A molecular design approach towards elastic and multifunctional polymer electronics
Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 5701 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.09.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm
2
V
−1
s
−1
after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.
Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and facile patternability. Here, the authors show a molecular design concept that simultaneously achieves all these requirements by covalently linking an in-situ formed rubber matrix with polymer electronic materials. |
---|---|
AbstractList | Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V−1 s−1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and facile patternability. Here, the authors show a molecular design concept that simultaneously achieves all these requirements by covalently linking an in-situ formed rubber matrix with polymer electronic materials. Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm V s after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics. Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm 2 V −1 s −1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics. Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and facile patternability. Here, the authors show a molecular design concept that simultaneously achieves all these requirements by covalently linking an in-situ formed rubber matrix with polymer electronic materials. Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm 2 V −1 s −1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics. Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and facile patternability. Here, the authors show a molecular design concept that simultaneously achieves all these requirements by covalently linking an in-situ formed rubber matrix with polymer electronic materials. Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics. Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics. |
ArticleNumber | 5701 |
Author | Lai, Jian-Cheng Nikzad, Shayla Cooper, Christopher B. McCulloch, Iain Zhong, Donglai Kang, Jiheong Bao, Zhenan Prine, Nathaniel Michaels, Wesley Wang, Weichen Zheng, Yu Zhang, Zhitao Gu, Xiaodan Liu, Deyu Tok, Jeffrey B.-H. Zhang, Song Kong, Xian Mun, Jaewan Chen, Gan Zhang, Weimin Qin, Jian Yu, Zhiao |
Author_xml | – sequence: 1 givenname: Yu surname: Zheng fullname: Zheng, Yu organization: Department of Chemical Engineering, Stanford University, Department of Chemistry, Stanford University – sequence: 2 givenname: Zhiao orcidid: 0000-0001-8746-1640 surname: Yu fullname: Yu, Zhiao organization: Department of Chemical Engineering, Stanford University, Department of Chemistry, Stanford University – sequence: 3 givenname: Song orcidid: 0000-0001-9815-7046 surname: Zhang fullname: Zhang, Song organization: School of Polymer Science and Engineering, The University of Southern Mississippi – sequence: 4 givenname: Xian orcidid: 0000-0001-5602-6347 surname: Kong fullname: Kong, Xian organization: Department of Chemical Engineering, Stanford University – sequence: 5 givenname: Wesley surname: Michaels fullname: Michaels, Wesley organization: Department of Chemical Engineering, Stanford University – sequence: 6 givenname: Weichen surname: Wang fullname: Wang, Weichen organization: Department of Chemical Engineering, Stanford University, Department of Materials Science and Engineering, Stanford University – sequence: 7 givenname: Gan orcidid: 0000-0001-5541-6212 surname: Chen fullname: Chen, Gan organization: Department of Chemical Engineering, Stanford University, Department of Materials Science and Engineering, Stanford University – sequence: 8 givenname: Deyu surname: Liu fullname: Liu, Deyu organization: Department of Chemical Engineering, Stanford University – sequence: 9 givenname: Jian-Cheng orcidid: 0000-0001-9290-678X surname: Lai fullname: Lai, Jian-Cheng organization: Department of Chemical Engineering, Stanford University – sequence: 10 givenname: Nathaniel surname: Prine fullname: Prine, Nathaniel organization: School of Polymer Science and Engineering, The University of Southern Mississippi – sequence: 11 givenname: Weimin surname: Zhang fullname: Zhang, Weimin organization: King Abdullah University of Science and Technology (KAUST), Kaust Solar Center (KSC), Department of Chemistry, Chemistry Research Laboratory, University of Oxford – sequence: 12 givenname: Shayla surname: Nikzad fullname: Nikzad, Shayla organization: Department of Chemical Engineering, Stanford University – sequence: 13 givenname: Christopher B. orcidid: 0000-0002-4783-7778 surname: Cooper fullname: Cooper, Christopher B. organization: Department of Chemical Engineering, Stanford University – sequence: 14 givenname: Donglai orcidid: 0000-0002-0876-414X surname: Zhong fullname: Zhong, Donglai organization: Department of Chemical Engineering, Stanford University – sequence: 15 givenname: Jaewan surname: Mun fullname: Mun, Jaewan organization: Department of Chemical Engineering, Stanford University – sequence: 16 givenname: Zhitao surname: Zhang fullname: Zhang, Zhitao organization: Department of Chemical Engineering, Stanford University – sequence: 17 givenname: Jiheong surname: Kang fullname: Kang, Jiheong organization: Department of Chemical Engineering, Stanford University, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 18 givenname: Jeffrey B.-H. orcidid: 0000-0002-2794-0663 surname: Tok fullname: Tok, Jeffrey B.-H. organization: Department of Chemical Engineering, Stanford University – sequence: 19 givenname: Iain orcidid: 0000-0002-6340-7217 surname: McCulloch fullname: McCulloch, Iain organization: King Abdullah University of Science and Technology (KAUST), Kaust Solar Center (KSC), Department of Chemistry, Chemistry Research Laboratory, University of Oxford – sequence: 20 givenname: Jian orcidid: 0000-0001-6271-068X surname: Qin fullname: Qin, Jian organization: Department of Chemical Engineering, Stanford University – sequence: 21 givenname: Xiaodan orcidid: 0000-0002-1123-3673 surname: Gu fullname: Gu, Xiaodan organization: School of Polymer Science and Engineering, The University of Southern Mississippi – sequence: 22 givenname: Zhenan orcidid: 0000-0002-0972-1715 surname: Bao fullname: Bao, Zhenan email: zbao@stanford.edu organization: Department of Chemical Engineering, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34588448$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1903996$$D View this record in Osti.gov |
BookMark | eNp9kktv1DAUhSNUREvpH2CBItiwCfiZ2BukquJRqRILYG05zvWMR44d7KSo_x7PpIW2i2YTy_7O8fG992V1FGKAqnqN0QeMqPiYGWZt1yCCG8I7LBv5rDohiOEGd4Qe3VsfV2c571D5qMSCsRfVMWVclJU4qX6c12P0YBavUz1AdptQ62lKUZttPcc_Og25Bq_z7Eytw1CPi5-dXYKZXQza11P0NyOkwoCZUwzO5FfVc6t9hrPb_2n168vnnxffmqvvXy8vzq8a01I6N1pbRoELLRlue9rqngrLemw5EzBY3HdIagMIeswZwUK0xrYIA6Vc8tYKelpdrr5D1Ds1JTfqdKOiduqwEdNG6VRye1BYEmKsASIRZ7R49VZziXtkBLN8IMXr0-o1Lf0Ig4EwJ-0fmD48CW6rNvFaCSYwYV0xeLsaxFIqlY2bwWxNDKGUpVxfai_bAr2_vSXF3wvkWY0uG_BeB4hLVqWTAnNCuz367hG6i0sqFT9QXYtaxnih3tyP_S_vXYMLIFbApJhzAqtKMr3vXXmF8wojtR8ntY6TKuOkDuOkZJGSR9I79ydFdBXlAocNpP-xn1D9BUfl3Gk |
CitedBy_id | crossref_primary_10_1021_jacs_2c00072 crossref_primary_10_1002_admt_202200848 crossref_primary_10_1021_acssensors_3c01835 crossref_primary_10_1039_D4MH00574K crossref_primary_10_1002_adfm_202303031 crossref_primary_10_1039_D4MH00587B crossref_primary_10_1002_marc_202300624 crossref_primary_10_1016_j_cej_2025_161112 crossref_primary_10_1016_j_reactfunctpolym_2022_105236 crossref_primary_10_1038_s41467_022_31051_7 crossref_primary_10_34133_2022_9867378 crossref_primary_10_1021_acsaelm_2c01791 crossref_primary_10_1002_smll_202207879 crossref_primary_10_1021_acscentsci_4c01541 crossref_primary_10_6023_A23050213 crossref_primary_10_1002_advs_202105146 crossref_primary_10_1016_j_cej_2023_142945 crossref_primary_10_1016_j_nanoen_2024_110062 crossref_primary_10_1002_adma_202313312 crossref_primary_10_1021_jacs_4c07174 crossref_primary_10_1002_anie_202302837 crossref_primary_10_1021_acsami_3c08330 crossref_primary_10_1039_D3TC04821G crossref_primary_10_1039_D2CS00618A crossref_primary_10_1038_s41586_024_07096_7 crossref_primary_10_20517_ss_2024_26 crossref_primary_10_1021_acs_macromol_3c01693 crossref_primary_10_1016_j_nanoms_2022_08_003 crossref_primary_10_1039_D4PY00180J crossref_primary_10_1002_adma_202201303 crossref_primary_10_1002_smll_202200875 crossref_primary_10_1021_acs_chemmater_3c02394 crossref_primary_10_1002_admi_202202053 crossref_primary_10_1021_jacs_3c14310 crossref_primary_10_1016_j_wees_2024_05_001 crossref_primary_10_1021_acs_macromol_5c00316 crossref_primary_10_1002_admt_202300247 crossref_primary_10_1021_acsami_1c21092 crossref_primary_10_1002_marc_202300240 crossref_primary_10_1038_s41467_022_35271_9 crossref_primary_10_1038_s44222_024_00194_1 crossref_primary_10_1039_D1CS01136G crossref_primary_10_1038_s41565_023_01418_y crossref_primary_10_1016_j_mtcomm_2022_104489 crossref_primary_10_1038_s41467_024_50257_5 crossref_primary_10_1038_s41565_024_01718_x crossref_primary_10_1002_rpm_20230022 crossref_primary_10_1016_j_polymer_2023_125912 crossref_primary_10_1021_acsbiomaterials_4c00877 crossref_primary_10_1039_D3TC00442B crossref_primary_10_1021_acs_chemmater_3c02498 crossref_primary_10_1002_adma_202309779 crossref_primary_10_1007_s11426_022_1279_x crossref_primary_10_1038_s41467_023_44099_w crossref_primary_10_1021_acs_chemmater_3c02131 crossref_primary_10_1002_ange_202302837 crossref_primary_10_1002_adma_202403961 crossref_primary_10_1021_acs_chemmater_3c02417 crossref_primary_10_1039_D3NR01657A crossref_primary_10_1016_j_trac_2024_118027 crossref_primary_10_1021_acsami_2c10245 crossref_primary_10_1073_pnas_2403879121 crossref_primary_10_1021_acsnano_4c14026 crossref_primary_10_1021_acs_chemmater_3c00485 crossref_primary_10_1002_idm2_12223 crossref_primary_10_1007_s12274_022_4622_x crossref_primary_10_1002_adma_202305987 crossref_primary_10_1021_acs_macromol_3c01986 crossref_primary_10_1016_j_est_2024_112006 crossref_primary_10_1016_j_jclepro_2025_145265 crossref_primary_10_1039_D3TC01579C crossref_primary_10_1002_admt_202201067 crossref_primary_10_1021_acs_nanolett_3c04248 crossref_primary_10_1093_nsr_nwae435 crossref_primary_10_1002_admi_202202409 crossref_primary_10_1002_marc_202200084 crossref_primary_10_1039_D4EE01117A crossref_primary_10_1002_advs_202205381 crossref_primary_10_1021_acsami_2c07445 crossref_primary_10_20517_ss_2023_12 crossref_primary_10_1021_acsami_4c15774 crossref_primary_10_1038_s41928_022_00874_z crossref_primary_10_1002_smll_202206938 crossref_primary_10_1039_D3RA00600J crossref_primary_10_1039_D2TC04383A crossref_primary_10_1093_nsr_nwad253 crossref_primary_10_1002_smll_202306468 crossref_primary_10_1126_science_ade0086 crossref_primary_10_1002_sus2_70005 crossref_primary_10_3390_s25030925 crossref_primary_10_1021_acsami_3c10033 crossref_primary_10_1039_D3NR00886J crossref_primary_10_1360_SSC_2022_0108 crossref_primary_10_1021_acs_chemmater_4c01146 crossref_primary_10_1021_acs_chemmater_3c02006 crossref_primary_10_3390_app121910007 crossref_primary_10_1021_acs_macromol_3c01888 crossref_primary_10_1021_acs_macromol_3c00316 crossref_primary_10_1039_D2LC00972B crossref_primary_10_1016_j_jpowsour_2023_234009 crossref_primary_10_1021_acs_macromol_3c00703 crossref_primary_10_1039_D2TC02212E |
Cites_doi | 10.1002/adfm.201804222 10.1038/nature12314 10.1038/nmat2594 10.1126/science.aah4496 10.1002/marc.201800092 10.1002/adfm.201602603 10.1002/adfm.201600612 10.1002/adfm.201905340 10.1002/adma.201304346 10.1038/nature20102 10.1126/sciadv.abb3656 10.1021/mz200090a 10.1002/adma.201904765 10.1002/adfm.202000663 10.1021/acs.macromol.9b01697 10.1038/nature13854 10.1021/acs.macromol.9b02573 10.1126/science.1182383 10.1016/j.progpolymsci.2019.101181 10.1021/acs.chemrev.8b00063 10.1021/ar100066t 10.1039/C5RA21329K 10.1038/s41467-020-15181-4 10.1021/jo00022a036 10.1002/adma.201404602 10.1038/nmat4463 10.1038/nature25494 10.1038/s41928-020-00513-5 10.1002/adma.201605056 10.1021/acs.iecr.5b04921 10.1021/ja00039a016 10.1021/acs.accounts.8b00015 10.1021/acs.chemrev.7b00003 10.1021/acs.chemmater.7b03019 10.1021/acs.chemmater.8b03904 10.1002/pi.5954 10.1038/ncomms3520 10.1557/mrs.2017.3 10.1557/mrs.2016.247 10.1038/s41467-020-17084-w 10.1021/acs.chemmater.0c01437 10.1557/mrs.2016.325 10.1021/acs.chemmater.8b04314 10.1021/acsami.0c04356 10.1021/acs.chemrev.8b00045 10.1002/aelm.201700356 10.1021/acs.macromol.9b01127 10.1002/adma.201903912 10.1007/BFb0024050 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL) Stanford Univ., CA (United States) |
CorporateAuthor_xml | – name: Stanford Univ., CA (United States) – name: SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-021-25719-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Engineering |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_1922cfce290543188bfa591b0c84f5d2 PMC8481247 1903996 34588448 10_1038_s41467_021_25719_9 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAADF AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c633t-aaf43e58a9416b36ab38f4b1f548edf1b709ace0eb15421886cf601e335956f83 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:29:21 EDT 2025 Thu Aug 21 13:31:10 EDT 2025 Mon Jun 12 04:07:10 EDT 2023 Tue Aug 05 10:45:01 EDT 2025 Wed Aug 13 09:17:43 EDT 2025 Wed Feb 19 02:09:02 EST 2025 Tue Jul 01 04:17:35 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Fri Feb 21 02:39:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-aaf43e58a9416b36ab38f4b1f548edf1b709ace0eb15421886cf601e335956f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 National Science Foundation (NSF) FA9550-21-1-0413; FA9550-18-1-0143; ECCS-2026822; DMR-2047689; DGE-1656518 USDOE Office of Science (SC), Basic Energy Sciences (BES) US Air Force Office of Scientific Research (AFOSR) |
ORCID | 0000-0001-8746-1640 0000-0002-0972-1715 0000-0001-9290-678X 0000-0001-5602-6347 0000-0002-0876-414X 0000-0002-6340-7217 0000-0001-6271-068X 0000-0002-4783-7778 0000-0001-5541-6212 0000-0001-9815-7046 0000-0002-2794-0663 0000-0002-1123-3673 000000020876414X 0000000209721715 0000000187461640 000000019290678X 0000000227940663 0000000156026347 0000000211233673 0000000155416212 000000016271068X 0000000263407217 0000000198157046 0000000247837778 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-25719-9 |
PMID | 34588448 |
PQID | 2577606445 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1922cfce290543188bfa591b0c84f5d2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8481247 osti_scitechconnect_1903996 proquest_miscellaneous_2578152376 proquest_journals_2577606445 pubmed_primary_34588448 crossref_citationtrail_10_1038_s41467_021_25719_9 crossref_primary_10_1038_s41467_021_25719_9 springer_journals_10_1038_s41467_021_25719_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-29 |
PublicationDateYYYYMMDD | 2021-09-29 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Venkateshvaran (CR40) 2014; 515 Zhang (CR25) 2020; 30 Wang (CR46) 2018; 118 Zhao (CR7) 2017; 29 Guan (CR24) 2020; 6 Sheiko, Dobrynin (CR39) 2019; 52 Png (CR28) 2010; 9 Wang (CR47) 2019; 31 Zhang (CR23) 2017; 29 Pakhnyuk, Onorato, Steiner, Cohen, Luscombe (CR32) 2020; 69 Kwon (CR19) 2020; 12 Kim (CR34) 2013; 4 Xu (CR22) 2017; 355 Selivanova (CR36) 2019; 52 Dai, Hu, Wang, Xu, Wang (CR48) 2021; 4 Root, Savagatrup, Printz, Rodriquez, Lipomi (CR13) 2017; 117 Ashizawa, Zheng, Tran, Bao (CR15) 2020; 100 Wang (CR11) 2018; 555 Zhang (CR35) 2018; 39 Bao (CR5) 2016; 41 Zheng (CR16) 2019; 29 Oh (CR43) 2016; 539 Lipomi, Bao (CR4) 2017; 42 Mun (CR41) 2018; 28 Shin (CR44) 2015; 27 Wang (CR20) 2019; 31 Sirringhaus (CR8) 2014; 26 Young, Platz (CR29) 1991; 56 Liu (CR12) 2020; 11 Kong (CR26) 2016; 26 CR17 Freudenberg, Jänsch, Hinkel, Bunz (CR10) 2018; 118 Poe, Schnapp, Young, Grayzar, Platz (CR30) 1992; 114 Xie, Colby, Gomez (CR14) 2018; 4 Lee, Chung, Stafford (CR33) 2012; 1 Yuk, Zhang, Lin, Parada, Zhao (CR45) 2016; 15 Kaltenbrunner (CR3) 2013; 499 Song (CR38) 2020; 53 Rogers, Someya, Huang (CR2) 2010; 327 Wang, Oh, Xu, Tran, Bao (CR6) 2018; 51 Wang (CR21) 2016; 26 Kim (CR18) 2020; 11 Liu, Yan (CR27) 2010; 43 Ji, Donner, Wilde, Hu, Fuchs (CR49) 2015; 5 Yang (CR1) 2019; 31 Cao, Zhou, Jie, Li (CR31) 2016; 55 Kim (CR9) 2017; 42 Zheng (CR37) 2020; 32 Mun (CR42) 2019; 31 M Kaltenbrunner (25719_CR3) 2013; 499 JC Yang (25719_CR1) 2019; 31 Y-S Guan (25719_CR24) 2020; 6 S Zhang (25719_CR25) 2020; 30 S Wang (25719_CR6) 2018; 51 G-JN Wang (25719_CR21) 2016; 26 M Shin (25719_CR44) 2015; 27 JA Rogers (25719_CR2) 2010; 327 H Yuk (25719_CR45) 2016; 15 RQ Png (25719_CR28) 2010; 9 Y Wang (25719_CR47) 2019; 31 DJ Lipomi (25719_CR4) 2017; 42 25719_CR17 M Ashizawa (25719_CR15) 2020; 100 D Ji (25719_CR49) 2015; 5 R Song (25719_CR38) 2020; 53 J Mun (25719_CR42) 2019; 31 D Kong (25719_CR26) 2016; 26 G-JN Wang (25719_CR20) 2019; 31 H Sirringhaus (25719_CR8) 2014; 26 Z Cao (25719_CR31) 2016; 55 Y Dai (25719_CR48) 2021; 4 J Freudenberg (25719_CR10) 2018; 118 SE Root (25719_CR13) 2017; 117 Y Zheng (25719_CR37) 2020; 32 MJT Young (25719_CR29) 1991; 56 S Wang (25719_CR11) 2018; 555 MJ Kim (25719_CR18) 2020; 11 JH Lee (25719_CR33) 2012; 1 HJ Kwon (25719_CR19) 2020; 12 J Xu (25719_CR22) 2017; 355 Y Zhao (25719_CR7) 2017; 29 SS Sheiko (25719_CR39) 2019; 52 J Mun (25719_CR41) 2018; 28 D Venkateshvaran (25719_CR40) 2014; 515 S Zhang (25719_CR35) 2018; 39 Y Zheng (25719_CR16) 2019; 29 Z Bao (25719_CR5) 2016; 41 M Selivanova (25719_CR36) 2019; 52 G Zhang (25719_CR23) 2017; 29 J Liu (25719_CR12) 2020; 11 B Wang (25719_CR46) 2018; 118 JH Kim (25719_CR9) 2017; 42 LH Liu (25719_CR27) 2010; 43 J-H Kim (25719_CR34) 2013; 4 V Pakhnyuk (25719_CR32) 2020; 69 R Xie (25719_CR14) 2018; 4 R Poe (25719_CR30) 1992; 114 JY Oh (25719_CR43) 2016; 539 |
References_xml | – volume: 28 start-page: 1804222 year: 2018 ident: CR41 article-title: Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804222 – volume: 499 start-page: 458 year: 2013 end-page: 463 ident: CR3 article-title: An ultra-lightweight design for imperceptible plastic electronics publication-title: Nature doi: 10.1038/nature12314 – volume: 9 start-page: 152 year: 2010 end-page: 158 ident: CR28 article-title: High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains publication-title: Nat. Mater. doi: 10.1038/nmat2594 – volume: 355 start-page: 59 year: 2017 end-page: 64 ident: CR22 article-title: Highly stretchable polymer semiconductor films through the nanoconfinement effect publication-title: Science doi: 10.1126/science.aah4496 – volume: 39 start-page: 1800092 year: 2018 ident: CR35 article-title: Probing the viscoelastic property of pseudo free-standing conjugated polymeric thin films publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201800092 – volume: 26 start-page: 7254 year: 2016 end-page: 7262 ident: CR21 article-title: Inducing elasticity through oligo-siloxane crosslinks for intrinsically stretchable semiconducting polymers publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602603 – volume: 26 start-page: 4680 year: 2016 end-page: 4686 ident: CR26 article-title: Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600612 – volume: 29 start-page: 1905340 year: 2019 ident: CR16 article-title: An intrinsically stretchable high‐performance polymer semiconductor with low crystallinity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905340 – volume: 26 start-page: 1319 year: 2014 end-page: 1335 ident: CR8 article-title: 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon publication-title: Adv. Mater. doi: 10.1002/adma.201304346 – volume: 539 start-page: 411 year: 2016 end-page: 415 ident: CR43 article-title: Intrinsically stretchable and healable semiconducting polymer for organic transistors publication-title: Nature doi: 10.1038/nature20102 – volume: 6 start-page: eabb3656 year: 2020 ident: CR24 article-title: Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics publication-title: Sci. Adv. doi: 10.1126/sciadv.abb3656 – volume: 1 start-page: 122 year: 2012 end-page: 126 ident: CR33 article-title: Effect of confinement on stiffness and fracture of thin amorphous polymer films publication-title: ACS Macro Lett. doi: 10.1021/mz200090a – volume: 31 start-page: 1904765 year: 2019 ident: CR1 article-title: Electronic skin: recent progress and future prospects for skin‐attachable devices for health monitoring, robotics, and prosthetics publication-title: Adv. Mater. doi: 10.1002/adma.201904765 – volume: 30 start-page: 2000663 year: 2020 ident: CR25 article-title: Tacky elastomers to enable tear‐resistant and autonomous self‐healing semiconductor composites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000663 – volume: 52 start-page: 7870 year: 2019 end-page: 7877 ident: CR36 article-title: Branched polyethylene as a plasticizing additive to modulate the mechanical properties of π-conjugated polymers publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01697 – volume: 515 start-page: 384 year: 2014 end-page: 388 ident: CR40 article-title: Approaching disorder-free transport in high-mobility conjugated polymers publication-title: Nature doi: 10.1038/nature13854 – volume: 53 start-page: 1988 year: 2020 end-page: 1997 ident: CR38 article-title: Unveiling the stress–strain behavior of conjugated polymer thin films for stretchable device applications publication-title: Macromolecules doi: 10.1021/acs.macromol.9b02573 – volume: 327 start-page: 1603 year: 2010 end-page: 1607 ident: CR2 article-title: Materials and mechanics for stretchable electronics publication-title: Science doi: 10.1126/science.1182383 – volume: 100 start-page: 101181 year: 2020 ident: CR15 article-title: Intrinsically stretchable conjugated polymer semiconductors in field effect transistors publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2019.101181 – volume: 118 start-page: 5598 year: 2018 end-page: 5689 ident: CR10 article-title: Immobilization strategies for organic semiconducting conjugated polymers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00063 – volume: 43 start-page: 1434 year: 2010 end-page: 1443 ident: CR27 article-title: Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis publication-title: Acc. Chem. Res. doi: 10.1021/ar100066t – volume: 5 start-page: 98288 year: 2015 end-page: 98292 ident: CR49 article-title: Poly(sodium-4-styrene sulfonate) (PSSNa)-assisted transferable flexible, top-contact high-resolution free-standing organic field-effect transistors publication-title: RSC Adv. doi: 10.1039/C5RA21329K – volume: 11 year: 2020 ident: CR18 article-title: Universal three-dimensional crosslinker for all-photopatterned electronics publication-title: Nat. Commun. doi: 10.1038/s41467-020-15181-4 – volume: 56 start-page: 6403 year: 1991 end-page: 6406 ident: CR29 article-title: Mechanistic analysis of the reactions of (pentafluorophenyl)nitrene in alkanes publication-title: J. Org. Chem. doi: 10.1021/jo00022a036 – volume: 27 start-page: 1255 year: 2015 end-page: 1261 ident: CR44 article-title: Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer publication-title: Adv. Mater. doi: 10.1002/adma.201404602 – volume: 15 start-page: 190 year: 2016 end-page: 196 ident: CR45 article-title: Tough bonding of hydrogels to diverse non-porous surfaces publication-title: Nat. Mater. doi: 10.1038/nmat4463 – volume: 555 start-page: 83 year: 2018 end-page: 88 ident: CR11 article-title: Skin electronics from scalable fabrication of an intrinsically stretchable transistor array publication-title: Nature doi: 10.1038/nature25494 – volume: 4 start-page: 17 year: 2021 end-page: 29 ident: CR48 article-title: Stretchable transistors and functional circuits for human-integrated electronics publication-title: Nat. Electron. doi: 10.1038/s41928-020-00513-5 – volume: 29 start-page: 1605056 year: 2017 ident: CR7 article-title: Melt-processing of complementary semiconducting polymer blends for high performance organic transistors publication-title: Adv. Mater. doi: 10.1002/adma.201605056 – volume: 55 start-page: 1582 year: 2016 end-page: 1589 ident: CR31 article-title: High cis -1,4 hydroxyl-terminated polybutadiene-based polyurethanes with extremely low glass transition temperature and excellent mechanical properties publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04921 – volume: 114 start-page: 5054 year: 1992 end-page: 5067 ident: CR30 article-title: Chemistry and kinetics of singlet (pentafluorophenyl)nitrene publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00039a016 – volume: 51 start-page: 1033 year: 2018 end-page: 1045 ident: CR6 article-title: Skin-inspired electronics: an emerging paradigm publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00015 – volume: 117 start-page: 6467 year: 2017 end-page: 6499 ident: CR13 article-title: Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00003 – volume: 29 start-page: 7645 year: 2017 end-page: 7652 ident: CR23 article-title: Versatile interpenetrating polymer network approach to robust stretchable electronic devices publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03019 – volume: 31 start-page: 2212 year: 2019 end-page: 2240 ident: CR47 article-title: Polymer-based gate dielectrics for organic field-effect transistors publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03904 – volume: 69 start-page: 308 year: 2020 end-page: 316 ident: CR32 article-title: Enhanced miscibility and strain resistance of blended elastomer/π-conjugated polymer composites through side chain functionalization towards stretchable electronics publication-title: Polym. Int. doi: 10.1002/pi.5954 – volume: 4 year: 2013 ident: CR34 article-title: Tensile testing of ultra-thin films on water surface publication-title: Nat. Commun. doi: 10.1038/ncomms3520 – volume: 42 start-page: 115 year: 2017 end-page: 123 ident: CR9 article-title: Understanding mechanical behavior and reliability of organic electronic materials publication-title: MRS Bull. doi: 10.1557/mrs.2017.3 – volume: 41 start-page: 897 year: 2016 end-page: 904 ident: CR5 article-title: Skin-inspired organic electronic materials and devices publication-title: MRS Bull. doi: 10.1557/mrs.2016.247 – volume: 11 year: 2020 ident: CR12 article-title: Fully stretchable active-matrix organic light-emitting electrochemical cell array publication-title: Nat. Commun. doi: 10.1038/s41467-020-17084-w – volume: 32 start-page: 5700 year: 2020 end-page: 5714 ident: CR37 article-title: Tuning the mechanical properties of a polymer semiconductor by modulating hydrogen bonding interactions publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01437 – volume: 42 start-page: 93 year: 2017 end-page: 97 ident: CR4 article-title: Stretchable and ultraflexible organic electronics publication-title: MRS Bull. doi: 10.1557/mrs.2016.325 – volume: 31 start-page: 6465 year: 2019 end-page: 6475 ident: CR20 article-title: Tuning the cross-linker crystallinity of a stretchable polymer semiconductor publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04314 – volume: 12 start-page: 30600 year: 2020 end-page: 30615 ident: CR19 article-title: Facile photo-cross-linking system for polymeric gate dielectric materials toward solution-processed organic field-effect transistors: role of a cross-linker in various polymer types publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04356 – ident: CR17 – volume: 118 start-page: 5690 year: 2018 end-page: 5754 ident: CR46 article-title: High- k gate dielectrics for emerging flexible and stretchable electronics publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00045 – volume: 4 start-page: 1700356 year: 2018 ident: CR14 article-title: Connecting the mechanical and conductive properties of conjugated polymers publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700356 – volume: 52 start-page: 7531 year: 2019 end-page: 7546 ident: CR39 article-title: Architectural code for rubber elasticity: from supersoft to superfirm materials publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01127 – volume: 31 start-page: 1903912 year: 2019 ident: CR42 article-title: Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers publication-title: Adv. Mater. doi: 10.1002/adma.201903912 – volume: 355 start-page: 59 year: 2017 ident: 25719_CR22 publication-title: Science doi: 10.1126/science.aah4496 – volume: 51 start-page: 1033 year: 2018 ident: 25719_CR6 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00015 – volume: 26 start-page: 4680 year: 2016 ident: 25719_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600612 – volume: 39 start-page: 1800092 year: 2018 ident: 25719_CR35 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201800092 – volume: 515 start-page: 384 year: 2014 ident: 25719_CR40 publication-title: Nature doi: 10.1038/nature13854 – volume: 29 start-page: 1905340 year: 2019 ident: 25719_CR16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905340 – volume: 27 start-page: 1255 year: 2015 ident: 25719_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.201404602 – volume: 100 start-page: 101181 year: 2020 ident: 25719_CR15 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2019.101181 – volume: 9 start-page: 152 year: 2010 ident: 25719_CR28 publication-title: Nat. Mater. doi: 10.1038/nmat2594 – volume: 118 start-page: 5690 year: 2018 ident: 25719_CR46 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00045 – volume: 118 start-page: 5598 year: 2018 ident: 25719_CR10 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00063 – volume: 4 year: 2013 ident: 25719_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms3520 – volume: 52 start-page: 7870 year: 2019 ident: 25719_CR36 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01697 – volume: 31 start-page: 2212 year: 2019 ident: 25719_CR47 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03904 – volume: 555 start-page: 83 year: 2018 ident: 25719_CR11 publication-title: Nature doi: 10.1038/nature25494 – volume: 32 start-page: 5700 year: 2020 ident: 25719_CR37 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01437 – volume: 26 start-page: 7254 year: 2016 ident: 25719_CR21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602603 – volume: 5 start-page: 98288 year: 2015 ident: 25719_CR49 publication-title: RSC Adv. doi: 10.1039/C5RA21329K – volume: 69 start-page: 308 year: 2020 ident: 25719_CR32 publication-title: Polym. Int. doi: 10.1002/pi.5954 – volume: 30 start-page: 2000663 year: 2020 ident: 25719_CR25 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000663 – volume: 42 start-page: 115 year: 2017 ident: 25719_CR9 publication-title: MRS Bull. doi: 10.1557/mrs.2017.3 – volume: 114 start-page: 5054 year: 1992 ident: 25719_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00039a016 – volume: 499 start-page: 458 year: 2013 ident: 25719_CR3 publication-title: Nature doi: 10.1038/nature12314 – volume: 6 start-page: eabb3656 year: 2020 ident: 25719_CR24 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb3656 – ident: 25719_CR17 doi: 10.1007/BFb0024050 – volume: 117 start-page: 6467 year: 2017 ident: 25719_CR13 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00003 – volume: 28 start-page: 1804222 year: 2018 ident: 25719_CR41 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804222 – volume: 31 start-page: 1903912 year: 2019 ident: 25719_CR42 publication-title: Adv. Mater. doi: 10.1002/adma.201903912 – volume: 52 start-page: 7531 year: 2019 ident: 25719_CR39 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01127 – volume: 4 start-page: 1700356 year: 2018 ident: 25719_CR14 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700356 – volume: 539 start-page: 411 year: 2016 ident: 25719_CR43 publication-title: Nature doi: 10.1038/nature20102 – volume: 31 start-page: 6465 year: 2019 ident: 25719_CR20 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04314 – volume: 15 start-page: 190 year: 2016 ident: 25719_CR45 publication-title: Nat. Mater. doi: 10.1038/nmat4463 – volume: 31 start-page: 1904765 year: 2019 ident: 25719_CR1 publication-title: Adv. Mater. doi: 10.1002/adma.201904765 – volume: 26 start-page: 1319 year: 2014 ident: 25719_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201304346 – volume: 43 start-page: 1434 year: 2010 ident: 25719_CR27 publication-title: Acc. Chem. Res. doi: 10.1021/ar100066t – volume: 29 start-page: 7645 year: 2017 ident: 25719_CR23 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03019 – volume: 41 start-page: 897 year: 2016 ident: 25719_CR5 publication-title: MRS Bull. doi: 10.1557/mrs.2016.247 – volume: 11 year: 2020 ident: 25719_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15181-4 – volume: 12 start-page: 30600 year: 2020 ident: 25719_CR19 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04356 – volume: 4 start-page: 17 year: 2021 ident: 25719_CR48 publication-title: Nat. Electron. doi: 10.1038/s41928-020-00513-5 – volume: 327 start-page: 1603 year: 2010 ident: 25719_CR2 publication-title: Science doi: 10.1126/science.1182383 – volume: 42 start-page: 93 year: 2017 ident: 25719_CR4 publication-title: MRS Bull. doi: 10.1557/mrs.2016.325 – volume: 29 start-page: 1605056 year: 2017 ident: 25719_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201605056 – volume: 1 start-page: 122 year: 2012 ident: 25719_CR33 publication-title: ACS Macro Lett. doi: 10.1021/mz200090a – volume: 55 start-page: 1582 year: 2016 ident: 25719_CR31 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04921 – volume: 11 year: 2020 ident: 25719_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17084-w – volume: 53 start-page: 1988 year: 2020 ident: 25719_CR38 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b02573 – volume: 56 start-page: 6403 year: 1991 ident: 25719_CR29 publication-title: J. Org. Chem. doi: 10.1021/jo00022a036 |
SSID | ssj0000391844 |
Score | 2.6251502 |
Snippet | Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability,... Next-generation skin-inspired electronics require enhanced mechanical robustness and device complexity including elasticity, solvent resistance, and... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5701 |
SubjectTerms | 639/301/1005/1007 639/301/923/1028 639/638/298/917 Carrier mobility Complexity Composite materials Corrosion resistance Covalence Crosslinking Current carriers Design Elasticity electronic devices Electronic materials Electronics Electronics industry ENGINEERING Humanities and Social Sciences Mobility Morphology multidisciplinary Multilayers Polymers Prepolymers Robustness Rubber Science Science (multidisciplinary) Semiconductor devices Semiconductors Softness Solvents Stretchability Stretching Transistors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBL6btO0qJCb62JbY1k6ZiWhlBoL20gNyHLEi0k3pB1Dvn3nZHtTbbPS08GS8KS5vWNNZoBeJ1CrROiLX3oVYkcR2NsncogCSvEpLHOpRM-fdbHJ_jxVJ3eKvXFMWFTeuBp4w4IgTQhhdjYiq9tG9Mlr2zdVcFgUn3WvmTzbjlTWQdLS64LzrdkKmkO1ph1AkckEJfWtrRblign7KfHigTrd2Dz15jJnw5Osz06egD3ZyApDqcFPIQ7cXgEd6fSkteP4cuhOF8q34o-h2mIJX-4GHOs7FpEgs40XPihFzmykK3c9HNQXKzOrs_jpbipk7N-AidHH76-Py7nAgpl0FKOpfcJZVTGW4JdndS-kyZhVydyU2Kf6q6trA-xIn2tkGy90SGRgxYl39bVycinsDOshvgcRB-qmGLVeCM1etna5EMTrAod9laqVEC9bKYLc3ZxLnJx5vIptzRuIoAjArhMAGcLeLMZczHl1vhr73dMo01PzoudXxC3uJlb3L-4pYA9prAjeME5cgMHE4WRhhHDWF3A_kJ4N4vymj_fkpeHqAp4tWkmIeSTFT_E1VXuYwgIkbIu4NnEJ5t5ynwXGE0B7RYHbS1ku2X4_i0n-uZSBw22BbxdeO1mWn_eqN3_sVF7cK9hWeHzN7sPO-PlVXxB8GvsXmZJ-wEzECpG priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJu0BRmJG0RNYsexT6gglgoJLlCpN8txbEBqk2WTHvrvO-M8Vsujp0iJHSWZ1xfPeD6A18HlMgihU-uaMhVUR6N0HlLHESv4IEUeqRO-fJUnp-LzWXk2Lbj1U1nl7BOjo246R2vkR6haFYJtIcp3698psUZRdnWi0LgNd3KMNFTSpVafljUW6n6uhJj2ymRcHfUiegaqS8Ab5jrVO_Eotu3HQ4fm9S_I-Xfl5B_p0xiVVg_g_gQn2fEo_4dwy7eP4O5IMHn1GL4ds4uZ_5Y1sViDzV3E2RArZnvmEUDjdGbbhsX6Qop14xIhW3fnVxd-w7ZsOf0TOF19_P7hJJ1oFFInOR9Sa4PgvlRWI_iqubQ1V0HUecCfFd-EvK4ybZ3P0GuXAiO-ki7gb5rntGdXBsWfwl7btf45sMZlPvissIpLYXmlg3WF06WrRaN5GRLI549p3NRjnKguzk3MdXNlRgEYFICJAjA6gTfLnPXYYePG0e9JRstI6o4dT3SbH2YyNoOotXDB-UJntNVfqTrYUud15pQIZVMkcEASNggyqFOuo5IiN-A0VBgtEzicBW8mg-7NVv0SeLVcRlOk_IptfXcZxyiEQ-iyE3g26snynDzuCBYqgWpHg3ZeZPdK--tnbPdNhAeFqBJ4O-va9rH-_6H2b36LA7hXkBVQfk0fwt6wufQvEF4N9ctoQ9ejGiIY priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3ShEIvJU0_4iQNKvTWmtrWWJaO29IQFtJLGshNyLLUFhI77DqH_PuO5I-wbVrIybCWsNYzIz1Zb94AvPc2Fx5RpcY2ZYqBRyNV7lPLCSs4LzCPpRPOvonTC1xelpdbUEy5MJG0HyUt4zQ9scM-rTGGdCAUkJPlKlVPYCdItZNv7ywWy_Pl_GUlaJ5LxDFDJuPygc4bq1AU66dLR0H1END8my_5x6FpXItOduH5CCLZYhj2C9hy7R48HcpK3r2E8wW7nqresiZSNNikHc76yJNdM0ewmboz0zYssgrDCjd8GGQ33dXdtVux-xo561dwcfL1-5fTdCyekFrBeZ8a45G7UhpFkKvmwtRceqxzT1sU1_i8rjJlrMtori6R1nkprKfNmeMhU1d4yV_Ddtu1bh9YYzPnXVYYyQUaXilvbGFVaWtsFC99Avn0MrUdlcVDgYsrHU-4udSDATQZQEcDaJXAh7nPzaCr8d_Wn4ON5pZBEzv-0K1-6NFHNGHVwnrrCpWFBH8pa29KldeZlejLpkjgMFhYE7QI-rg2EIlsT93IYZRI4GgyvB7DeB0eX9EOD7FM4N18mwIwnKqY1nW3sY0kEEQTdQJvBj-Zx8ljHjDKBKoND9r4I5t32l8_o8h3KHNQYJXAx8nX7of17xd18Ljmh_CsCFERTtnUEWz3q1v3lkBWXx-PUfUbmQUhQw priority: 102 providerName: Springer Nature |
Title | A molecular design approach towards elastic and multifunctional polymer electronics |
URI | https://link.springer.com/article/10.1038/s41467-021-25719-9 https://www.ncbi.nlm.nih.gov/pubmed/34588448 https://www.proquest.com/docview/2577606445 https://www.proquest.com/docview/2578152376 https://www.osti.gov/servlets/purl/1903996 https://pubmed.ncbi.nlm.nih.gov/PMC8481247 https://doaj.org/article/1922cfce290543188bfa591b0c84f5d2 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JG5WReINAEjuO_YBQV61MlTYhRqW-WY5jA1KXjLaT6H_P2Uk6FQripZESu3V9d_bvcuf7AbxyJuWOMRlrU-Ux83k0QqYuNhSxgnWcpYE64fyCn03ZZJbP9qCnO-omcLnTtfN8UtPF_O3PH-sPaPDv2yPj4t2SBXP3yQaogKmM5T4c4s5UeEaD8w7uh5WZSnRofKA5S1gaYwPanaPZ_TVbe1Uo6Y-XBk1vFxz9M6vyt9Bq2LHG9-FeBzXJsNWNB7Bn64dwpyWfXD-CyyG56rlxSRUSOUhfYZysQjbtklgE19id6LoiIffQ74Pt60Ny3czXV3ZBbpl0lo9hOj79MjqLO4qF2HBKV7HWjlGbCy0RmJWU65IKx8rUoSNjK5eWRSK1sQmu6DlDNCC4cejCWerP83In6BM4qJvaPgNSmcQ6m2RaUM40LaTTJjMyNyWrJM1dBGk_mcp09cc9DcZchTg4FaoVgEIBqCAAJSN4velz3Vbf-GfrEy-jTUtfOTvcaBZfVWeIChFtZpyxmUx8GQAhSqdzmZaJEczlVRbBkZewQgDiq-gan25kVtgNlUfyCI57wateV_3PF-gHMpZH8HLzGM3Ux150bZub0EYgVMLlPIKnrZ5sxknDaWEmIii2NGjrj2w_qb9_C6XAPRlCxooI3vS6djusv0_U8_8Y5hHczbwp-ACcPIaD1eLGvkD8tSoHsF_MCvwU448DOBwOJ5cTvJ6cXnz6jHdHfDQIbzYGwfh-AaEqL-g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRYheEDuhBYwEJ4iaxE7GPiBUlmFKlwut1JtxHJsitckwMxWaP8Vv5D0nmdGw9NZTpMSOYr_ti98G8MLbtPBCqNjYKo8FxdFIlfrYcsQKzhciDa0TDg6L0bH4fJKfrMGvPheGwip7nRgUddVYOiPfRtYaINgWIn87_hFT1yjyrvYtNFq22HPzn_jLNn2z-wHp-zLLhh-P3o_irqtAbAvOZ7ExXnCXS6MQi5S8MCWXXpSpR-zuKp-Wg0QZ6xJUYrlAAygL6_GvxXFKYS285Pjea3BdcLTklJk-_LQ406Fq61KILjcn4XJ7KoImojgIXECqYrVi_0KbALw0KM7_grh_R2r-4a4NVnB4G2518JXttPx2B9ZcfRdutA0t5_fgyw477_vtsioEh7C-ajmbhQjdKXMI2HE6M3XFQjwj2db2SJKNm7P5uZuwZXee6X04vpINfgDrdVO7R8AqmzjvksxIXgjDB8obm1mV21JUiuc-grTfTG27mubUWuNMB986l7olgEYC6EAArSJ4tZgzbit6XDr6HdFoMZKqcYcbzeSb7oRbI0rOrLcuUwmVFpCy9CZXaZlYKXxeZRFsEoU1ghqqzGsphMnOcBoyjCoi2OoJrzsFMtVLdo_g-eIxij75c0ztmoswRiL8QhMRwcOWTxbfyUMGspARDFY4aGUhq0_q76ehvDg1WMjEIILXPa8tP-v_G_X48lU8g5ujo4N9vb97uLcJGxlJBPn21BaszyYX7glCu1n5NMgTg69XLcC_AY94Xs4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IO6EDTASPEHUJHYS-wGhja3aGFQTMGlvnuPYbNKWlDYT6l_j13HsJK3KZW97qpTYVexz8Wef4_MBvLI6zixjIlS6TEPm8mi4iG2oKWIFYzMWe-qEz-Ns74h9PE6P1-BXfxfGpVX2PtE76rLW7ox8iKqVI9hmLB3aLi3icGf0fvIjdAxSLtLa02m0KnJg5j9x-zZ7t7-Dsn6dJKPdbx_2wo5hINQZpU2olGXUpFwJxCUFzVRBuWVFbBHHm9LGRR4JpU2EDi1luBjyTFvcwRjqrrNmllP83xuwnrtd0QDWt3fHh18WJzyu9jpnrLupE1E-nDHvl1xWBA4nFqFYWQ09aQD-1Gjc_wK8f-dt_hG89Wvi6C7c6cAs2Wq17x6smeo-3GzpLecP4OsWuejZd0npU0VIX8OcND5fd0YMwnfsTlRVEp_d6Fba9oCSTOrz-YWZkiVXz-whHF3LFD-CQVVX5gmQUkfGmihRnGZM0VxYpRMtUl2wUtDUBhD3kyl1V-HcEW2cSx9pp1y2ApAoAOkFIEUAbxZ9Jm19jytbbzsZLVq62tz-QT39LjtTl4iZE221SUTkCg1wXliViriINGc2LZMANpyEJUIcV6dXu4Qm3WA3VBiRBbDZC1527mQml8ofwMvFa3QELrqjKlNf-jYcwRguGAE8bvVk8Z3U30dmPIB8RYNWBrL6pjo79cXGHd1CwvIA3va6tvys_0_U06tH8QJuofHKT_vjgw24nTiDcIE-sQmDZnppniHOa4rnnUEROLluG_4N30ZkYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+molecular+design+approach+towards+elastic+and+multifunctional+polymer+electronics&rft.jtitle=Nature+communications&rft.au=Zheng%2C+Yu&rft.au=Yu%2C+Zhiao&rft.au=Zhang%2C+Song&rft.au=Kong%2C+Xian&rft.date=2021-09-29&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=5701&rft_id=info:doi/10.1038%2Fs41467-021-25719-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |