A Canonical Model of Multistability and Scale-Invariance in Biological Systems
Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations aris...
Saved in:
Published in | PLoS computational biology Vol. 8; no. 8; p. e1002634 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.08.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena. |
---|---|
AbstractList | Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena.Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena. Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena. Biological systems are able to adapt to rapidly and widely changing environments. Many biological organisms employ two distinct mechanisms that improve their survival in these circumstances: Firstly they exhibit rapid, qualitative changes in their internal dynamics; secondly they possess the ability to respond to change that is not absolute, but scales in proportion to the underlying intensity of the environment. In this paper, we study a simple class of noisy, dynamical systems that mathematically represent a very broad range of more complex models. We hence show how a combination of nonlinear instabilities and state-dependent noise in this model is able to unify these two apparently distinct biological phenomena. To illustrate its unifying potential, this simple model is applied to two very distinct biological processes – the spontaneous activity of the human cortex (i.e. when subjects are at rest), and genetic regulation in a bacteriophage. We also provide proof of principle that our model can be inverted from empirical data, allowing estimation of the parameters that express the nonlinear and stochastic influences at play in the underlying system. Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena. Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates coexisting attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena. Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena. |
Audience | Academic |
Author | Ritter, Petra Freyer, Frank Breakspear, Michael Roberts, James A. |
AuthorAffiliation | 6 School of Psychiatry, University of New South Wales and The Black Dog Institute, Sydney, New South Wales, Australia 7 The Royal Brisbane and Woman's Hospital, Brisbane, Queensland, Australia 2 Department Neurology, Charité - University Medicine, Berlin, Germany 1 Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany 4 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 5 Berlin School of Mind and Brain & Mind and Brain Institute, Humboldt University, Berlin, Germany 3 Division of Mental Health Research, Queensland Institute of Medical Research, Brisbane, Queensland, Australia University of Oxford, United Kingdom |
AuthorAffiliation_xml | – name: 1 Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany – name: 6 School of Psychiatry, University of New South Wales and The Black Dog Institute, Sydney, New South Wales, Australia – name: University of Oxford, United Kingdom – name: 7 The Royal Brisbane and Woman's Hospital, Brisbane, Queensland, Australia – name: 5 Berlin School of Mind and Brain & Mind and Brain Institute, Humboldt University, Berlin, Germany – name: 3 Division of Mental Health Research, Queensland Institute of Medical Research, Brisbane, Queensland, Australia – name: 2 Department Neurology, Charité - University Medicine, Berlin, Germany – name: 4 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany |
Author_xml | – sequence: 1 givenname: Frank surname: Freyer fullname: Freyer, Frank – sequence: 2 givenname: James A. surname: Roberts fullname: Roberts, James A. – sequence: 3 givenname: Petra surname: Ritter fullname: Ritter, Petra – sequence: 4 givenname: Michael surname: Breakspear fullname: Breakspear, Michael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22912567$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl2L1DAUhousuB_6D0QL3ujFjEnTpu1eCOPgx8DuCo5eh9MkrRkyydiki_PvPd2ZkZ1FBEkgIXne9-ScnPPkxHmnk-Q5JVPKSvp25YfegZ1uZGOmlJCMs_xRckaLgk1KVlQn9_anyXkIK0JwW_MnyWmW1TQreHmW3MzSOaCzkWDTa6-0TX2bXg82mhChMdbEbQpOpUsE9GThbqE34KROjUvfG299dyddbkPU6_A0edyCDfrZfr1Ivn_88G3-eXL15dNiPruaSM5YnAAnOTRAuJJt0RRKUg6MEtlylbGmqXTNdMWBFLIqJZFcl5lqWU7KTI7pMHaRvNz5bqwPYl-KICjDUVFKMyQWO0J5WIlNb9bQb4UHI-4OfN8J6KORVguJgYhuoG6LPM9qXZFKKcqVztuixseh17t9tKFZayW1iz3YI9PjG2d-iM7fCpbTAicavN4b9P7noEMUaxOkthac9gO-m7C8IoyTEX31AP17dtMd1eGvCONaj3ElDqXXRmKjtAbPZ4zgT9eEchS8ORIgE_Wv2MEQglgsv_4He3PMvrhfmj81OXQYApc7QPY-hF63QpoI0fixUsZi6mJs50OWYmxnsW9nFOcPxAf_f8p-A92Q-ZU |
CitedBy_id | crossref_primary_10_3389_fncom_2021_590019 crossref_primary_10_1002_hbm_26089 crossref_primary_10_1002_hbm_26006 crossref_primary_10_1523_ENEURO_0106_17_2017 crossref_primary_10_1016_j_neuroimage_2017_01_057 crossref_primary_10_1038_s42003_024_06719_z crossref_primary_10_1016_j_pneurobio_2017_07_002 crossref_primary_10_1063_1_4980099 crossref_primary_10_1103_PhysRevX_14_031021 crossref_primary_10_1162_netn_a_00041 crossref_primary_10_1098_rstb_2013_0532 crossref_primary_10_1038_s41398_024_03187_1 crossref_primary_10_3390_cells10112863 crossref_primary_10_1155_2021_5573740 crossref_primary_10_1063_1_5043447 crossref_primary_10_1002_hbm_24572 crossref_primary_10_1016_j_conb_2014_10_014 crossref_primary_10_1016_j_neuroimage_2022_119352 crossref_primary_10_1038_s41598_024_53105_0 crossref_primary_10_3389_fncir_2021_719364 crossref_primary_10_1111_epi_17996 crossref_primary_10_1162_jocn_a_00640 crossref_primary_10_1038_s41467_019_08999_0 crossref_primary_10_1016_j_celrep_2023_112491 crossref_primary_10_1038_s41467_020_15541_0 crossref_primary_10_1080_02643294_2024_2420406 crossref_primary_10_1093_cercor_bhad318 crossref_primary_10_3389_fncom_2014_00036 crossref_primary_10_3389_fnins_2017_00136 crossref_primary_10_1016_j_neuroimage_2017_12_009 crossref_primary_10_1089_brain_2014_0252 crossref_primary_10_1038_s41467_022_32381_2 crossref_primary_10_1162_cpsy_a_00001 crossref_primary_10_1016_j_neuroimage_2013_06_018 crossref_primary_10_1002_brx2_41 crossref_primary_10_1089_brain_2012_0120 crossref_primary_10_1093_cercor_bhac070 crossref_primary_10_1016_j_neuroimage_2017_01_075 crossref_primary_10_1155_2014_782657 crossref_primary_10_12688_f1000research_123183_3 crossref_primary_10_1523_JNEUROSCI_2571_14_2014 crossref_primary_10_12688_f1000research_123183_2 crossref_primary_10_1016_j_pneurobio_2023_102468 crossref_primary_10_1103_PhysRevE_108_044402 crossref_primary_10_1016_j_neuroimage_2013_04_087 crossref_primary_10_1523_JNEUROSCI_4701_13_2014 crossref_primary_10_1002_hbm_25442 crossref_primary_10_1016_S2215_0366_15_00360_0 crossref_primary_10_1523_JNEUROSCI_1889_22_2023 crossref_primary_10_1109_TNB_2021_3062473 crossref_primary_10_1016_j_cub_2021_07_064 crossref_primary_10_1038_s41593_021_00824_6 crossref_primary_10_1371_journal_pcbi_1005637 crossref_primary_10_1007_s13295_016_0027_1 crossref_primary_10_1371_journal_pcbi_1007662 crossref_primary_10_1371_journal_pcbi_1010662 crossref_primary_10_1073_pnas_1813164116 crossref_primary_10_1038_srep43174 crossref_primary_10_7554_eLife_56938 crossref_primary_10_3390_s23146296 crossref_primary_10_1016_j_neuroimage_2017_03_023 crossref_primary_10_1016_j_neubiorev_2024_105988 crossref_primary_10_1093_cercor_bhac496 crossref_primary_10_1016_j_bpsc_2017_01_010 crossref_primary_10_1111_ejn_14747 crossref_primary_10_1038_s41598_017_16789_1 crossref_primary_10_3389_fnhum_2022_958706 crossref_primary_10_1038_nn_4497 crossref_primary_10_1007_s10548_013_0319_5 crossref_primary_10_1016_j_celrep_2020_108128 crossref_primary_10_1038_s44220_024_00298_y crossref_primary_10_1162_netn_a_00366 crossref_primary_10_1371_journal_pcbi_1012595 crossref_primary_10_1093_cercor_bhad228 crossref_primary_10_1016_j_neuroimage_2023_120302 crossref_primary_10_1093_cercor_bhab442 crossref_primary_10_1016_j_tics_2016_05_003 crossref_primary_10_1038_s41598_017_03073_5 crossref_primary_10_1111_ejn_14117 crossref_primary_10_1007_s41939_023_00263_9 crossref_primary_10_1093_texcom_tgac045 crossref_primary_10_1016_j_neuroimage_2016_10_044 crossref_primary_10_1016_j_tins_2024_02_005 crossref_primary_10_3390_brainsci10080536 crossref_primary_10_1016_j_tics_2015_07_011 crossref_primary_10_1016_j_neucom_2024_128590 crossref_primary_10_1093_cercor_bhac266 crossref_primary_10_1016_j_neuron_2015_07_008 crossref_primary_10_1073_pnas_2409577121 crossref_primary_10_1093_cercor_bhac276 crossref_primary_10_1093_cercor_bhac391 crossref_primary_10_1016_j_bpsc_2016_12_009 crossref_primary_10_1016_j_neuroimage_2015_03_047 crossref_primary_10_3389_fphys_2021_809943 crossref_primary_10_1109_MSP_2015_2482121 crossref_primary_10_1038_srep39156 crossref_primary_10_1038_s41467_021_26704_y crossref_primary_10_3389_fnins_2017_00022 crossref_primary_10_1016_j_neuroimage_2022_118928 crossref_primary_10_1016_j_pneurobio_2022_102385 crossref_primary_10_1126_sciadv_ade6049 crossref_primary_10_1103_PhysRevE_108_064410 crossref_primary_10_1371_journal_pone_0222161 crossref_primary_10_1103_PhysRevE_95_042410 crossref_primary_10_1038_s41598_017_04522_x crossref_primary_10_1016_j_tins_2016_01_001 crossref_primary_10_1063_1_5045366 crossref_primary_10_1038_s42003_022_03576_6 crossref_primary_10_1016_j_celrep_2020_108471 crossref_primary_10_1162_NETN_a_00011 crossref_primary_10_1016_j_neuroimage_2021_117809 crossref_primary_10_1371_journal_pcbi_1006007 crossref_primary_10_1073_pnas_1905534116 crossref_primary_10_1016_j_neuroimage_2013_11_009 crossref_primary_10_1162_netn_a_00299 crossref_primary_10_1016_j_neuroimage_2015_05_042 crossref_primary_10_1016_j_neuroimage_2021_118618 crossref_primary_10_1103_PhysRevE_111_014410 crossref_primary_10_1016_j_neuroimage_2014_11_027 crossref_primary_10_1016_j_tics_2017_04_007 crossref_primary_10_1038_s41562_020_01003_6 crossref_primary_10_1038_srep31280 crossref_primary_10_1371_journal_pone_0095648 crossref_primary_10_1162_netn_a_00175 crossref_primary_10_1371_journal_pcbi_1004352 crossref_primary_10_1093_brain_awv261 crossref_primary_10_1111_febs_15855 crossref_primary_10_1038_s42003_024_06083_y crossref_primary_10_1063_1_5062598 crossref_primary_10_1093_cercor_bhad416 crossref_primary_10_1038_s41467_020_18717_w crossref_primary_10_1016_j_neuroimage_2022_119051 crossref_primary_10_3389_fncom_2015_00001 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2012 Public Library of Science Freyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Freyer F, Roberts JA, Ritter P, Breakspear M (2012) A Canonical Model of Multistability and Scale-Invariance in Biological Systems. PLoS Comput Biol 8(8): e1002634. doi:10.1371/journal.pcbi.1002634 2012 Freyer et al 2012 Freyer et al |
Copyright_xml | – notice: COPYRIGHT 2012 Public Library of Science – notice: Freyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Freyer F, Roberts JA, Ritter P, Breakspear M (2012) A Canonical Model of Multistability and Scale-Invariance in Biological Systems. PLoS Comput Biol 8(8): e1002634. doi:10.1371/journal.pcbi.1002634 – notice: 2012 Freyer et al 2012 Freyer et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1002634 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
DocumentTitleAlternate | Multistability and Scale-Invariance in Biosystems |
EISSN | 1553-7358 |
ExternalDocumentID | 1313181112 oai_doaj_org_article_ca050eba9f54429e808dd16de4f595dc PMC3415415 2903871711 A302299016 22912567 10_1371_journal_pcbi_1002634 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Australia Germany |
GeographicLocations_xml | – name: Germany – name: Australia |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR IPNFZ ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. CGR CUY CVF ECM EIF H13 M0N M~E NPM PGMZT PV9 RZL WOQ PMFND 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM PUEGO AAPBV ABPTK |
ID | FETCH-LOGICAL-c633t-a604aba06dcf5b5dc16a310cf6d23bb8e93e86a05c87c0c6e72df34072c735833 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Sun Oct 01 00:20:33 EDT 2023 Wed Aug 27 01:24:37 EDT 2025 Thu Aug 21 18:33:52 EDT 2025 Fri Jul 11 04:08:55 EDT 2025 Fri Jul 25 10:29:53 EDT 2025 Tue Jun 10 20:32:58 EDT 2025 Fri Jun 27 04:43:05 EDT 2025 Fri Jun 27 03:32:31 EDT 2025 Wed Feb 19 01:49:04 EST 2025 Tue Jul 01 03:28:49 EDT 2025 Thu Apr 24 22:50:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Models, Theoretical Biophysics Gene Regulatory Networks Humans |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-a604aba06dcf5b5dc16a310cf6d23bb8e93e86a05c87c0c6e72df34072c735833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: FF PR MB. Performed the experiments: FF MB. Analyzed the data: FF MB. Contributed reagents/materials/analysis tools: JAR. Wrote the paper: FF JAR PR MB. The authors have declared that no competing interests exist. |
OpenAccessLink | https://doaj.org/article/ca050eba9f54429e808dd16de4f595dc |
PMID | 22912567 |
PQID | 1313181112 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_1313181112 doaj_primary_oai_doaj_org_article_ca050eba9f54429e808dd16de4f595dc pubmedcentral_primary_oai_pubmedcentral_nih_gov_3415415 proquest_miscellaneous_1034803605 proquest_journals_1313181112 gale_infotracacademiconefile_A302299016 gale_incontextgauss_ISR_A302299016 gale_incontextgauss_ISN_A302299016 pubmed_primary_22912567 crossref_citationtrail_10_1371_journal_pcbi_1002634 crossref_primary_10_1371_journal_pcbi_1002634 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-01 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2012 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | 17360679 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3544-9 20068583 - Nat Rev Neurosci. 2010 Feb;11(2):127-38 11062240 - J Biol Chem. 2001 Mar 16;276(11):8165-72 18812513 - Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14855-60 19571142 - J Neurosci. 2009 Jul 1;29(26):8512-24 17055746 - Neuroimage. 2007 Jan 1;34(1):220-34 16286933 - Nat Neurosci. 2005 Dec;8(12):1690-7 11878285 - Network. 2002 Feb;13(1):67-113 18369436 - PLoS Comput Biol. 2008 Mar;4(3):e1000046 15772163 - Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4771-6 18254657 - PLoS Biol. 2008 Feb;6(2):e11 15281141 - Hum Brain Mapp. 2004 Sep;23(1):53-72 1354387 - Prog Neurobiol. 1992 Oct;39(4):337-88 17632015 - Neuroimage. 2007 Sep 1;37(3):706-20 21310247 - Neuroimage. 2011 Sep 15;58(2):442-57 12239890 - Behav Brain Sci. 2001 Oct;24(5):793-810; discussion 810-48 18565765 - Neuroimage. 2008 Aug 15;42(2):649-62 10574295 - Clin Neurophysiol. 1999 Oct;110(10):1801-13 11127836 - Nat Neurosci. 2000 Nov;3 Suppl:1184-91 18769680 - PLoS Comput Biol. 2008;4(8):e1000092 6444544 - Cell. 1980 Jan;19(1):1-11 12005890 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041924 19145235 - Nat Rev Neurosci. 2009 Feb;10(2):113-25 11039701 - Biol Cybern. 2000 Oct;83(4):367-78 20083212 - Neuroimage. 2010 Sep;52(3):740-51 10681449 - Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2075-80 10816319 - Nat Neurosci. 2000 Jun;3(6):617-21 21182971 - Neuroimage. 2011 Jun 1;56(3):1202-21 6457992 - Nature. 1981 Nov 19;294(5838):217-23 9723616 - Nature. 1998 Aug 20;394(6695):780-4 11823801 - Nat Rev Neurosci. 2002 Jan;3(1):13-21 16280462 - Cereb Cortex. 2006 Sep;16(9):1296-313 5116412 - Sci Am. 1971 Dec;225(6):63-71 12111274 - Biol Cybern. 2002 Jun;86(6):457-71 12948688 - Neuroimage. 2003 Aug;19(4):1273-302 14642484 - Neuroimage. 2003 Nov;20(3):1743-55 3978150 - Biol Cybern. 1985;51(5):347-56 10592017 - Biol Cybern. 1999 Nov;81(5-6):415-24 11308514 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021903 19243224 - PLoS Biol. 2009 Feb 24;7(2):e44 20869386 - Prog Biophys Mol Biol. 2011 Mar;105(1-2):58-66 11848588 - Psychon Bull Rev. 2001 Dec;8(4):698-707 10659857 - Nature. 2000 Jan 20;403(6767):339-42 20045068 - Neuroimage. 2010 Sep;52(3):1041-58 18092890 - PLoS Biol. 2007 Dec;5(12):e328 12169266 - Neuroimage. 2002 Jul;16(3 Pt 1):822-35 19862351 - Physica D. 2009 Nov 1;238(21):2089-2118 9143444 - Cereb Cortex. 1997 Apr-May;7(3):237-52 16930418 - Eur J Neurosci. 2006 Aug;24(3):901-16 10062950 - Phys Rev Lett. 1996 Jul 29;77(5):960-963 17930642 - Phys Rev Lett. 2007 Sep 28;99(13):138103 20305717 - PLoS Biol. 2010 Mar;8(3):e1000332 21525275 - J Neurosci. 2011 Apr 27;31(17):6353-61 4412202 - Science. 1974 Nov 15;186(4164):645-7 12467598 - Neuron. 2002 Dec 5;36(5):955-68 11164733 - Trends Cogn Sci. 2001 Jan 1;5(1):26-36 |
References_xml | – reference: 17930642 - Phys Rev Lett. 2007 Sep 28;99(13):138103 – reference: 11039701 - Biol Cybern. 2000 Oct;83(4):367-78 – reference: 9723616 - Nature. 1998 Aug 20;394(6695):780-4 – reference: 16280462 - Cereb Cortex. 2006 Sep;16(9):1296-313 – reference: 18812513 - Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14855-60 – reference: 20869386 - Prog Biophys Mol Biol. 2011 Mar;105(1-2):58-66 – reference: 20068583 - Nat Rev Neurosci. 2010 Feb;11(2):127-38 – reference: 20083212 - Neuroimage. 2010 Sep;52(3):740-51 – reference: 12005890 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041924 – reference: 10816319 - Nat Neurosci. 2000 Jun;3(6):617-21 – reference: 3978150 - Biol Cybern. 1985;51(5):347-56 – reference: 19571142 - J Neurosci. 2009 Jul 1;29(26):8512-24 – reference: 16930418 - Eur J Neurosci. 2006 Aug;24(3):901-16 – reference: 18369436 - PLoS Comput Biol. 2008 Mar;4(3):e1000046 – reference: 10574295 - Clin Neurophysiol. 1999 Oct;110(10):1801-13 – reference: 16286933 - Nat Neurosci. 2005 Dec;8(12):1690-7 – reference: 11823801 - Nat Rev Neurosci. 2002 Jan;3(1):13-21 – reference: 19145235 - Nat Rev Neurosci. 2009 Feb;10(2):113-25 – reference: 18254657 - PLoS Biol. 2008 Feb;6(2):e11 – reference: 20305717 - PLoS Biol. 2010 Mar;8(3):e1000332 – reference: 17632015 - Neuroimage. 2007 Sep 1;37(3):706-20 – reference: 5116412 - Sci Am. 1971 Dec;225(6):63-71 – reference: 11164733 - Trends Cogn Sci. 2001 Jan 1;5(1):26-36 – reference: 15281141 - Hum Brain Mapp. 2004 Sep;23(1):53-72 – reference: 21525275 - J Neurosci. 2011 Apr 27;31(17):6353-61 – reference: 18565765 - Neuroimage. 2008 Aug 15;42(2):649-62 – reference: 15772163 - Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4771-6 – reference: 6457992 - Nature. 1981 Nov 19;294(5838):217-23 – reference: 14642484 - Neuroimage. 2003 Nov;20(3):1743-55 – reference: 4412202 - Science. 1974 Nov 15;186(4164):645-7 – reference: 19862351 - Physica D. 2009 Nov 1;238(21):2089-2118 – reference: 18769680 - PLoS Comput Biol. 2008;4(8):e1000092 – reference: 17360679 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3544-9 – reference: 10062950 - Phys Rev Lett. 1996 Jul 29;77(5):960-963 – reference: 12169266 - Neuroimage. 2002 Jul;16(3 Pt 1):822-35 – reference: 21310247 - Neuroimage. 2011 Sep 15;58(2):442-57 – reference: 9143444 - Cereb Cortex. 1997 Apr-May;7(3):237-52 – reference: 11127836 - Nat Neurosci. 2000 Nov;3 Suppl:1184-91 – reference: 12948688 - Neuroimage. 2003 Aug;19(4):1273-302 – reference: 6444544 - Cell. 1980 Jan;19(1):1-11 – reference: 10592017 - Biol Cybern. 1999 Nov;81(5-6):415-24 – reference: 12467598 - Neuron. 2002 Dec 5;36(5):955-68 – reference: 11062240 - J Biol Chem. 2001 Mar 16;276(11):8165-72 – reference: 12239890 - Behav Brain Sci. 2001 Oct;24(5):793-810; discussion 810-48 – reference: 10681449 - Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2075-80 – reference: 1354387 - Prog Neurobiol. 1992 Oct;39(4):337-88 – reference: 10659857 - Nature. 2000 Jan 20;403(6767):339-42 – reference: 11308514 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021903 – reference: 17055746 - Neuroimage. 2007 Jan 1;34(1):220-34 – reference: 21182971 - Neuroimage. 2011 Jun 1;56(3):1202-21 – reference: 19243224 - PLoS Biol. 2009 Feb 24;7(2):e44 – reference: 12111274 - Biol Cybern. 2002 Jun;86(6):457-71 – reference: 20045068 - Neuroimage. 2010 Sep;52(3):1041-58 – reference: 11848588 - Psychon Bull Rev. 2001 Dec;8(4):698-707 – reference: 18092890 - PLoS Biol. 2007 Dec;5(12):e328 – reference: 11878285 - Network. 2002 Feb;13(1):67-113 |
SSID | ssj0035896 |
Score | 2.4325979 |
Snippet | Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and... Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1002634 |
SubjectTerms | Behavior Biology Biomathematics Biophysics Dynamical systems Fluctuations Gene expression Gene Regulatory Networks Humans Invariants Mathematics Models, Theoretical Noise Parameter estimation Studies Time series Values |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA4yIHgRf2_XVaIInuJmmp9zHMVlFZyDujC3kiapDiztYGeE_e99L-mUrazsRaanySttvrwmX8h73yPkTY35nao0LMrImSydZk4sAoul8FJIHnTKcv2y0ucX8vNara-V-sKYsCwPnIE79Y4rHmu3aJSEuTNabkOY6xBloxYqeJx9Yc07bKbyHCyUTZW5sCgOM0Kuh6Q5Yeanwxi92_p6kwRItZCTRSlp948z9Gx72fU30c-_oyivLUtnD8j9gU_SZe7HQ3Into_I3Vxh8uoxWS0pYNel5Eeaqt7QrqEpihBoYQqMvaKuDbQHg8g27W_YO6Mj0E1Ls0BTujULPvdPyMXZx-8fztlQQoF5LcSOOc2lqx3XwTeqBrjm2gGh840OpahrGxciWg0Qe2s89zqaMjQCRdO8EZiQ9ZTM4CXjEaEWNlbWxNJJ1IADauait7EBvmIksARXEHHAsPKDvjiWubis0qGZgX1GhqRC5KsB-YKw8a5t1te4xf49Ds9oi-rY6Q_wmWrwmeo2nynIaxzcCvUvWgyw-eH2fV99-raqlgJIDZ4V6n8afZ0YvR2Mmg46692Q1ACQoa7WxPIIPenQqR66CD8LS01ZkJODd93c_Gpshm8fD3RcG7s92HAhLVAQrgryLDvjCAw8FrirNgUxEzedIDdtaTc_k744DK-C6_h_QP2c3AOKWeaQyRMy2_3axxdA43b1y_TF_gFL3kRb priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXxPcyBjIIiSezNP7sEyoT04ZEHxiT-hY5trNVqpKytpP233PnuIGgAUqe4suHz2f75_jud4S8qzC-UxaaBRFyJgqrmOUTz0LBneAi9ypGuX6dqZNz8WUu5-mH2zq5Ve7GxDhQ-9bhP_LDMYfDQM8sPq5-MMwahburKYXGXXIPqcvQpUvP-wUXlybm58LUOExzMU-hc1yPD1NLfVi5ahFpSBUXg6kpMvj34_RotWzXt4HQP30pf5ucjh-RhwlV0mlnBo_JndA8Ife7PJM3T8lsSo9s08YQSIrZz5a0rWmMvQVwGN1jb6htPD0DgcBOm2tYQaM50EVDu6fEWxO9-TNyfvz5-9EJS4kUmFOcb5hVubCVzZV3taykd2NlAda5WvmCV5UJEx6Msrl0RrvcqaALX3OkTnOaY1jWczKCjwx7hBpYXhkdCiuQCQ4Amg3OhBpQixaAFWxG-E6HpUss45jsYlnGrTMNq41OJSVqvkyazwjr71p1LBv_kf-EzdPLIkd2vNBeXZSpy5UOKpSHyk5qKWDWDSY33o-VD6KWE1BCRt5i45bIgtGgm82F3a7X5enZrJxygDa4Y6j-KvRtIPQ-CdUtVNbZFNoAKkN2rYHkHlrSrlLr8pdZZ-RgZ123F7_pi2EEwG0d24R2CzI5FwaASC4z8qIzxl4x8FpAsEpnRA_MdKC5YUmzuIws49C8Es79f3_WS_IAIGTRuUQekNHmahteAUzbVK9jX_wJPaY58A priority: 102 providerName: ProQuest |
Title | A Canonical Model of Multistability and Scale-Invariance in Biological Systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22912567 https://www.proquest.com/docview/1313181112 https://www.proquest.com/docview/1034803605 https://pubmed.ncbi.nlm.nih.gov/PMC3415415 https://doaj.org/article/ca050eba9f54429e808dd16de4f595dc http://dx.doi.org/10.1371/journal.pcbi.1002634 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3vi9MwGH652yH4Rfx91XNEEfzUo2vSJPsgsunNU7ghp4N9K2mSnoPRznUT99_7Ju2KlR3KxsqaN2vz5E3zZEmeF-B15vZ3JrEILbNRyGLFQ0WHJrQx1YyyyHC_y_Vqyi9n7PM8mR_BPmZrA2B1cGjn4knN1svzXz9277DBv_VRG8Rgn-l8pbOFlxTllB3DCfZNwjXVK9bOK9BE-ohdLlhOKPBbs5nutl_pdFZe0799cvdWy7I6REv_Xl35R3c1uQ_3Gp5JRrVjPIAjWzyEO3Xkyd0jmI4IYlr6TZHER8MhZU786kKki37B7I6owpAKDWy4KH7imNo5CFkUpBZu8llrIejqMcwmF9_eX4ZNaIVQc0o3oeIRU5mKuNF5kiVGD7hCoqdzbmKaZdIOqZVcRYmWQkeaWxGbnDoxNe1go_QJ9PAm7SkQiQMuKWysmNOGQ8qmrJY2Rx4jGLIHFQDdY5jqRnfchb9Ypn4yTeD4o4YkdcinDfIBhG2uVa278Q_7saue1tapZvsT5fombRphqrFAkc3UME8Y9sNWRtKYATeW5ckQQQjglavc1OliFG7hzY3aVlX66es0HVEkO24Okd9qdN0xetMY5SUWVqtmswNC5vS2OpanzpP2haqwiPiS2AXFAZztvetw8ss2GZ8JbqJHFbbcok1EmURqEiUBPK2dsQUGL4uclosARMdNO8h1U4rFd687jtWb4PvZf1z3OdxFZhnXKyXPoLdZb-0LZG-brA_HYi7wU04-9uFkNP4wnuBxfDH9ct33_4j0fZP9DcNASFk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEIIL4t2FAgsCcTJ11l57c0AoFKqEtjnQVsrNeL3eEinaDU0Cyp_iNzLjfcCiAqcqOcWzD49nPN_E8yDkRYr5nXGkqBOOUREZSQ0fZNRF3AouWCZ9luvRRI5OxcdpPN0iP5pcGAyrbPZEv1FnpcX_yHf7HD4JaGb0dvGVYtcoPF1tWmhUYnHgNt_BZVu-Gb-H9X0ZRfsfTvZGtO4qQK3kfEWNZMKkhsnM5nEaZ7YvDWAcm8ss4mmauAF3iTQstomyzEqnoiznWEfMKo45SnDfK-QqGF6GGqWmrYMHo74fGLbioYqLaZ2qx1V_t5aM1wubznzZU8lFxxT6jgGtXegt5uXyItD7Z-zmb8Zw_xa5WaPYcFiJ3W2y5Yo75FrV13Jzl0yG4Z4pSp9yGWK3tXlY5qHP9QUw6sNxN6EpsvAYCBwdF9_AY0fxC2dFWN3FX1qXU79HTi-FxfdJD17SbZMwAXcuUS4yAivPASA0ziYuB5SkBGATExDe8FDbuqo5NteYa39Up8C7qViikfO65nxAaHvVoqrq8R_6d7g8LS3W5PY_lOdnulZxbWFCzKVmkMcCrLxLWJJlfZk5kccDYEJAnuPiaqy6UWBYz5lZL5d6fDzRQw5QCk8o5V-JPnWIXtVEeQmTtaZOpQCWYTWvDuU2SlIzqaX-pUYB2Wmk6-LhZ-0w7Dh4jGQKV66BhnGRAPBhcUAeVMLYMgYeC4hZqoCojph2ONcdKWZffFVzWN4Yvg___VpPyfXRydGhPhxPDh6RGwBfoyocc4f0Vudr9xgg4ip94vUyJJ8veyP4CV5ldyk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYgXxPcCAwwC8eQ1jR07fUCobEwrgwoxJvUtOLYzKlVJWVtQ_zX-Ou6cDwga8DS1D1V9SePz3fl39X0Q8izD_M44UswJFzIRack0H1rmIm4EF6GVPsv1_UQenoi303i6RX40uTAYVtnYRG-obWnwP_L-gMMrAc2M-nkdFvFh_-DV4ivDDlJ40tq006hE5MhtvoP7tnw53oe1fh5FB28-7R2yusMAM5LzFdMyFDrTobQmj7PYmoHUgHdMLm3EsyxxQ-4SqcPYJMqERjoV2ZxjTTGjOOYrwX0vkcvweYA6pqatswejvjcYtuVhiotpnbbH1aBfS8nuwmQzXwJVctHZFn33gHaP6C3m5fI8APxnHOdvG-PBDXK9RrR0VIngTbLlilvkStXjcnObTEZ0TxelT7-k2HltTsuc-rxfAKY-NHdDdWHpMRA4Ni6-gfeOokhnBa3u4i-tS6vfIScXwuK7pAcP6bYJTcC1S5SLtMAqdAAOtTOJywExKQE4RQeENzxMTV3hHBttzFN_bKfA06lYkiLn05rzAWHtVYuqwsd_6F_j8rS0WJ_bf1Genaa1uqcGJhS6TA_zWMCO75IwsXYgrRN5PAQmBOQpLm6KFTgKlOVTvV4u0_HxJB1xgFV4Win_SvSxQ_SiJspLmKzRdVoFsAwre3Uot1GSmkkt018qFZCdRrrOH37SDoP1wSMlXbhyDTQhFwmAoDAOyL1KGFvGwM8CepYqIKojph3OdUeK2Rdf4RyWN4b3_X8_1mNyFUxA-m48OXpArgGSjarIzB3SW52t3UNAi6vskVdLSj5ftB34Cf-xe18 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+canonical+model+of+multistability+and+scale-invariance+in+biological+systems&rft.jtitle=PLoS+computational+biology&rft.au=Freyer%2C+Frank&rft.au=Roberts%2C+James+A&rft.au=Ritter%2C+Petra&rft.au=Breakspear%2C+Michael&rft.date=2012-08-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=8&rft.issue=8&rft.spage=e1002634&rft_id=info:doi/10.1371%2Fjournal.pcbi.1002634&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |