Bismuthene for highly efficient carbon dioxide electroreduction reaction

Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO 2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 1088 - 8
Main Authors Yang, Fa, Elnabawy, Ahmed O., Schimmenti, Roberto, Song, Ping, Wang, Jiawei, Peng, Zhangquan, Yao, Shuang, Deng, Ruiping, Song, Shuyan, Lin, Yue, Mavrikakis, Manos, Xu, Weilin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.02.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO 2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO − ) formation from CO 2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at −580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO 2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO − indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, the authors show a large-scale synthesis of free-standing Bismuthene and its electrocatalytic activity for CO 2 reduction to formate.
AbstractList Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO-) formation from CO2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at -580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO- indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields.Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO-) formation from CO2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at -580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO- indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields.
Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO 2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO − ) formation from CO 2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at −580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO 2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO − indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, the authors show a large-scale synthesis of free-standing Bismuthene and its electrocatalytic activity for CO 2 reduction to formate.
Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, the authors show a large-scale synthesis of free-standing Bismuthene and its electrocatalytic activity for CO2 reduction to formate.
Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO−) formation from CO2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at −580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO− indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields.Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, the authors show a large-scale synthesis of free-standing Bismuthene and its electrocatalytic activity for CO2 reduction to formate.
Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO-) formation from CO2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at -580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO- indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields.
Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO 2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO − ) formation from CO 2 reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at −580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO 2 reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO − indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields.
Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, we show the first simple large-scale synthesis of free-standing Bismuthene, to our knowledge, and demonstrate its high electrocatalytic efficiency for formate (HCOO ) formation from CO reduction reaction. The catalytic performance is evident by the high Faradaic efficiency (99% at -580 mV vs. Reversible Hydrogen Electrode (RHE)), small onset overpotential (<90 mV) and high durability (no performance decay after 75 h and annealing at 400 °C). Density functional theory calculations show the structure-sensitivity of the CO reduction reaction over Bismuthene and thicker nanosheets, suggesting that selective formation of HCOO indeed can proceed easily on Bismuthene (111) facet due to the unique compressive strain. This work paves the way for the extensive experimental investigation of Bismuthene in many different fields.
ArticleNumber 1088
Author Xu, Weilin
Wang, Jiawei
Song, Ping
Song, Shuyan
Mavrikakis, Manos
Yang, Fa
Yao, Shuang
Deng, Ruiping
Peng, Zhangquan
Schimmenti, Roberto
Lin, Yue
Elnabawy, Ahmed O.
Author_xml – sequence: 1
  givenname: Fa
  surname: Yang
  fullname: Yang, Fa
  organization: State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Science and Technology of China
– sequence: 2
  givenname: Ahmed O.
  orcidid: 0000-0002-8911-1916
  surname: Elnabawy
  fullname: Elnabawy, Ahmed O.
  organization: Department of Chemical & Biological Engineering, University of Wisconsin-Madison
– sequence: 3
  givenname: Roberto
  surname: Schimmenti
  fullname: Schimmenti, Roberto
  organization: Department of Chemical & Biological Engineering, University of Wisconsin-Madison
– sequence: 4
  givenname: Ping
  surname: Song
  fullname: Song, Ping
  organization: State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
– sequence: 5
  givenname: Jiawei
  surname: Wang
  fullname: Wang, Jiawei
  organization: State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
– sequence: 6
  givenname: Zhangquan
  surname: Peng
  fullname: Peng, Zhangquan
  organization: State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
– sequence: 7
  givenname: Shuang
  surname: Yao
  fullname: Yao, Shuang
  organization: State Key Laboratory of Rare Earth, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
– sequence: 8
  givenname: Ruiping
  surname: Deng
  fullname: Deng, Ruiping
  organization: State Key Laboratory of Rare Earth, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
– sequence: 9
  givenname: Shuyan
  orcidid: 0000-0002-7758-752X
  surname: Song
  fullname: Song, Shuyan
  organization: State Key Laboratory of Rare Earth, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
– sequence: 10
  givenname: Yue
  orcidid: 0000-0001-5333-511X
  surname: Lin
  fullname: Lin, Yue
  organization: University of Science and Technology of China
– sequence: 11
  givenname: Manos
  surname: Mavrikakis
  fullname: Mavrikakis, Manos
  email: emavrikakis@wisc.edu
  organization: Department of Chemical & Biological Engineering, University of Wisconsin-Madison
– sequence: 12
  givenname: Weilin
  orcidid: 0000-0001-7140-8060
  surname: Xu
  fullname: Xu, Weilin
  email: weilinxu@ciac.ac.cn
  organization: State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32107389$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1624255$$D View this record in Osti.gov
BookMark eNp9Uk1v1TAQtFARLaV_gAOK4MIl4K_Y8QUJqkIrVeICZ8uxNy9-yrOLnVT039d5aaHtoT7Y1u7MeLy7r9FBiAEQekvwJ4JZ-zlzwoWsMcU14YrwWr1ARxRzUhNJ2cGD-yE6yXmLy2KKtJy_QoeMEixZq47Q-Tefd_M0QICqj6ka_GYYbyroe289hKmyJnUxVM7Hv95BBSPYKcUEbraTL4kEZn95g172Zsxwcnceo9_fz36dnteXP39cnH69rK1gbKoFAxANdqqXtphxLSt7Q63BPRadVB2zjvaqa6TiBpTkrHVGMk4tLzGi2DG6WHVdNFt9lfzOpBsdjdf7QEwbbdLk7QgaHDbCtViYlvKuM51rOiKZAmcltdAXrS-r1tXc7Uq0_DeZ8ZHo40zwg97Eay1xqX3bFIH3q0DMk9fZ-gnsYGMIpUiaCMpps4A-3r2S4p8Z8qR3PlsYRxMgzllTJhTHQnJZoB-eQLdxTqHUc0EJgVVDREG9e2j7n9_7rhZAuwJsijkn6HVxZpYulV_4UROslxnS6wzpMkN6P0N6odIn1Hv1Z0lsJeUCDhtI_20_w7oFgkrYkg
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00302
crossref_primary_10_1021_acs_energyfuels_2c02321
crossref_primary_10_35848_1347_4065_abf74e
crossref_primary_10_1002_eem2_12184
crossref_primary_10_1002_slct_202100064
crossref_primary_10_1016_j_jcou_2021_101822
crossref_primary_10_1002_smll_202100602
crossref_primary_10_1021_acscatal_4c00858
crossref_primary_10_1002_anie_202411575
crossref_primary_10_1002_advs_202204472
crossref_primary_10_1021_acsenergylett_1c01965
crossref_primary_10_1016_j_jcat_2022_04_001
crossref_primary_10_1039_D0EE01486A
crossref_primary_10_1002_adfm_202006997
crossref_primary_10_1039_D3NR04962K
crossref_primary_10_3390_nano14090752
crossref_primary_10_1016_j_jcis_2021_12_075
crossref_primary_10_1039_D3NJ00562C
crossref_primary_10_1002_ange_202008316
crossref_primary_10_1007_s12274_023_6269_7
crossref_primary_10_1016_j_jallcom_2021_160514
crossref_primary_10_1016_j_jcou_2024_102888
crossref_primary_10_1016_j_apcatb_2024_123874
crossref_primary_10_1039_D4MA00232F
crossref_primary_10_1007_s12598_024_02803_9
crossref_primary_10_1021_acsami_3c10011
crossref_primary_10_1039_D4CP04674A
crossref_primary_10_1002_smll_202400913
crossref_primary_10_1039_D3EE02029K
crossref_primary_10_1002_adma_202404980
crossref_primary_10_1002_smll_202101128
crossref_primary_10_1002_asia_202201165
crossref_primary_10_1021_acssuschemeng_4c06093
crossref_primary_10_1021_acs_jpclett_2c02180
crossref_primary_10_3390_catal13050857
crossref_primary_10_1016_j_jcis_2021_06_010
crossref_primary_10_1021_acsanm_2c03408
crossref_primary_10_1002_ange_202311223
crossref_primary_10_1021_acs_nanolett_0c03345
crossref_primary_10_1016_j_jechem_2021_08_004
crossref_primary_10_1021_acs_inorgchem_1c03938
crossref_primary_10_1016_j_cej_2025_160314
crossref_primary_10_1016_j_susc_2021_121849
crossref_primary_10_3390_molecules25194457
crossref_primary_10_1039_D2NR03865J
crossref_primary_10_1016_j_nanoen_2021_106780
crossref_primary_10_1021_acscatal_2c02715
crossref_primary_10_1002_anie_202104747
crossref_primary_10_1016_j_cej_2023_143075
crossref_primary_10_1039_D0SE00764A
crossref_primary_10_1021_acs_jpcc_1c03574
crossref_primary_10_1039_D4EY00209A
crossref_primary_10_1021_acscatal_1c05135
crossref_primary_10_1002_adfm_202424753
crossref_primary_10_1002_anie_202407772
crossref_primary_10_1039_D0NR05578F
crossref_primary_10_1016_j_ccst_2022_100081
crossref_primary_10_1021_jacs_3c12321
crossref_primary_10_1039_D0CS00071J
crossref_primary_10_1002_ange_202014341
crossref_primary_10_1016_j_mattod_2024_12_007
crossref_primary_10_1021_acsanm_2c03503
crossref_primary_10_1016_j_susmat_2024_e01042
crossref_primary_10_1016_j_jechem_2024_02_023
crossref_primary_10_1002_ange_202110387
crossref_primary_10_1016_j_mattod_2024_08_024
crossref_primary_10_1002_sus2_117
crossref_primary_10_1016_j_apcatb_2021_120781
crossref_primary_10_1039_D1TA01516H
crossref_primary_10_1038_s41467_023_44480_9
crossref_primary_10_1038_s41565_021_00974_5
crossref_primary_10_1002_cssc_202200752
crossref_primary_10_1039_D1TA03676A
crossref_primary_10_1021_acscatal_1c05029
crossref_primary_10_1002_anie_202014341
crossref_primary_10_1021_acs_jpcc_0c02385
crossref_primary_10_1021_acsami_1c25217
crossref_primary_10_1093_nsr_nwab142
crossref_primary_10_3390_nano13111767
crossref_primary_10_1002_anie_202408849
crossref_primary_10_1021_acs_nanolett_4c00807
crossref_primary_10_1021_jacsau_3c00002
crossref_primary_10_1021_acs_jpclett_2c01509
crossref_primary_10_1002_smll_202206440
crossref_primary_10_1016_j_cej_2024_152855
crossref_primary_10_1016_j_jcis_2022_05_054
crossref_primary_10_1016_j_apcatb_2023_123342
crossref_primary_10_1093_nsr_nwaa058
crossref_primary_10_1039_D0TC03814H
crossref_primary_10_1039_D0CS00025F
crossref_primary_10_1039_D3NR05853K
crossref_primary_10_1002_ange_202313858
crossref_primary_10_1002_anie_202110387
crossref_primary_10_1002_anie_202317628
crossref_primary_10_1021_jacs_3c04727
crossref_primary_10_1002_ange_202208414
crossref_primary_10_1039_D1CS00330E
crossref_primary_10_1039_D1EE01495A
crossref_primary_10_1002_adma_202503169
crossref_primary_10_1002_adma_202312676
crossref_primary_10_1002_smll_202301639
crossref_primary_10_1021_acssuschemeng_1c08133
crossref_primary_10_1002_adfm_202110020
crossref_primary_10_1007_s10562_022_04129_6
crossref_primary_10_1021_acsami_4c01672
crossref_primary_10_1039_D3DT00598D
crossref_primary_10_1155_2023_9933049
crossref_primary_10_1007_s12274_022_4949_3
crossref_primary_10_1016_j_apcatb_2023_123552
crossref_primary_10_1039_D0CE00610F
crossref_primary_10_1002_admt_202300818
crossref_primary_10_1016_j_apsusc_2023_156867
crossref_primary_10_1016_j_apsusc_2021_149380
crossref_primary_10_1021_acsanm_3c03483
crossref_primary_10_1002_asia_202100305
crossref_primary_10_1039_D0RA09763B
crossref_primary_10_1002_advs_202104138
crossref_primary_10_1039_D0NR08237F
crossref_primary_10_1039_D0CC08261A
crossref_primary_10_1002_eem2_12490
crossref_primary_10_3390_nano15020121
crossref_primary_10_1007_s40843_022_2346_5
crossref_primary_10_1016_j_jcis_2023_09_035
crossref_primary_10_1039_D3EY00034F
crossref_primary_10_1039_D4MH01153H
crossref_primary_10_1002_aenm_202200970
crossref_primary_10_1021_acs_jpcc_1c02749
crossref_primary_10_1016_j_apcatb_2021_120693
crossref_primary_10_1002_cssc_202101122
crossref_primary_10_1007_s12274_024_6658_6
crossref_primary_10_1038_s41467_024_47498_9
crossref_primary_10_1007_s41918_022_00140_y
crossref_primary_10_1016_j_cej_2020_126965
crossref_primary_10_1002_anie_202008316
crossref_primary_10_1021_acs_chemrev_1c00981
crossref_primary_10_1039_D1QM01557E
crossref_primary_10_1016_j_cej_2025_159732
crossref_primary_10_1021_jacs_2c00937
crossref_primary_10_1002_admi_202102042
crossref_primary_10_1007_s12274_023_6073_4
crossref_primary_10_1039_D1CP05008G
crossref_primary_10_1021_acscatal_2c02627
crossref_primary_10_1039_D2TA03441G
crossref_primary_10_1039_D2NR01900K
crossref_primary_10_1002_ange_202104747
crossref_primary_10_1021_acs_chemrev_1c00735
crossref_primary_10_1021_acs_jpcc_1c02833
crossref_primary_10_1039_D4NJ03650F
crossref_primary_10_1002_advs_202105204
crossref_primary_10_1073_pnas_2312876120
crossref_primary_10_1002_anie_202313858
crossref_primary_10_1039_D4TA02315C
crossref_primary_10_1039_D2CC06503G
crossref_primary_10_1002_smll_202201633
crossref_primary_10_1021_acsaem_3c01448
crossref_primary_10_1016_j_checat_2022_01_021
crossref_primary_10_1016_j_ssc_2022_114690
crossref_primary_10_1016_j_apsusc_2024_160844
crossref_primary_10_3390_app13126885
crossref_primary_10_1002_admi_202300186
crossref_primary_10_1021_acscatal_1c01899
crossref_primary_10_1016_j_cjsc_2024_100301
crossref_primary_10_1002_cssc_202301452
crossref_primary_10_1016_j_cej_2024_153105
crossref_primary_10_1021_acsomega_4c09642
crossref_primary_10_1039_D4GC00514G
crossref_primary_10_1016_j_jcou_2022_102031
crossref_primary_10_1016_j_jcou_2023_102456
crossref_primary_10_1039_D3CP02393A
crossref_primary_10_1016_j_ymben_2024_04_002
crossref_primary_10_1007_s12274_021_3677_4
crossref_primary_10_1002_tcr_202300307
crossref_primary_10_1016_j_jallcom_2024_174220
crossref_primary_10_1039_D1NR00649E
crossref_primary_10_1063_5_0185886
crossref_primary_10_1039_D2CS00570K
crossref_primary_10_1016_j_chemphys_2025_112660
crossref_primary_10_1016_j_nanoen_2022_108031
crossref_primary_10_1021_acsenergylett_2c00326
crossref_primary_10_1002_adfm_202402220
crossref_primary_10_1016_j_surfin_2024_104975
crossref_primary_10_1016_j_mtbio_2023_100825
crossref_primary_10_1039_D1RE00214G
crossref_primary_10_1039_D3EY00229B
crossref_primary_10_1002_cssc_202301719
crossref_primary_10_1016_j_apcata_2024_120080
crossref_primary_10_1021_acs_energyfuels_3c01847
crossref_primary_10_1038_s41467_025_57463_9
crossref_primary_10_1016_j_ccr_2020_213483
crossref_primary_10_1016_j_checat_2023_100721
crossref_primary_10_1002_elsa_202400014
crossref_primary_10_1002_adfm_202107182
crossref_primary_10_1007_s00339_024_07719_w
crossref_primary_10_1016_j_inoche_2024_112739
crossref_primary_10_1088_1361_6528_ac2d08
crossref_primary_10_1002_adma_202100910
crossref_primary_10_1016_j_jmst_2022_02_038
crossref_primary_10_1016_j_mtphys_2023_101096
crossref_primary_10_1002_cey2_510
crossref_primary_10_1002_asia_202301152
crossref_primary_10_1039_D4TA03766A
crossref_primary_10_1360_TB_2024_0424
crossref_primary_10_1021_acsami_2c01152
crossref_primary_10_1002_aenm_202303889
crossref_primary_10_1021_acscatal_1c02495
crossref_primary_10_1039_D2NR03433F
crossref_primary_10_1039_D3QM00262D
crossref_primary_10_1007_s11426_023_1565_5
crossref_primary_10_1039_D2NA00141A
crossref_primary_10_1002_aenm_202001709
crossref_primary_10_1007_s12598_021_01728_x
crossref_primary_10_1016_j_jcis_2023_10_058
crossref_primary_10_1021_acsmaterialslett_0c00280
crossref_primary_10_1039_D1GC04824D
crossref_primary_10_1021_acs_accounts_3c00020
crossref_primary_10_1007_s11426_024_2384_6
crossref_primary_10_1002_smll_202303608
crossref_primary_10_1002_smtd_202301512
crossref_primary_10_1016_j_mattod_2024_05_002
crossref_primary_10_1002_aic_18389
crossref_primary_10_1039_D0EE02981E
crossref_primary_10_1002_aenm_202301597
crossref_primary_10_1016_j_nanoen_2022_107970
crossref_primary_10_1039_D4IM00126E
crossref_primary_10_1007_s12274_022_5058_z
crossref_primary_10_1039_D3SU00445G
crossref_primary_10_1002_adfm_202424357
crossref_primary_10_1016_j_isci_2023_108434
crossref_primary_10_1002_cctc_202401007
crossref_primary_10_1039_D2TA06640H
crossref_primary_10_1002_anie_202311223
crossref_primary_10_1016_j_checat_2023_100621
crossref_primary_10_3390_catal15010052
crossref_primary_10_1002_cctc_202400959
crossref_primary_10_1016_j_apcatb_2023_122400
crossref_primary_10_1088_2631_7990_ac7a6e
crossref_primary_10_1007_s12274_022_4770_z
crossref_primary_10_1016_j_apcatb_2023_122768
crossref_primary_10_3390_catal14080500
crossref_primary_10_1002_ange_202408849
crossref_primary_10_1021_acs_inorgchem_4c03106
crossref_primary_10_1002_ange_202411575
crossref_primary_10_1016_j_jallcom_2024_175483
crossref_primary_10_1016_j_jelechem_2022_117018
crossref_primary_10_1002_ange_202317628
crossref_primary_10_1039_D4CC05357E
crossref_primary_10_1039_D4EE02356K
crossref_primary_10_1088_1361_6528_acbf55
crossref_primary_10_1016_j_jechem_2021_04_059
crossref_primary_10_1002_cssc_202002184
crossref_primary_10_1002_advs_202400874
crossref_primary_10_1016_j_apenergy_2020_115557
crossref_primary_10_1002_anie_202208414
crossref_primary_10_3390_ijms24129952
crossref_primary_10_1016_j_checat_2022_10_001
crossref_primary_10_1002_ange_202407772
crossref_primary_10_1016_j_matre_2023_100191
crossref_primary_10_1016_j_gee_2021_11_004
crossref_primary_10_1021_acscatal_0c05317
crossref_primary_10_1016_j_cej_2024_150280
crossref_primary_10_1016_j_materresbull_2023_112174
crossref_primary_10_1039_D2TA00590E
crossref_primary_10_1039_D4TA06898J
crossref_primary_10_1016_j_cej_2021_128671
crossref_primary_10_1016_j_jcou_2021_101643
crossref_primary_10_1021_acscatal_3c04768
crossref_primary_10_1039_D4EE01139B
crossref_primary_10_1016_j_jcat_2023_05_008
crossref_primary_10_1039_D3CP05276A
crossref_primary_10_1103_PhysRevB_105_075402
crossref_primary_10_1016_j_isci_2023_108499
crossref_primary_10_1039_D3CP02037A
crossref_primary_10_1039_D0CC06756C
crossref_primary_10_1039_D3SU90049E
crossref_primary_10_1016_j_asems_2022_100007
crossref_primary_10_1007_s40820_022_00862_0
crossref_primary_10_1021_acscatal_1c03652
crossref_primary_10_1016_j_checat_2023_100767
crossref_primary_10_1016_j_infrared_2022_104103
crossref_primary_10_1039_D3SE00813D
crossref_primary_10_1016_j_checat_2024_101057
crossref_primary_10_1021_acsami_3c14930
crossref_primary_10_1007_s11426_023_1799_y
crossref_primary_10_1002_adfm_202400928
crossref_primary_10_1016_j_ultsonch_2024_107189
crossref_primary_10_1016_j_jallcom_2022_163707
crossref_primary_10_1016_j_jclepro_2023_136017
crossref_primary_10_1002_aic_16299
crossref_primary_10_1002_cssc_202100543
crossref_primary_10_1002_adfm_202207136
crossref_primary_10_1039_D3TC00587A
crossref_primary_10_59717_j_xinn_mater_2023_100014
crossref_primary_10_1021_acsnano_0c06656
crossref_primary_10_1039_D4NR00361F
crossref_primary_10_1039_D0SE00445F
crossref_primary_10_1073_pnas_2420922122
crossref_primary_10_1002_anie_202005577
crossref_primary_10_1016_j_enconman_2024_119038
crossref_primary_10_1002_adma_202304414
crossref_primary_10_1016_j_aca_2022_340510
crossref_primary_10_1039_D4TA01366B
crossref_primary_10_1039_D1TC01766G
crossref_primary_10_1039_D2TA08521F
crossref_primary_10_1016_j_ccr_2025_216562
crossref_primary_10_1016_j_cplett_2022_140012
crossref_primary_10_1016_j_mssp_2024_109055
crossref_primary_10_1021_acsnano_2c12863
crossref_primary_10_1002_smll_202412527
crossref_primary_10_1016_j_nanoen_2022_107815
crossref_primary_10_1515_nanoph_2022_0045
crossref_primary_10_1016_j_fuel_2024_131416
crossref_primary_10_1016_j_jechem_2021_09_009
crossref_primary_10_1021_acsaem_2c02013
crossref_primary_10_1039_D1NR06038D
crossref_primary_10_1039_D3NA00631J
crossref_primary_10_1088_1361_648X_ac386a
crossref_primary_10_1021_acsaem_2c03105
crossref_primary_10_1002_adfm_202316167
crossref_primary_10_1016_j_cattod_2024_114706
crossref_primary_10_1039_D3EE01999C
crossref_primary_10_1002_smll_202401777
crossref_primary_10_1021_acsenergylett_1c00612
crossref_primary_10_6023_A22010012
crossref_primary_10_1039_C9CS00821G
crossref_primary_10_1002_anie_202016330
crossref_primary_10_1021_acssuschemeng_3c06222
crossref_primary_10_1103_PhysRevB_110_235403
crossref_primary_10_1002_adfm_202107280
crossref_primary_10_1016_j_apcatb_2023_123493
crossref_primary_10_1039_D4CC04547E
crossref_primary_10_1021_acsanm_4c03998
crossref_primary_10_1002_ange_202010903
crossref_primary_10_1021_acsanm_4c05813
crossref_primary_10_1039_D3NR00454F
crossref_primary_10_1039_D3CP00188A
crossref_primary_10_1002_smll_202206003
crossref_primary_10_1016_j_seppur_2025_132263
crossref_primary_10_1016_j_apmt_2021_101360
crossref_primary_10_1039_D1CY01063H
crossref_primary_10_1021_acs_jpcc_3c00597
crossref_primary_10_1021_acsnano_2c11430
crossref_primary_10_1002_ange_202016330
crossref_primary_10_3390_catal15030198
crossref_primary_10_1149_1945_7111_adb806
crossref_primary_10_1002_adma_202008631
crossref_primary_10_1002_chem_202403770
crossref_primary_10_1016_j_apcatb_2023_123140
crossref_primary_10_1002_ange_202005577
crossref_primary_10_1002_asia_202300110
crossref_primary_10_3390_molecules28248154
crossref_primary_10_1002_anie_202010903
crossref_primary_10_1016_j_nanoen_2022_107277
crossref_primary_10_1016_j_apcatb_2022_121101
Cites_doi 10.1021/jacs.6b02878
10.1103/PhysRev.25.753
10.3390/molecules24112032
10.1002/cssc.201500694
10.1016/j.nanoen.2017.05.065
10.1016/j.matlet.2015.08.082
10.1002/anie.201509800
10.1103/PhysRevB.54.11169
10.1021/acs.jpclett.9b01406
10.1103/PhysRevLett.81.2819
10.1364/OME.4.002133
10.1038/nature13249
10.1021/acs.nanolett.6b02931
10.1002/ange.201810538
10.1021/acs.chemrev.6b00558
10.1103/PhysRevB.13.5188
10.1021/ja00390a011
10.1021/acs.nanolett.5b03615
10.1103/PhysRevLett.102.073005
10.1016/j.jcou.2017.05.024
10.1021/acscatal.6b01297
10.1126/science.aai8142
10.1021/jp411383j
10.1021/nn2024557
10.1016/0927-0256(96)00008-0
10.1021/jp047349j
10.1002/anie.201507568
10.1039/C8NR03068E
10.1002/anie.201907674
10.1021/acs.jpcc.8b07865
10.1002/adma.201603304
10.1039/C9EE00018F
10.1038/nature16455
10.1021/jacs.9b08259
10.1002/aenm.201801536
10.1002/anie.201506966
10.1002/anie.201807466
10.1103/PhysRevB.79.205412
10.1126/sciadv.1701069
10.1016/j.nanoen.2018.09.053
10.1002/smll.201701349
10.1126/sciadv.aaq0330
10.1103/PhysRevB.82.045414
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.94.014115
10.1016/j.nanoen.2016.11.004
10.1021/ja309317u
10.1002/cssc.201100220
10.1007/BF00631119
10.1002/anie.201204675
10.1063/1.4865107
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-020-14914-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Publicly Available Content Database

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_ed0a6d806a824bbabd5b1739edc72cef
PMC7046785
1624255
32107389
10_1038_s41467_020_14914_9
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U1601211; 21633008
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U1601211
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21633008
– fundername: ;
  grantid: U1601211; 21633008
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c633t-63ee650d9f7c184d8318452ca0f06b79b3cd2f9b5794ae97438da7342c4b57193
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:44 EDT 2025
Thu Aug 21 18:24:32 EDT 2025
Mon Jul 10 02:31:06 EDT 2023
Fri Jul 11 06:03:16 EDT 2025
Wed Aug 13 04:05:04 EDT 2025
Wed Feb 19 02:05:38 EST 2025
Thu Apr 24 22:59:47 EDT 2025
Tue Jul 01 04:08:51 EDT 2025
Fri Feb 21 02:39:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-63ee650d9f7c184d8318452ca0f06b79b3cd2f9b5794ae97438da7342c4b57193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231; 21925205; U1601211; 21633008; 2017YFE9127900; 21733004; 21721003; 2018YFB1502302; 21972133; 20160519005JH; 20170414019JH
USDOE Office of Science (SC)
K.C. Wong Education Foundation and Science and Technology Innovation Foundation of Jilin Province for Talents Cultivation
National Natural Science Foundation of China (NSFC)
Jilin Youth Foundation
ORCID 0000-0001-5333-511X
0000-0002-8911-1916
0000-0002-7758-752X
0000-0001-7140-8060
0000000171408060
000000015333511X
000000027758752X
0000000289111916
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-14914-9
PMID 32107389
PQID 2366609516
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_ed0a6d806a824bbabd5b1739edc72cef
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7046785
osti_scitechconnect_1624255
proquest_miscellaneous_2369406747
proquest_journals_2366609516
pubmed_primary_32107389
crossref_citationtrail_10_1038_s41467_020_14914_9
crossref_primary_10_1038_s41467_020_14914_9
springer_journals_10_1038_s41467_020_14914_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-27
PublicationDateYYYYMMDD 2020-02-27
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhang, Sun, Guo, Bond, Zhang (CR18) 2019; 12
Gao (CR2) 2016; 529
He (CR5) 2018; 130
Cheng (CR27) 2014; 118
Yin (CR32) 2012; 6
Zhang (CR21) 2018; 57
Perdew, Burke, Ernzerhof (CR46) 1996; 77
Zhang (CR13) 2019; 141
Han (CR54) 2018; 9
Zhang (CR10) 2018; 53
Sun (CR39) 2012; 51
Cao (CR3) 2016; 138
Tan (CR31) 2017; 117
Hussain (CR19) 2017; 13
Gong (CR11) 2019; 10
Steele, Lewis (CR34) 2014; 4
Nørskov (CR52) 2004; 108
Liang (CR37) 2015; 54
Zhang (CR14) 2016; 6
Reis (CR20) 2017; 357
Zeng (CR33) 2016; 28
Kitchin (CR41) 2009; 79
Akturk, Akturk, Ciraci (CR26) 2016; 94
Tkatchenko, Scheffler (CR47) 2009; 102
Gao (CR35) 2016; 55
Monkhorst, Pack (CR50) 1976; 13
Li, Ciston, Kanan (CR1) 2014; 508
Davey (CR51) 1925; 25
Zhang (CR25) 2016; 55
Chen, Li, Kanan (CR38) 2012; 134
Agarwal, Zhai, Hill, Sridhar (CR7) 2011; 4
Kim (CR4) 2017; 39
Kresse, Furthmüller (CR44) 1996; 54
Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR53) 2014; 140
Mavrikakis, Hammer, Nørskov (CR43) 1998; 81
Davis, Zaera, Somorjai (CR30) 1982; 104
Fang (CR24) 2018; 4
Inoglu, Kitchin (CR42) 2010; 82
Dai (CR9) 2017; 3
Li (CR36) 2017; 31
Liu, Lu, Xiao, Wang, Lou (CR6) 2019; 58
Yang (CR12) 2018; 8
Elwenspoek (CR29) 1986; 41
Won (CR8) 2015; 8
Han (CR23) 2018; 9
Wang, Zhu, Li (CR28) 2019; 10
Chai (CR22) 2018; 10
Shulenburger, Baczewski, Zhu, Guan, Tománek (CR48) 2015; 15
Avila-Bolivar, Garcia-Cruz, Montiel, Solla-Gullon (CR15) 2019; 24
Kresse, Furthmüller (CR45) 1996; 6
Qiu, Du, Dong, Dai, Tao (CR40) 2017; 20
Oh, Rhee, Han, Shong (CR49) 2018; 122
Yu, Fautrelle, Ren, Li (CR16) 2015; 161
Walker (CR17) 2016; 16
AS Agarwal (14914_CR7) 2011; 4
JK Nørskov (14914_CR52) 2004; 108
X Zhang (14914_CR18) 2019; 12
Z Yin (14914_CR32) 2012; 6
JP Perdew (14914_CR46) 1996; 77
C Tan (14914_CR31) 2017; 117
Z Zhang (14914_CR14) 2016; 6
CW Li (14914_CR1) 2014; 508
Y Zhang (14914_CR21) 2018; 57
S He (14914_CR5) 2018; 130
S Gao (14914_CR2) 2016; 529
L Dai (14914_CR9) 2017; 3
S Kim (14914_CR4) 2017; 39
HJ Monkhorst (14914_CR50) 1976; 13
Y Wang (14914_CR28) 2019; 10
E Akturk (14914_CR26) 2016; 94
Y Zeng (14914_CR33) 2016; 28
DH Won (14914_CR8) 2015; 8
JA Steele (14914_CR34) 2014; 4
Q Gong (14914_CR11) 2019; 10
F Li (14914_CR36) 2017; 31
ES Walker (14914_CR17) 2016; 16
W Zhang (14914_CR10) 2018; 53
L Liang (14914_CR37) 2015; 54
W Oh (14914_CR49) 2018; 122
T Chai (14914_CR22) 2018; 10
G Kresse (14914_CR45) 1996; 6
M Elwenspoek (14914_CR29) 1986; 41
F Reis (14914_CR20) 2017; 357
S Zhang (14914_CR25) 2016; 55
N Han (14914_CR23) 2018; 9
K Mathew (14914_CR53) 2014; 140
H Yang (14914_CR12) 2018; 8
JR Kitchin (14914_CR41) 2009; 79
M Mavrikakis (14914_CR43) 1998; 81
Z Cao (14914_CR3) 2016; 138
N Inoglu (14914_CR42) 2010; 82
N Hussain (14914_CR19) 2017; 13
A Fang (14914_CR24) 2018; 4
S Gao (14914_CR35) 2016; 55
E Zhang (14914_CR13) 2019; 141
S Liu (14914_CR6) 2019; 58
G Kresse (14914_CR44) 1996; 54
Y Chen (14914_CR38) 2012; 134
A Tkatchenko (14914_CR47) 2009; 102
X Yu (14914_CR16) 2015; 161
Y Qiu (14914_CR40) 2017; 20
N Han (14914_CR54) 2018; 9
L Cheng (14914_CR27) 2014; 118
B Avila-Bolivar (14914_CR15) 2019; 24
Y Sun (14914_CR39) 2012; 51
SM Davis (14914_CR30) 1982; 104
L Shulenburger (14914_CR48) 2015; 15
WP Davey (14914_CR51) 1925; 25
32376897 - Nat Commun. 2020 May 6;11(1):2352
References_xml – volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR46
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 1334
  year: 2019
  end-page: 1340
  ident: CR18
  article-title: Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO reduction at low overpotential
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2018
  ident: CR23
  article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO reduction to formate
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4663
  year: 2019
  end-page: 4667
  ident: CR28
  article-title: Spin–orbit coupling-dominated catalytic activity of two-dimensional bismuth toward CO electroreduction: not the thinner the better
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: e1701069
  year: 2017
  ident: CR9
  article-title: Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide
  publication-title: Sci. Adv.
– volume: 82
  start-page: 5
  year: 2010
  ident: CR42
  article-title: Simple model explaining and predicting coverage-dependent atomic adsorption energies on transition metal surfaces
  publication-title: Phys. Rev. B
– volume: 10
  year: 2019
  ident: CR11
  article-title: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction
  publication-title: Nat. Commun.
– volume: 6
  start-page: 6255
  year: 2016
  end-page: 6264
  ident: CR14
  article-title: Rational design of Bi nanoparticles for efficient electrochemical CO reduction: the elucidation of size and surface condition effects
  publication-title: ACS Catal.
– volume: 138
  start-page: 8120
  year: 2016
  end-page: 8125
  ident: CR3
  article-title: A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction
  publication-title: J. Am. Chem. Soc.
– volume: 161
  start-page: 144
  year: 2015
  end-page: 148
  ident: CR16
  article-title: PVA-assisted synthesis and characterization of core–shell Bi nanobelts
  publication-title: Mater. Lett.
– volume: 6
  start-page: 74
  year: 2012
  end-page: 80
  ident: CR32
  article-title: Single-layer MoS phototransistors
  publication-title: ACS Nano
– volume: 31
  start-page: 270
  year: 2017
  end-page: 277
  ident: CR36
  article-title: Towards a better Sn: efficient electrocatalytic reduction of CO to formate by Sn/SnS derived from SnS nanosheets
  publication-title: Nano Energy
– volume: 20
  start-page: 328
  year: 2017
  end-page: 335
  ident: CR40
  article-title: Selective conversion of CO to formate on a size tunable nano-Bi electrocatalyst
  publication-title: J. CO2 Util.
– volume: 9
  year: 2018
  ident: CR54
  article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO reduction to formate
  publication-title: Nat. Commun.
– volume: 25
  start-page: 753
  year: 1925
  end-page: 761
  ident: CR51
  article-title: Precision measurements of the lattice constants of twelve common metals
  publication-title: Phys. Rev.
– volume: 8
  start-page: 3092
  year: 2015
  end-page: 3098
  ident: CR8
  article-title: Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO
  publication-title: ChemSusChem
– volume: 13
  start-page: 1701349
  year: 2017
  ident: CR19
  article-title: Ultrathin Bi nanosheets with superior photoluminescence
  publication-title: Small
– volume: 24
  start-page: 15
  year: 2019
  ident: CR15
  article-title: Electrochemical reduction of CO to formate on easily prepared carbon-supported Bi nanoparticles
  publication-title: Molecules
– volume: 41
  start-page: 123
  year: 1986
  end-page: 125
  ident: CR29
  article-title: Kinetics of a rough crystal face: temperature dependence of the growth rate
  publication-title: Appl. Phys. A
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR44
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 39
  start-page: 44
  year: 2017
  end-page: 52
  ident: CR4
  article-title: Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate
  publication-title: Nano Energy
– volume: 117
  start-page: 6225
  year: 2017
  end-page: 6331
  ident: CR31
  article-title: Recent advances in ultrathin two-dimensional nanomaterials
  publication-title: Chem. Rev.
– volume: 4
  start-page: 2133
  year: 2014
  end-page: 2142
  ident: CR34
  article-title: In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands
  publication-title: Opt. Mater. Express
– volume: 54
  start-page: 13971
  year: 2015
  end-page: 13974
  ident: CR37
  article-title: Single unit cell bismuth tungstate layers realizing robust solar CO reduction to methanol
  publication-title: Angew. Chem. Int. Ed.
– volume: 118
  start-page: 904
  year: 2014
  end-page: 910
  ident: CR27
  article-title: Thermoelectric properties of a monolayer bismuth
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR45
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comp. Mat. Sci.
– volume: 51
  start-page: 8727
  year: 2012
  end-page: 8731
  ident: CR39
  article-title: Freestanding tin disulfide single-layers realizing efficient visible-light water splitting
  publication-title: Angew. Chem. Int. Ed.
– volume: 55
  start-page: 1666
  year: 2016
  end-page: 1669
  ident: CR25
  article-title: Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 19969
  year: 2012
  end-page: 19972
  ident: CR38
  article-title: Aqueous CO reduction at very low overpotential on oxide-derived Au nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 16569
  year: 2019
  end-page: 16573
  ident: CR13
  article-title: Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction
  publication-title: J. Am. Chem. Soc.
– volume: 79
  start-page: 6
  year: 2009
  ident: CR41
  article-title: Correlations in coverage-dependent atomic adsorption energies on Pd(111)
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR50
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 130
  start-page: 16346
  year: 2018
  end-page: 16351
  ident: CR5
  article-title: The p-orbital delocalization of main-group metals to boost CO2 electroreduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 13283
  year: 2018
  end-page: 13287
  ident: CR21
  article-title: Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO reduction performance
  publication-title: Angew. Chem. Int. Ed.
– volume: 94
  start-page: 9
  year: 2016
  ident: CR26
  article-title: Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 17617
  year: 2018
  end-page: 17622
  ident: CR22
  article-title: Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field
  publication-title: Nanoscale
– volume: 28
  start-page: 9188
  year: 2016
  end-page: 9195
  ident: CR33
  article-title: Flexible ultrafast aqueous rechargeable Ni/Bi battery based on highly durable single-crystalline bismuth nanostructured anode
  publication-title: Adv. Mater.
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: CR52
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
– volume: 58
  start-page: 13828
  year: 2019
  end-page: 13833
  ident: CR6
  article-title: Bi O nanosheets grown on multi-channel carbon matrix to catalyze efficient CO electroreduction to HCOOH
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 6
  year: 2018
  ident: CR24
  article-title: Bursting at the seams: rippled monolayer bismuth on NbSe
  publication-title: Sci. Adv.
– volume: 104
  start-page: 7453
  year: 1982
  end-page: 7461
  ident: CR30
  article-title: Surface structure and temperature dependence of light-alkane skeletal rearrangement reactions catalyzed over platinum single-crystal surfaces
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 8170
  year: 2015
  end-page: 8175
  ident: CR48
  article-title: The nature of the interlayer interaction in bulk and few-layer phosphorus
  publication-title: Nano Lett.
– volume: 140
  start-page: 084106
  year: 2014
  ident: CR53
  article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
  publication-title: J. Chem. Phys.
– volume: 81
  start-page: 2819
  year: 1998
  end-page: 2822
  ident: CR43
  article-title: Effect of strain on the reactivity of metal surfaces
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 6931
  year: 2016
  end-page: 6938
  ident: CR17
  article-title: Large-area dry transfer of single-crystalline epitaxial bismuth thin films
  publication-title: Nano Lett.
– volume: 102
  start-page: 073005
  year: 2009
  ident: CR47
  article-title: Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data
  publication-title: Phys. Rev. Lett.
– volume: 529
  start-page: 68
  year: 2016
  end-page: 72
  ident: CR2
  article-title: Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel
  publication-title: Nature
– volume: 122
  start-page: 23084
  year: 2018
  end-page: 23090
  ident: CR49
  article-title: Atomic and molecular adsorption on the Bi(111) surface: insights into catalytic CO reduction
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 1301
  year: 2011
  end-page: 1310
  ident: CR7
  article-title: The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility
  publication-title: ChemSusChem
– volume: 55
  start-page: 698
  year: 2016
  end-page: 702
  ident: CR35
  article-title: Ultrathin Co O layers realizing optimized CO electroreduction to formate
  publication-title: Angew. Chem. Int. Ed.
– volume: 508
  start-page: 504
  year: 2014
  end-page: 507
  ident: CR1
  article-title: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
  publication-title: Nature
– volume: 8
  start-page: 1801536
  year: 2018
  ident: CR12
  article-title: Selective CO reduction on 2D mesoporous Bi nanosheets
  publication-title: Adv. Energy Mater.
– volume: 357
  start-page: 4
  year: 2017
  ident: CR20
  article-title: Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material
  publication-title: Science
– volume: 53
  start-page: 808
  year: 2018
  end-page: 816
  ident: CR10
  article-title: Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure
  publication-title: Nano Energy
– volume: 138
  start-page: 8120
  year: 2016
  ident: 14914_CR3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02878
– volume: 25
  start-page: 753
  year: 1925
  ident: 14914_CR51
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.25.753
– volume: 24
  start-page: 15
  year: 2019
  ident: 14914_CR15
  publication-title: Molecules
  doi: 10.3390/molecules24112032
– volume: 8
  start-page: 3092
  year: 2015
  ident: 14914_CR8
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500694
– volume: 39
  start-page: 44
  year: 2017
  ident: 14914_CR4
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.065
– volume: 161
  start-page: 144
  year: 2015
  ident: 14914_CR16
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.08.082
– volume: 55
  start-page: 698
  year: 2016
  ident: 14914_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509800
– volume: 54
  start-page: 11169
  year: 1996
  ident: 14914_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 10
  start-page: 4663
  year: 2019
  ident: 14914_CR28
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b01406
– volume: 81
  start-page: 2819
  year: 1998
  ident: 14914_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 4
  start-page: 2133
  year: 2014
  ident: 14914_CR34
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.4.002133
– volume: 508
  start-page: 504
  year: 2014
  ident: 14914_CR1
  publication-title: Nature
  doi: 10.1038/nature13249
– volume: 16
  start-page: 6931
  year: 2016
  ident: 14914_CR17
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02931
– volume: 130
  start-page: 16346
  year: 2018
  ident: 14914_CR5
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201810538
– volume: 117
  start-page: 6225
  year: 2017
  ident: 14914_CR31
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00558
– volume: 9
  year: 2018
  ident: 14914_CR23
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5188
  year: 1976
  ident: 14914_CR50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 104
  start-page: 7453
  year: 1982
  ident: 14914_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00390a011
– volume: 15
  start-page: 8170
  year: 2015
  ident: 14914_CR48
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03615
– volume: 10
  year: 2019
  ident: 14914_CR11
  publication-title: Nat. Commun.
– volume: 102
  start-page: 073005
  year: 2009
  ident: 14914_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.073005
– volume: 9
  year: 2018
  ident: 14914_CR54
  publication-title: Nat. Commun.
– volume: 20
  start-page: 328
  year: 2017
  ident: 14914_CR40
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2017.05.024
– volume: 6
  start-page: 6255
  year: 2016
  ident: 14914_CR14
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01297
– volume: 357
  start-page: 4
  year: 2017
  ident: 14914_CR20
  publication-title: Science
  doi: 10.1126/science.aai8142
– volume: 118
  start-page: 904
  year: 2014
  ident: 14914_CR27
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp411383j
– volume: 6
  start-page: 74
  year: 2012
  ident: 14914_CR32
  publication-title: ACS Nano
  doi: 10.1021/nn2024557
– volume: 6
  start-page: 15
  year: 1996
  ident: 14914_CR45
  publication-title: Comp. Mat. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 108
  start-page: 17886
  year: 2004
  ident: 14914_CR52
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 55
  start-page: 1666
  year: 2016
  ident: 14914_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201507568
– volume: 10
  start-page: 17617
  year: 2018
  ident: 14914_CR22
  publication-title: Nanoscale
  doi: 10.1039/C8NR03068E
– volume: 58
  start-page: 13828
  year: 2019
  ident: 14914_CR6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201907674
– volume: 122
  start-page: 23084
  year: 2018
  ident: 14914_CR49
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b07865
– volume: 28
  start-page: 9188
  year: 2016
  ident: 14914_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603304
– volume: 12
  start-page: 1334
  year: 2019
  ident: 14914_CR18
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00018F
– volume: 529
  start-page: 68
  year: 2016
  ident: 14914_CR2
  publication-title: Nature
  doi: 10.1038/nature16455
– volume: 141
  start-page: 16569
  year: 2019
  ident: 14914_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08259
– volume: 8
  start-page: 1801536
  year: 2018
  ident: 14914_CR12
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801536
– volume: 54
  start-page: 13971
  year: 2015
  ident: 14914_CR37
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506966
– volume: 57
  start-page: 13283
  year: 2018
  ident: 14914_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807466
– volume: 79
  start-page: 6
  year: 2009
  ident: 14914_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.205412
– volume: 3
  start-page: e1701069
  year: 2017
  ident: 14914_CR9
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701069
– volume: 53
  start-page: 808
  year: 2018
  ident: 14914_CR10
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.053
– volume: 13
  start-page: 1701349
  year: 2017
  ident: 14914_CR19
  publication-title: Small
  doi: 10.1002/smll.201701349
– volume: 4
  start-page: 6
  year: 2018
  ident: 14914_CR24
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaq0330
– volume: 82
  start-page: 5
  year: 2010
  ident: 14914_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.045414
– volume: 77
  start-page: 3865
  year: 1996
  ident: 14914_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 94
  start-page: 9
  year: 2016
  ident: 14914_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.014115
– volume: 31
  start-page: 270
  year: 2017
  ident: 14914_CR36
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.004
– volume: 134
  start-page: 19969
  year: 2012
  ident: 14914_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309317u
– volume: 4
  start-page: 1301
  year: 2011
  ident: 14914_CR7
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100220
– volume: 41
  start-page: 123
  year: 1986
  ident: 14914_CR29
  publication-title: Appl. Phys. A
  doi: 10.1007/BF00631119
– volume: 51
  start-page: 8727
  year: 2012
  ident: 14914_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204675
– volume: 140
  start-page: 084106
  year: 2014
  ident: 14914_CR53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– reference: 32376897 - Nat Commun. 2020 May 6;11(1):2352
SSID ssj0000391844
Score 2.6959896
Snippet Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO 2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene)...
Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene)...
Bismuth (Bi) has been known as a highly efficient electrocatalyst for CO2 reduction reaction. Stable free-standing two-dimensional Bi monolayer (Bismuthene)...
Stable free-standing two-dimensional Bi monolayer (Bismuthene) structures have been predicted theoretically, but never realized experimentally. Here, the...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1088
SubjectTerms 119/118
140/133
147/143
147/28
147/3
639/301/357/1018
639/638/161/886
639/638/77/887
Bismuth
Carbon dioxide
Chemical reduction
Compressive properties
Density functional theory
Dimensional stability
Humanities and Social Sciences
Monolayers
multidisciplinary
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Synthesis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F0naVGht9ZEtl7WsSkNS6E9NZCb0GNMF1K77G6g-fedkb3bbJ-XntbY8iJ_mpG-QZpvGHuZjMxCBFGHoGOtHKQ6QgO11H1jQLjUG8p3_vDRLM7V-wt9caPUF50Jm-SBJ-BOIItgcidM6FoVY4hZx8ZKBznZNkFPsy-ueTeCqTIHS4ehi5qzZITsTtaqzAkULWFQ0Kja7a1ERbAff0Z0rN-RzV_PTP60cVrWo7N77O5MJPmb6QPus1swPGC3p9KS1w_Z4nS5_kKn1wfgyEs5yRJfXnMoihH45zyFVRwHnpfjt2UGPpfDWZGSK40VRzJZLh6x87N3n94u6rlqQo24y01tJADSrux6mxCD3KHXKt2mIHphonVRptz2Lmr0xAAYTsguBytVmxTeQz73mB0M4wBPGe_7LkYbmpRiVNaaQOJdIjYQwCSjXcWaLYI-zZLiVNni0petbdn5CXWPqPuCusd3Xu3e-ToJavy19SkNzK4liWGXG2gifjYR_y8TqdgRDatHTkHCuIlOEKWNbyg1RuuKHW9H28_-u_atxLCO2Kep2IvdY_Q82k4JA4xXpY1DOoTxWMWeTMax6ydlRlnkghWze2az9yH7T4bl56LubQVi0GG3Xm8N7Ee3_gzU4f8A6ojdaclBKGPfHrODzeoKniHn2sTnxb2-A0KCKZ8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXmmLShI3CCqEzt-nBBFXVZIcKJSb5ZfgZVK0u5upfbfM-N4Uy2PnjZKnJUzD_uzPfMNIW-9YIFSSytrW1dxHX3lYh0r1na1iFT7TmC-89dvYn7Kv5y1Z3nDbZXDKjdjYhqow-Bxj_yoYQC0EQ-IDxeXFVaNwtPVXELjPnlQw0yDIV1q9nnaY0H2c8V5zpWhTB2teBoZcM0ES4OaV3prPkq0_fAzgHv9C3L-HTn5x_FpmpVmj8luhpPlx1H_e-Re7J-Qh2OByZunZH68WP3CGPY-loBOSyQnPr8pY-KNgD8vvV26oS_DYrhehFjmojhL5HNFjZUAKdPFM3I6O_n-aV7l2gkVSJ-tK8FiBPAVdCc9yCAo8F3eNt7SjgontWM-NJ12LfijjbCoYCpYyXjjOdwDVPec7PRDH1-SsuuUc9LW3jvHpRQWKbyoq6ONwotWF6TeSND4TCyO9S3OTTrgZsqMUjcgdZOkbuCdd9M7FyOtxp2tj1ExU0ukxE43huUPkz3MxECtCIoKqxrunHWhdbVkGpQlGx-7ghygWg0gC6TH9RhH5NemxgSZti3I4UbbJnvxytzaXEHeTI_B__BQxfZxuEptNIAiWJUV5MVoHFM_MT9KAiIsiNwym60P2X7SL34mjm9JQQYKuvV-Y2C33fq_oPbv_ooD8qhB08eMfHlIdtbLq_gKMNXavU6O8xvgch87
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFD6suwi-iHfrrlLBNy2mTZqkj7PiMgzoiy7sW8itOrC2MjML7r_3nPQio6vgU0suJT2X5ktzzheAV17ywJhlhbW1K0QTfeFiGQtet6WMrPGtpHznDx_l8lysLuqLA6imXJgUtJ8oLdNneooOe7sVyaVpsYOYvhRFcwuOiKodbftosVh9Ws1_VojzXAsxZsgwrm_ovDcLJbJ-vPToVDcBzT_jJX_bNE1z0dk9uDuCyHwxDPs-HMTuAdwejpW8fgjL0_X2G0WudzFHTJoTJfHldR4TWwQ-PPd24_ouD-v-xzrEfDwKZ0MsrqSnHIFkunkE52fvP79bFuOJCQXKnO8KyWNEyBWaVnmUQdDosaKuvGUtk041jvtQtY2r0QttxKUE18EqLiovsAyx3GM47PouPoW8bbVzypbeOyeUkpaIu5gro43Sy7rJoJwkaPxIJ06nWlyatK3NtRmkblDqJkndYJ_Xc5_vA5nGP1ufkmLmlkSEnQr6zRczGoaJgVkZNJNWV8I560LtSsUbVJaqfGwzOCa1GsQTRIrrKXrI70xJaTF1ncHJpG0z-u7WVByXdIQ8ZQYv52r0OtpKsV3sr1KbBqEQrsUyeDIYxzxOyopSiAMzUHtms_ci-zXd-mti9lYMZaBxWG8mA_s1rL8L6tn_NT-GOxW5AuXlqxM43G2u4nNEVjv3YnSln8rUHl4
  priority: 102
  providerName: Springer Nature
Title Bismuthene for highly efficient carbon dioxide electroreduction reaction
URI https://link.springer.com/article/10.1038/s41467-020-14914-9
https://www.ncbi.nlm.nih.gov/pubmed/32107389
https://www.proquest.com/docview/2366609516
https://www.proquest.com/docview/2369406747
https://www.osti.gov/servlets/purl/1624255
https://pubmed.ncbi.nlm.nih.gov/PMC7046785
https://doaj.org/article/ed0a6d806a824bbabd5b1739edc72cef
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dq9MwFD_cDwRfxG_rvY4Kvmk1bdqkfRDZxp1jcC-iDvYWkjTVwWx124W7_95z0m4yneLLOtK0pOej-Z0m53cAXljBS8Y0i7TOTJQWzkbGxS7iWRULxwpbCcp3vrwS42k6mWWzI9iWO-oEuDoY2lE9qely8frmx-YdOvzbNmU8f7NKvbtTIIR4P06j4hhOcWaSVNHgsoP7_s3MCwxoaKE5YWkcYQfe5dEcvs3eXOUp_fHQoOsdgqN_7qr8bWnVz1iju3Cng5phv7WNe3Dk6vtwqy0-uXkA48F89Y32t9cuROQaEnHxYhM6zymBNw-tXpqmDst5czMvXdgVzFkS1ytpM0S46f88hOno4vNwHHV1FSLUDF9HgjuHwKwsKmlRHmWOfp1midWsYsLIwnBbJlVhMvRV7TDg4HmpJU8Tm2IbIr5HcFI3tXsCYVXlxkgdW2tMKqXQRO_FTOy0E1ZkRQDxVoLKdqTjVPtiofziN89VK3WFUlde6gqvebm75ntLufHP3gNSzK4n0WX7hmb5RXXep1zJtChzJnSepMZoU2YmlrxAZcnEuiqAM1KrQtRB1LmW9hjZtYopeSbLAjjfalttDVQlHAM_wqcigOe70-ibtOCia9dc-z4FAiaM2AJ43BrHbpyUOyURLQYg98xm70H2z9Tzr57_WzKUQY7DerU1sF_D-rugnv7HMM_gdkL2Tyn78hxO1str9wxB19r04FjOJP7mo_c9OO33J58meBxcXH34iK1DMez5zxk973E_ATUvLQs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuhBYwEJ4jqxI6dHBCiwLKlj1Mr9Wb8CqxUkrK7Feyf4jcy4yRbLY_eekqUOJEzD_ub2PMNIc-d5J4xw1JjCpuKKrjUhiykvKgzGVjlaon5zgeHcnwsPp0UJ2vk15ALg9sqhzExDtS-dfiPfDvnALQRD8g3Z99TrBqFq6tDCY3OLPbC4geEbLPXu-9Bvy_yfPTh6N047asKpNAvPk8lDwFgia9q5SC88SVYtShyZ1jNpFWV5c7ndWULsFQTAG7z0hvFRe4EXMuQfAmG_GuCw0yOmemjj8t_Osi2XgrR5-YwXm7PRByJMEaDUCQTabUy_8UyAXBowZ3_BXH_3qn5x3JtnAVHt8mtHr7St5293SFroblLrncFLRf3yHhnMvuGe-abQAENUyRDPl3QEHkq4OXUmaltG-on7c-JD7QvwjNF_li0EAoQNp7cJ8dXItUHZL1pm7BBaF2X1iqTOWetUEoapAxjNgsmSCeLKiHZIEHteiJzrKdxquOCOi91J3UNUtdR6hqeebl85qyj8bi09Q4qZtkSKbjjhXb6RfcerYNnRvqSSVPmwlpjfWEzxStQlspdqBOyiWrVgGSQjtfhviU31xkm5BRFQrYGbet-1JjpCxtPyLPlbfB3XMQxTWjPY5sKQBhEgQl52BnHsp-Yj6UAgSZErZjNyoes3mkmXyOnuGIggxK69WowsItu_V9Qjy7_iqfkxvjoYF_v7x7ubZKbOboBsgGoLbI-n56Hx4Dn5vZJdCJKPl-11_4GlX9a-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrUBcEO-aFjASnMDK2rvetQ8IEdoopRBViEq9LfsyRCp2SVJB_hq_jpm1nSo8eusplr2O1vNYf-Od-YaQZ1YwR6mmida5SXjpbWJ86hOWV6nwtLSVwHrnDxMxPubvTvKTDfKrr4XBtMp-TQwLtWssfiMfZAyANuIBMai6tIijvdHrs-8JdpDCnda-nUZrIod--QPCt_mrgz3Q9fMsG-1_ejtOug4DCcyRLRLBvAeI4spKWgh1XAEWzvPMalpRYWRpmHVZVZocrFZ7gN6scFoynlkO51IkYoLlf0tiVLRJtob7k6OPqy88yL1ecN5V6lBWDOY8rEsYsUFgkvKkXHsbhqYB8NOAc_8L8P6dt_nH5m14J45ukZsdmI3ftNZ3m2z4-g651ra3XN4l4-F0_g0z6GsfAzaOkRr5dBn7wFoBfx5bPTNNHbtp83PqfNy15JkhmyzaSwyANhzcI8dXItf7ZLNuar9N4qoqjJE6tdYYLqXQSCBGTeq1F1bkZUTSXoLKdrTm2F3jVIXtdVaoVuoKpK6C1BXc82J1z1lL6nHp6CEqZjUSCbnDiWb2RXX-rbyjWriCCl1k3BhtXG5SyUpQlsysryKyg2pVgGuQnNdiFpNdqBTLc_I8Iru9tlW3hszVhcVH5OnqMng_buno2jfnYUwJkAxiwog8aI1jNU-szpKARyMi18xm7UHWr9TTr4FhXFKQQQHTetkb2MW0_i-oh5c_xRNyHTxWvT-YHO6QGxl6AVIDyF2yuZid-0cA7hbmcedFMfl81Y77G7UgYIs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bismuthene+for+highly+efficient+carbon+dioxide+electroreduction+reaction&rft.jtitle=Nature+communications&rft.au=Yang%2C+Fa&rft.au=Elnabawy%2C+Ahmed+O&rft.au=Schimmenti%2C+Roberto&rft.au=Song%2C+Ping&rft.date=2020-02-27&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=1088&rft_id=info:doi/10.1038%2Fs41467-020-14914-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon