
crossref_primary_10_1021_acs_nanolett_3c04248
crossref_primary_10_1093_nsr_nwae435
crossref_primary_10_1002_admi_202202409
crossref_primary_10_1002_marc_202200084
crossref_primary_10_1039_D4EE01117A
crossref_primary_10_1002_advs_202205381
crossref_primary_10_1021_acsami_2c07445
crossref_primary_10_20517_ss_2023_12
crossref_primary_10_1021_acsami_4c15774
crossref_primary_10_1038_s41928_022_00874_z
crossref_primary_10_1002_smll_202206938
crossref_primary_10_1039_D3RA00600J
crossref_primary_10_1039_D2TC04383A
crossref_primary_10_1093_nsr_nwad253
crossref_primary_10_1002_smll_202306468
crossref_primary_10_1126_science_ade0086
crossref_primary_10_1002_sus2_70005
crossref_primary_10_3390_s25030925
crossref_primary_10_1021_acsami_3c10033
crossref_primary_10_1039_D3NR00886J
crossref_primary_10_1360_SSC_2022_0108
crossref_primary_10_1021_acs_chemmater_4c01146
crossref_primary_10_1021_acs_chemmater_3c02006
crossref_primary_10_3390_app121910007
crossref_primary_10_1021_acs_macromol_3c01888
crossref_primary_10_1021_acs_macromol_3c00316
crossref_primary_10_1039_D2LC00972B
crossref_primary_10_1016_j_jpowsour_2023_234009
crossref_primary_10_1021_acs_macromol_3c00703
crossref_primary_10_1039_D2TC02212E
Cites_doi 10.1002/adfm.201804222
10.1038/nature12314
10.1038/nmat2594
10.1126/science.aah4496
10.1002/marc.201800092
10.1002/adfm.201602603
10.1002/adfm.201600612
10.1002/adfm.201905340
10.1002/adma.201304346
10.1038/nature20102
10.1126/sciadv.abb3656
10.1021/mz200090a
10.1002/adma.201904765
10.1002/adfm.202000663
10.1021/acs.macromol.9b01697
10.1038/nature13854
10.1021/acs.macromol.9b02573
10.1126/science.1182383
10.1016/j.progpolymsci.2019.101181
10.1021/acs.chemrev.8b00063
10.1021/ar100066t
10.1039/C5RA21329K
10.1038/s41467-020-15181-4
10.1021/jo00022a036
10.1002/adma.201404602
10.1038/nmat4463
10.1038/nature25494
10.1038/s41928-020-00513-5
10.1002/adma.201605056
10.1021/acs.iecr.5b04921
10.1021/ja00039a016
10.1021/acs.accounts.8b00015
10.1021/acs.chemrev.7b00003
10.1021/acs.chemmater.7b03019
10.1021/acs.chemmater.8b03904
10.1002/pi.5954
10.1038/ncomms3520
10.1557/mrs.2017.3
10.1557/mrs.2016.247
10.1038/s41467-020-17084-w
10.1021/acs.chemmater.0c01437
10.1557/mrs.2016.325
10.1021/acs.chemmater.8b04314
10.1021/acsami.0c04356
10.1021/acs.chemrev.8b00045
10.1002/aelm.201700356
10.1021/acs.macromol.9b01127
10.1002/adma.201903912
10.1007/BFb0024050
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
Stanford Univ., CA (United States)
CorporateAuthor_xml – name: Stanford Univ., CA (United States)
– name: SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-021-25719-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Engineering
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_1922cfce290543188bfa591b0c84f5d2
PMC8481247
1903996
34588448
10_1038_s41467_021_25719_9
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c633t-aaf43e58a9416b36ab38f4b1f548edf1b709ace0eb15421886cf601e335956f83
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:29:21 EDT 2025
Thu Aug 21 13:31:10 EDT 2025
Mon Jun 12 04:07:10 EDT 2023
Tue Aug 05 10:45:01 EDT 2025
Wed Aug 13 09:17:43 EDT 2025
Wed Feb 19 02:09:02 EST 2025
Tue Jul 01 04:17:35 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Fri Feb 21 02:39:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-aaf43e58a9416b36ab38f4b1f548edf1b709ace0eb15421886cf601e335956f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
National Science Foundation (NSF)
FA9550-21-1-0413; FA9550-18-1-0143; ECCS-2026822; DMR-2047689; DGE-1656518
USDOE Office of Science (SC), Basic Energy Sciences (BES)
US Air Force Office of Scientific Research (AFOSR)
ORCID 0000-0001-8746-1640
0000-0002-0972-1715
0000-0001-9290-678X
0000-0001-5602-6347
0000-0002-0876-414X
0000-0002-6340-7217
0000-0001-6271-068X
0000-0002-4783-7778
0000-0001-5541-6212
0000-0001-9815-7046
0000-0002-2794-0663
0000-0002-1123-3673
000000020876414X
0000000209721715
0000000187461640
000000019290678X
0000000227940663
0000000156026347
0000000211233673
0000000155416212
000000016271068X
0000000263407217
0000000198157046
0000000247837778
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-25719-9
PMID 34588448
PQID 2577606445
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_1922cfce290543188bfa591b0c84f5d2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8481247
osti_scitechconnect_1903996
proquest_miscellaneous_2578152376
proquest_journals_2577606445
pubmed_primary_34588448
crossref_citationtrail_10_1038_s41467_021_25719_9
crossref_primary_10_1038_s41467_021_25719_9
springer_journals_10_1038_s41467_021_25719_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-29
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Venkateshvaran (CR40) 2014; 515
Zhang (CR25) 2020; 30
Wang (CR46) 2018; 118
Zhao (CR7) 2017; 29
Guan (CR24) 2020; 6
Sheiko, Dobrynin (CR39) 2019; 52
Png (CR28) 2010; 9
Wang (CR47) 2019; 31
Zhang (CR23) 2017; 29
Pakhnyuk, Onorato, Steiner, Cohen, Luscombe (CR32) 2020; 69
Kwon (CR19) 2020; 12
Kim (CR34) 2013; 4
Xu (CR22) 2017; 355
Selivanova (CR36) 2019; 52
Dai, Hu, Wang, Xu, Wang (CR48) 2021; 4
Root, Savagatrup, Printz, Rodriquez, Lipomi (CR13) 2017; 117
Ashizawa, Zheng, Tran, Bao (CR15) 2020; 100
Wang (CR11) 2018; 555
Zhang (CR35) 2018; 39
Bao (CR5) 2016; 41
Zheng (CR16) 2019; 29
Oh (CR43) 2016; 539
Lipomi, Bao (CR4) 2017; 42
Mun (CR41) 2018; 28
Shin (CR44) 2015; 27
Wang (CR20) 2019; 31
Sirringhaus (CR8) 2014; 26
Young, Platz (CR29) 1991; 56
Liu (CR12) 2020; 11
Kong (CR26) 2016; 26
CR17
Freudenberg, Jänsch, Hinkel, Bunz (CR10) 2018; 118
Poe, Schnapp, Young, Grayzar, Platz (CR30) 1992; 114
Xie, Colby, Gomez (CR14) 2018; 4
Lee, Chung, Stafford (CR33) 2012; 1
Yuk, Zhang, Lin, Parada, Zhao (CR45) 2016; 15
Kaltenbrunner (CR3) 2013; 499
Song (CR38) 2020; 53
Rogers, Someya, Huang (CR2) 2010; 327
Wang, Oh, Xu, Tran, Bao (CR6) 2018; 51
Wang (CR21) 2016; 26
Kim (CR18) 2020; 11
Liu, Yan (CR27) 2010; 43
Ji, Donner, Wilde, Hu, Fuchs (CR49) 2015; 5
Yang (CR1) 2019; 31
Cao, Zhou, Jie, Li (CR31) 2016; 55
Kim (CR9) 2017; 42
Zheng (CR37) 2020; 32
Mun (CR42) 2019; 31
M Kaltenbrunner (25719_CR3) 2013; 499
JC Yang (25719_CR1) 2019; 31
Y-S Guan (25719_CR24) 2020; 6
S Zhang (25719_CR25) 2020; 30
S Wang (25719_CR6) 2018; 51
G-JN Wang (25719_CR21) 2016; 26
M Shin (25719_CR44) 2015; 27
JA Rogers (25719_CR2) 2010; 327
H Yuk (25719_CR45) 2016; 15
RQ Png (25719_CR28) 2010; 9
Y Wang (25719_CR47) 2019; 31
DJ Lipomi (25719_CR4) 2017; 42
25719_CR17
M Ashizawa (25719_CR15) 2020; 100
D Ji (25719_CR49) 2015; 5
R Song (25719_CR38) 2020; 53
J Mun (25719_CR42) 2019; 31
D Kong (25719_CR26) 2016; 26
G-JN Wang (25719_CR20) 2019; 31
H Sirringhaus (25719_CR8) 2014; 26
Z Cao (25719_CR31) 2016; 55
Y Dai (25719_CR48) 2021; 4
J Freudenberg (25719_CR10) 2018; 118
SE Root (25719_CR13) 2017; 117
Y Zheng (25719_CR37) 2020; 32
MJT Young (25719_CR29) 1991; 56
S Wang (25719_CR11) 2018; 555
MJ Kim (25719_CR18) 2020; 11
JH Lee (25719_CR33) 2012; 1
HJ Kwon (25719_CR19) 2020; 12
J Xu (25719_CR22) 2017; 355
Y Zhao (25719_CR7) 2017; 29
SS Sheiko (25719_CR39) 2019; 52
J Mun (25719_CR41) 2018; 28
D Venkateshvaran (25719_CR40) 2014; 515
S Zhang (25719_CR35) 2018; 39
Y Zheng (25719_CR16) 2019; 29
Z Bao (25719_CR5) 2016; 41
M Selivanova (25719_CR36) 2019; 52
G Zhang (25719_CR23) 2017; 29
J Liu (25719_CR12) 2020; 11
B Wang (25719_CR46) 2018; 118
JH Kim (25719_CR9) 2017; 42
LH Liu (25719_CR27) 2010; 43
J-H Kim (25719_CR34) 2013; 4
V Pakhnyuk (25719_CR32) 2020; 69
R Xie (25719_CR14) 2018; 4
R Poe (25719_CR30) 1992; 114
JY Oh (25719_CR43) 2016; 539
References_xml – volume: 28
  start-page: 1804222
  year: 2018
  ident: CR41
  article-title: Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804222
– volume: 499
  start-page: 458
  year: 2013
  end-page: 463
  ident: CR3
  article-title: An ultra-lightweight design for imperceptible plastic electronics
  publication-title: Nature
  doi: 10.1038/nature12314
– volume: 9
  start-page: 152
  year: 2010
  end-page: 158
  ident: CR28
  article-title: High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2594
– volume: 355
  start-page: 59
  year: 2017
  end-page: 64
  ident: CR22
  article-title: Highly stretchable polymer semiconductor films through the nanoconfinement effect
  publication-title: Science
  doi: 10.1126/science.aah4496
– volume: 39
  start-page: 1800092
  year: 2018
  ident: CR35
  article-title: Probing the viscoelastic property of pseudo free-standing conjugated polymeric thin films
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201800092
– volume: 26
  start-page: 7254
  year: 2016
  end-page: 7262
  ident: CR21
  article-title: Inducing elasticity through oligo-siloxane crosslinks for intrinsically stretchable semiconducting polymers
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602603
– volume: 26
  start-page: 4680
  year: 2016
  end-page: 4686
  ident: CR26
  article-title: Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600612
– volume: 29
  start-page: 1905340
  year: 2019
  ident: CR16
  article-title: An intrinsically stretchable high‐performance polymer semiconductor with low crystallinity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905340
– volume: 26
  start-page: 1319
  year: 2014
  end-page: 1335
  ident: CR8
  article-title: 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304346
– volume: 539
  start-page: 411
  year: 2016
  end-page: 415
  ident: CR43
  article-title: Intrinsically stretchable and healable semiconducting polymer for organic transistors
  publication-title: Nature
  doi: 10.1038/nature20102
– volume: 6
  start-page: eabb3656
  year: 2020
  ident: CR24
  article-title: Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb3656
– volume: 1
  start-page: 122
  year: 2012
  end-page: 126
  ident: CR33
  article-title: Effect of confinement on stiffness and fracture of thin amorphous polymer films
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz200090a
– volume: 31
  start-page: 1904765
  year: 2019
  ident: CR1
  article-title: Electronic skin: recent progress and future prospects for skin‐attachable devices for health monitoring, robotics, and prosthetics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904765
– volume: 30
  start-page: 2000663
  year: 2020
  ident: CR25
  article-title: Tacky elastomers to enable tear‐resistant and autonomous self‐healing semiconductor composites
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000663
– volume: 52
  start-page: 7870
  year: 2019
  end-page: 7877
  ident: CR36
  article-title: Branched polyethylene as a plasticizing additive to modulate the mechanical properties of π-conjugated polymers
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01697
– volume: 515
  start-page: 384
  year: 2014
  end-page: 388
  ident: CR40
  article-title: Approaching disorder-free transport in high-mobility conjugated polymers
  publication-title: Nature
  doi: 10.1038/nature13854
– volume: 53
  start-page: 1988
  year: 2020
  end-page: 1997
  ident: CR38
  article-title: Unveiling the stress–strain behavior of conjugated polymer thin films for stretchable device applications
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b02573
– volume: 327
  start-page: 1603
  year: 2010
  end-page: 1607
  ident: CR2
  article-title: Materials and mechanics for stretchable electronics
  publication-title: Science
  doi: 10.1126/science.1182383
– volume: 100
  start-page: 101181
  year: 2020
  ident: CR15
  article-title: Intrinsically stretchable conjugated polymer semiconductors in field effect transistors
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2019.101181
– volume: 118
  start-page: 5598
  year: 2018
  end-page: 5689
  ident: CR10
  article-title: Immobilization strategies for organic semiconducting conjugated polymers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00063
– volume: 43
  start-page: 1434
  year: 2010
  end-page: 1443
  ident: CR27
  article-title: Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100066t
– volume: 5
  start-page: 98288
  year: 2015
  end-page: 98292
  ident: CR49
  article-title: Poly(sodium-4-styrene sulfonate) (PSSNa)-assisted transferable flexible, top-contact high-resolution free-standing organic field-effect transistors
  publication-title: RSC Adv.
  doi: 10.1039/C5RA21329K
– volume: 11
  year: 2020
  ident: CR18
  article-title: Universal three-dimensional crosslinker for all-photopatterned electronics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15181-4
– volume: 56
  start-page: 6403
  year: 1991
  end-page: 6406
  ident: CR29
  article-title: Mechanistic analysis of the reactions of (pentafluorophenyl)nitrene in alkanes
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00022a036
– volume: 27
  start-page: 1255
  year: 2015
  end-page: 1261
  ident: CR44
  article-title: Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404602
– volume: 15
  start-page: 190
  year: 2016
  end-page: 196
  ident: CR45
  article-title: Tough bonding of hydrogels to diverse non-porous surfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4463
– volume: 555
  start-page: 83
  year: 2018
  end-page: 88
  ident: CR11
  article-title: Skin electronics from scalable fabrication of an intrinsically stretchable transistor array
  publication-title: Nature
  doi: 10.1038/nature25494
– volume: 4
  start-page: 17
  year: 2021
  end-page: 29
  ident: CR48
  article-title: Stretchable transistors and functional circuits for human-integrated electronics
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00513-5
– volume: 29
  start-page: 1605056
  year: 2017
  ident: CR7
  article-title: Melt-processing of complementary semiconducting polymer blends for high performance organic transistors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605056
– volume: 55
  start-page: 1582
  year: 2016
  end-page: 1589
  ident: CR31
  article-title: High cis -1,4 hydroxyl-terminated polybutadiene-based polyurethanes with extremely low glass transition temperature and excellent mechanical properties
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04921
– volume: 114
  start-page: 5054
  year: 1992
  end-page: 5067
  ident: CR30
  article-title: Chemistry and kinetics of singlet (pentafluorophenyl)nitrene
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00039a016
– volume: 51
  start-page: 1033
  year: 2018
  end-page: 1045
  ident: CR6
  article-title: Skin-inspired electronics: an emerging paradigm
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00015
– volume: 117
  start-page: 6467
  year: 2017
  end-page: 6499
  ident: CR13
  article-title: Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00003
– volume: 29
  start-page: 7645
  year: 2017
  end-page: 7652
  ident: CR23
  article-title: Versatile interpenetrating polymer network approach to robust stretchable electronic devices
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03019
– volume: 31
  start-page: 2212
  year: 2019
  end-page: 2240
  ident: CR47
  article-title: Polymer-based gate dielectrics for organic field-effect transistors
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03904
– volume: 69
  start-page: 308
  year: 2020
  end-page: 316
  ident: CR32
  article-title: Enhanced miscibility and strain resistance of blended elastomer/π-conjugated polymer composites through side chain functionalization towards stretchable electronics
  publication-title: Polym. Int.
  doi: 10.1002/pi.5954
– volume: 4
  year: 2013
  ident: CR34
  article-title: Tensile testing of ultra-thin films on water surface
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3520
– volume: 42
  start-page: 115
  year: 2017
  end-page: 123
  ident: CR9
  article-title: Understanding mechanical behavior and reliability of organic electronic materials
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2017.3
– volume: 41
  start-page: 897
  year: 2016
  end-page: 904
  ident: CR5
  article-title: Skin-inspired organic electronic materials and devices
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2016.247
– volume: 11
  year: 2020
  ident: CR12
  article-title: Fully stretchable active-matrix organic light-emitting electrochemical cell array
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17084-w
– volume: 32
  start-page: 5700
  year: 2020
  end-page: 5714
  ident: CR37
  article-title: Tuning the mechanical properties of a polymer semiconductor by modulating hydrogen bonding interactions
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01437
– volume: 42
  start-page: 93
  year: 2017
  end-page: 97
  ident: CR4
  article-title: Stretchable and ultraflexible organic electronics
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2016.325
– volume: 31
  start-page: 6465
  year: 2019
  end-page: 6475
  ident: CR20
  article-title: Tuning the cross-linker crystallinity of a stretchable polymer semiconductor
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04314
– volume: 12
  start-page: 30600
  year: 2020
  end-page: 30615
  ident: CR19
  article-title: Facile photo-cross-linking system for polymeric gate dielectric materials toward solution-processed organic field-effect transistors: role of a cross-linker in various polymer types
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04356
– ident: CR17
– volume: 118
  start-page: 5690
  year: 2018
  end-page: 5754
  ident: CR46
  article-title: High- k gate dielectrics for emerging flexible and stretchable electronics
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00045
– volume: 4
  start-page: 1700356
  year: 2018
  ident: CR14
  article-title: Connecting the mechanical and conductive properties of conjugated polymers
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700356
– volume: 52
  start-page: 7531
  year: 2019
  end-page: 7546
  ident: CR39
  article-title: Architectural code for rubber elasticity: from supersoft to superfirm materials
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01127
– volume: 31
  start-page: 1903912
  year: 2019
  ident: CR42
  article-title: Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903912
– volume: 355
  start-page: 59
  year: 2017
  ident: 25719_CR22
  publication-title: Science
  doi: 10.1126/science.aah4496
– volume: 51
  start-page: 1033
  year: 2018
  ident: 25719_CR6
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00015
– volume: 26
  start-page: 4680
  year: 2016
  ident: 25719_CR26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600612
– volume: 39
  start-page: 1800092
  year: 2018
  ident: 25719_CR35
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201800092
– volume: 515
  start-page: 384
  year: 2014
  ident: 25719_CR40
  publication-title: Nature
  doi: 10.1038/nature13854
– volume: 29
  start-page: 1905340
  year: 2019
  ident: 25719_CR16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905340
– volume: 27
  start-page: 1255
  year: 2015
  ident: 25719_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404602
– volume: 100
  start-page: 101181
  year: 2020
  ident: 25719_CR15
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2019.101181
– volume: 9
  start-page: 152
  year: 2010
  ident: 25719_CR28
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2594
– volume: 118
  start-page: 5690
  year: 2018
  ident: 25719_CR46
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00045
– volume: 118
  start-page: 5598
  year: 2018
  ident: 25719_CR10
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00063
– volume: 4
  year: 2013
  ident: 25719_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3520
– volume: 52
  start-page: 7870
  year: 2019
  ident: 25719_CR36
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01697
– volume: 31
  start-page: 2212
  year: 2019
  ident: 25719_CR47
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03904
– volume: 555
  start-page: 83
  year: 2018
  ident: 25719_CR11
  publication-title: Nature
  doi: 10.1038/nature25494
– volume: 32
  start-page: 5700
  year: 2020
  ident: 25719_CR37
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01437
– volume: 26
  start-page: 7254
  year: 2016
  ident: 25719_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602603
– volume: 5
  start-page: 98288
  year: 2015
  ident: 25719_CR49
  publication-title: RSC Adv.
  doi: 10.1039/C5RA21329K
– volume: 69
  start-page: 308
  year: 2020
  ident: 25719_CR32
  publication-title: Polym. Int.
  doi: 10.1002/pi.5954
– volume: 30
  start-page: 2000663
  year: 2020
  ident: 25719_CR25
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000663
– volume: 42
  start-page: 115
  year: 2017
  ident: 25719_CR9
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2017.3
– volume: 114
  start-page: 5054
  year: 1992
  ident: 25719_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00039a016
– volume: 499
  start-page: 458
  year: 2013
  ident: 25719_CR3
  publication-title: Nature
  doi: 10.1038/nature12314
– volume: 6
  start-page: eabb3656
  year: 2020
  ident: 25719_CR24
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb3656
– ident: 25719_CR17
  doi: 10.1007/BFb0024050
– volume: 117
  start-page: 6467
  year: 2017
  ident: 25719_CR13
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00003
– volume: 28
  start-page: 1804222
  year: 2018
  ident: 25719_CR41
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804222
– volume: 31
  start-page: 1903912
  year: 2019
  ident: 25719_CR42
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903912
– volume: 52
  start-page: 7531
  year: 2019
  ident: 25719_CR39
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01127
– volume: 4
  start-page: 1700356
  year: 2018
  ident: 25719_CR14
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700356
– volume: 539
  start-page: 411
  year: 2016
  ident: 25719_CR43
  publication-title: Nature
  doi: 10.1038/nature20102
– volume: 31
  start-page: 6465
  year: 2019
  ident: 25719_CR20
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04314
– volume: 15
  start-page: 190
  year: 2016
  ident: 25719_CR45
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4463
– volume: 31
  start-page: 1904765
  year: 2019
  ident: 25719_CR1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904765
– volume: 26
  start-page: 1319
  year: 2014
  ident: 25719_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304346
– volume: 43
  start-page: 1434
  year: 2010
  ident: 25719_CR27
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100066t
– volume: 29
  start-page: 7645
  year: 2017
  ident: 25719_CR23
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03019
– volume: 41
  start-page: 897
  year: 2016
  ident: 25719_CR5
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2016.247
– volume: 11
  year: 2020
  ident: 25719_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15181-4
– volume: 12
  start-page: 30600
  year: 2020
  ident: 25719_CR19
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04356
– volume: 4
  start-page: 17
  year: 2021
  ident: 25719_CR48
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00513-5
– volume: 327
  start-page: 1603
  year: 2010
  ident: 25719_CR2
  publication-title: Science
  doi: 10.1126/science.1182383
– volume: 42
  start-page: 93
  year: 2017
  ident: 25719_CR4
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2016.325
– volume: 29
  start-page: 1605056
  year: 2017
  ident: 25719_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605056
– volume: 1
  start-page: 122
  year: 2012
  ident: 25719_CR33
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz200090a
– volume: 55
  start-page: 1582
  year: 2016
  ident: 25719_CR31
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04921
– volume: 11
  year: 2020
  ident: 25719_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17084-w
– volume: 53
  start-page: 1988
  year: 2020
  ident: 25719_CR38
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b02573
– volume: 56
  start-page: 6403
  year: 1991
  ident: 25719_CR29
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00022a036
SSID ssj0000391844
Score 2.6251502
Snippet Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability,...
Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5701
SubjectTerms 639/301/1005/1007
639/301/923/1028
639/638/298/917
Carrier mobility
Complexity
Composite materials
Corrosion resistance
Covalence
Crosslinking
Current carriers
Design
Elasticity
electronic devices
Electronic materials
Electronics
Electronics industry
ENGINEERING
Humanities and Social Sciences
Mobility
Morphology
multidisciplinary
Multilayers
Polymers
Prepolymers
Robustness
Rubber
Science
Science (multidisciplinary)
Semiconductor devices
Semiconductors
Softness
Solvents
Stretchability
Stretching
Transistors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBL6btO0qJCb62JbY1k6ZiWhlBoL20gNyHLEi0k3pB1Dvn3nZHtTbbPS08GS8KS5vWNNZoBeJ1CrROiLX3oVYkcR2NsncogCSvEpLHOpRM-fdbHJ_jxVJ3eKvXFMWFTeuBp4w4IgTQhhdjYiq9tG9Mlr2zdVcFgUn3WvmTzbjlTWQdLS64LzrdkKmkO1ph1AkckEJfWtrRblign7KfHigTrd2Dz15jJnw5Osz06egD3ZyApDqcFPIQ7cXgEd6fSkteP4cuhOF8q34o-h2mIJX-4GHOs7FpEgs40XPihFzmykK3c9HNQXKzOrs_jpbipk7N-AidHH76-Py7nAgpl0FKOpfcJZVTGW4JdndS-kyZhVydyU2Kf6q6trA-xIn2tkGy90SGRgxYl39bVycinsDOshvgcRB-qmGLVeCM1etna5EMTrAod9laqVEC9bKYLc3ZxLnJx5vIptzRuIoAjArhMAGcLeLMZczHl1vhr73dMo01PzoudXxC3uJlb3L-4pYA9prAjeME5cgMHE4WRhhHDWF3A_kJ4N4vymj_fkpeHqAp4tWkmIeSTFT_E1VXuYwgIkbIu4NnEJ5t5ynwXGE0B7RYHbS1ku2X4_i0n-uZSBw22BbxdeO1mWn_eqN3_sVF7cK9hWeHzN7sPO-PlVXxB8GvsXmZJ-wEzECpG
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJu0BRmJG0RNYsexT6gglgoJLlCpN8txbEBqk2WTHvrvO-M8Vsujp0iJHSWZ1xfPeD6A18HlMgihU-uaMhVUR6N0HlLHESv4IEUeqRO-fJUnp-LzWXk2Lbj1U1nl7BOjo246R2vkR6haFYJtIcp3698psUZRdnWi0LgNd3KMNFTSpVafljUW6n6uhJj2ymRcHfUiegaqS8Ab5jrVO_Eotu3HQ4fm9S_I-Xfl5B_p0xiVVg_g_gQn2fEo_4dwy7eP4O5IMHn1GL4ds4uZ_5Y1sViDzV3E2RArZnvmEUDjdGbbhsX6Qop14xIhW3fnVxd-w7ZsOf0TOF19_P7hJJ1oFFInOR9Sa4PgvlRWI_iqubQ1V0HUecCfFd-EvK4ybZ3P0GuXAiO-ki7gb5rntGdXBsWfwl7btf45sMZlPvissIpLYXmlg3WF06WrRaN5GRLI549p3NRjnKguzk3MdXNlRgEYFICJAjA6gTfLnPXYYePG0e9JRstI6o4dT3SbH2YyNoOotXDB-UJntNVfqTrYUud15pQIZVMkcEASNggyqFOuo5IiN-A0VBgtEzicBW8mg-7NVv0SeLVcRlOk_IptfXcZxyiEQ-iyE3g26snynDzuCBYqgWpHg3ZeZPdK--tnbPdNhAeFqBJ4O-va9rH-_6H2b36LA7hXkBVQfk0fwt6wufQvEF4N9ctoQ9ejGiIY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3ShEIvJU0_4iQNKvTWmtrWWJaO29IQFtJLGshNyLLUFhI77DqH_PuO5I-wbVrIybCWsNYzIz1Zb94AvPc2Fx5RpcY2ZYqBRyNV7lPLCSs4LzCPpRPOvonTC1xelpdbUEy5MJG0HyUt4zQ9scM-rTGGdCAUkJPlKlVPYCdItZNv7ywWy_Pl_GUlaJ5LxDFDJuPygc4bq1AU66dLR0H1END8my_5x6FpXItOduH5CCLZYhj2C9hy7R48HcpK3r2E8wW7nqresiZSNNikHc76yJNdM0ewmboz0zYssgrDCjd8GGQ33dXdtVux-xo561dwcfL1-5fTdCyekFrBeZ8a45G7UhpFkKvmwtRceqxzT1sU1_i8rjJlrMtori6R1nkprKfNmeMhU1d4yV_Ddtu1bh9YYzPnXVYYyQUaXilvbGFVaWtsFC99Avn0MrUdlcVDgYsrHU-4udSDATQZQEcDaJXAh7nPzaCr8d_Wn4ON5pZBEzv-0K1-6NFHNGHVwnrrCpWFBH8pa29KldeZlejLpkjgMFhYE7QI-rg2EIlsT93IYZRI4GgyvB7DeB0eX9EOD7FM4N18mwIwnKqY1nW3sY0kEEQTdQJvBj-Zx8ljHjDKBKoND9r4I5t32l8_o8h3KHNQYJXAx8nX7of17xd18Ljmh_CsCFERTtnUEWz3q1v3lkBWXx-PUfUbmQUhQw
  priority: 102
  providerName: Springer Nature
Title A molecular design approach towards elastic and multifunctional polymer electronics
URI https://link.springer.com/article/10.1038/s41467-021-25719-9
https://www.ncbi.nlm.nih.gov/pubmed/34588448
https://www.proquest.com/docview/2577606445
https://www.proquest.com/docview/2578152376
https://www.osti.gov/servlets/purl/1903996
https://pubmed.ncbi.nlm.nih.gov/PMC8481247
https://doaj.org/article/1922cfce290543188bfa591b0c84f5d2
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JG5WReINAEjuO_YBQV61MlTYhRqW-WY5jA1KXjLaT6H_P2Uk6FQripZESu3V9d_bvcuf7AbxyJuWOMRlrU-Ux83k0QqYuNhSxgnWcpYE64fyCn03ZZJbP9qCnO-omcLnTtfN8UtPF_O3PH-sPaPDv2yPj4t2SBXP3yQaogKmM5T4c4s5UeEaD8w7uh5WZSnRofKA5S1gaYwPanaPZ_TVbe1Uo6Y-XBk1vFxz9M6vyt9Bq2LHG9-FeBzXJsNWNB7Bn64dwpyWfXD-CyyG56rlxSRUSOUhfYZysQjbtklgE19id6LoiIffQ74Pt60Ny3czXV3ZBbpl0lo9hOj79MjqLO4qF2HBKV7HWjlGbCy0RmJWU65IKx8rUoSNjK5eWRSK1sQmu6DlDNCC4cejCWerP83In6BM4qJvaPgNSmcQ6m2RaUM40LaTTJjMyNyWrJM1dBGk_mcp09cc9DcZchTg4FaoVgEIBqCAAJSN4velz3Vbf-GfrEy-jTUtfOTvcaBZfVWeIChFtZpyxmUx8GQAhSqdzmZaJEczlVRbBkZewQgDiq-gan25kVtgNlUfyCI57wateV_3PF-gHMpZH8HLzGM3Ux150bZub0EYgVMLlPIKnrZ5sxknDaWEmIii2NGjrj2w_qb9_C6XAPRlCxooI3vS6djusv0_U8_8Y5hHczbwp-ACcPIaD1eLGvkD8tSoHsF_MCvwU448DOBwOJ5cTvJ6cXnz6jHdHfDQIbzYGwfh-AaEqL-g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRYheEDuhBYwEJ4iaxE7GPiBUlmFKlwut1JtxHJsitckwMxWaP8Vv5D0nmdGw9NZTpMSOYr_ti98G8MLbtPBCqNjYKo8FxdFIlfrYcsQKzhciDa0TDg6L0bH4fJKfrMGvPheGwip7nRgUddVYOiPfRtYaINgWIn87_hFT1yjyrvYtNFq22HPzn_jLNn2z-wHp-zLLhh-P3o_irqtAbAvOZ7ExXnCXS6MQi5S8MCWXXpSpR-zuKp-Wg0QZ6xJUYrlAAygL6_GvxXFKYS285Pjea3BdcLTklJk-_LQ406Fq61KILjcn4XJ7KoImojgIXECqYrVi_0KbALw0KM7_grh_R2r-4a4NVnB4G2518JXttPx2B9ZcfRdutA0t5_fgyw477_vtsioEh7C-ajmbhQjdKXMI2HE6M3XFQjwj2db2SJKNm7P5uZuwZXee6X04vpINfgDrdVO7R8AqmzjvksxIXgjDB8obm1mV21JUiuc-grTfTG27mubUWuNMB986l7olgEYC6EAArSJ4tZgzbit6XDr6HdFoMZKqcYcbzeSb7oRbI0rOrLcuUwmVFpCy9CZXaZlYKXxeZRFsEoU1ghqqzGsphMnOcBoyjCoi2OoJrzsFMtVLdo_g-eIxij75c0ztmoswRiL8QhMRwcOWTxbfyUMGspARDFY4aGUhq0_q76ehvDg1WMjEIILXPa8tP-v_G_X48lU8g5ujo4N9vb97uLcJGxlJBPn21BaszyYX7glCu1n5NMgTg69XLcC_AY94Xs4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IO6EDTASPEHUJHYS-wGhja3aGFQTMGlvnuPYbNKWlDYT6l_j13HsJK3KZW97qpTYVexz8Wef4_MBvLI6zixjIlS6TEPm8mi4iG2oKWIFYzMWe-qEz-Ns74h9PE6P1-BXfxfGpVX2PtE76rLW7ox8iKqVI9hmLB3aLi3icGf0fvIjdAxSLtLa02m0KnJg5j9x-zZ7t7-Dsn6dJKPdbx_2wo5hINQZpU2olGXUpFwJxCUFzVRBuWVFbBHHm9LGRR4JpU2EDi1luBjyTFvcwRjqrrNmllP83xuwnrtd0QDWt3fHh18WJzyu9jpnrLupE1E-nDHvl1xWBA4nFqFYWQ09aQD-1Gjc_wK8f-dt_hG89Wvi6C7c6cAs2Wq17x6smeo-3GzpLecP4OsWuejZd0npU0VIX8OcND5fd0YMwnfsTlRVEp_d6Fba9oCSTOrz-YWZkiVXz-whHF3LFD-CQVVX5gmQUkfGmihRnGZM0VxYpRMtUl2wUtDUBhD3kyl1V-HcEW2cSx9pp1y2ApAoAOkFIEUAbxZ9Jm19jytbbzsZLVq62tz-QT39LjtTl4iZE221SUTkCg1wXliViriINGc2LZMANpyEJUIcV6dXu4Qm3WA3VBiRBbDZC1527mQml8ofwMvFa3QELrqjKlNf-jYcwRguGAE8bvVk8Z3U30dmPIB8RYNWBrL6pjo79cXGHd1CwvIA3va6tvys_0_U06tH8QJuofHKT_vjgw24nTiDcIE-sQmDZnppniHOa4rnnUEROLluG_4N30ZkYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+molecular+design+approach+towards+elastic+and+multifunctional+polymer+electronics&rft.jtitle=Nature+communications&rft.au=Zheng%2C+Yu&rft.au=Yu%2C+Zhiao&rft.au=Zhang%2C+Song&rft.au=Kong%2C+Xian&rft.date=2021-09-29&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=5701&rft_id=info:doi/10.1038%2Fs41467-021-25719-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon