Bismuthene for highly efficient carbon dioxide electroreduction reaction
Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO 2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 1088 - 8 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.02.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO
2
reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO
−
) formation from CO
2
reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at −580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO
2
reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO
−
indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields.
Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, the authors show a large-scale synthesis of free-standing Bismuthene and its electrocatalytic activity for CO
2
reduction to formate. |
---|---|
AbstractList | Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO-) formation from CO2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at -580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO- indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields.Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO-) formation from CO2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at -580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO- indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields. Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO 2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO − ) formation from CO 2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at −580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO 2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO − indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, the authors show a large-scale synthesis of free-standing Bismuthene and its electrocatalytic activity for CO 2 reduction to formate. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, the authors show a large-scale synthesis of free-standing Bismuthene and its electrocatalytic activity for CO2 reduction to formate. Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO−) formation from CO2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at −580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO− indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields.Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, the authors show a large-scale synthesis of free-standing Bismuthene and its electrocatalytic activity for CO2 reduction to formate. Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO-) formation from CO2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at -580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO- indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields. Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO 2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO − ) formation from CO 2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at −580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO 2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO − indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields. Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO ) formation from CO reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at -580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields. |
ArticleNumber | 1088 |
Author | Xu, Weilin Wang, Jiawei Song, Ping Song, Shuyan Mavrikakis, Manos Yang, Fa Yao, Shuang Deng, Ruiping Peng, Zhangquan Schimmenti, Roberto Lin, Yue Elnabawy, Ahmed O. |
Author_xml | – sequence: 1 givenname: Fa surname: Yang fullname: Yang, Fa organization: State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Science and Technology of China – sequence: 2 givenname: Ahmed O. orcidid: 0000-0002-8911-1916 surname: Elnabawy fullname: Elnabawy, Ahmed O. organization: Department of Chemical & Biological Engineering, University of Wisconsin-Madison – sequence: 3 givenname: Roberto surname: Schimmenti fullname: Schimmenti, Roberto organization: Department of Chemical & Biological Engineering, University of Wisconsin-Madison – sequence: 4 givenname: Ping surname: Song fullname: Song, Ping organization: State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences – sequence: 5 givenname: Jiawei surname: Wang fullname: Wang, Jiawei organization: State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences – sequence: 6 givenname: Zhangquan surname: Peng fullname: Peng, Zhangquan organization: State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences – sequence: 7 givenname: Shuang surname: Yao fullname: Yao, Shuang organization: State Key Laboratory of Rare Earth, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences – sequence: 8 givenname: Ruiping surname: Deng fullname: Deng, Ruiping organization: State Key Laboratory of Rare Earth, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences – sequence: 9 givenname: Shuyan orcidid: 0000-0002-7758-752X surname: Song fullname: Song, Shuyan organization: State Key Laboratory of Rare Earth, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences – sequence: 10 givenname: Yue orcidid: 0000-0001-5333-511X surname: Lin fullname: Lin, Yue organization: University of Science and Technology of China – sequence: 11 givenname: Manos surname: Mavrikakis fullname: Mavrikakis, Manos email: emavrikakis@wisc.edu organization: Department of Chemical & Biological Engineering, University of Wisconsin-Madison – sequence: 12 givenname: Weilin orcidid: 0000-0001-7140-8060 surname: Xu fullname: Xu, Weilin email: weilinxu@ciac.ac.cn organization: State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32107389$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1624255$$D View this record in Osti.gov |
BookMark | eNp9Uk1v1TAQtFARLaV_gAOK4MIl4K_Y8QUJqkIrVeICZ8uxNy9-yrOLnVT039d5aaHtoT7Y1u7MeLy7r9FBiAEQekvwJ4JZ-zlzwoWsMcU14YrwWr1ARxRzUhNJ2cGD-yE6yXmLy2KKtJy_QoeMEixZq47Q-Tefd_M0QICqj6ka_GYYbyroe289hKmyJnUxVM7Hv95BBSPYKcUEbraTL4kEZn95g172Zsxwcnceo9_fz36dnteXP39cnH69rK1gbKoFAxANdqqXtphxLSt7Q63BPRadVB2zjvaqa6TiBpTkrHVGMk4tLzGi2DG6WHVdNFt9lfzOpBsdjdf7QEwbbdLk7QgaHDbCtViYlvKuM51rOiKZAmcltdAXrS-r1tXc7Uq0_DeZ8ZHo40zwg97Eay1xqX3bFIH3q0DMk9fZ-gnsYGMIpUiaCMpps4A-3r2S4p8Z8qR3PlsYRxMgzllTJhTHQnJZoB-eQLdxTqHUc0EJgVVDREG9e2j7n9_7rhZAuwJsijkn6HVxZpYulV_4UROslxnS6wzpMkN6P0N6odIn1Hv1Z0lsJeUCDhtI_20_w7oFgkrYkg |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00302 crossref_primary_10_1021_acs_energyfuels_2c02321 crossref_primary_10_35848_1347_4065_abf74e crossref_primary_10_1002_eem2_12184 crossref_primary_10_1002_slct_202100064 crossref_primary_10_1016_j_jcou_2021_101822 crossref_primary_10_1002_smll_202100602 crossref_primary_10_1021_acscatal_4c00858 crossref_primary_10_1002_anie_202411575 crossref_primary_10_1002_advs_202204472 crossref_primary_10_1021_acsenergylett_1c01965 crossref_primary_10_1016_j_jcat_2022_04_001 crossref_primary_10_1039_D0EE01486A crossref_primary_10_1002_adfm_202006997 crossref_primary_10_1039_D3NR04962K crossref_primary_10_3390_nano14090752 crossref_primary_10_1016_j_jcis_2021_12_075 crossref_primary_10_1039_D3NJ00562C crossref_primary_10_1002_ange_202008316 crossref_primary_10_1007_s12274_023_6269_7 crossref_primary_10_1016_j_jallcom_2021_160514 crossref_primary_10_1016_j_jcou_2024_102888 crossref_primary_10_1016_j_apcatb_2024_123874 crossref_primary_10_1039_D4MA00232F crossref_primary_10_1007_s12598_024_02803_9 crossref_primary_10_1021_acsami_3c10011 crossref_primary_10_1039_D4CP04674A crossref_primary_10_1002_smll_202400913 crossref_primary_10_1039_D3EE02029K crossref_primary_10_1002_adma_202404980 crossref_primary_10_1002_smll_202101128 crossref_primary_10_1002_asia_202201165 crossref_primary_10_1021_acssuschemeng_4c06093 crossref_primary_10_1021_acs_jpclett_2c02180 crossref_primary_10_3390_catal13050857 crossref_primary_10_1016_j_jcis_2021_06_010 crossref_primary_10_1021_acsanm_2c03408 crossref_primary_10_1002_ange_202311223 crossref_primary_10_1021_acs_nanolett_0c03345 crossref_primary_10_1016_j_jechem_2021_08_004 crossref_primary_10_1021_acs_inorgchem_1c03938 crossref_primary_10_1016_j_cej_2025_160314 crossref_primary_10_1016_j_susc_2021_121849 crossref_primary_10_3390_molecules25194457 crossref_primary_10_1039_D2NR03865J crossref_primary_10_1016_j_nanoen_2021_106780 crossref_primary_10_1021_acscatal_2c02715 crossref_primary_10_1002_anie_202104747 crossref_primary_10_1016_j_cej_2023_143075 crossref_primary_10_1039_D0SE00764A crossref_primary_10_1021_acs_jpcc_1c03574 crossref_primary_10_1039_D4EY00209A crossref_primary_10_1021_acscatal_1c05135 crossref_primary_10_1002_adfm_202424753 crossref_primary_10_1002_anie_202407772 crossref_primary_10_1039_D0NR05578F crossref_primary_10_1016_j_ccst_2022_100081 crossref_primary_10_1021_jacs_3c12321 crossref_primary_10_1039_D0CS00071J crossref_primary_10_1002_ange_202014341 crossref_primary_10_1016_j_mattod_2024_12_007 crossref_primary_10_1021_acsanm_2c03503 crossref_primary_10_1016_j_susmat_2024_e01042 crossref_primary_10_1016_j_jechem_2024_02_023 crossref_primary_10_1002_ange_202110387 crossref_primary_10_1016_j_mattod_2024_08_024 crossref_primary_10_1002_sus2_117 crossref_primary_10_1016_j_apcatb_2021_120781 crossref_primary_10_1039_D1TA01516H crossref_primary_10_1038_s41467_023_44480_9 crossref_primary_10_1038_s41565_021_00974_5 crossref_primary_10_1002_cssc_202200752 crossref_primary_10_1039_D1TA03676A crossref_primary_10_1021_acscatal_1c05029 crossref_primary_10_1002_anie_202014341 crossref_primary_10_1021_acs_jpcc_0c02385 crossref_primary_10_1021_acsami_1c25217 crossref_primary_10_1093_nsr_nwab142 crossref_primary_10_3390_nano13111767 crossref_primary_10_1002_anie_202408849 crossref_primary_10_1021_acs_nanolett_4c00807 crossref_primary_10_1021_jacsau_3c00002 crossref_primary_10_1021_acs_jpclett_2c01509 crossref_primary_10_1002_smll_202206440 crossref_primary_10_1016_j_cej_2024_152855 crossref_primary_10_1016_j_jcis_2022_05_054 crossref_primary_10_1016_j_apcatb_2023_123342 crossref_primary_10_1093_nsr_nwaa058 crossref_primary_10_1039_D0TC03814H crossref_primary_10_1039_D0CS00025F crossref_primary_10_1039_D3NR05853K crossref_primary_10_1002_ange_202313858 crossref_primary_10_1002_anie_202110387 crossref_primary_10_1002_anie_202317628 crossref_primary_10_1021_jacs_3c04727 crossref_primary_10_1002_ange_202208414 crossref_primary_10_1039_D1CS00330E crossref_primary_10_1039_D1EE01495A crossref_primary_10_1002_adma_202503169 crossref_primary_10_1002_adma_202312676 crossref_primary_10_1002_smll_202301639 crossref_primary_10_1021_acssuschemeng_1c08133 crossref_primary_10_1002_adfm_202110020 crossref_primary_10_1007_s10562_022_04129_6 crossref_primary_10_1021_acsami_4c01672 crossref_primary_10_1039_D3DT00598D crossref_primary_10_1155_2023_9933049 crossref_primary_10_1007_s12274_022_4949_3 crossref_primary_10_1016_j_apcatb_2023_123552 crossref_primary_10_1039_D0CE00610F crossref_primary_10_1002_admt_202300818 crossref_primary_10_1016_j_apsusc_2023_156867 crossref_primary_10_1016_j_apsusc_2021_149380 crossref_primary_10_1021_acsanm_3c03483 crossref_primary_10_1002_asia_202100305 crossref_primary_10_1039_D0RA09763B crossref_primary_10_1002_advs_202104138 crossref_primary_10_1039_D0NR08237F crossref_primary_10_1039_D0CC08261A crossref_primary_10_1002_eem2_12490 crossref_primary_10_3390_nano15020121 crossref_primary_10_1007_s40843_022_2346_5 crossref_primary_10_1016_j_jcis_2023_09_035 crossref_primary_10_1039_D3EY00034F crossref_primary_10_1039_D4MH01153H crossref_primary_10_1002_aenm_202200970 crossref_primary_10_1021_acs_jpcc_1c02749 crossref_primary_10_1016_j_apcatb_2021_120693 crossref_primary_10_1002_cssc_202101122 crossref_primary_10_1007_s12274_024_6658_6 crossref_primary_10_1038_s41467_024_47498_9 crossref_primary_10_1007_s41918_022_00140_y crossref_primary_10_1016_j_cej_2020_126965 crossref_primary_10_1002_anie_202008316 crossref_primary_10_1021_acs_chemrev_1c00981 crossref_primary_10_1039_D1QM01557E crossref_primary_10_1016_j_cej_2025_159732 crossref_primary_10_1021_jacs_2c00937 crossref_primary_10_1002_admi_202102042 crossref_primary_10_1007_s12274_023_6073_4 crossref_primary_10_1039_D1CP05008G crossref_primary_10_1021_acscatal_2c02627 crossref_primary_10_1039_D2TA03441G crossref_primary_10_1039_D2NR01900K crossref_primary_10_1002_ange_202104747 crossref_primary_10_1021_acs_chemrev_1c00735 crossref_primary_10_1021_acs_jpcc_1c02833 crossref_primary_10_1039_D4NJ03650F crossref_primary_10_1002_advs_202105204 crossref_primary_10_1073_pnas_2312876120 crossref_primary_10_1002_anie_202313858 crossref_primary_10_1039_D4TA02315C crossref_primary_10_1039_D2CC06503G crossref_primary_10_1002_smll_202201633 crossref_primary_10_1021_acsaem_3c01448 crossref_primary_10_1016_j_checat_2022_01_021 crossref_primary_10_1016_j_ssc_2022_114690 crossref_primary_10_1016_j_apsusc_2024_160844 crossref_primary_10_3390_app13126885 crossref_primary_10_1002_admi_202300186 crossref_primary_10_1021_acscatal_1c01899 crossref_primary_10_1016_j_cjsc_2024_100301 crossref_primary_10_1002_cssc_202301452 crossref_primary_10_1016_j_cej_2024_153105 crossref_primary_10_1021_acsomega_4c09642 crossref_primary_10_1039_D4GC00514G crossref_primary_10_1016_j_jcou_2022_102031 crossref_primary_10_1016_j_jcou_2023_102456 crossref_primary_10_1039_D3CP02393A crossref_primary_10_1016_j_ymben_2024_04_002 crossref_primary_10_1007_s12274_021_3677_4 crossref_primary_10_1002_tcr_202300307 crossref_primary_10_1016_j_jallcom_2024_174220 crossref_primary_10_1039_D1NR00649E crossref_primary_10_1063_5_0185886 crossref_primary_10_1039_D2CS00570K crossref_primary_10_1016_j_chemphys_2025_112660 crossref_primary_10_1016_j_nanoen_2022_108031 crossref_primary_10_1021_acsenergylett_2c00326 crossref_primary_10_1002_adfm_202402220 crossref_primary_10_1016_j_surfin_2024_104975 crossref_primary_10_1016_j_mtbio_2023_100825 crossref_primary_10_1039_D1RE00214G crossref_primary_10_1039_D3EY00229B crossref_primary_10_1002_cssc_202301719 crossref_primary_10_1016_j_apcata_2024_120080 crossref_primary_10_1021_acs_energyfuels_3c01847 crossref_primary_10_1038_s41467_025_57463_9 crossref_primary_10_1016_j_ccr_2020_213483 crossref_primary_10_1016_j_checat_2023_100721 crossref_primary_10_1002_elsa_202400014 crossref_primary_10_1002_adfm_202107182 crossref_primary_10_1007_s00339_024_07719_w crossref_primary_10_1016_j_inoche_2024_112739 crossref_primary_10_1088_1361_6528_ac2d08 crossref_primary_10_1002_adma_202100910 crossref_primary_10_1016_j_jmst_2022_02_038 crossref_primary_10_1016_j_mtphys_2023_101096 crossref_primary_10_1002_cey2_510 crossref_primary_10_1002_asia_202301152 crossref_primary_10_1039_D4TA03766A crossref_primary_10_1360_TB_2024_0424 crossref_primary_10_1021_acsami_2c01152 crossref_primary_10_1002_aenm_202303889 crossref_primary_10_1021_acscatal_1c02495 crossref_primary_10_1039_D2NR03433F crossref_primary_10_1039_D3QM00262D crossref_primary_10_1007_s11426_023_1565_5 crossref_primary_10_1039_D2NA00141A crossref_primary_10_1002_aenm_202001709 crossref_primary_10_1007_s12598_021_01728_x crossref_primary_10_1016_j_jcis_2023_10_058 crossref_primary_10_1021_acsmaterialslett_0c00280 crossref_primary_10_1039_D1GC04824D crossref_primary_10_1021_acs_accounts_3c00020 crossref_primary_10_1007_s11426_024_2384_6 crossref_primary_10_1002_smll_202303608 crossref_primary_10_1002_smtd_202301512 crossref_primary_10_1016_j_mattod_2024_05_002 crossref_primary_10_1002_aic_18389 crossref_primary_10_1039_D0EE02981E crossref_primary_10_1002_aenm_202301597 crossref_primary_10_1016_j_nanoen_2022_107970 crossref_primary_10_1039_D4IM00126E crossref_primary_10_1007_s12274_022_5058_z crossref_primary_10_1039_D3SU00445G crossref_primary_10_1002_adfm_202424357 crossref_primary_10_1016_j_isci_2023_108434 crossref_primary_10_1002_cctc_202401007 crossref_primary_10_1039_D2TA06640H crossref_primary_10_1002_anie_202311223 crossref_primary_10_1016_j_checat_2023_100621 crossref_primary_10_3390_catal15010052 crossref_primary_10_1002_cctc_202400959 crossref_primary_10_1016_j_apcatb_2023_122400 crossref_primary_10_1088_2631_7990_ac7a6e crossref_primary_10_1007_s12274_022_4770_z crossref_primary_10_1016_j_apcatb_2023_122768 crossref_primary_10_3390_catal14080500 crossref_primary_10_1002_ange_202408849 crossref_primary_10_1021_acs_inorgchem_4c03106 crossref_primary_10_1002_ange_202411575 crossref_primary_10_1016_j_jallcom_2024_175483 crossref_primary_10_1016_j_jelechem_2022_117018 crossref_primary_10_1002_ange_202317628 crossref_primary_10_1039_D4CC05357E crossref_primary_10_1039_D4EE02356K crossref_primary_10_1088_1361_6528_acbf55 crossref_primary_10_1016_j_jechem_2021_04_059 crossref_primary_10_1002_cssc_202002184 crossref_primary_10_1002_advs_202400874 crossref_primary_10_1016_j_apenergy_2020_115557 crossref_primary_10_1002_anie_202208414 crossref_primary_10_3390_ijms24129952 crossref_primary_10_1016_j_checat_2022_10_001 crossref_primary_10_1002_ange_202407772 crossref_primary_10_1016_j_matre_2023_100191 crossref_primary_10_1016_j_gee_2021_11_004 crossref_primary_10_1021_acscatal_0c05317 crossref_primary_10_1016_j_cej_2024_150280 crossref_primary_10_1016_j_materresbull_2023_112174 crossref_primary_10_1039_D2TA00590E crossref_primary_10_1039_D4TA06898J crossref_primary_10_1016_j_cej_2021_128671 crossref_primary_10_1016_j_jcou_2021_101643 crossref_primary_10_1021_acscatal_3c04768 crossref_primary_10_1039_D4EE01139B crossref_primary_10_1016_j_jcat_2023_05_008 crossref_primary_10_1039_D3CP05276A crossref_primary_10_1103_PhysRevB_105_075402 crossref_primary_10_1016_j_isci_2023_108499 crossref_primary_10_1039_D3CP02037A crossref_primary_10_1039_D0CC06756C crossref_primary_10_1039_D3SU90049E crossref_primary_10_1016_j_asems_2022_100007 crossref_primary_10_1007_s40820_022_00862_0 crossref_primary_10_1021_acscatal_1c03652 crossref_primary_10_1016_j_checat_2023_100767 crossref_primary_10_1016_j_infrared_2022_104103 crossref_primary_10_1039_D3SE00813D crossref_primary_10_1016_j_checat_2024_101057 crossref_primary_10_1021_acsami_3c14930 crossref_primary_10_1007_s11426_023_1799_y crossref_primary_10_1002_adfm_202400928 crossref_primary_10_1016_j_ultsonch_2024_107189 crossref_primary_10_1016_j_jallcom_2022_163707 crossref_primary_10_1016_j_jclepro_2023_136017 crossref_primary_10_1002_aic_16299 crossref_primary_10_1002_cssc_202100543 crossref_primary_10_1002_adfm_202207136 crossref_primary_10_1039_D3TC00587A crossref_primary_10_59717_j_xinn_mater_2023_100014 crossref_primary_10_1021_acsnano_0c06656 crossref_primary_10_1039_D4NR00361F crossref_primary_10_1039_D0SE00445F crossref_primary_10_1073_pnas_2420922122 crossref_primary_10_1002_anie_202005577 crossref_primary_10_1016_j_enconman_2024_119038 crossref_primary_10_1002_adma_202304414 crossref_primary_10_1016_j_aca_2022_340510 crossref_primary_10_1039_D4TA01366B crossref_primary_10_1039_D1TC01766G crossref_primary_10_1039_D2TA08521F crossref_primary_10_1016_j_ccr_2025_216562 crossref_primary_10_1016_j_cplett_2022_140012 crossref_primary_10_1016_j_mssp_2024_109055 crossref_primary_10_1021_acsnano_2c12863 crossref_primary_10_1002_smll_202412527 crossref_primary_10_1016_j_nanoen_2022_107815 crossref_primary_10_1515_nanoph_2022_0045 crossref_primary_10_1016_j_fuel_2024_131416 crossref_primary_10_1016_j_jechem_2021_09_009 crossref_primary_10_1021_acsaem_2c02013 crossref_primary_10_1039_D1NR06038D crossref_primary_10_1039_D3NA00631J crossref_primary_10_1088_1361_648X_ac386a crossref_primary_10_1021_acsaem_2c03105 crossref_primary_10_1002_adfm_202316167 crossref_primary_10_1016_j_cattod_2024_114706 crossref_primary_10_1039_D3EE01999C crossref_primary_10_1002_smll_202401777 crossref_primary_10_1021_acsenergylett_1c00612 crossref_primary_10_6023_A22010012 crossref_primary_10_1039_C9CS00821G crossref_primary_10_1002_anie_202016330 crossref_primary_10_1021_acssuschemeng_3c06222 crossref_primary_10_1103_PhysRevB_110_235403 crossref_primary_10_1002_adfm_202107280 crossref_primary_10_1016_j_apcatb_2023_123493 crossref_primary_10_1039_D4CC04547E crossref_primary_10_1021_acsanm_4c03998 crossref_primary_10_1002_ange_202010903 crossref_primary_10_1021_acsanm_4c05813 crossref_primary_10_1039_D3NR00454F crossref_primary_10_1039_D3CP00188A crossref_primary_10_1002_smll_202206003 crossref_primary_10_1016_j_seppur_2025_132263 crossref_primary_10_1016_j_apmt_2021_101360 crossref_primary_10_1039_D1CY01063H crossref_primary_10_1021_acs_jpcc_3c00597 crossref_primary_10_1021_acsnano_2c11430 crossref_primary_10_1002_ange_202016330 crossref_primary_10_3390_catal15030198 crossref_primary_10_1149_1945_7111_adb806 crossref_primary_10_1002_adma_202008631 crossref_primary_10_1002_chem_202403770 crossref_primary_10_1016_j_apcatb_2023_123140 crossref_primary_10_1002_ange_202005577 crossref_primary_10_1002_asia_202300110 crossref_primary_10_3390_molecules28248154 crossref_primary_10_1002_anie_202010903 crossref_primary_10_1016_j_nanoen_2022_107277 crossref_primary_10_1016_j_apcatb_2022_121101 |
Cites_doi | 10.1021/jacs.6b02878 10.1103/PhysRev.25.753 10.3390/molecules24112032 10.1002/cssc.201500694 10.1016/j.nanoen.2017.05.065 10.1016/j.matlet.2015.08.082 10.1002/anie.201509800 10.1103/PhysRevB.54.11169 10.1021/acs.jpclett.9b01406 10.1103/PhysRevLett.81.2819 10.1364/OME.4.002133 10.1038/nature13249 10.1021/acs.nanolett.6b02931 10.1002/ange.201810538 10.1021/acs.chemrev.6b00558 10.1103/PhysRevB.13.5188 10.1021/ja00390a011 10.1021/acs.nanolett.5b03615 10.1103/PhysRevLett.102.073005 10.1016/j.jcou.2017.05.024 10.1021/acscatal.6b01297 10.1126/science.aai8142 10.1021/jp411383j 10.1021/nn2024557 10.1016/0927-0256(96)00008-0 10.1021/jp047349j 10.1002/anie.201507568 10.1039/C8NR03068E 10.1002/anie.201907674 10.1021/acs.jpcc.8b07865 10.1002/adma.201603304 10.1039/C9EE00018F 10.1038/nature16455 10.1021/jacs.9b08259 10.1002/aenm.201801536 10.1002/anie.201506966 10.1002/anie.201807466 10.1103/PhysRevB.79.205412 10.1126/sciadv.1701069 10.1016/j.nanoen.2018.09.053 10.1002/smll.201701349 10.1126/sciadv.aaq0330 10.1103/PhysRevB.82.045414 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.94.014115 10.1016/j.nanoen.2016.11.004 10.1021/ja309317u 10.1002/cssc.201100220 10.1007/BF00631119 10.1002/anie.201204675 10.1063/1.4865107 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-020-14914-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_ed0a6d806a824bbabd5b1739edc72cef PMC7046785 1624255 32107389 10_1038_s41467_020_14914_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U1601211; 21633008 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U1601211 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21633008 – fundername: ; grantid: U1601211; 21633008 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 AAADF AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c633t-63ee650d9f7c184d8318452ca0f06b79b3cd2f9b5794ae97438da7342c4b57193 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:28:44 EDT 2025 Thu Aug 21 18:24:32 EDT 2025 Mon Jul 10 02:31:06 EDT 2023 Fri Jul 11 06:03:16 EDT 2025 Wed Aug 13 04:05:04 EDT 2025 Wed Feb 19 02:05:38 EST 2025 Thu Apr 24 22:59:47 EDT 2025 Tue Jul 01 04:08:51 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-63ee650d9f7c184d8318452ca0f06b79b3cd2f9b5794ae97438da7342c4b57193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231; 21925205; U1601211; 21633008; 2017YFE9127900; 21733004; 21721003; 2018YFB1502302; 21972133; 20160519005JH; 20170414019JH USDOE Office of Science (SC) K.C. Wong Education Foundation and Science and Technology Innovation Foundation of Jilin Province for Talents Cultivation National Natural Science Foundation of China (NSFC) Jilin Youth Foundation |
ORCID | 0000-0001-5333-511X 0000-0002-8911-1916 0000-0002-7758-752X 0000-0001-7140-8060 0000000171408060 000000015333511X 000000027758752X 0000000289111916 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-14914-9 |
PMID | 32107389 |
PQID | 2366609516 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ed0a6d806a824bbabd5b1739edc72cef pubmedcentral_primary_oai_pubmedcentral_nih_gov_7046785 osti_scitechconnect_1624255 proquest_miscellaneous_2369406747 proquest_journals_2366609516 pubmed_primary_32107389 crossref_citationtrail_10_1038_s41467_020_14914_9 crossref_primary_10_1038_s41467_020_14914_9 springer_journals_10_1038_s41467_020_14914_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-27 |
PublicationDateYYYYMMDD | 2020-02-27 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhang, Sun, Guo, Bond, Zhang (CR18) 2019; 12 Gao (CR2) 2016; 529 He (CR5) 2018; 130 Cheng (CR27) 2014; 118 Yin (CR32) 2012; 6 Zhang (CR21) 2018; 57 Perdew, Burke, Ernzerhof (CR46) 1996; 77 Zhang (CR13) 2019; 141 Han (CR54) 2018; 9 Zhang (CR10) 2018; 53 Sun (CR39) 2012; 51 Cao (CR3) 2016; 138 Tan (CR31) 2017; 117 Hussain (CR19) 2017; 13 Gong (CR11) 2019; 10 Steele, Lewis (CR34) 2014; 4 Nørskov (CR52) 2004; 108 Liang (CR37) 2015; 54 Zhang (CR14) 2016; 6 Reis (CR20) 2017; 357 Zeng (CR33) 2016; 28 Kitchin (CR41) 2009; 79 Akturk, Akturk, Ciraci (CR26) 2016; 94 Tkatchenko, Scheffler (CR47) 2009; 102 Gao (CR35) 2016; 55 Monkhorst, Pack (CR50) 1976; 13 Li, Ciston, Kanan (CR1) 2014; 508 Davey (CR51) 1925; 25 Zhang (CR25) 2016; 55 Chen, Li, Kanan (CR38) 2012; 134 Agarwal, Zhai, Hill, Sridhar (CR7) 2011; 4 Kim (CR4) 2017; 39 Kresse, Furthmüller (CR44) 1996; 54 Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR53) 2014; 140 Mavrikakis, Hammer, Nørskov (CR43) 1998; 81 Davis, Zaera, Somorjai (CR30) 1982; 104 Fang (CR24) 2018; 4 Inoglu, Kitchin (CR42) 2010; 82 Dai (CR9) 2017; 3 Li (CR36) 2017; 31 Liu, Lu, Xiao, Wang, Lou (CR6) 2019; 58 Yang (CR12) 2018; 8 Elwenspoek (CR29) 1986; 41 Won (CR8) 2015; 8 Han (CR23) 2018; 9 Wang, Zhu, Li (CR28) 2019; 10 Chai (CR22) 2018; 10 Shulenburger, Baczewski, Zhu, Guan, Tománek (CR48) 2015; 15 Avila-Bolivar, Garcia-Cruz, Montiel, Solla-Gullon (CR15) 2019; 24 Kresse, Furthmüller (CR45) 1996; 6 Qiu, Du, Dong, Dai, Tao (CR40) 2017; 20 Oh, Rhee, Han, Shong (CR49) 2018; 122 Yu, Fautrelle, Ren, Li (CR16) 2015; 161 Walker (CR17) 2016; 16 AS Agarwal (14914_CR7) 2011; 4 JK Nørskov (14914_CR52) 2004; 108 X Zhang (14914_CR18) 2019; 12 Z Yin (14914_CR32) 2012; 6 JP Perdew (14914_CR46) 1996; 77 C Tan (14914_CR31) 2017; 117 Z Zhang (14914_CR14) 2016; 6 CW Li (14914_CR1) 2014; 508 Y Zhang (14914_CR21) 2018; 57 S He (14914_CR5) 2018; 130 S Gao (14914_CR2) 2016; 529 L Dai (14914_CR9) 2017; 3 S Kim (14914_CR4) 2017; 39 HJ Monkhorst (14914_CR50) 1976; 13 Y Wang (14914_CR28) 2019; 10 E Akturk (14914_CR26) 2016; 94 Y Zeng (14914_CR33) 2016; 28 DH Won (14914_CR8) 2015; 8 JA Steele (14914_CR34) 2014; 4 Q Gong (14914_CR11) 2019; 10 F Li (14914_CR36) 2017; 31 ES Walker (14914_CR17) 2016; 16 W Zhang (14914_CR10) 2018; 53 L Liang (14914_CR37) 2015; 54 W Oh (14914_CR49) 2018; 122 T Chai (14914_CR22) 2018; 10 G Kresse (14914_CR45) 1996; 6 M Elwenspoek (14914_CR29) 1986; 41 F Reis (14914_CR20) 2017; 357 S Zhang (14914_CR25) 2016; 55 N Han (14914_CR23) 2018; 9 K Mathew (14914_CR53) 2014; 140 H Yang (14914_CR12) 2018; 8 JR Kitchin (14914_CR41) 2009; 79 M Mavrikakis (14914_CR43) 1998; 81 Z Cao (14914_CR3) 2016; 138 N Inoglu (14914_CR42) 2010; 82 N Hussain (14914_CR19) 2017; 13 A Fang (14914_CR24) 2018; 4 S Gao (14914_CR35) 2016; 55 E Zhang (14914_CR13) 2019; 141 S Liu (14914_CR6) 2019; 58 G Kresse (14914_CR44) 1996; 54 Y Chen (14914_CR38) 2012; 134 A Tkatchenko (14914_CR47) 2009; 102 X Yu (14914_CR16) 2015; 161 Y Qiu (14914_CR40) 2017; 20 N Han (14914_CR54) 2018; 9 L Cheng (14914_CR27) 2014; 118 B Avila-Bolivar (14914_CR15) 2019; 24 Y Sun (14914_CR39) 2012; 51 SM Davis (14914_CR30) 1982; 104 L Shulenburger (14914_CR48) 2015; 15 WP Davey (14914_CR51) 1925; 25 32376897 - Nat Commun. 2020 May 6;11(1):2352 |
References_xml | – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR46 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 12 start-page: 1334 year: 2019 end-page: 1340 ident: CR18 article-title: Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO reduction at low overpotential publication-title: Energy Environ. Sci. – volume: 9 year: 2018 ident: CR23 article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO reduction to formate publication-title: Nat. Commun. – volume: 10 start-page: 4663 year: 2019 end-page: 4667 ident: CR28 article-title: Spin–orbit coupling-dominated catalytic activity of two-dimensional bismuth toward CO electroreduction: not the thinner the better publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: e1701069 year: 2017 ident: CR9 article-title: Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide publication-title: Sci. Adv. – volume: 82 start-page: 5 year: 2010 ident: CR42 article-title: Simple model explaining and predicting coverage-dependent atomic adsorption energies on transition metal surfaces publication-title: Phys. Rev. B – volume: 10 year: 2019 ident: CR11 article-title: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction publication-title: Nat. Commun. – volume: 6 start-page: 6255 year: 2016 end-page: 6264 ident: CR14 article-title: Rational design of Bi nanoparticles for efficient electrochemical CO reduction: the elucidation of size and surface condition effects publication-title: ACS Catal. – volume: 138 start-page: 8120 year: 2016 end-page: 8125 ident: CR3 article-title: A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction publication-title: J. Am. Chem. Soc. – volume: 161 start-page: 144 year: 2015 end-page: 148 ident: CR16 article-title: PVA-assisted synthesis and characterization of core–shell Bi nanobelts publication-title: Mater. Lett. – volume: 6 start-page: 74 year: 2012 end-page: 80 ident: CR32 article-title: Single-layer MoS phototransistors publication-title: ACS Nano – volume: 31 start-page: 270 year: 2017 end-page: 277 ident: CR36 article-title: Towards a better Sn: efficient electrocatalytic reduction of CO to formate by Sn/SnS derived from SnS nanosheets publication-title: Nano Energy – volume: 20 start-page: 328 year: 2017 end-page: 335 ident: CR40 article-title: Selective conversion of CO to formate on a size tunable nano-Bi electrocatalyst publication-title: J. CO2 Util. – volume: 9 year: 2018 ident: CR54 article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO reduction to formate publication-title: Nat. Commun. – volume: 25 start-page: 753 year: 1925 end-page: 761 ident: CR51 article-title: Precision measurements of the lattice constants of twelve common metals publication-title: Phys. Rev. – volume: 8 start-page: 3092 year: 2015 end-page: 3098 ident: CR8 article-title: Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO publication-title: ChemSusChem – volume: 13 start-page: 1701349 year: 2017 ident: CR19 article-title: Ultrathin Bi nanosheets with superior photoluminescence publication-title: Small – volume: 24 start-page: 15 year: 2019 ident: CR15 article-title: Electrochemical reduction of CO to formate on easily prepared carbon-supported Bi nanoparticles publication-title: Molecules – volume: 41 start-page: 123 year: 1986 end-page: 125 ident: CR29 article-title: Kinetics of a rough crystal face: temperature dependence of the growth rate publication-title: Appl. Phys. A – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR44 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 39 start-page: 44 year: 2017 end-page: 52 ident: CR4 article-title: Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate publication-title: Nano Energy – volume: 117 start-page: 6225 year: 2017 end-page: 6331 ident: CR31 article-title: Recent advances in ultrathin two-dimensional nanomaterials publication-title: Chem. Rev. – volume: 4 start-page: 2133 year: 2014 end-page: 2142 ident: CR34 article-title: In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands publication-title: Opt. Mater. Express – volume: 54 start-page: 13971 year: 2015 end-page: 13974 ident: CR37 article-title: Single unit cell bismuth tungstate layers realizing robust solar CO reduction to methanol publication-title: Angew. Chem. Int. Ed. – volume: 118 start-page: 904 year: 2014 end-page: 910 ident: CR27 article-title: Thermoelectric properties of a monolayer bismuth publication-title: J. Phys. Chem. C – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR45 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comp. Mat. Sci. – volume: 51 start-page: 8727 year: 2012 end-page: 8731 ident: CR39 article-title: Freestanding tin disulfide single-layers realizing efficient visible-light water splitting publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 1666 year: 2016 end-page: 1669 ident: CR25 article-title: Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 19969 year: 2012 end-page: 19972 ident: CR38 article-title: Aqueous CO reduction at very low overpotential on oxide-derived Au nanoparticles publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 16569 year: 2019 end-page: 16573 ident: CR13 article-title: Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction publication-title: J. Am. Chem. Soc. – volume: 79 start-page: 6 year: 2009 ident: CR41 article-title: Correlations in coverage-dependent atomic adsorption energies on Pd(111) publication-title: Phys. Rev. B – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR50 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 130 start-page: 16346 year: 2018 end-page: 16351 ident: CR5 article-title: The p-orbital delocalization of main-group metals to boost CO2 electroreduction publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 13283 year: 2018 end-page: 13287 ident: CR21 article-title: Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO reduction performance publication-title: Angew. Chem. Int. Ed. – volume: 94 start-page: 9 year: 2016 ident: CR26 article-title: Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties publication-title: Phys. Rev. B – volume: 10 start-page: 17617 year: 2018 end-page: 17622 ident: CR22 article-title: Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field publication-title: Nanoscale – volume: 28 start-page: 9188 year: 2016 end-page: 9195 ident: CR33 article-title: Flexible ultrafast aqueous rechargeable Ni/Bi battery based on highly durable single-crystalline bismuth nanostructured anode publication-title: Adv. Mater. – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: CR52 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B – volume: 58 start-page: 13828 year: 2019 end-page: 13833 ident: CR6 article-title: Bi O nanosheets grown on multi-channel carbon matrix to catalyze efficient CO electroreduction to HCOOH publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 6 year: 2018 ident: CR24 article-title: Bursting at the seams: rippled monolayer bismuth on NbSe publication-title: Sci. Adv. – volume: 104 start-page: 7453 year: 1982 end-page: 7461 ident: CR30 article-title: Surface structure and temperature dependence of light-alkane skeletal rearrangement reactions catalyzed over platinum single-crystal surfaces publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 8170 year: 2015 end-page: 8175 ident: CR48 article-title: The nature of the interlayer interaction in bulk and few-layer phosphorus publication-title: Nano Lett. – volume: 140 start-page: 084106 year: 2014 ident: CR53 article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways publication-title: J. Chem. Phys. – volume: 81 start-page: 2819 year: 1998 end-page: 2822 ident: CR43 article-title: Effect of strain on the reactivity of metal surfaces publication-title: Phys. Rev. Lett. – volume: 16 start-page: 6931 year: 2016 end-page: 6938 ident: CR17 article-title: Large-area dry transfer of single-crystalline epitaxial bismuth thin films publication-title: Nano Lett. – volume: 102 start-page: 073005 year: 2009 ident: CR47 article-title: Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data publication-title: Phys. Rev. Lett. – volume: 529 start-page: 68 year: 2016 end-page: 72 ident: CR2 article-title: Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel publication-title: Nature – volume: 122 start-page: 23084 year: 2018 end-page: 23090 ident: CR49 article-title: Atomic and molecular adsorption on the Bi(111) surface: insights into catalytic CO reduction publication-title: J. Phys. Chem. C – volume: 4 start-page: 1301 year: 2011 end-page: 1310 ident: CR7 article-title: The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility publication-title: ChemSusChem – volume: 55 start-page: 698 year: 2016 end-page: 702 ident: CR35 article-title: Ultrathin Co O layers realizing optimized CO electroreduction to formate publication-title: Angew. Chem. Int. Ed. – volume: 508 start-page: 504 year: 2014 end-page: 507 ident: CR1 article-title: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper publication-title: Nature – volume: 8 start-page: 1801536 year: 2018 ident: CR12 article-title: Selective CO reduction on 2D mesoporous Bi nanosheets publication-title: Adv. Energy Mater. – volume: 357 start-page: 4 year: 2017 ident: CR20 article-title: Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material publication-title: Science – volume: 53 start-page: 808 year: 2018 end-page: 816 ident: CR10 article-title: Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure publication-title: Nano Energy – volume: 138 start-page: 8120 year: 2016 ident: 14914_CR3 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02878 – volume: 25 start-page: 753 year: 1925 ident: 14914_CR51 publication-title: Phys. Rev. doi: 10.1103/PhysRev.25.753 – volume: 24 start-page: 15 year: 2019 ident: 14914_CR15 publication-title: Molecules doi: 10.3390/molecules24112032 – volume: 8 start-page: 3092 year: 2015 ident: 14914_CR8 publication-title: ChemSusChem doi: 10.1002/cssc.201500694 – volume: 39 start-page: 44 year: 2017 ident: 14914_CR4 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.065 – volume: 161 start-page: 144 year: 2015 ident: 14914_CR16 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.08.082 – volume: 55 start-page: 698 year: 2016 ident: 14914_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509800 – volume: 54 start-page: 11169 year: 1996 ident: 14914_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 10 start-page: 4663 year: 2019 ident: 14914_CR28 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01406 – volume: 81 start-page: 2819 year: 1998 ident: 14914_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2819 – volume: 4 start-page: 2133 year: 2014 ident: 14914_CR34 publication-title: Opt. Mater. Express doi: 10.1364/OME.4.002133 – volume: 508 start-page: 504 year: 2014 ident: 14914_CR1 publication-title: Nature doi: 10.1038/nature13249 – volume: 16 start-page: 6931 year: 2016 ident: 14914_CR17 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02931 – volume: 130 start-page: 16346 year: 2018 ident: 14914_CR5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201810538 – volume: 117 start-page: 6225 year: 2017 ident: 14914_CR31 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00558 – volume: 9 year: 2018 ident: 14914_CR23 publication-title: Nat. Commun. – volume: 13 start-page: 5188 year: 1976 ident: 14914_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 104 start-page: 7453 year: 1982 ident: 14914_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00390a011 – volume: 15 start-page: 8170 year: 2015 ident: 14914_CR48 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03615 – volume: 10 year: 2019 ident: 14914_CR11 publication-title: Nat. Commun. – volume: 102 start-page: 073005 year: 2009 ident: 14914_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.073005 – volume: 9 year: 2018 ident: 14914_CR54 publication-title: Nat. Commun. – volume: 20 start-page: 328 year: 2017 ident: 14914_CR40 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.05.024 – volume: 6 start-page: 6255 year: 2016 ident: 14914_CR14 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01297 – volume: 357 start-page: 4 year: 2017 ident: 14914_CR20 publication-title: Science doi: 10.1126/science.aai8142 – volume: 118 start-page: 904 year: 2014 ident: 14914_CR27 publication-title: J. Phys. Chem. C doi: 10.1021/jp411383j – volume: 6 start-page: 74 year: 2012 ident: 14914_CR32 publication-title: ACS Nano doi: 10.1021/nn2024557 – volume: 6 start-page: 15 year: 1996 ident: 14914_CR45 publication-title: Comp. Mat. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 108 start-page: 17886 year: 2004 ident: 14914_CR52 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 55 start-page: 1666 year: 2016 ident: 14914_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507568 – volume: 10 start-page: 17617 year: 2018 ident: 14914_CR22 publication-title: Nanoscale doi: 10.1039/C8NR03068E – volume: 58 start-page: 13828 year: 2019 ident: 14914_CR6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201907674 – volume: 122 start-page: 23084 year: 2018 ident: 14914_CR49 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b07865 – volume: 28 start-page: 9188 year: 2016 ident: 14914_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201603304 – volume: 12 start-page: 1334 year: 2019 ident: 14914_CR18 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00018F – volume: 529 start-page: 68 year: 2016 ident: 14914_CR2 publication-title: Nature doi: 10.1038/nature16455 – volume: 141 start-page: 16569 year: 2019 ident: 14914_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08259 – volume: 8 start-page: 1801536 year: 2018 ident: 14914_CR12 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801536 – volume: 54 start-page: 13971 year: 2015 ident: 14914_CR37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506966 – volume: 57 start-page: 13283 year: 2018 ident: 14914_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807466 – volume: 79 start-page: 6 year: 2009 ident: 14914_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.205412 – volume: 3 start-page: e1701069 year: 2017 ident: 14914_CR9 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701069 – volume: 53 start-page: 808 year: 2018 ident: 14914_CR10 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.053 – volume: 13 start-page: 1701349 year: 2017 ident: 14914_CR19 publication-title: Small doi: 10.1002/smll.201701349 – volume: 4 start-page: 6 year: 2018 ident: 14914_CR24 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaq0330 – volume: 82 start-page: 5 year: 2010 ident: 14914_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.045414 – volume: 77 start-page: 3865 year: 1996 ident: 14914_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 94 start-page: 9 year: 2016 ident: 14914_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.014115 – volume: 31 start-page: 270 year: 2017 ident: 14914_CR36 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.004 – volume: 134 start-page: 19969 year: 2012 ident: 14914_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309317u – volume: 4 start-page: 1301 year: 2011 ident: 14914_CR7 publication-title: ChemSusChem doi: 10.1002/cssc.201100220 – volume: 41 start-page: 123 year: 1986 ident: 14914_CR29 publication-title: Appl. Phys. A doi: 10.1007/BF00631119 – volume: 51 start-page: 8727 year: 2012 ident: 14914_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204675 – volume: 140 start-page: 084106 year: 2014 ident: 14914_CR53 publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – reference: 32376897 - Nat Commun. 2020 May 6;11(1):2352 |
SSID | ssj0000391844 |
Score | 2.6959896 |
Snippet | Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO
2
reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene)... Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene)... Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene)... Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, the... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1088 |
SubjectTerms | 119/118 140/133 147/143 147/28 147/3 639/301/357/1018 639/638/161/886 639/638/77/887 Bismuth Carbon dioxide Chemical reduction Compressive properties Density functional theory Dimensional stability Humanities and Social Sciences Monolayers multidisciplinary Science Science & Technology - Other Topics Science (multidisciplinary) Synthesis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F0naVGht9ZEtl7WsSkNS6E9NZCb0GNMF1K77G6g-fedkb3bbJ-XntbY8iJ_mpG-QZpvGHuZjMxCBFGHoGOtHKQ6QgO11H1jQLjUG8p3_vDRLM7V-wt9caPUF50Jm-SBJ-BOIItgcidM6FoVY4hZx8ZKBznZNkFPsy-ueTeCqTIHS4ehi5qzZITsTtaqzAkULWFQ0Kja7a1ERbAff0Z0rN-RzV_PTP60cVrWo7N77O5MJPmb6QPus1swPGC3p9KS1w_Z4nS5_kKn1wfgyEs5yRJfXnMoihH45zyFVRwHnpfjt2UGPpfDWZGSK40VRzJZLh6x87N3n94u6rlqQo24y01tJADSrux6mxCD3KHXKt2mIHphonVRptz2Lmr0xAAYTsguBytVmxTeQz73mB0M4wBPGe_7LkYbmpRiVNaaQOJdIjYQwCSjXcWaLYI-zZLiVNni0petbdn5CXWPqPuCusd3Xu3e-ToJavy19SkNzK4liWGXG2gifjYR_y8TqdgRDatHTkHCuIlOEKWNbyg1RuuKHW9H28_-u_atxLCO2Kep2IvdY_Q82k4JA4xXpY1DOoTxWMWeTMax6ydlRlnkghWze2az9yH7T4bl56LubQVi0GG3Xm8N7Ee3_gzU4f8A6ojdaclBKGPfHrODzeoKniHn2sTnxb2-A0KCKZ8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXmmLShI3CCqEzt-nBBFXVZIcKJSb5ZfgZVK0u5upfbfM-N4Uy2PnjZKnJUzD_uzPfMNIW-9YIFSSytrW1dxHX3lYh0r1na1iFT7TmC-89dvYn7Kv5y1Z3nDbZXDKjdjYhqow-Bxj_yoYQC0EQ-IDxeXFVaNwtPVXELjPnlQw0yDIV1q9nnaY0H2c8V5zpWhTB2teBoZcM0ES4OaV3prPkq0_fAzgHv9C3L-HTn5x_FpmpVmj8luhpPlx1H_e-Re7J-Qh2OByZunZH68WP3CGPY-loBOSyQnPr8pY-KNgD8vvV26oS_DYrhehFjmojhL5HNFjZUAKdPFM3I6O_n-aV7l2gkVSJ-tK8FiBPAVdCc9yCAo8F3eNt7SjgontWM-NJ12LfijjbCoYCpYyXjjOdwDVPec7PRDH1-SsuuUc9LW3jvHpRQWKbyoq6ONwotWF6TeSND4TCyO9S3OTTrgZsqMUjcgdZOkbuCdd9M7FyOtxp2tj1ExU0ukxE43huUPkz3MxECtCIoKqxrunHWhdbVkGpQlGx-7ghygWg0gC6TH9RhH5NemxgSZti3I4UbbJnvxytzaXEHeTI_B__BQxfZxuEptNIAiWJUV5MVoHFM_MT9KAiIsiNwym60P2X7SL34mjm9JQQYKuvV-Y2C33fq_oPbv_ooD8qhB08eMfHlIdtbLq_gKMNXavU6O8xvgch87 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFD6suwi-iHfrrlLBNy2mTZqkj7PiMgzoiy7sW8itOrC2MjML7r_3nPQio6vgU0suJT2X5ktzzheAV17ywJhlhbW1K0QTfeFiGQtet6WMrPGtpHznDx_l8lysLuqLA6imXJgUtJ8oLdNneooOe7sVyaVpsYOYvhRFcwuOiKodbftosVh9Ws1_VojzXAsxZsgwrm_ovDcLJbJ-vPToVDcBzT_jJX_bNE1z0dk9uDuCyHwxDPs-HMTuAdwejpW8fgjL0_X2G0WudzFHTJoTJfHldR4TWwQ-PPd24_ouD-v-xzrEfDwKZ0MsrqSnHIFkunkE52fvP79bFuOJCQXKnO8KyWNEyBWaVnmUQdDosaKuvGUtk041jvtQtY2r0QttxKUE18EqLiovsAyx3GM47PouPoW8bbVzypbeOyeUkpaIu5gro43Sy7rJoJwkaPxIJ06nWlyatK3NtRmkblDqJkndYJ_Xc5_vA5nGP1ufkmLmlkSEnQr6zRczGoaJgVkZNJNWV8I560LtSsUbVJaqfGwzOCa1GsQTRIrrKXrI70xJaTF1ncHJpG0z-u7WVByXdIQ8ZQYv52r0OtpKsV3sr1KbBqEQrsUyeDIYxzxOyopSiAMzUHtms_ci-zXd-mti9lYMZaBxWG8mA_s1rL8L6tn_NT-GOxW5AuXlqxM43G2u4nNEVjv3YnSln8rUHl4 priority: 102 providerName: Springer Nature |
Title | Bismuthene for highly efficient carbon dioxide electroreduction reaction |
URI | https://link.springer.com/article/10.1038/s41467-020-14914-9 https://www.ncbi.nlm.nih.gov/pubmed/32107389 https://www.proquest.com/docview/2366609516 https://www.proquest.com/docview/2369406747 https://www.osti.gov/servlets/purl/1624255 https://pubmed.ncbi.nlm.nih.gov/PMC7046785 https://doaj.org/article/ed0a6d806a824bbabd5b1739edc72cef |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dq9MwFD_cDwRfxG_rvY4Kvmk1bdqkfRDZxp1jcC-iDvYWkjTVwWx124W7_95z0m4yneLLOtK0pOej-Z0m53cAXljBS8Y0i7TOTJQWzkbGxS7iWRULxwpbCcp3vrwS42k6mWWzI9iWO-oEuDoY2lE9qely8frmx-YdOvzbNmU8f7NKvbtTIIR4P06j4hhOcWaSVNHgsoP7_s3MCwxoaKE5YWkcYQfe5dEcvs3eXOUp_fHQoOsdgqN_7qr8bWnVz1iju3Cng5phv7WNe3Dk6vtwqy0-uXkA48F89Y32t9cuROQaEnHxYhM6zymBNw-tXpqmDst5czMvXdgVzFkS1ytpM0S46f88hOno4vNwHHV1FSLUDF9HgjuHwKwsKmlRHmWOfp1midWsYsLIwnBbJlVhMvRV7TDg4HmpJU8Tm2IbIr5HcFI3tXsCYVXlxkgdW2tMKqXQRO_FTOy0E1ZkRQDxVoLKdqTjVPtiofziN89VK3WFUlde6gqvebm75ntLufHP3gNSzK4n0WX7hmb5RXXep1zJtChzJnSepMZoU2YmlrxAZcnEuiqAM1KrQtRB1LmW9hjZtYopeSbLAjjfalttDVQlHAM_wqcigOe70-ibtOCia9dc-z4FAiaM2AJ43BrHbpyUOyURLQYg98xm70H2z9Tzr57_WzKUQY7DerU1sF_D-rugnv7HMM_gdkL2Tyn78hxO1str9wxB19r04FjOJP7mo_c9OO33J58meBxcXH34iK1DMez5zxk973E_ATUvLQs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuhBYwEJ4jqxI6dHBCiwLKlj1Mr9Wb8CqxUkrK7Feyf4jcy4yRbLY_eekqUOJEzD_ub2PMNIc-d5J4xw1JjCpuKKrjUhiykvKgzGVjlaon5zgeHcnwsPp0UJ2vk15ALg9sqhzExDtS-dfiPfDvnALQRD8g3Z99TrBqFq6tDCY3OLPbC4geEbLPXu-9Bvy_yfPTh6N047asKpNAvPk8lDwFgia9q5SC88SVYtShyZ1jNpFWV5c7ndWULsFQTAG7z0hvFRe4EXMuQfAmG_GuCw0yOmemjj8t_Osi2XgrR5-YwXm7PRByJMEaDUCQTabUy_8UyAXBowZ3_BXH_3qn5x3JtnAVHt8mtHr7St5293SFroblLrncFLRf3yHhnMvuGe-abQAENUyRDPl3QEHkq4OXUmaltG-on7c-JD7QvwjNF_li0EAoQNp7cJ8dXItUHZL1pm7BBaF2X1iqTOWetUEoapAxjNgsmSCeLKiHZIEHteiJzrKdxquOCOi91J3UNUtdR6hqeebl85qyj8bi09Q4qZtkSKbjjhXb6RfcerYNnRvqSSVPmwlpjfWEzxStQlspdqBOyiWrVgGSQjtfhviU31xkm5BRFQrYGbet-1JjpCxtPyLPlbfB3XMQxTWjPY5sKQBhEgQl52BnHsp-Yj6UAgSZErZjNyoes3mkmXyOnuGIggxK69WowsItu_V9Qjy7_iqfkxvjoYF_v7x7ubZKbOboBsgGoLbI-n56Hx4Dn5vZJdCJKPl-11_4GlX9a-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrUBcEO-aFjASnMDK2rvetQ8IEdoopRBViEq9LfsyRCp2SVJB_hq_jpm1nSo8eusplr2O1vNYf-Od-YaQZ1YwR6mmida5SXjpbWJ86hOWV6nwtLSVwHrnDxMxPubvTvKTDfKrr4XBtMp-TQwLtWssfiMfZAyANuIBMai6tIijvdHrs-8JdpDCnda-nUZrIod--QPCt_mrgz3Q9fMsG-1_ejtOug4DCcyRLRLBvAeI4spKWgh1XAEWzvPMalpRYWRpmHVZVZocrFZ7gN6scFoynlkO51IkYoLlf0tiVLRJtob7k6OPqy88yL1ecN5V6lBWDOY8rEsYsUFgkvKkXHsbhqYB8NOAc_8L8P6dt_nH5m14J45ukZsdmI3ftNZ3m2z4-g651ra3XN4l4-F0_g0z6GsfAzaOkRr5dBn7wFoBfx5bPTNNHbtp83PqfNy15JkhmyzaSwyANhzcI8dXItf7ZLNuar9N4qoqjJE6tdYYLqXQSCBGTeq1F1bkZUTSXoLKdrTm2F3jVIXtdVaoVuoKpK6C1BXc82J1z1lL6nHp6CEqZjUSCbnDiWb2RXX-rbyjWriCCl1k3BhtXG5SyUpQlsysryKyg2pVgGuQnNdiFpNdqBTLc_I8Iru9tlW3hszVhcVH5OnqMng_buno2jfnYUwJkAxiwog8aI1jNU-szpKARyMi18xm7UHWr9TTr4FhXFKQQQHTetkb2MW0_i-oh5c_xRNyHTxWvT-YHO6QGxl6AVIDyF2yuZid-0cA7hbmcedFMfl81Y77G7UgYIs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bismuthene+for+highly+efficient+carbon+dioxide+electroreduction+reaction&rft.jtitle=Nature+communications&rft.au=Yang%2C+Fa&rft.au=Elnabawy%2C+Ahmed+O&rft.au=Schimmenti%2C+Roberto&rft.au=Song%2C+Ping&rft.date=2020-02-27&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=1088&rft_id=info:doi/10.1038%2Fs41467-020-14914-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |