A Canonical Model of Multistability and Scale-Invariance in Biological Systems

Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations aris...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 8; no. 8; p. e1002634
Main Authors Freyer, Frank, Roberts, James A., Ritter, Petra, Breakspear, Michael
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.08.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena.
AbstractList Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena.Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena.
Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena. Biological systems are able to adapt to rapidly and widely changing environments. Many biological organisms employ two distinct mechanisms that improve their survival in these circumstances: Firstly they exhibit rapid, qualitative changes in their internal dynamics; secondly they possess the ability to respond to change that is not absolute, but scales in proportion to the underlying intensity of the environment. In this paper, we study a simple class of noisy, dynamical systems that mathematically represent a very broad range of more complex models. We hence show how a combination of nonlinear instabilities and state-dependent noise in this model is able to unify these two apparently distinct biological phenomena. To illustrate its unifying potential, this simple model is applied to two very distinct biological processes – the spontaneous activity of the human cortex (i.e. when subjects are at rest), and genetic regulation in a bacteriophage. We also provide proof of principle that our model can be inverted from empirical data, allowing estimation of the parameters that express the nonlinear and stochastic influences at play in the underlying system.
Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena.
Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates coexisting attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena.
  Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena.
Audience Academic
Author Ritter, Petra
Freyer, Frank
Breakspear, Michael
Roberts, James A.
AuthorAffiliation 6 School of Psychiatry, University of New South Wales and The Black Dog Institute, Sydney, New South Wales, Australia
7 The Royal Brisbane and Woman's Hospital, Brisbane, Queensland, Australia
2 Department Neurology, Charité - University Medicine, Berlin, Germany
1 Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany
4 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
5 Berlin School of Mind and Brain & Mind and Brain Institute, Humboldt University, Berlin, Germany
3 Division of Mental Health Research, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
University of Oxford, United Kingdom
AuthorAffiliation_xml – name: 1 Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany
– name: 6 School of Psychiatry, University of New South Wales and The Black Dog Institute, Sydney, New South Wales, Australia
– name: University of Oxford, United Kingdom
– name: 7 The Royal Brisbane and Woman's Hospital, Brisbane, Queensland, Australia
– name: 5 Berlin School of Mind and Brain & Mind and Brain Institute, Humboldt University, Berlin, Germany
– name: 3 Division of Mental Health Research, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
– name: 2 Department Neurology, Charité - University Medicine, Berlin, Germany
– name: 4 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Author_xml – sequence: 1
  givenname: Frank
  surname: Freyer
  fullname: Freyer, Frank
– sequence: 2
  givenname: James A.
  surname: Roberts
  fullname: Roberts, James A.
– sequence: 3
  givenname: Petra
  surname: Ritter
  fullname: Ritter, Petra
– sequence: 4
  givenname: Michael
  surname: Breakspear
  fullname: Breakspear, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22912567$$D View this record in MEDLINE/PubMed
BookMark eNqVkl2L1DAUhousuB_6D0QL3ujFjEnTpu1eCOPgx8DuCo5eh9MkrRkyydiki_PvPd2ZkZ1FBEkgIXne9-ScnPPkxHmnk-Q5JVPKSvp25YfegZ1uZGOmlJCMs_xRckaLgk1KVlQn9_anyXkIK0JwW_MnyWmW1TQreHmW3MzSOaCzkWDTa6-0TX2bXg82mhChMdbEbQpOpUsE9GThbqE34KROjUvfG299dyddbkPU6_A0edyCDfrZfr1Ivn_88G3-eXL15dNiPruaSM5YnAAnOTRAuJJt0RRKUg6MEtlylbGmqXTNdMWBFLIqJZFcl5lqWU7KTI7pMHaRvNz5bqwPYl-KICjDUVFKMyQWO0J5WIlNb9bQb4UHI-4OfN8J6KORVguJgYhuoG6LPM9qXZFKKcqVztuixseh17t9tKFZayW1iz3YI9PjG2d-iM7fCpbTAicavN4b9P7noEMUaxOkthac9gO-m7C8IoyTEX31AP17dtMd1eGvCONaj3ElDqXXRmKjtAbPZ4zgT9eEchS8ORIgE_Wv2MEQglgsv_4He3PMvrhfmj81OXQYApc7QPY-hF63QpoI0fixUsZi6mJs50OWYmxnsW9nFOcPxAf_f8p-A92Q-ZU
CitedBy_id crossref_primary_10_3389_fncom_2021_590019
crossref_primary_10_1002_hbm_26089
crossref_primary_10_1002_hbm_26006
crossref_primary_10_1523_ENEURO_0106_17_2017
crossref_primary_10_1016_j_neuroimage_2017_01_057
crossref_primary_10_1038_s42003_024_06719_z
crossref_primary_10_1016_j_pneurobio_2017_07_002
crossref_primary_10_1063_1_4980099
crossref_primary_10_1103_PhysRevX_14_031021
crossref_primary_10_1162_netn_a_00041
crossref_primary_10_1098_rstb_2013_0532
crossref_primary_10_1038_s41398_024_03187_1
crossref_primary_10_3390_cells10112863
crossref_primary_10_1155_2021_5573740
crossref_primary_10_1063_1_5043447
crossref_primary_10_1002_hbm_24572
crossref_primary_10_1016_j_conb_2014_10_014
crossref_primary_10_1016_j_neuroimage_2022_119352
crossref_primary_10_1038_s41598_024_53105_0
crossref_primary_10_3389_fncir_2021_719364
crossref_primary_10_1111_epi_17996
crossref_primary_10_1162_jocn_a_00640
crossref_primary_10_1038_s41467_019_08999_0
crossref_primary_10_1016_j_celrep_2023_112491
crossref_primary_10_1038_s41467_020_15541_0
crossref_primary_10_1080_02643294_2024_2420406
crossref_primary_10_1093_cercor_bhad318
crossref_primary_10_3389_fncom_2014_00036
crossref_primary_10_3389_fnins_2017_00136
crossref_primary_10_1016_j_neuroimage_2017_12_009
crossref_primary_10_1089_brain_2014_0252
crossref_primary_10_1038_s41467_022_32381_2
crossref_primary_10_1162_cpsy_a_00001
crossref_primary_10_1016_j_neuroimage_2013_06_018
crossref_primary_10_1002_brx2_41
crossref_primary_10_1089_brain_2012_0120
crossref_primary_10_1093_cercor_bhac070
crossref_primary_10_1016_j_neuroimage_2017_01_075
crossref_primary_10_1155_2014_782657
crossref_primary_10_12688_f1000research_123183_3
crossref_primary_10_1523_JNEUROSCI_2571_14_2014
crossref_primary_10_12688_f1000research_123183_2
crossref_primary_10_1016_j_pneurobio_2023_102468
crossref_primary_10_1103_PhysRevE_108_044402
crossref_primary_10_1016_j_neuroimage_2013_04_087
crossref_primary_10_1523_JNEUROSCI_4701_13_2014
crossref_primary_10_1002_hbm_25442
crossref_primary_10_1016_S2215_0366_15_00360_0
crossref_primary_10_1523_JNEUROSCI_1889_22_2023
crossref_primary_10_1109_TNB_2021_3062473
crossref_primary_10_1016_j_cub_2021_07_064
crossref_primary_10_1038_s41593_021_00824_6
crossref_primary_10_1371_journal_pcbi_1005637
crossref_primary_10_1007_s13295_016_0027_1
crossref_primary_10_1371_journal_pcbi_1007662
crossref_primary_10_1371_journal_pcbi_1010662
crossref_primary_10_1073_pnas_1813164116
crossref_primary_10_1038_srep43174
crossref_primary_10_7554_eLife_56938
crossref_primary_10_3390_s23146296
crossref_primary_10_1016_j_neuroimage_2017_03_023
crossref_primary_10_1016_j_neubiorev_2024_105988
crossref_primary_10_1093_cercor_bhac496
crossref_primary_10_1016_j_bpsc_2017_01_010
crossref_primary_10_1111_ejn_14747
crossref_primary_10_1038_s41598_017_16789_1
crossref_primary_10_3389_fnhum_2022_958706
crossref_primary_10_1038_nn_4497
crossref_primary_10_1007_s10548_013_0319_5
crossref_primary_10_1016_j_celrep_2020_108128
crossref_primary_10_1038_s44220_024_00298_y
crossref_primary_10_1162_netn_a_00366
crossref_primary_10_1371_journal_pcbi_1012595
crossref_primary_10_1093_cercor_bhad228
crossref_primary_10_1016_j_neuroimage_2023_120302
crossref_primary_10_1093_cercor_bhab442
crossref_primary_10_1016_j_tics_2016_05_003
crossref_primary_10_1038_s41598_017_03073_5
crossref_primary_10_1111_ejn_14117
crossref_primary_10_1007_s41939_023_00263_9
crossref_primary_10_1093_texcom_tgac045
crossref_primary_10_1016_j_neuroimage_2016_10_044
crossref_primary_10_1016_j_tins_2024_02_005
crossref_primary_10_3390_brainsci10080536
crossref_primary_10_1016_j_tics_2015_07_011
crossref_primary_10_1016_j_neucom_2024_128590
crossref_primary_10_1093_cercor_bhac266
crossref_primary_10_1016_j_neuron_2015_07_008
crossref_primary_10_1073_pnas_2409577121
crossref_primary_10_1093_cercor_bhac276
crossref_primary_10_1093_cercor_bhac391
crossref_primary_10_1016_j_bpsc_2016_12_009
crossref_primary_10_1016_j_neuroimage_2015_03_047
crossref_primary_10_3389_fphys_2021_809943
crossref_primary_10_1109_MSP_2015_2482121
crossref_primary_10_1038_srep39156
crossref_primary_10_1038_s41467_021_26704_y
crossref_primary_10_3389_fnins_2017_00022
crossref_primary_10_1016_j_neuroimage_2022_118928
crossref_primary_10_1016_j_pneurobio_2022_102385
crossref_primary_10_1126_sciadv_ade6049
crossref_primary_10_1103_PhysRevE_108_064410
crossref_primary_10_1371_journal_pone_0222161
crossref_primary_10_1103_PhysRevE_95_042410
crossref_primary_10_1038_s41598_017_04522_x
crossref_primary_10_1016_j_tins_2016_01_001
crossref_primary_10_1063_1_5045366
crossref_primary_10_1038_s42003_022_03576_6
crossref_primary_10_1016_j_celrep_2020_108471
crossref_primary_10_1162_NETN_a_00011
crossref_primary_10_1016_j_neuroimage_2021_117809
crossref_primary_10_1371_journal_pcbi_1006007
crossref_primary_10_1073_pnas_1905534116
crossref_primary_10_1016_j_neuroimage_2013_11_009
crossref_primary_10_1162_netn_a_00299
crossref_primary_10_1016_j_neuroimage_2015_05_042
crossref_primary_10_1016_j_neuroimage_2021_118618
crossref_primary_10_1103_PhysRevE_111_014410
crossref_primary_10_1016_j_neuroimage_2014_11_027
crossref_primary_10_1016_j_tics_2017_04_007
crossref_primary_10_1038_s41562_020_01003_6
crossref_primary_10_1038_srep31280
crossref_primary_10_1371_journal_pone_0095648
crossref_primary_10_1162_netn_a_00175
crossref_primary_10_1371_journal_pcbi_1004352
crossref_primary_10_1093_brain_awv261
crossref_primary_10_1111_febs_15855
crossref_primary_10_1038_s42003_024_06083_y
crossref_primary_10_1063_1_5062598
crossref_primary_10_1093_cercor_bhad416
crossref_primary_10_1038_s41467_020_18717_w
crossref_primary_10_1016_j_neuroimage_2022_119051
crossref_primary_10_3389_fncom_2015_00001
ContentType Journal Article
Copyright COPYRIGHT 2012 Public Library of Science
Freyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Freyer F, Roberts JA, Ritter P, Breakspear M (2012) A Canonical Model of Multistability and Scale-Invariance in Biological Systems. PLoS Comput Biol 8(8): e1002634. doi:10.1371/journal.pcbi.1002634
2012 Freyer et al 2012 Freyer et al
Copyright_xml – notice: COPYRIGHT 2012 Public Library of Science
– notice: Freyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Freyer F, Roberts JA, Ritter P, Breakspear M (2012) A Canonical Model of Multistability and Scale-Invariance in Biological Systems. PLoS Comput Biol 8(8): e1002634. doi:10.1371/journal.pcbi.1002634
– notice: 2012 Freyer et al 2012 Freyer et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1002634
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
DocumentTitleAlternate Multistability and Scale-Invariance in Biosystems
EISSN 1553-7358
ExternalDocumentID 1313181112
oai_doaj_org_article_ca050eba9f54429e808dd16de4f595dc
PMC3415415
2903871711
A302299016
22912567
10_1371_journal_pcbi_1002634
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
Germany
GeographicLocations_xml – name: Germany
– name: Australia
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
CGR
CUY
CVF
ECM
EIF
H13
M0N
M~E
NPM
PGMZT
PV9
RZL
WOQ
PMFND
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
ID FETCH-LOGICAL-c633t-a604aba06dcf5b5dc16a310cf6d23bb8e93e86a05c87c0c6e72df34072c735833
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:33 EDT 2023
Wed Aug 27 01:24:37 EDT 2025
Thu Aug 21 18:33:52 EDT 2025
Fri Jul 11 04:08:55 EDT 2025
Fri Jul 25 10:29:53 EDT 2025
Tue Jun 10 20:32:58 EDT 2025
Fri Jun 27 04:43:05 EDT 2025
Fri Jun 27 03:32:31 EDT 2025
Wed Feb 19 01:49:04 EST 2025
Tue Jul 01 03:28:49 EDT 2025
Thu Apr 24 22:50:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Models, Theoretical
Biophysics
Gene Regulatory Networks
Humans
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-a604aba06dcf5b5dc16a310cf6d23bb8e93e86a05c87c0c6e72df34072c735833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: FF PR MB. Performed the experiments: FF MB. Analyzed the data: FF MB. Contributed reagents/materials/analysis tools: JAR. Wrote the paper: FF JAR PR MB.
The authors have declared that no competing interests exist.
OpenAccessLink https://doaj.org/article/ca050eba9f54429e808dd16de4f595dc
PMID 22912567
PQID 1313181112
PQPubID 1436340
ParticipantIDs plos_journals_1313181112
doaj_primary_oai_doaj_org_article_ca050eba9f54429e808dd16de4f595dc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3415415
proquest_miscellaneous_1034803605
proquest_journals_1313181112
gale_infotracacademiconefile_A302299016
gale_incontextgauss_ISR_A302299016
gale_incontextgauss_ISN_A302299016
pubmed_primary_22912567
crossref_citationtrail_10_1371_journal_pcbi_1002634
crossref_primary_10_1371_journal_pcbi_1002634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2012
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References 17360679 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3544-9
20068583 - Nat Rev Neurosci. 2010 Feb;11(2):127-38
11062240 - J Biol Chem. 2001 Mar 16;276(11):8165-72
18812513 - Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14855-60
19571142 - J Neurosci. 2009 Jul 1;29(26):8512-24
17055746 - Neuroimage. 2007 Jan 1;34(1):220-34
16286933 - Nat Neurosci. 2005 Dec;8(12):1690-7
11878285 - Network. 2002 Feb;13(1):67-113
18369436 - PLoS Comput Biol. 2008 Mar;4(3):e1000046
15772163 - Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4771-6
18254657 - PLoS Biol. 2008 Feb;6(2):e11
15281141 - Hum Brain Mapp. 2004 Sep;23(1):53-72
1354387 - Prog Neurobiol. 1992 Oct;39(4):337-88
17632015 - Neuroimage. 2007 Sep 1;37(3):706-20
21310247 - Neuroimage. 2011 Sep 15;58(2):442-57
12239890 - Behav Brain Sci. 2001 Oct;24(5):793-810; discussion 810-48
18565765 - Neuroimage. 2008 Aug 15;42(2):649-62
10574295 - Clin Neurophysiol. 1999 Oct;110(10):1801-13
11127836 - Nat Neurosci. 2000 Nov;3 Suppl:1184-91
18769680 - PLoS Comput Biol. 2008;4(8):e1000092
6444544 - Cell. 1980 Jan;19(1):1-11
12005890 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041924
19145235 - Nat Rev Neurosci. 2009 Feb;10(2):113-25
11039701 - Biol Cybern. 2000 Oct;83(4):367-78
20083212 - Neuroimage. 2010 Sep;52(3):740-51
10681449 - Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2075-80
10816319 - Nat Neurosci. 2000 Jun;3(6):617-21
21182971 - Neuroimage. 2011 Jun 1;56(3):1202-21
6457992 - Nature. 1981 Nov 19;294(5838):217-23
9723616 - Nature. 1998 Aug 20;394(6695):780-4
11823801 - Nat Rev Neurosci. 2002 Jan;3(1):13-21
16280462 - Cereb Cortex. 2006 Sep;16(9):1296-313
5116412 - Sci Am. 1971 Dec;225(6):63-71
12111274 - Biol Cybern. 2002 Jun;86(6):457-71
12948688 - Neuroimage. 2003 Aug;19(4):1273-302
14642484 - Neuroimage. 2003 Nov;20(3):1743-55
3978150 - Biol Cybern. 1985;51(5):347-56
10592017 - Biol Cybern. 1999 Nov;81(5-6):415-24
11308514 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021903
19243224 - PLoS Biol. 2009 Feb 24;7(2):e44
20869386 - Prog Biophys Mol Biol. 2011 Mar;105(1-2):58-66
11848588 - Psychon Bull Rev. 2001 Dec;8(4):698-707
10659857 - Nature. 2000 Jan 20;403(6767):339-42
20045068 - Neuroimage. 2010 Sep;52(3):1041-58
18092890 - PLoS Biol. 2007 Dec;5(12):e328
12169266 - Neuroimage. 2002 Jul;16(3 Pt 1):822-35
19862351 - Physica D. 2009 Nov 1;238(21):2089-2118
9143444 - Cereb Cortex. 1997 Apr-May;7(3):237-52
16930418 - Eur J Neurosci. 2006 Aug;24(3):901-16
10062950 - Phys Rev Lett. 1996 Jul 29;77(5):960-963
17930642 - Phys Rev Lett. 2007 Sep 28;99(13):138103
20305717 - PLoS Biol. 2010 Mar;8(3):e1000332
21525275 - J Neurosci. 2011 Apr 27;31(17):6353-61
4412202 - Science. 1974 Nov 15;186(4164):645-7
12467598 - Neuron. 2002 Dec 5;36(5):955-68
11164733 - Trends Cogn Sci. 2001 Jan 1;5(1):26-36
References_xml – reference: 17930642 - Phys Rev Lett. 2007 Sep 28;99(13):138103
– reference: 11039701 - Biol Cybern. 2000 Oct;83(4):367-78
– reference: 9723616 - Nature. 1998 Aug 20;394(6695):780-4
– reference: 16280462 - Cereb Cortex. 2006 Sep;16(9):1296-313
– reference: 18812513 - Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14855-60
– reference: 20869386 - Prog Biophys Mol Biol. 2011 Mar;105(1-2):58-66
– reference: 20068583 - Nat Rev Neurosci. 2010 Feb;11(2):127-38
– reference: 20083212 - Neuroimage. 2010 Sep;52(3):740-51
– reference: 12005890 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041924
– reference: 10816319 - Nat Neurosci. 2000 Jun;3(6):617-21
– reference: 3978150 - Biol Cybern. 1985;51(5):347-56
– reference: 19571142 - J Neurosci. 2009 Jul 1;29(26):8512-24
– reference: 16930418 - Eur J Neurosci. 2006 Aug;24(3):901-16
– reference: 18369436 - PLoS Comput Biol. 2008 Mar;4(3):e1000046
– reference: 10574295 - Clin Neurophysiol. 1999 Oct;110(10):1801-13
– reference: 16286933 - Nat Neurosci. 2005 Dec;8(12):1690-7
– reference: 11823801 - Nat Rev Neurosci. 2002 Jan;3(1):13-21
– reference: 19145235 - Nat Rev Neurosci. 2009 Feb;10(2):113-25
– reference: 18254657 - PLoS Biol. 2008 Feb;6(2):e11
– reference: 20305717 - PLoS Biol. 2010 Mar;8(3):e1000332
– reference: 17632015 - Neuroimage. 2007 Sep 1;37(3):706-20
– reference: 5116412 - Sci Am. 1971 Dec;225(6):63-71
– reference: 11164733 - Trends Cogn Sci. 2001 Jan 1;5(1):26-36
– reference: 15281141 - Hum Brain Mapp. 2004 Sep;23(1):53-72
– reference: 21525275 - J Neurosci. 2011 Apr 27;31(17):6353-61
– reference: 18565765 - Neuroimage. 2008 Aug 15;42(2):649-62
– reference: 15772163 - Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4771-6
– reference: 6457992 - Nature. 1981 Nov 19;294(5838):217-23
– reference: 14642484 - Neuroimage. 2003 Nov;20(3):1743-55
– reference: 4412202 - Science. 1974 Nov 15;186(4164):645-7
– reference: 19862351 - Physica D. 2009 Nov 1;238(21):2089-2118
– reference: 18769680 - PLoS Comput Biol. 2008;4(8):e1000092
– reference: 17360679 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3544-9
– reference: 10062950 - Phys Rev Lett. 1996 Jul 29;77(5):960-963
– reference: 12169266 - Neuroimage. 2002 Jul;16(3 Pt 1):822-35
– reference: 21310247 - Neuroimage. 2011 Sep 15;58(2):442-57
– reference: 9143444 - Cereb Cortex. 1997 Apr-May;7(3):237-52
– reference: 11127836 - Nat Neurosci. 2000 Nov;3 Suppl:1184-91
– reference: 12948688 - Neuroimage. 2003 Aug;19(4):1273-302
– reference: 6444544 - Cell. 1980 Jan;19(1):1-11
– reference: 10592017 - Biol Cybern. 1999 Nov;81(5-6):415-24
– reference: 12467598 - Neuron. 2002 Dec 5;36(5):955-68
– reference: 11062240 - J Biol Chem. 2001 Mar 16;276(11):8165-72
– reference: 12239890 - Behav Brain Sci. 2001 Oct;24(5):793-810; discussion 810-48
– reference: 10681449 - Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2075-80
– reference: 1354387 - Prog Neurobiol. 1992 Oct;39(4):337-88
– reference: 10659857 - Nature. 2000 Jan 20;403(6767):339-42
– reference: 11308514 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021903
– reference: 17055746 - Neuroimage. 2007 Jan 1;34(1):220-34
– reference: 21182971 - Neuroimage. 2011 Jun 1;56(3):1202-21
– reference: 19243224 - PLoS Biol. 2009 Feb 24;7(2):e44
– reference: 12111274 - Biol Cybern. 2002 Jun;86(6):457-71
– reference: 20045068 - Neuroimage. 2010 Sep;52(3):1041-58
– reference: 11848588 - Psychon Bull Rev. 2001 Dec;8(4):698-707
– reference: 18092890 - PLoS Biol. 2007 Dec;5(12):e328
– reference: 11878285 - Network. 2002 Feb;13(1):67-113
SSID ssj0035896
Score 2.4325979
Snippet Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and...
  Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1002634
SubjectTerms Behavior
Biology
Biomathematics
Biophysics
Dynamical systems
Fluctuations
Gene expression
Gene Regulatory Networks
Humans
Invariants
Mathematics
Models, Theoretical
Noise
Parameter estimation
Studies
Time series
Values
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA4yIHgRf2_XVaIInuJmmp9zHMVlFZyDujC3kiapDiztYGeE_e99L-mUrazsRaanySttvrwmX8h73yPkTY35nao0LMrImSydZk4sAoul8FJIHnTKcv2y0ucX8vNara-V-sKYsCwPnIE79Y4rHmu3aJSEuTNabkOY6xBloxYqeJx9Yc07bKbyHCyUTZW5sCgOM0Kuh6Q5Yeanwxi92_p6kwRItZCTRSlp948z9Gx72fU30c-_oyivLUtnD8j9gU_SZe7HQ3Into_I3Vxh8uoxWS0pYNel5Eeaqt7QrqEpihBoYQqMvaKuDbQHg8g27W_YO6Mj0E1Ls0BTujULPvdPyMXZx-8fztlQQoF5LcSOOc2lqx3XwTeqBrjm2gGh840OpahrGxciWg0Qe2s89zqaMjQCRdO8EZiQ9ZTM4CXjEaEWNlbWxNJJ1IADauait7EBvmIksARXEHHAsPKDvjiWubis0qGZgX1GhqRC5KsB-YKw8a5t1te4xf49Ds9oi-rY6Q_wmWrwmeo2nynIaxzcCvUvWgyw-eH2fV99-raqlgJIDZ4V6n8afZ0YvR2Mmg46692Q1ACQoa7WxPIIPenQqR66CD8LS01ZkJODd93c_Gpshm8fD3RcG7s92HAhLVAQrgryLDvjCAw8FrirNgUxEzedIDdtaTc_k744DK-C6_h_QP2c3AOKWeaQyRMy2_3axxdA43b1y_TF_gFL3kRb
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXxPcyBjIIiSezNP7sEyoT04ZEHxiT-hY5trNVqpKytpP233PnuIGgAUqe4suHz2f75_jud4S8qzC-UxaaBRFyJgqrmOUTz0LBneAi9ypGuX6dqZNz8WUu5-mH2zq5Ve7GxDhQ-9bhP_LDMYfDQM8sPq5-MMwahburKYXGXXIPqcvQpUvP-wUXlybm58LUOExzMU-hc1yPD1NLfVi5ahFpSBUXg6kpMvj34_RotWzXt4HQP30pf5ucjh-RhwlV0mlnBo_JndA8Ife7PJM3T8lsSo9s08YQSIrZz5a0rWmMvQVwGN1jb6htPD0DgcBOm2tYQaM50EVDu6fEWxO9-TNyfvz5-9EJS4kUmFOcb5hVubCVzZV3taykd2NlAda5WvmCV5UJEx6Msrl0RrvcqaALX3OkTnOaY1jWczKCjwx7hBpYXhkdCiuQCQ4Amg3OhBpQixaAFWxG-E6HpUss45jsYlnGrTMNq41OJSVqvkyazwjr71p1LBv_kf-EzdPLIkd2vNBeXZSpy5UOKpSHyk5qKWDWDSY33o-VD6KWE1BCRt5i45bIgtGgm82F3a7X5enZrJxygDa4Y6j-KvRtIPQ-CdUtVNbZFNoAKkN2rYHkHlrSrlLr8pdZZ-RgZ123F7_pi2EEwG0d24R2CzI5FwaASC4z8qIzxl4x8FpAsEpnRA_MdKC5YUmzuIws49C8Es79f3_WS_IAIGTRuUQekNHmahteAUzbVK9jX_wJPaY58A
  priority: 102
  providerName: ProQuest
Title A Canonical Model of Multistability and Scale-Invariance in Biological Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/22912567
https://www.proquest.com/docview/1313181112
https://www.proquest.com/docview/1034803605
https://pubmed.ncbi.nlm.nih.gov/PMC3415415
https://doaj.org/article/ca050eba9f54429e808dd16de4f595dc
http://dx.doi.org/10.1371/journal.pcbi.1002634
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3vi9MwGH652yH4Rfx91XNEEfzUo2vSJPsgsunNU7ghp4N9K2mSnoPRznUT99_7Ju2KlR3KxsqaN2vz5E3zZEmeF-B15vZ3JrEILbNRyGLFQ0WHJrQx1YyyyHC_y_Vqyi9n7PM8mR_BPmZrA2B1cGjn4knN1svzXz9277DBv_VRG8Rgn-l8pbOFlxTllB3DCfZNwjXVK9bOK9BE-ohdLlhOKPBbs5nutl_pdFZe0799cvdWy7I6REv_Xl35R3c1uQ_3Gp5JRrVjPIAjWzyEO3Xkyd0jmI4IYlr6TZHER8MhZU786kKki37B7I6owpAKDWy4KH7imNo5CFkUpBZu8llrIejqMcwmF9_eX4ZNaIVQc0o3oeIRU5mKuNF5kiVGD7hCoqdzbmKaZdIOqZVcRYmWQkeaWxGbnDoxNe1go_QJ9PAm7SkQiQMuKWysmNOGQ8qmrJY2Rx4jGLIHFQDdY5jqRnfchb9Ypn4yTeD4o4YkdcinDfIBhG2uVa278Q_7saue1tapZvsT5fombRphqrFAkc3UME8Y9sNWRtKYATeW5ckQQQjglavc1OliFG7hzY3aVlX66es0HVEkO24Okd9qdN0xetMY5SUWVqtmswNC5vS2OpanzpP2haqwiPiS2AXFAZztvetw8ss2GZ8JbqJHFbbcok1EmURqEiUBPK2dsQUGL4uclosARMdNO8h1U4rFd687jtWb4PvZf1z3OdxFZhnXKyXPoLdZb-0LZG-brA_HYi7wU04-9uFkNP4wnuBxfDH9ct33_4j0fZP9DcNASFk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEIIL4t2FAgsCcTJ11l57c0AoFKqEtjnQVsrNeL3eEinaDU0Cyp_iNzLjfcCiAqcqOcWzD49nPN_E8yDkRYr5nXGkqBOOUREZSQ0fZNRF3AouWCZ9luvRRI5OxcdpPN0iP5pcGAyrbPZEv1FnpcX_yHf7HD4JaGb0dvGVYtcoPF1tWmhUYnHgNt_BZVu-Gb-H9X0ZRfsfTvZGtO4qQK3kfEWNZMKkhsnM5nEaZ7YvDWAcm8ss4mmauAF3iTQstomyzEqnoiznWEfMKo45SnDfK-QqGF6GGqWmrYMHo74fGLbioYqLaZ2qx1V_t5aM1wubznzZU8lFxxT6jgGtXegt5uXyItD7Z-zmb8Zw_xa5WaPYcFiJ3W2y5Yo75FrV13Jzl0yG4Z4pSp9yGWK3tXlY5qHP9QUw6sNxN6EpsvAYCBwdF9_AY0fxC2dFWN3FX1qXU79HTi-FxfdJD17SbZMwAXcuUS4yAivPASA0ziYuB5SkBGATExDe8FDbuqo5NteYa39Up8C7qViikfO65nxAaHvVoqrq8R_6d7g8LS3W5PY_lOdnulZxbWFCzKVmkMcCrLxLWJJlfZk5kccDYEJAnuPiaqy6UWBYz5lZL5d6fDzRQw5QCk8o5V-JPnWIXtVEeQmTtaZOpQCWYTWvDuU2SlIzqaX-pUYB2Wmk6-LhZ-0w7Dh4jGQKV66BhnGRAPBhcUAeVMLYMgYeC4hZqoCojph2ONcdKWZffFVzWN4Yvg___VpPyfXRydGhPhxPDh6RGwBfoyocc4f0Vudr9xgg4ip94vUyJJ8veyP4CV5ldyk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYgXxPcCAwwC8eQ1jR07fUCobEwrgwoxJvUtOLYzKlVJWVtQ_zX-Ou6cDwga8DS1D1V9SePz3fl39X0Q8izD_M44UswJFzIRack0H1rmIm4EF6GVPsv1_UQenoi303i6RX40uTAYVtnYRG-obWnwP_L-gMMrAc2M-nkdFvFh_-DV4ivDDlJ40tq006hE5MhtvoP7tnw53oe1fh5FB28-7R2yusMAM5LzFdMyFDrTobQmj7PYmoHUgHdMLm3EsyxxQ-4SqcPYJMqERjoV2ZxjTTGjOOYrwX0vkcvweYA6pqatswejvjcYtuVhiotpnbbH1aBfS8nuwmQzXwJVctHZFn33gHaP6C3m5fI8APxnHOdvG-PBDXK9RrR0VIngTbLlilvkStXjcnObTEZ0TxelT7-k2HltTsuc-rxfAKY-NHdDdWHpMRA4Ni6-gfeOokhnBa3u4i-tS6vfIScXwuK7pAcP6bYJTcC1S5SLtMAqdAAOtTOJywExKQE4RQeENzxMTV3hHBttzFN_bKfA06lYkiLn05rzAWHtVYuqwsd_6F_j8rS0WJ_bf1Genaa1uqcGJhS6TA_zWMCO75IwsXYgrRN5PAQmBOQpLm6KFTgKlOVTvV4u0_HxJB1xgFV4Win_SvSxQ_SiJspLmKzRdVoFsAwre3Uot1GSmkkt018qFZCdRrrOH37SDoP1wSMlXbhyDTQhFwmAoDAOyL1KGFvGwM8CepYqIKojph3OdUeK2Rdf4RyWN4b3_X8_1mNyFUxA-m48OXpArgGSjarIzB3SW52t3UNAi6vskVdLSj5ftB34Cf-xe18
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+canonical+model+of+multistability+and+scale-invariance+in+biological+systems&rft.jtitle=PLoS+computational+biology&rft.au=Freyer%2C+Frank&rft.au=Roberts%2C+James+A&rft.au=Ritter%2C+Petra&rft.au=Breakspear%2C+Michael&rft.date=2012-08-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=8&rft.issue=8&rft.spage=e1002634&rft_id=info:doi/10.1371%2Fjournal.pcbi.1002634&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon