Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials
Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 83 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.01.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic “surface-to-bulk” charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials.
The authors here report on the influence of grain orientation on the charge distribution in polycrystalline materials for batteries. The quantitative characterization provides mechanistic insight into the way the grain orientation can be engineered to mitigate the charge heterogeneity. |
---|---|
AbstractList | The authors here report on the influence of grain orientation on the charge distribution in polycrystalline materials for batteries. The quantitative characterization provides mechanistic insight into the way the grain orientation can be engineered to mitigate the charge heterogeneity. Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic "surface-to-bulk" charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials. Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic “surface-to-bulk” charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials. The authors here report on the influence of grain orientation on the charge distribution in polycrystalline materials for batteries. The quantitative characterization provides mechanistic insight into the way the grain orientation can be engineered to mitigate the charge heterogeneity. Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic “surface-to-bulk” charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials.The authors here report on the influence of grain orientation on the charge distribution in polycrystalline materials for batteries. The quantitative characterization provides mechanistic insight into the way the grain orientation can be engineered to mitigate the charge heterogeneity. Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic "surface-to-bulk" charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials.Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic "surface-to-bulk" charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials. |
ArticleNumber | 83 |
Author | Nordlund, Dennis Du, Xi-Wen Qin, Changdong Sun, Cheng-Jun Jiang, Zhisen Yan, Pengfei Xu, Zhengrui Lin, Feng Wei, Chenxi Rahman, Muhammad Mominur Zhao, Kejie Xu, Rong Zhang, Yan Xiao, Xianghui Liu, Yijin Kuai, Chunguang |
Author_xml | – sequence: 1 givenname: Zhengrui surname: Xu fullname: Xu, Zhengrui organization: Department of Chemistry, Virginia Tech – sequence: 2 givenname: Zhisen surname: Jiang fullname: Jiang, Zhisen organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 3 givenname: Chunguang surname: Kuai fullname: Kuai, Chunguang organization: Department of Chemistry, Virginia Tech, Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 4 givenname: Rong orcidid: 0000-0002-3694-595X surname: Xu fullname: Xu, Rong organization: School of Mechanical Engineering, Purdue University – sequence: 5 givenname: Changdong surname: Qin fullname: Qin, Changdong organization: Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology – sequence: 6 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 7 givenname: Muhammad Mominur surname: Rahman fullname: Rahman, Muhammad Mominur organization: Department of Chemistry, Virginia Tech – sequence: 8 givenname: Chenxi surname: Wei fullname: Wei, Chenxi organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 9 givenname: Dennis orcidid: 0000-0001-9524-6908 surname: Nordlund fullname: Nordlund, Dennis organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 10 givenname: Cheng-Jun surname: Sun fullname: Sun, Cheng-Jun organization: Advanced Photon Source, Argonne National Laboratory – sequence: 11 givenname: Xianghui orcidid: 0000-0002-7142-3452 surname: Xiao fullname: Xiao, Xianghui organization: National Synchrotron Light Source II, Brookhaven National Laboratory – sequence: 12 givenname: Xi-Wen orcidid: 0000-0002-2811-147X surname: Du fullname: Du, Xi-Wen organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 13 givenname: Kejie orcidid: 0000-0001-5030-7412 surname: Zhao fullname: Zhao, Kejie organization: School of Mechanical Engineering, Purdue University – sequence: 14 givenname: Pengfei orcidid: 0000-0001-6387-7502 surname: Yan fullname: Yan, Pengfei organization: Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology – sequence: 15 givenname: Yijin orcidid: 0000-0002-8417-2488 surname: Liu fullname: Liu, Yijin email: liuyijin@slac.stanford.edu organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 16 givenname: Feng orcidid: 0000-0002-3729-3148 surname: Lin fullname: Lin, Feng email: fenglin@vt.edu organization: Department of Chemistry, Virginia Tech |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31913275$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1603289$$D View this record in Osti.gov |
BookMark | eNp9kktv1DAUhSNUREvpH2CBItiwCfiZ2BskNAJaqRIbWFu242Q8ytiD7VSdf8_tpO9FI0XXTr5zfG9y3lZHIQZXVe8x-oIRFV8zw6ztGoRlg6kQrLl-VZ0QxHCDO0KPHq2Pq7OcNwguKrFg7E11TLHElHT8pBpWa51GV_c-l-TNXHwM9Tj73vW12ddj0j7UNu1z0dMUYbtbe1vH5F0o-gbONQC7OO3vIB9cbXQpLu3rrYbi9ZTfVa8HKO7stp5Wf3_--LM6by5__7pYfb9sbEtpaaglxohBCm6M1R2TyFFkh5bBTgo0dNpQzI3liBPZt4OwnLXIENR3DElH6Wl1sfj2UW_ULvmtTnsVtVeHBzGNSqfi7eTUgE0LtyCI90z2zhhNsO16a1CLO8nB69vitZvN1vUWJk56emL69E3wazXGK9VKJgkXYPBxMYi5eJWtL86ubQzB2aJwiygREqDPt6ek-G92uaitz9ZNkw4uzlkRSlkrO7AE9NMzdBPnFOB7AsWI5JzLFqgPj9u-7_funwNAFsCmmHNywz2CkbrJllqypSBb6pAtdQ0i8UwE4xwCAKP76WUpXaQZzgmjSw9tv6D6D4li5g8 |
CitedBy_id | crossref_primary_10_1039_D1TA02262H crossref_primary_10_1038_s41467_020_16824_2 crossref_primary_10_1002_adfm_202308165 crossref_primary_10_1016_j_xcrp_2020_100137 crossref_primary_10_1016_j_apsusc_2023_157120 crossref_primary_10_1021_jacs_2c13787 crossref_primary_10_1149_1945_7111_ac8ee3 crossref_primary_10_1073_pnas_2212802119 crossref_primary_10_1021_acsenergylett_1c02135 crossref_primary_10_1021_acsenergylett_4c01397 crossref_primary_10_1149_1945_7111_abdde0 crossref_primary_10_1016_j_jechem_2025_02_005 crossref_primary_10_1038_s41467_023_42285_4 crossref_primary_10_1115_1_4054584 crossref_primary_10_1002_adfm_202110502 crossref_primary_10_1021_cbe_4c00097 crossref_primary_10_1002_aenm_202405371 crossref_primary_10_1016_j_xcrp_2021_100647 crossref_primary_10_1016_j_jpowsour_2023_234034 crossref_primary_10_1021_acsenergylett_0c02699 crossref_primary_10_1039_D3TA04649D crossref_primary_10_1039_D3CS01110K crossref_primary_10_1002_aenm_202204054 crossref_primary_10_1016_j_jpowsour_2021_230066 crossref_primary_10_1002_aenm_202202795 crossref_primary_10_1021_jacs_4c11385 crossref_primary_10_1038_s41467_024_45373_1 crossref_primary_10_1039_D1TA05394A crossref_primary_10_1016_j_xcrp_2023_101460 crossref_primary_10_1021_acs_nanolett_1c03613 crossref_primary_10_1002_adfm_202200096 crossref_primary_10_3866_PKU_WHXB202308051 crossref_primary_10_1016_j_ensm_2024_103716 crossref_primary_10_1038_s41557_022_00915_2 crossref_primary_10_1002_aenm_202300103 crossref_primary_10_1016_j_jallcom_2024_176783 crossref_primary_10_1016_j_cej_2023_147940 crossref_primary_10_1021_acsenergylett_2c00226 crossref_primary_10_1557_s43577_024_00749_y crossref_primary_10_3390_cryst12010003 crossref_primary_10_1039_D4AN00705K crossref_primary_10_1107_S1600577524000146 crossref_primary_10_1016_j_est_2024_114639 crossref_primary_10_1016_j_jpowsour_2024_235452 crossref_primary_10_1021_acsaem_0c01186 crossref_primary_10_1016_j_est_2023_108875 crossref_primary_10_1021_acs_jpcc_1c01703 crossref_primary_10_1039_D2RA01250B crossref_primary_10_1016_j_nanoen_2022_107880 crossref_primary_10_1038_s41467_024_53094_8 crossref_primary_10_1016_j_ensm_2021_10_018 crossref_primary_10_1016_j_nanoen_2024_109620 crossref_primary_10_1039_D3CP02932H crossref_primary_10_1007_s12274_023_5630_1 crossref_primary_10_1021_acsnano_4c14322 crossref_primary_10_1021_acsenergylett_2c00870 crossref_primary_10_1039_D2NR05701H crossref_primary_10_1021_acsaem_2c04141 crossref_primary_10_1017_S1431927621001872 crossref_primary_10_1063_5_0051092 crossref_primary_10_3390_batteries9060310 crossref_primary_10_1039_D3EE04115H crossref_primary_10_1126_science_abm8962 crossref_primary_10_1016_j_jechem_2020_10_026 crossref_primary_10_1016_j_joule_2020_10_010 crossref_primary_10_3390_electrochem4020013 crossref_primary_10_1002_aenm_202003270 crossref_primary_10_1016_j_mattod_2020_10_028 crossref_primary_10_1002_aenm_202203188 crossref_primary_10_1002_smsc_202300063 crossref_primary_10_1017_S1431927620015809 crossref_primary_10_1021_accountsmr_2c00098 crossref_primary_10_1088_2515_7655_acc139 crossref_primary_10_1002_adfm_202112279 crossref_primary_10_1007_s43207_020_00098_x crossref_primary_10_1093_nsr_nwab146 crossref_primary_10_1016_j_joule_2020_08_004 crossref_primary_10_1016_j_engfracmech_2024_110647 crossref_primary_10_1021_acs_chemrev_2c00251 crossref_primary_10_1088_2515_7655_ab83e1 crossref_primary_10_1002_aenm_202003019 crossref_primary_10_1038_s41467_023_44222_x crossref_primary_10_1088_1361_6528_ac17ff crossref_primary_10_1021_acsenergylett_2c01297 crossref_primary_10_1016_j_chempr_2020_07_017 crossref_primary_10_1021_acsaem_4c00279 crossref_primary_10_1021_acsenergylett_1c00279 crossref_primary_10_1002_adma_202003417 crossref_primary_10_1002_adma_202416915 crossref_primary_10_1107_S1600577521011978 crossref_primary_10_1002_advs_202306347 crossref_primary_10_1002_ange_202105772 crossref_primary_10_1016_j_ensm_2022_01_035 crossref_primary_10_1038_s41467_020_19528_9 crossref_primary_10_1016_j_nanoen_2020_104798 crossref_primary_10_1038_s41467_022_30935_y crossref_primary_10_1016_j_ensm_2023_102834 crossref_primary_10_1002_smtd_202201658 crossref_primary_10_1103_PhysRevLett_125_037801 crossref_primary_10_1007_s10338_024_00536_x crossref_primary_10_1021_acs_chemrev_2c00002 crossref_primary_10_1021_acs_chemrev_2c00022 crossref_primary_10_1016_j_ensm_2021_11_025 crossref_primary_10_1021_acsami_1c14239 crossref_primary_10_1002_smtd_202300345 crossref_primary_10_1007_s11581_023_05041_8 crossref_primary_10_1016_j_electacta_2023_143212 crossref_primary_10_1002_aenm_202002719 crossref_primary_10_1021_acs_nanolett_1c04464 crossref_primary_10_1016_j_jpowsour_2022_232387 crossref_primary_10_1021_acsami_0c19493 crossref_primary_10_1038_s41586_022_04689_y crossref_primary_10_1002_smll_202105833 crossref_primary_10_1016_j_partic_2020_09_004 crossref_primary_10_1002_aenm_202003250 crossref_primary_10_1021_acs_chemmater_4c02736 crossref_primary_10_1038_s41563_022_01381_4 crossref_primary_10_1021_acsami_0c12893 crossref_primary_10_1149_1945_7111_ac1811 crossref_primary_10_1016_j_partic_2023_05_001 crossref_primary_10_1007_s41918_022_00166_2 crossref_primary_10_1016_j_est_2022_104395 crossref_primary_10_1038_s41467_020_18278_y crossref_primary_10_1002_smtd_202300310 crossref_primary_10_1016_j_xcrp_2021_100554 crossref_primary_10_1021_acs_jpcc_3c05419 crossref_primary_10_1021_acsaem_2c01239 crossref_primary_10_1039_D3CS00741C crossref_primary_10_1016_j_jechem_2023_03_021 crossref_primary_10_1039_D1CP05254C crossref_primary_10_1016_j_ces_2020_116337 crossref_primary_10_1039_D0TA06612E crossref_primary_10_1002_aenm_202002655 crossref_primary_10_1021_acsmaterialslett_2c00787 crossref_primary_10_1021_acsaem_3c01441 crossref_primary_10_1038_s41467_020_20198_w crossref_primary_10_1021_acs_iecr_4c03224 crossref_primary_10_1002_batt_202300180 crossref_primary_10_1021_acsnano_0c08575 crossref_primary_10_1088_2752_5724_ac427c crossref_primary_10_1021_acsami_2c14192 crossref_primary_10_1039_D3CS01043K crossref_primary_10_1016_j_nanoen_2021_105875 crossref_primary_10_1021_acs_jpclett_0c00876 crossref_primary_10_1002_anie_202105772 crossref_primary_10_1021_jacs_4c08089 crossref_primary_10_1039_D4EE06091A crossref_primary_10_1016_j_mtchem_2023_101845 |
Cites_doi | 10.1126/science.1071079 10.1002/aenm.201803963 10.1002/adfm.201900247 10.1002/aenm.201402040 10.1038/ncomms14309 10.1038/nenergy.2015.4 10.1038/nmat3736 10.1038/ncomms4358 10.1002/aenm.201300015 10.1039/C4TA02947J 10.1038/ncomms5570 10.1038/s41467-018-04862-w 10.1021/acs.jpcc.6b12133 10.1039/C6TA07991A 10.1021/acs.chemmater.7b04047 10.1016/j.joule.2017.12.008 10.1039/C8EE00155C 10.1021/nl3031899 10.1038/nmat4084 10.1126/science.1241882 10.1039/C8TA06875E 10.1038/ncomms7883 10.1002/aenm.201803902 10.1021/acs.chemmater.8b04418 10.1021/nl404577c 10.1126/science.1252817 10.1038/srep21479 10.1149/1.3464773 10.1021/acsenergylett.7b00263 10.1002/adma.201601273 10.1016/j.nanoen.2018.09.051 10.1021/acs.chemmater.6b00319 10.1149/2.1021803jes 10.1038/s41467-018-03401-x 10.1038/s41560-019-0409-z 10.1126/science.aaf4914 10.1016/j.chempr.2018.05.008 10.1039/C8EE00309B 10.1002/adma.201805889 10.1039/C4EE01400F 10.1021/acs.chemrev.7b00007 10.1038/ncomms7924 10.1021/acs.chemmater.7b05269 10.1107/S0909049511049144 10.1016/j.jmps.2019.05.003 10.1021/nl3027839 10.1149/2.061310jes 10.1021/acs.nanolett.7b00379 10.1107/S0909049511019364 10.1038/s41467-018-05172-x |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL) |
CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) – name: SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-019-13884-x |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Chemistry |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_f1b6f1b8205d49debba21c7dcb061795 PMC6949258 1603289 31913275 10_1038_s41467_019_13884_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: DMR 1832613; DMR 1832613 funderid: https://doi.org/10.13039/100000001 – fundername: Institute for Critical Technology and Applied Science at Virginia Tech – fundername: U.S. Department of Energy (DOE) grantid: DE-AC02-76SF00515; DE-AC02-06CH11357; DE-SC0012704; DE-AC02-76SF00515 funderid: https://doi.org/10.13039/100000015 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0012704 – fundername: National Science Foundation (NSF) grantid: DMR 1832613 – fundername: U.S. Department of Energy (DOE) grantid: DE-AC02-06CH11357 – fundername: U.S. Department of Energy (DOE) grantid: DE-AC02-76SF00515 – fundername: ; – fundername: ; grantid: DMR 1832613; DMR 1832613 – fundername: ; grantid: DE-AC02-76SF00515; DE-AC02-06CH11357; DE-SC0012704; DE-AC02-76SF00515 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c633t-3c2bb8f985bbca7490e30cf64bca980f7ab315bc50529d6f8c5460b20d7409e33 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:18 EDT 2025 Thu Aug 21 18:12:14 EDT 2025 Fri May 19 01:10:58 EDT 2023 Fri Jul 11 01:01:23 EDT 2025 Wed Aug 13 02:51:52 EDT 2025 Wed Feb 19 02:29:15 EST 2025 Tue Jul 01 04:08:48 EDT 2025 Thu Apr 24 22:54:02 EDT 2025 Fri Feb 21 02:40:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-3c2bb8f985bbca7490e30cf64bca980f7ab315bc50529d6f8c5460b20d7409e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) SC0012704; DMR 1832613; AC02-76SF00515; AC02-06CH11357; DMR 1832707 National Science Foundation (NSF) BNL-213685-2020-JAAM |
ORCID | 0000-0001-6387-7502 0000-0002-3694-595X 0000-0001-5030-7412 0000-0001-9524-6908 0000-0002-2811-147X 0000-0002-7142-3452 0000-0002-8417-2488 0000-0002-3729-3148 0000000271423452 000000023694595X 0000000237293148 0000000163877502 0000000150307412 0000000195246908 0000000284172488 000000022811147X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-13884-x |
PMID | 31913275 |
PQID | 2342955596 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f1b6f1b8205d49debba21c7dcb061795 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6949258 osti_scitechconnect_1603289 proquest_miscellaneous_2334697949 proquest_journals_2342955596 pubmed_primary_31913275 crossref_primary_10_1038_s41467_019_13884_x crossref_citationtrail_10_1038_s41467_019_13884_x springer_journals_10_1038_s41467_019_13884_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-08 |
PublicationDateYYYYMMDD | 2020-01-08 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Lin (CR6) 2017; 117 Liu (CR36) 2014; 2 Ryu, Park, Yoon, Sun (CR25) 2018; 30 Liu (CR31) 2017; 17 Nakamura (CR16) 2017; 121 Woodford, Chiang, Carter (CR3) 2010; 157 Wang (CR37) 2012; 12 Yoon (CR5) 2017; 29 Liu (CR12) 2014; 344 Nishi, Nakai, Kita (CR17) 2013; 160 Miller, Proff, Wen, Abraham, Bareño (CR32) 2013; 3 Tian (CR18) 2018; 2 Wang, Chen-Wiegart, Wang (CR9) 2014; 5 Strobridge (CR13) 2016; 28 Lin (CR44) 2014; 7 Ebner, Marone, Stampanoni, Wood (CR27) 2013; 342 Lim (CR8) 2016; 353 Nowack, Grolimund, Samson, Marone, Wood (CR19) 2016; 6 CR43 Kim (CR35) 2018; 11 Li (CR7) 2014; 13 Finegan (CR28) 2015; 6 Xu, Rahman, Mu, Liu, Lin (CR29) 2018; 6 Yu (CR14) 2018; 9 Kan (CR49) 2018; 4 Jeen (CR2) 2013; 12 Gent (CR46) 2016; 28 Xu (CR4) 2019; 9 Rahman (CR39) 2018; 11 Xia (CR26) 2018; 53 Tian (CR45) 2018; 165 Xu (CR50) 2019; 129 Li (CR23) 2015; 6 Yan (CR33) 2018; 9 Souza, Pralong, Jacobson, Nazar (CR1) 2012; 296 Mao (CR41) 2019; 29 Kim (CR34) 2019; 9 Lin (CR24) 2014; 5 Meirer (CR48) 2011; 18 Besli (CR42) 2019; 31 Liu (CR47) 2012; 19 Chueh (CR11) 2013; 13 Xu (CR15) 2017; 2 Zhang, Li, Ouyang, Yu, Ge, Huang, Hu, Ma, Li, Xiao, Yang, Chu, Liu, Yu, Yang, Huang, Chen, Li (CR40) 2019; 4 Kuppan, Xu, Liu, Chen (CR22) 2017; 8 Lin (CR38) 2016; 1 Xiao (CR20) 2019; 31 Xu, Lin, Doeff, Tong (CR30) 2017; 5 Holtz (CR10) 2014; 14 Yu (CR21) 2015; 5 H Liu (13884_CR31) 2017; 17 F Meirer (13884_CR48) 2011; 18 J Xu (13884_CR30) 2017; 5 Y Liu (13884_CR47) 2012; 19 F Lin (13884_CR38) 2016; 1 P Yan (13884_CR33) 2018; 9 J Kim (13884_CR35) 2018; 11 T Nishi (13884_CR17) 2013; 160 WH Woodford (13884_CR3) 2010; 157 C Tian (13884_CR18) 2018; 2 H Liu (13884_CR12) 2014; 344 MM Rahman (13884_CR39) 2018; 11 F Lin (13884_CR24) 2014; 5 S Xia (13884_CR26) 2018; 53 F Lin (13884_CR6) 2017; 117 UH Kim (13884_CR34) 2019; 9 T Nakamura (13884_CR16) 2017; 121 13884_CR43 L Nowack (13884_CR19) 2016; 6 L Wang (13884_CR37) 2012; 12 MM Besli (13884_CR42) 2019; 31 DCS Souza (13884_CR1) 2012; 296 Y Mao (13884_CR41) 2019; 29 HH Ryu (13884_CR25) 2018; 30 YS Yu (13884_CR21) 2015; 5 DP Finegan (13884_CR28) 2015; 6 Y Li (13884_CR7) 2014; 13 Z Xu (13884_CR29) 2018; 6 R Xu (13884_CR50) 2019; 129 F Lin (13884_CR44) 2014; 7 B Xiao (13884_CR20) 2019; 31 CS Yoon (13884_CR5) 2017; 29 H Liu (13884_CR36) 2014; 2 ME Holtz (13884_CR10) 2014; 14 C Tian (13884_CR45) 2018; 165 WH Kan (13884_CR49) 2018; 4 Jie-Nan Zhang (13884_CR40) 2019; 4 H Jeen (13884_CR2) 2013; 12 FC Strobridge (13884_CR13) 2016; 28 WC Chueh (13884_CR11) 2013; 13 WE Gent (13884_CR46) 2016; 28 M Ebner (13884_CR27) 2013; 342 L Li (13884_CR23) 2015; 6 Y Xu (13884_CR15) 2017; 2 X Xu (13884_CR4) 2019; 9 DJ Miller (13884_CR32) 2013; 3 YS Yu (13884_CR14) 2018; 9 J Lim (13884_CR8) 2016; 353 J Wang (13884_CR9) 2014; 5 S Kuppan (13884_CR22) 2017; 8 |
References_xml | – volume: 296 start-page: 2012 year: 2012 end-page: 2015 ident: CR1 article-title: A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry publication-title: Science doi: 10.1126/science.1071079 – volume: 9 start-page: 1803963 year: 2019 ident: CR4 article-title: Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi Co Mn O cathode material for lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803963 – volume: 29 start-page: 1900247 year: 2019 ident: CR41 article-title: High-voltage charging-induced strain, heterogeneity, and micro-cracks in secondary particles of a nickel-rich layered cathode material publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900247 – volume: 5 start-page: 1402040 year: 2015 ident: CR21 article-title: Nonequilibrium pathways during electrochemical phase transformations in single crystals revealed by dynamic chemical imaging at nanoscale resolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402040 – volume: 8 start-page: 14309 year: 2017 ident: CR22 article-title: Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy publication-title: Nat. Commun. doi: 10.1038/ncomms14309 – volume: 1 start-page: 15004 year: 2016 ident: CR38 article-title: Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2015.4 – volume: 12 start-page: 1057 year: 2013 end-page: 1063 ident: CR2 article-title: Reversible redox reactions in an epitaxially stabilized SrCoO oxygen sponge publication-title: Nat. Mater. doi: 10.1038/nmat3736 – volume: 5 start-page: 3358 year: 2014 ident: CR24 article-title: Phase evolution for conversion reaction electrodes in lithium-ion batteries publication-title: Nat. Commun. doi: 10.1038/ncomms4358 – volume: 3 start-page: 1098 year: 2013 end-page: 1103 ident: CR32 article-title: Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300015 – volume: 2 start-page: 15640 year: 2014 end-page: 15646 ident: CR36 article-title: An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02947J – volume: 5 start-page: 4570 year: 2014 ident: CR9 article-title: tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy publication-title: Nat. Commun. doi: 10.1038/ncomms5570 – volume: 9 year: 2018 ident: CR33 article-title: Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode publication-title: Nat. Commun. doi: 10.1038/s41467-018-04862-w – volume: 121 start-page: 2118 year: 2017 end-page: 2124 ident: CR16 article-title: Visualization of inhomogeneous reaction distribution in the model LiCoO composite electrode of lithium ion batteries publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b12133 – volume: 5 start-page: 874 year: 2017 end-page: 901 ident: CR30 article-title: A review of Ni-based layered oxides for rechargeable Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07991A – volume: 29 start-page: 10436 year: 2017 end-page: 10445 ident: CR5 article-title: High-energy Ni-rich Li[Ni Co Mn ]O cathodes via compositional partitioning for next-generation electric vehicles publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04047 – volume: 2 start-page: 464 year: 2018 end-page: 477 ident: CR18 article-title: Charge heterogeneity and surface chemistry in polycrystalline cathode materials publication-title: Joule doi: 10.1016/j.joule.2017.12.008 – volume: 11 start-page: 1449 year: 2018 end-page: 1459 ident: CR35 article-title: A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00155C – volume: 13 start-page: 866 year: 2013 end-page: 872 ident: CR11 article-title: Intercalation pathway in many-particle LiFePO electrode revealed by nanoscale state-of-charge mapping publication-title: Nano Lett. doi: 10.1021/nl3031899 – volume: 13 start-page: 1149 year: 2014 end-page: 1156 ident: CR7 article-title: Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes publication-title: Nat. Mater. doi: 10.1038/nmat4084 – volume: 342 start-page: 716 year: 2013 end-page: 720 ident: CR27 article-title: Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries publication-title: Science doi: 10.1126/science.1241882 – volume: 6 start-page: 21859 year: 2018 end-page: 21884 ident: CR29 article-title: Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06875E – volume: 6 start-page: 6883 year: 2015 ident: CR23 article-title: Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging publication-title: Nat. Commun. doi: 10.1038/ncomms7883 – volume: 9 start-page: 1803902 year: 2019 ident: CR34 article-title: Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803902 – volume: 31 start-page: 491 year: 2019 end-page: 501 ident: CR42 article-title: Mesoscale chemomechanical interplay of the LiNi Co Al O cathode in solid-state polymer batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04418 – volume: 14 start-page: 1453 year: 2014 end-page: 1459 ident: CR10 article-title: Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte publication-title: Nano Lett. doi: 10.1021/nl404577c – volume: 344 start-page: 1252817 year: 2014 ident: CR12 article-title: Capturing metastable structures during high-rate cycling of LiFePO nanoparticle electrodes publication-title: Science doi: 10.1126/science.1252817 – volume: 6 start-page: 21479 year: 2016 ident: CR19 article-title: Rapid mapping of lithiation dynamics in transition metal oxide particles with operando X-ray absorption spectroscopy publication-title: Sci. Rep. doi: 10.1038/srep21479 – volume: 157 start-page: A1052 year: 2010 end-page: A1059 ident: CR3 article-title: “Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis publication-title: J. Electrochem. Soc. doi: 10.1149/1.3464773 – volume: 2 start-page: 1240 year: 2017 end-page: 1245 ident: CR15 article-title: In situ visualization of state-of-charge heterogeneity within a LiCoO particle that evolves upon cycling at different rates publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00263 – volume: 28 start-page: 6631 year: 2016 end-page: 6638 ident: CR46 article-title: Persistent state-of-charge heterogeneity in relaxed, partially charged Li Ni Co Mn O eecondary particles publication-title: Adv. Mater. doi: 10.1002/adma.201601273 – volume: 53 start-page: 753 year: 2018 end-page: 762 ident: CR26 article-title: Chemomechanical breakdown of layered cathode materials undergoing fast charging in lithium batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.051 – volume: 28 start-page: 3676 year: 2016 end-page: 3690 ident: CR13 article-title: Unraveling the complex delithiation mechanisms of olivine-type cathode materials, LiFe Co PO publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00319 – ident: CR43 – volume: 165 start-page: A696 year: 2018 end-page: A704 ident: CR45 article-title: Depth-dependent redox behavior of LiNi Mn Co O publication-title: J. Electrochem. Soc. doi: 10.1149/2.1021803jes – volume: 9 start-page: 921 year: 2018 ident: CR14 article-title: Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography publication-title: Nat. Commun. doi: 10.1038/s41467-018-03401-x – volume: 4 start-page: 594 issue: 7 year: 2019 end-page: 603 ident: CR40 article-title: Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V publication-title: Nature Energy doi: 10.1038/s41560-019-0409-z – volume: 353 start-page: 566 year: 2016 end-page: 570 ident: CR8 article-title: Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles publication-title: Science doi: 10.1126/science.aaf4914 – volume: 4 start-page: 2108 year: 2018 end-page: 2123 ident: CR49 article-title: Understanding the effect of local short-range ordering on lithium diffusion in Li Nb Mn O single-crystal cathode publication-title: Chem doi: 10.1016/j.chempr.2018.05.008 – volume: 11 start-page: 2496 year: 2018 end-page: 2508 ident: CR39 article-title: Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00309B – volume: 31 start-page: 1805889 year: 2019 ident: CR20 article-title: Revealing the atomic origin of heterogeneous Li-ion diffusion by probing Na publication-title: Adv. Mater. doi: 10.1002/adma.201805889 – volume: 7 start-page: 3077 year: 2014 end-page: 3085 ident: CR44 article-title: Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01400F – volume: 117 start-page: 13123 year: 2017 end-page: 13186 ident: CR6 article-title: Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00007 – volume: 6 start-page: 6924 year: 2015 ident: CR28 article-title: In-operando high-speed tomography of lithium-ion batteries during thermal runaway publication-title: Nat. Commun. doi: 10.1038/ncomms7924 – volume: 30 start-page: 1155 year: 2018 end-page: 1163 ident: CR25 article-title: Capacity fading of Ni-rich Li[Ni Co Mn ]O (0.6 ≤ ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b05269 – volume: 19 start-page: 281 year: 2012 end-page: 287 ident: CR47 article-title: TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049511049144 – volume: 129 start-page: 160 year: 2019 end-page: 183 ident: CR50 article-title: Heterogeneous damage in Li-ion batteries: experimental analysis and theoretical modeling publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.05.003 – volume: 12 start-page: 5632 year: 2012 end-page: 5636 ident: CR37 article-title: Crystal orientation tuning of LiFePO nanoplates for high rate lithium battery cathode materials publication-title: Nano Lett. doi: 10.1021/nl3027839 – volume: 160 start-page: A1785 year: 2013 end-page: A1788 ident: CR17 article-title: Visualization of the state-of-charge distribution in a LiCoO cathode by in situ raman imaging publication-title: J. Electrochem. Soc. doi: 10.1149/2.061310jes – volume: 17 start-page: 3452 year: 2017 end-page: 3457 ident: CR31 article-title: Intergranular cracking as a major cause of long-term capacity fading of layered cathodes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00379 – volume: 18 start-page: 773 year: 2011 end-page: 781 ident: CR48 article-title: Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049511019364 – volume: 4 start-page: 2108 year: 2018 ident: 13884_CR49 publication-title: Chem doi: 10.1016/j.chempr.2018.05.008 – volume: 29 start-page: 10436 year: 2017 ident: 13884_CR5 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04047 – volume: 157 start-page: A1052 year: 2010 ident: 13884_CR3 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3464773 – volume: 3 start-page: 1098 year: 2013 ident: 13884_CR32 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300015 – volume: 9 start-page: 1803902 year: 2019 ident: 13884_CR34 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803902 – volume: 28 start-page: 6631 year: 2016 ident: 13884_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.201601273 – volume: 12 start-page: 5632 year: 2012 ident: 13884_CR37 publication-title: Nano Lett. doi: 10.1021/nl3027839 – volume: 2 start-page: 15640 year: 2014 ident: 13884_CR36 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02947J – volume: 2 start-page: 1240 year: 2017 ident: 13884_CR15 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00263 – volume: 129 start-page: 160 year: 2019 ident: 13884_CR50 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.05.003 – volume: 31 start-page: 491 year: 2019 ident: 13884_CR42 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04418 – volume: 121 start-page: 2118 year: 2017 ident: 13884_CR16 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b12133 – volume: 9 start-page: 1803963 year: 2019 ident: 13884_CR4 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803963 – volume: 6 start-page: 6924 year: 2015 ident: 13884_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms7924 – volume: 9 start-page: 921 year: 2018 ident: 13884_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03401-x – volume: 160 start-page: A1785 year: 2013 ident: 13884_CR17 publication-title: J. Electrochem. Soc. doi: 10.1149/2.061310jes – volume: 5 start-page: 1402040 year: 2015 ident: 13884_CR21 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402040 – volume: 5 start-page: 3358 year: 2014 ident: 13884_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms4358 – volume: 5 start-page: 4570 year: 2014 ident: 13884_CR9 publication-title: Nat. Commun. doi: 10.1038/ncomms5570 – volume: 9 year: 2018 ident: 13884_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04862-w – volume: 344 start-page: 1252817 year: 2014 ident: 13884_CR12 publication-title: Science doi: 10.1126/science.1252817 – volume: 11 start-page: 2496 year: 2018 ident: 13884_CR39 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00309B – volume: 14 start-page: 1453 year: 2014 ident: 13884_CR10 publication-title: Nano Lett. doi: 10.1021/nl404577c – volume: 13 start-page: 866 year: 2013 ident: 13884_CR11 publication-title: Nano Lett. doi: 10.1021/nl3031899 – volume: 19 start-page: 281 year: 2012 ident: 13884_CR47 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049511049144 – volume: 31 start-page: 1805889 year: 2019 ident: 13884_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201805889 – volume: 28 start-page: 3676 year: 2016 ident: 13884_CR13 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00319 – volume: 5 start-page: 874 year: 2017 ident: 13884_CR30 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07991A – volume: 6 start-page: 6883 year: 2015 ident: 13884_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms7883 – volume: 29 start-page: 1900247 year: 2019 ident: 13884_CR41 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900247 – volume: 342 start-page: 716 year: 2013 ident: 13884_CR27 publication-title: Science doi: 10.1126/science.1241882 – volume: 117 start-page: 13123 year: 2017 ident: 13884_CR6 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00007 – volume: 18 start-page: 773 year: 2011 ident: 13884_CR48 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049511019364 – volume: 296 start-page: 2012 year: 2012 ident: 13884_CR1 publication-title: Science doi: 10.1126/science.1071079 – volume: 12 start-page: 1057 year: 2013 ident: 13884_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat3736 – volume: 6 start-page: 21479 year: 2016 ident: 13884_CR19 publication-title: Sci. Rep. doi: 10.1038/srep21479 – volume: 53 start-page: 753 year: 2018 ident: 13884_CR26 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.051 – volume: 13 start-page: 1149 year: 2014 ident: 13884_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat4084 – volume: 1 start-page: 15004 year: 2016 ident: 13884_CR38 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.4 – volume: 17 start-page: 3452 year: 2017 ident: 13884_CR31 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00379 – volume: 165 start-page: A696 year: 2018 ident: 13884_CR45 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1021803jes – volume: 11 start-page: 1449 year: 2018 ident: 13884_CR35 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00155C – volume: 7 start-page: 3077 year: 2014 ident: 13884_CR44 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01400F – ident: 13884_CR43 doi: 10.1038/s41467-018-05172-x – volume: 4 start-page: 594 issue: 7 year: 2019 ident: 13884_CR40 publication-title: Nature Energy doi: 10.1038/s41560-019-0409-z – volume: 6 start-page: 21859 year: 2018 ident: 13884_CR29 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06875E – volume: 30 start-page: 1155 year: 2018 ident: 13884_CR25 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b05269 – volume: 353 start-page: 566 year: 2016 ident: 13884_CR8 publication-title: Science doi: 10.1126/science.aaf4914 – volume: 2 start-page: 464 year: 2018 ident: 13884_CR18 publication-title: Joule doi: 10.1016/j.joule.2017.12.008 – volume: 8 start-page: 14309 year: 2017 ident: 13884_CR22 publication-title: Nat. Commun. doi: 10.1038/ncomms14309 |
SSID | ssj0000391844 |
Score | 2.6371052 |
Snippet | Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of... The authors here report on the influence of grain orientation on the charge distribution in polycrystalline materials for batteries. The quantitative... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 83 |
SubjectTerms | 147/135 147/137 639/301 639/4077 639/638 Charge distribution Charge materials Chemistry Crystallography Energy science and technology ENERGY STORAGE Grain orientation Heterogeneity Humanities and Social Sciences Lithium Lithium ions Materials science multidisciplinary Oxides Polycrystals Rechargeable batteries Redox reactions Science Science (multidisciplinary) Surface charge |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ja90wEBYlEOildK-TNKjQW2tiW4ulYxsSQqE9NZCbsLbXBw87vAXif98ZWe81r-ulB2NsjzfNJ82Mlm8IedvGNnAR61IK4UveeF8qbkWpXRNCVQfP06q0z1_k1TX_dCNu7qX6wjlhEz3wVHBnsbYSNjBUwnPtg7VdU7vWO4vGVyf2UrB594Kp1AYzDaELz6tkKqbOVjy1CeDRIO2e4uXdniVKhP2wG6Bi_c7Z_HXO5E8Dp8keXT4mj7IjST9MP_CEPAj9U3I4pZYcn5GI4-izQD0S4-acVnS2mfvgqR3pDDNDULccwTlcZNrquaPDcp7XIvUrCgK3w2LcCoE7Sm1i4xwpuLkTcp-T68uLr-dXZc6pUDrJ2LpkrrFWRa2Eta5rua4Cq1yUHI60qmLbWVYL6zC_nfYyKie4rGxT-RYiwcDYC3LQD314RahksQKB2HUQZiESFPeRc-9FiB3cUpB6W77GZcJxzHuxMGngmykz6cSATkzSibkryLvdPbcT3cZfpT-i2naSSJWdTgCATAaQ-ReACnKMSjfgcSBtrsP5RW5tMP02BKMFOdliweTavTINAysuIBaTBXmzuwz1Egdbuj4MG5RhXGpo7eARLyfo7L4Tmr2aNS28ut0D1d6P7F_p598S97fUyCapCvJ-C78fn_Xngjr6HwV1TB422NmA_U_qhBysl5vwGjyytT1Nle875bE1qw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zj9MwELZgERIvaLmzuyAj8QbRJvER5wkBoqyQ4ImV9s2Kr1KpSkoPafPvmXHcrMqxD1XVZtImmcOfZ-xvCHlTh9pzEcpcCuFyXjmXK25E3tjK-6L0jsddad--y4tL_vVKXKWE2yYtq9zHxBioXW8xR35eMYicAvCvfL_6lWPXKKyuphYad8m9EkYaXNKlZl-mHAuynyvO016ZgqnzDY-RAXANku8pnl8fjEeRth_eenCvf0HOv1dO_lE-jaPS7Jg8THCSfhj1_4jc8d1jcn9sMDk8IQGr6XNPHdLjps5WdL5bOO-oGegc-0NQux4AIi4TefXC0n69SDuSug0FgVW_HPZCAEqpiZycAwWwO9rvU3I5-_zj00WeOivkVjK2zZmtjFGhUcIY29a8KTwrbJAcPjWqCHVrWCmMxS53jZNBWcFlYarC1TAf9Iw9I0dd3_kXhEoWChAIbQuTLbQHxV3g3DnhQwunZKTcP19tE-04dr9Y6lj-ZkqPOtGgEx11oq8z8nY6ZzWSbtwq_RHVNkkiYXb8ol_PdfI_HUoj4QV4RzjeOG9MW5W2dtYghmtERk5R6RpwB5LnWlxlZLcam3DDlDQjZ3tb0MnHN_rGIjPyejoM3okll7bz_Q5lGJcNxDz4ieej6UzXCcGvZFUNf10fGNXBjRwe6RY_IwO4bJBTUmXk3d78bi7r_w_q5Pa7OCUPKkwmYH5JnZGj7XrnXwLi2ppX0a1-AyklLHc priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhodBLafp0kxYVemtNbeth-bgtDWGhvbSB3IT12i4sdtgHxP8-M7K8Zdu00IMxtka27JmRPr2-IeRdHWrPRShzKYTLeeVcrrgReWMr74vSOx53pX39Ji-v-PxaXB-RatoLExftR0rLWE1Pq8M-bnh0aQAkyJqneA648QSp2sG2T2az-ff5fmQFOc8V52mHTMHUPZkPWqFI1g-nHpzqPqD553rJ3yZNY1t08Zg8SiCSzsZin5Ij3z0hD8awksNTEnAOfeGpQ1LcFM-KLnZL5x01A11gVAhq1wMAw1WirF5a2q-XaR9St6EgcNOvhkkIoCg1kYlzoABxR6t9Rq4uvvz4fJmneAq5lYxtc2YrY1RolDDGtjVvCs8KGySHq0YVoW4NK4WxGNuucTIoK7gsTFW4GnqBnrHn5LjrO_-SUMlCAQKhbaGLhVaguAucOyd8aCFLRsrp_2qbyMYx5sVKx0lvpvSoEw060VEn-jYj7_d5bkaqjX9Kf0K17SWRJjve6NcLncxGh9JIOADlCMcb541pq9LWzhpEbo3IyBkqXQPaQMpci2uL7FZj6G3oiGbkfLIFnTx7oysGLbiAfpjMyNt9MvgkTrS0ne93KMO4bKCmg0e8GE1nX06o8kpW1fDq-sCoDj7kMKVb_oy837JBJkmVkQ-T-f0q1t9_1Kv_Ez8jDyscUsBRJnVOjrfrnX8NuGtr3iRHuwNYyiwm priority: 102 providerName: Springer Nature |
Title | Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials |
URI | https://link.springer.com/article/10.1038/s41467-019-13884-x https://www.ncbi.nlm.nih.gov/pubmed/31913275 https://www.proquest.com/docview/2342955596 https://www.proquest.com/docview/2334697949 https://www.osti.gov/servlets/purl/1603289 https://pubmed.ncbi.nlm.nih.gov/PMC6949258 https://doaj.org/article/f1b6f1b8205d49debba21c7dcb061795 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLbGJiReEHfCRhUk3iCQxNc8INRVK1OlTQio1DcrvpVKVTJ6kZZ_z7GTFBXKHpKoyXGa-Jxjf8eOv4PQW-64JdRlCaPUJCQ3JhFE0aTQubVpZg0Jq9KurtnllExmdHaE-nRHXQWuD4Z2Pp_UdLX8cPur-QwO_6ldMi4-rklwdwArnlFPkAQw5Qn0TNxnNLjq4H5omXEBAQ3p1s4cLrrXPwUafzjU4G6HIOi_X1L-NZ0aeqnxI_Swg5fxsLWHx-jIVk_Q_TbhZPMUOT-7Prex8XS5XaareL5dGGti1cRzny8i1qsGIOOyI7Ne6LheLboVStU6BoGbetn0QgBSYxU4OpsYwG9rz8_QdHzxY3SZdJkWEs0w3iRY50oJVwiqlC45KVKLU-0YgV-FSB0vFc6o0j7rXWGYE5oSlqo8NRziQ4vxc3Rc1ZV9iWKGXQoCriwh-PL2IYhxhBhDrSuhSISyvn6l7mjIfTaMpQzT4VjIVicSdCKDTuRthN7tyty0JBx3Sp97te0kPYF2OFGv5rLzR-kyxWAD_EMNKYxVqswzzY1WHtMVNEKnXukScIgn09X-qyO9kT4pN4SoETrrbUH2JitzDH07hQiNRejN7jJ4q5-CKStbb70MJqyANhBu8aI1nd1zQmOY4ZzDX_M9o9p7kf0r1eJnYARnheeYFBF635vfn8f6f0W9uvstTtGD3A8u-PEmcYaON6utfQ0IbKMG6B6fcdiL8ZcBOhkOJ98ncDy_uP76Dc6O2GgQxjYGwf1-A4bdNq4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqIgQXxN7QAkaCE0RNYjtxDgixDVO6nFqpNxNvw0ijZJhFNH-K38h72aph6a2HaJTJy0zit_jzs_09Ql5mPnNc-DhMhbAhT6wNJdcizE3iXBQ7y5tdaccn6fiMfz0X51vkV78XBpdV9jGxCdS2Mpgj308YRE4B-Dd9N_8RYtUonF3tS2i0ZnHo6p8wZFu-PfgE-n2VJKPPpx_HYVdVIDQpY6uQmURr6XMptDZFxvPIscj4lMNZLiOfFZrFQhus8Jbb1EsjeBrpJLIZjIUcJkAh5N_gDHpy3Jk--jLkdJBtXXLe7c2JmNxf8iYSAY5Csj_Jw4uN_q8pEwAfFbjzvyDu3ys1_5iubXrB0V1yp4Ov9H1rb_fIlivvk5ttQcv6AfE4ez9x1CIdb1dJi07WU-ss1TWdYD0KahY1QNJZR5Y9NbRaTLsdUOWSgsC8mtW9EIBgqhsO0JoCuG795SE5u5Y2f0S2y6p0O4SmzEcg4IsCBndof5Jbz7m1wvkCbglI3LevMh3NOVbbmKlmup1J1epEgU5UoxN1EZDXwz3zluTjSukPqLZBEgm6my-qxUR1_q58rFM4AF8Jy3PrtC6S2GTWaMSMuQjILipdAc5Bsl6Dq5rMSmHRbxgCB2SvtwXVxZSluvSAgLwYLkM0wCmeonTVGmUYT3OIsfATj1vTGZ4Tgm3Mkgz-Otswqo0X2bxSTr83jONpjhyWMiBvevO7fKz_N9STq9_iObk1Pj0-UkcHJ4e75HaCiQzMbck9sr1arN1TQHsr_axxMUq-XbdP_wa7TWl3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VrUC8IG5MCywSPIEVH7vr9QNClDZqKUQVolLfFu8VIkV2yCHqv8avY8ZHqnD0rQ9RlHic2DuHv9nZ_YaQl5nPHOM-DgXnNmSJtaFkmoe5SZyLYmdZsyvt80gcnbGP5_x8i_zq98Lgsso-JjaB2lYG58gHSQqRkwP-FQPfLYs4PRi-m_0IsYMUVlr7dhqtiZy4-iekb4u3xweg61dJMjz8-uEo7DoMhEak6TJMTaK19LnkWpsiY3nk0sh4weBTLiOfFTqNuTbY7S23wkvDmYh0EtkM8iKHk6EQ_ncyzIq2yc7-4ej0y3qGB7nXJWPdTp0olYMFa-ISoCqk_pMsvNh4GjZNA-CtAuf-F-D9e93mH8Xb5pk4vENud2CWvm-t7y7ZcuU9cqNtb1nfJx5r-WNHLZLzdn216Hg1sc5SXdMxdqegZl4DQJ121NkTQ6v5pNsPVS4oCMyqad0LASSmumEErSlA7dZ7HpCzaxn1h2S7rEr3mFCR-ggEfFFAqofWKJn1jFnLnS_glIDE_fgq05GeY--NqWqK76lUrU4U6EQ1OlEXAXm9PmfWUn5cKb2PaltLIl1380U1H6vO-5WPtYAXoC1uWW6d1kUSm8wajQgy5wHZRaUrQD1I3WtwjZNZKmwBDglxQPZ6W1BdhFmoS38IyIv1YYgNWPApSletUCZlIoeICz_xqDWd9XVC6I3TJIO_zjaMauNGNo-Uk-8N_7jIkdFSBuRNb36Xl_X_gXpy9V08JzfBn9Wn49HJLrmV4KwGTnTJPbK9nK_cU4B-S_2s8zFKvl23W_8GfohvCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+distribution+guided+by+grain+crystallographic+orientations+in+polycrystalline+battery+materials&rft.jtitle=Nature+communications&rft.au=Xu+Zhengrui&rft.au=Jiang+Zhisen&rft.au=Kuai+Chunguang&rft.au=Xu%2C+Rong&rft.date=2020-01-08&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-13884-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |