Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides

The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, whi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 8; no. 1; pp. 2098 - 7
Main Authors Wang, Cheng, Li, Zhaoyi, Kim, Myoung-Hwan, Xiong, Xiao, Ren, Xi-Feng, Guo, Guang-Can, Yu, Nanfang, Lončar, Marko
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.12.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-017-02189-6

Cover

Loading…
Abstract The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, which requires careful dispersion engineering and is usually narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical antennas have been demonstrated to provide an effective optical momentum to bend light in arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of phased array antennas are able to circumvent the phase-matching requirement in on-chip nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free second harmonic generation over many coherent lengths in thin film lithium niobate waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation in the metasurface-based devices is observed over a wide range of pump wavelengths ( λ  = 1580–1650 nm). Phase matching is a crucial condition for nonlinear optical processes. Here, Wang et al. demonstrate that a gradient metasurface composed of phased array antennas allows phase-matching-free frequency conversion over a pump wavelength range of almost 100 nm.
AbstractList The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, which requires careful dispersion engineering and is usually narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical antennas have been demonstrated to provide an effective optical momentum to bend light in arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of phased array antennas are able to circumvent the phase-matching requirement in on-chip nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free second harmonic generation over many coherent lengths in thin film lithium niobate waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation in the metasurface-based devices is observed over a wide range of pump wavelengths (λ = 1580–1650 nm).
The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, which requires careful dispersion engineering and is usually narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical antennas have been demonstrated to provide an effective optical momentum to bend light in arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of phased array antennas are able to circumvent the phase-matching requirement in on-chip nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free second harmonic generation over many coherent lengths in thin film lithium niobate waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation in the metasurface-based devices is observed over a wide range of pump wavelengths ( λ  = 1580–1650 nm).
The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, which requires careful dispersion engineering and is usually narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical antennas have been demonstrated to provide an effective optical momentum to bend light in arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of phased array antennas are able to circumvent the phase-matching requirement in on-chip nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free second harmonic generation over many coherent lengths in thin film lithium niobate waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation in the metasurface-based devices is observed over a wide range of pump wavelengths ( λ  = 1580–1650 nm). Phase matching is a crucial condition for nonlinear optical processes. Here, Wang et al. demonstrate that a gradient metasurface composed of phased array antennas allows phase-matching-free frequency conversion over a pump wavelength range of almost 100 nm.
Phase matching is a crucial condition for nonlinear optical processes. Here, Wang et al. demonstrate that a gradient metasurface composed of phased array antennas allows phase-matching-free frequency conversion over a pump wavelength range of almost 100 nm.
The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, which requires careful dispersion engineering and is usually narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical antennas have been demonstrated to provide an effective optical momentum to bend light in arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of phased array antennas are able to circumvent the phase-matching requirement in on-chip nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free second harmonic generation over many coherent lengths in thin film lithium niobate waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation in the metasurface-based devices is observed over a wide range of pump wavelengths (λ = 1580-1650 nm).The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, which requires careful dispersion engineering and is usually narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical antennas have been demonstrated to provide an effective optical momentum to bend light in arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of phased array antennas are able to circumvent the phase-matching requirement in on-chip nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free second harmonic generation over many coherent lengths in thin film lithium niobate waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation in the metasurface-based devices is observed over a wide range of pump wavelengths (λ = 1580-1650 nm).
ArticleNumber 2098
Author Ren, Xi-Feng
Lončar, Marko
Guo, Guang-Can
Xiong, Xiao
Li, Zhaoyi
Wang, Cheng
Yu, Nanfang
Kim, Myoung-Hwan
Author_xml – sequence: 1
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 2
  givenname: Zhaoyi
  surname: Li
  fullname: Li, Zhaoyi
  organization: Department of Applied Physics and Applied Mathematics, Columbia University
– sequence: 3
  givenname: Myoung-Hwan
  surname: Kim
  fullname: Kim, Myoung-Hwan
  organization: Department of Physics, The University of Texas Rio Grande Valley
– sequence: 4
  givenname: Xiao
  surname: Xiong
  fullname: Xiong, Xiao
  organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Key Laboratory of Quantum Information & Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China
– sequence: 5
  givenname: Xi-Feng
  surname: Ren
  fullname: Ren, Xi-Feng
  organization: Key Laboratory of Quantum Information & Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China
– sequence: 6
  givenname: Guang-Can
  surname: Guo
  fullname: Guo, Guang-Can
  organization: Key Laboratory of Quantum Information & Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China
– sequence: 7
  givenname: Nanfang
  surname: Yu
  fullname: Yu, Nanfang
  email: ny2214@columbia.edu
  organization: Department of Applied Physics and Applied Mathematics, Columbia University
– sequence: 8
  givenname: Marko
  surname: Lončar
  fullname: Lončar, Marko
  email: loncar@seas.harvard.edu
  organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29235473$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1624063$$D View this record in Osti.gov
BookMark eNp9Uk1v1DAQjVARLUv_AAcUwYVLIP5IHF-QqoqPSkVc4GxN7EniVdZebKeIf4-7KdW2EliybHnee_NmPM-LE-cdFsVLUr8jNeveR054K6qa5E1JJ6v2SXFGa04qIig7ObqfFucxbuu8mCQd58-KUyopa7hgZwV8xQRxCQNorCBGGxOacj9BxGoHSU_WjdUQEMuI2jtTThB23lldjugwQLLeldaVs02TXXals76HhOUvuMFxsQbji-LpAHPE87tzU_z49PH75Zfq-tvnq8uL60q3jKWKGCMJp4aChAaENgKA3NptOqMbYHTgKATthGa84bImOSwHkC3wnsjGsE1xteoaD1u1D3YH4bfyYNXhwYdRQUhWz6iGvusJ1D0TgnCCQoKmrc5ilArQ0GWtD6vWful3aDS6FGB-IPow4uykRn-jGkFF7nIWeL0K-Jisitom1FPun0OdFGkpr3PRm-LtXZbgfy4Yk9rZqHGewaFfoiJStJxT0tAMffMIuvVLcLmfGdUxTlndNhn16tj2vd-_350BdAXo4GMMONxDSK1ux0qtY6XyWKnDWKk2k7pHpFzO4eNz6Xb-P5Wt1JjzuBHDke1_s_4AmO7hvg
CitedBy_id crossref_primary_10_3390_nano13101639
crossref_primary_10_1007_s11426_024_2162_5
crossref_primary_10_1021_acsphotonics_3c01454
crossref_primary_10_1364_AOP_11_000518
crossref_primary_10_3390_nano11092373
crossref_primary_10_1126_sciadv_abb4142
crossref_primary_10_1016_j_optlastec_2022_107972
crossref_primary_10_1515_nanoph_2020_0004
crossref_primary_10_1021_acsomega_8b02837
crossref_primary_10_1038_s41377_024_01660_6
crossref_primary_10_1088_1361_6463_ab25ff
crossref_primary_10_1364_OE_26_016315
crossref_primary_10_3788_AOS240429
crossref_primary_10_1021_acsami_2c06856
crossref_primary_10_1063_1_5142522
crossref_primary_10_1109_JIOT_2020_3025585
crossref_primary_10_1088_1361_6463_aaebe7
crossref_primary_10_1364_OE_444054
crossref_primary_10_1002_lpor_202200059
crossref_primary_10_1038_s41377_020_00434_0
crossref_primary_10_1364_JOSAB_36_002650
crossref_primary_10_3390_nano11010154
crossref_primary_10_1364_PRJ_503249
crossref_primary_10_1021_acs_nanolett_2c03811
crossref_primary_10_1515_nanoph_2020_0013
crossref_primary_10_1364_OL_481649
crossref_primary_10_1038_s41377_021_00479_9
crossref_primary_10_1002_lpor_201900326
crossref_primary_10_3762_bjnano_15_114
crossref_primary_10_1021_acsphotonics_2c01534
crossref_primary_10_1002_lpor_202301294
crossref_primary_10_1002_adpr_202400051
crossref_primary_10_1021_acs_organomet_2c00005
crossref_primary_10_1021_acsphotonics_2c00835
crossref_primary_10_1088_1361_6455_aba10d
crossref_primary_10_1038_s41377_023_01169_4
crossref_primary_10_1002_andp_202000422
crossref_primary_10_1103_PhysRevLett_134_113802
crossref_primary_10_1021_acsphotonics_1c01850
crossref_primary_10_1364_OL_44_005198
crossref_primary_10_1039_C8NA00171E
crossref_primary_10_3390_ma12193143
crossref_primary_10_1002_lpor_202300286
crossref_primary_10_1364_PRJ_391850
crossref_primary_10_1515_nanoph_2022_0352
crossref_primary_10_1364_OPTCON_519993
crossref_primary_10_1088_1361_6528_abc3e5
crossref_primary_10_1016_j_jlumin_2023_120279
crossref_primary_10_1364_OE_547396
crossref_primary_10_1103_PhysRevLett_128_203902
crossref_primary_10_1002_adom_202200910
crossref_primary_10_1007_s00340_018_7005_y
crossref_primary_10_1007_s11467_022_1177_y
crossref_primary_10_1002_adom_202402686
crossref_primary_10_1038_s41377_023_01134_1
crossref_primary_10_1364_OL_533658
crossref_primary_10_1364_OPTICA_5_001006
crossref_primary_10_1016_j_optlastec_2023_109123
crossref_primary_10_1364_OE_534000
crossref_primary_10_1039_D0DT02450C
crossref_primary_10_3390_mi11090848
crossref_primary_10_1063_5_0048638
crossref_primary_10_1117_1_AP_4_3_034001
crossref_primary_10_1038_s41467_018_06718_9
crossref_primary_10_1364_OE_26_033687
crossref_primary_10_1364_OL_519484
crossref_primary_10_1002_lpor_202300456
crossref_primary_10_1515_nanoph_2018_0195
crossref_primary_10_1007_s11082_024_07902_6
crossref_primary_10_1117_1_OE_62_8_087105
crossref_primary_10_1039_C8NR08960D
crossref_primary_10_1007_s44275_024_00005_0
crossref_primary_10_1364_OE_525377
crossref_primary_10_1126_science_aat3100
crossref_primary_10_1103_PhysRevB_111_075301
crossref_primary_10_1016_j_optlastec_2023_109159
crossref_primary_10_1002_adfm_202308484
crossref_primary_10_1038_s41467_024_45755_5
crossref_primary_10_1038_s41566_021_00859_y
crossref_primary_10_1088_1361_6463_ab30ed
crossref_primary_10_1103_PhysRevLett_127_153901
crossref_primary_10_1021_acsnano_3c00559
crossref_primary_10_1038_s41377_021_00655_x
crossref_primary_10_29026_oes_2024_230036
crossref_primary_10_1063_1_5039948
crossref_primary_10_1364_PRJ_428577
crossref_primary_10_1088_1361_6633_abb56e
crossref_primary_10_1515_nanoph_2022_0294
crossref_primary_10_1109_JSTQE_2018_2836939
crossref_primary_10_1002_lpor_202401491
crossref_primary_10_1063_5_0078610
crossref_primary_10_3788_AOS240593
crossref_primary_10_1002_lpor_202200031
crossref_primary_10_1364_AOP_411024
crossref_primary_10_1016_j_optmat_2021_110972
crossref_primary_10_1364_OL_518418
crossref_primary_10_1002_adom_201800104
crossref_primary_10_1038_s41598_024_75686_6
crossref_primary_10_1117_1_AP_6_5_056012
crossref_primary_10_1364_OE_409758
crossref_primary_10_3390_cryst8050191
crossref_primary_10_1021_acsnano_3c10471
crossref_primary_10_1038_s41467_023_41350_2
crossref_primary_10_1002_lpor_202300951
crossref_primary_10_1063_5_0037771
crossref_primary_10_3390_mi13030472
crossref_primary_10_1364_OE_431619
crossref_primary_10_1002_lpor_202000514
crossref_primary_10_1016_j_optlastec_2020_106214
crossref_primary_10_1364_OE_471479
crossref_primary_10_1515_nanoph_2021_0466
crossref_primary_10_1016_j_optlastec_2023_110491
crossref_primary_10_1002_adts_201900115
crossref_primary_10_1103_PhysRevLett_126_033901
crossref_primary_10_1515_nanoph_2023_0886
crossref_primary_10_1038_s41467_021_26818_3
crossref_primary_10_1364_PRJ_384449
crossref_primary_10_1109_JPHOT_2020_3020090
crossref_primary_10_1007_s11433_023_2223_5
crossref_primary_10_1109_JLT_2020_3040387
crossref_primary_10_1063_1_5108630
crossref_primary_10_1364_OPTICA_5_001438
crossref_primary_10_1063_1_5142750
crossref_primary_10_1002_lpor_201800228
crossref_primary_10_1103_PhysRevA_98_023820
crossref_primary_10_3390_cryst9050228
crossref_primary_10_1364_OE_468683
crossref_primary_10_1364_OE_443186
crossref_primary_10_1364_OE_27_033391
crossref_primary_10_1080_23746149_2024_2322739
crossref_primary_10_1088_1361_6463_ac2068
crossref_primary_10_1063_5_0140483
crossref_primary_10_1080_23746149_2021_1889402
crossref_primary_10_1364_OE_415676
crossref_primary_10_1038_s41578_024_00668_z
crossref_primary_10_1109_JPHOT_2020_3025017
crossref_primary_10_1021_acs_nanolett_0c01105
crossref_primary_10_1103_PhysRevApplied_22_L051001
crossref_primary_10_1088_1367_2630_aaf65e
crossref_primary_10_1063_5_0137254
crossref_primary_10_1039_D1NR05379E
crossref_primary_10_1364_OE_27_016425
crossref_primary_10_1007_s12200_023_00073_4
crossref_primary_10_1039_D0CP00150C
crossref_primary_10_1088_1361_6463_acb4a4
crossref_primary_10_29026_oea_2022_210135
crossref_primary_10_1021_acsphotonics_4c02259
crossref_primary_10_1021_acsphotonics_8b00574
crossref_primary_10_1038_s41598_018_31555_7
Cites_doi 10.1103/PhysRevLett.109.015502
10.1103/PhysRevLett.109.147404
10.1364/OE.25.006963
10.1038/nature02921
10.1364/OPTICA.3.000531
10.1126/science.1193968
10.1021/nl400636z
10.1063/1.3607288
10.1021/nl2041047
10.1021/nl503029j
10.1364/OL.40.002902
10.1038/nphoton.2012.2
10.1063/1.4722941
10.1364/OE.17.020099
10.1364/OPTICA.3.000233
10.1002/lpor.201100035
10.1364/OE.17.009241
10.1364/OE.20.007526
10.1021/nl203524k
10.1364/JOSAA.15.001838
10.1038/srep08072
10.1038/nnano.2015.69
10.1021/acs.nanolett.5b02802
10.1021/ph500054u
10.1021/nl302665m
10.1021/nl5019589
10.1038/nnano.2017.50
10.1049/el:19890127
10.1063/1.2357551
10.1038/nphoton.2012.244
10.1007/s003400100623
10.1038/nature06401
10.1364/OE.22.030924
10.1038/nature04009
10.1038/nphoton.2009.28
10.1038/ncomms4109
ContentType Journal Article
Copyright The Author(s) 2017
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2017
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – sequence: 0
  name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-017-02189-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed

Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Engineering
EISSN 2041-1723
EndPage 7
ExternalDocumentID oai_doaj_org_article_fb8b1a0b377141e79ac26cfa9227aca8
PMC5727391
1624063
29235473
10_1038_s41467_017_02189_6
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
PUEGO
ID FETCH-LOGICAL-c633t-1dd9142d2a9a5a7cd7aa1184458dc5a32f4e77287c3454901aa19fa96a4b195d3
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:29:41 EDT 2025
Thu Aug 21 13:23:59 EDT 2025
Thu Dec 05 06:34:59 EST 2024
Fri Jul 11 14:07:35 EDT 2025
Wed Aug 13 08:04:38 EDT 2025
Mon Jul 21 06:05:52 EDT 2025
Tue Jul 01 02:21:08 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Fri Feb 21 02:40:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-1dd9142d2a9a5a7cd7aa1184458dc5a32f4e77287c3454901aa19fa96a4b195d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0012704; ECCS-1609549; ECCS-1307948; FA9550-14-1-0389; D15AP00111; 61590932; IOSKL2015KF12
USDOE Office of Science (SC), Basic Energy Sciences (BES)
State Key Laboratory on Integrated Optoelectronics
National Science Foundation (NSF)
Defense Advanced Research Projects Agency (DARPA)
National Natural Science Foundation of China (NSFC)
US Air Force Office of Scientific Research (AFOSR)
OpenAccessLink https://www.proquest.com/docview/1983423065?pq-origsite=%requestingapplication%
PMID 29235473
PQID 1983423065
PQPubID 546298
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_fb8b1a0b377141e79ac26cfa9227aca8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5727391
osti_scitechconnect_1624063
proquest_miscellaneous_1976442152
proquest_journals_1983423065
pubmed_primary_29235473
crossref_primary_10_1038_s41467_017_02189_6
crossref_citationtrail_10_1038_s41467_017_02189_6
springer_journals_10_1038_s41467_017_02189_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-13
PublicationDateYYYYMMDD 2017-12-13
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-13
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – sequence: 0
  name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Burgess (CR19) 2009; 17
Kollmann (CR27) 2014; 14
Hanke (CR22) 2012; 12
Li (CR34) 2017; 12
Tanzilli (CR4) 2005; 437
Rivoire, Buckley, Hatami, Vučković (CR14) 2011; 98
Wang (CR37) 2014; 22
CR39
Vodopyanov (CR3) 2006; 89
CR16
Del’Haye (CR6) 2007; 450
Corcoran (CR15) 2009; 3
Li, Wang, Loncar (CR32) 2015; 40
CR33
Nozaki (CR8) 2012; 6
Fejer, Byer (CR1) 1989; 25
Buckley (CR20) 2014; 1
Pernice, Xiong, Schuck, Tang (CR11) 2012; 100
Korkishko (CR35) 1998; 15
Kippenberg, Holzwarth, Diddams (CR10) 2011; 332
Lin (CR38) 2015; 5
Zaske (CR5) 2012; 109
Chang (CR17) 2016; 3
Thyagarajan, Butet, Martin (CR26) 2013; 13
Almeida, Barrios, Panepucci, Lipson (CR7) 2004; 431
Poberaj, Hu, Sohler, Günter (CR36) 2012; 6
Meyn, Laue, Knappe, Wallenstein, Fejer (CR2) 2001; 73
Burgess (CR18) 2009; 17
Celebrano (CR29) 2015; 10
Kauranen, Zayats (CR24) 2012; 6
Bi (CR13) 2012; 20
CR9
Husu (CR23) 2012; 12
Lin, Liang, Lončar, Johnson, Rodriguez (CR21) 2016; 3
Linden (CR25) 2012; 109
Aouani (CR28) 2012; 12
Wang (CR12) 2017; 25
Yang (CR31) 2015; 15
Shcherbakov (CR30) 2014; 14
2189_CR9
2189_CR16
Z Lin (2189_CR21) 2016; 3
C Wang (2189_CR37) 2014; 22
ZF Bi (2189_CR13) 2012; 20
2189_CR39
L Chang (2189_CR17) 2016; 3
MM Fejer (2189_CR1) 1989; 25
K Rivoire (2189_CR14) 2011; 98
S Linden (2189_CR25) 2012; 109
H Kollmann (2189_CR27) 2014; 14
S Zaske (2189_CR5) 2012; 109
S Buckley (2189_CR20) 2014; 1
H Aouani (2189_CR28) 2012; 12
YN Korkishko (2189_CR35) 1998; 15
G Poberaj (2189_CR36) 2012; 6
H Husu (2189_CR23) 2012; 12
C Wang (2189_CR12) 2017; 25
IB Burgess (2189_CR19) 2009; 17
TJ Kippenberg (2189_CR10) 2011; 332
JP Meyn (2189_CR2) 2001; 73
2189_CR33
K Nozaki (2189_CR8) 2012; 6
P Del’Haye (2189_CR6) 2007; 450
KL Vodopyanov (2189_CR3) 2006; 89
Y Yang (2189_CR31) 2015; 15
K Thyagarajan (2189_CR26) 2013; 13
S Tanzilli (2189_CR4) 2005; 437
IB Burgess (2189_CR18) 2009; 17
T Hanke (2189_CR22) 2012; 12
MR Shcherbakov (2189_CR30) 2014; 14
Z Li (2189_CR34) 2017; 12
VR Almeida (2189_CR7) 2004; 431
WHP Pernice (2189_CR11) 2012; 100
B Corcoran (2189_CR15) 2009; 3
M Kauranen (2189_CR24) 2012; 6
Y Li (2189_CR32) 2015; 40
M Celebrano (2189_CR29) 2015; 10
J Lin (2189_CR38) 2015; 5
References_xml – volume: 109
  start-page: 015502
  year: 2012
  ident: CR25
  article-title: Collective effects in second-harmonic generation from split-ring-resonator arrays
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.015502
– volume: 109
  start-page: 147404
  year: 2012
  ident: CR5
  article-title: Visible-to-telecom quantum frequency conversion of light from a single quantum emitter
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.147404
– volume: 25
  start-page: 6963
  year: 2017
  end-page: 6973
  ident: CR12
  article-title: Second harmonic generation in nano-structured thin-film lithium niobate waveguides
  publication-title: Opt. Express
  doi: 10.1364/OE.25.006963
– ident: CR39
– volume: 431
  start-page: 1081
  year: 2004
  end-page: 1084
  ident: CR7
  article-title: All-optical control of light on a silicon chip
  publication-title: Nature
  doi: 10.1038/nature02921
– ident: CR16
– ident: CR33
– volume: 3
  start-page: 531
  year: 2016
  end-page: 535
  ident: CR17
  article-title: Thin film wavelength converters for photonic integrated circuits
  publication-title: Optica
  doi: 10.1364/OPTICA.3.000531
– volume: 332
  start-page: 555
  year: 2011
  ident: CR10
  article-title: Microresonator-based optical frequency combs
  publication-title: Science
  doi: 10.1126/science.1193968
– volume: 13
  start-page: 1847
  year: 2013
  end-page: 1851
  ident: CR26
  article-title: Augmenting second harmonic generation using fano resonances in plasmonic systems
  publication-title: Nano Lett.
  doi: 10.1021/nl400636z
– volume: 98
  start-page: 263113
  year: 2011
  ident: CR14
  article-title: Second harmonic generation in GaP photonic crystal waveguides
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3607288
– volume: 12
  start-page: 992
  year: 2012
  end-page: 996
  ident: CR22
  article-title: Tailoring spatiotemporal light confinement in single plasmonic nanoantennas
  publication-title: Nano Lett.
  doi: 10.1021/nl2041047
– volume: 14
  start-page: 6488
  year: 2014
  end-page: 6492
  ident: CR30
  article-title: Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response
  publication-title: Nano Lett.
  doi: 10.1021/nl503029j
– volume: 40
  start-page: 2902
  year: 2015
  end-page: 2905
  ident: CR32
  article-title: Design of nano-groove photonic crystal cavities in lithium niobate
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.002902
– volume: 6
  start-page: 248
  year: 2012
  end-page: 252
  ident: CR8
  article-title: Ultralow-power all-optical RAM based on nanocavities
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.2
– volume: 100
  start-page: 223501
  year: 2012
  ident: CR11
  article-title: Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4722941
– volume: 17
  start-page: 20099
  year: 2009
  end-page: 20108
  ident: CR19
  article-title: Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities
  publication-title: Opt. Express
  doi: 10.1364/OE.17.020099
– volume: 3
  start-page: 233
  year: 2016
  end-page: 238
  ident: CR21
  article-title: Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization
  publication-title: Optica
  doi: 10.1364/OPTICA.3.000233
– volume: 6
  start-page: 488
  year: 2012
  end-page: 503
  ident: CR36
  article-title: Lithium niobate on insulator (LNOI) for micro-photonic devices
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201100035
– volume: 17
  start-page: 9241
  year: 2009
  end-page: 9251
  ident: CR18
  article-title: Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities
  publication-title: Opt. Express
  doi: 10.1364/OE.17.009241
– volume: 20
  start-page: 7526
  year: 2012
  end-page: 7543
  ident: CR13
  article-title: High-efficiency second-harmonic generation in doubly-resonant (2) microring resonators
  publication-title: Opt. Express
  doi: 10.1364/OE.20.007526
– volume: 12
  start-page: 673
  year: 2012
  end-page: 677
  ident: CR23
  article-title: Metamaterials with tailored nonlinear optical response
  publication-title: Nano Lett.
  doi: 10.1021/nl203524k
– volume: 15
  start-page: 1838
  year: 1998
  end-page: 1842
  ident: CR35
  article-title: Reverse proton exchange for buried waveguides in LiNbO3
  publication-title: J. Opt. Soc. Am. A.
  doi: 10.1364/JOSAA.15.001838
– volume: 5
  year: 2015
  ident: CR38
  article-title: Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining
  publication-title: Sci. Rep.
  doi: 10.1038/srep08072
– volume: 10
  start-page: 412
  year: 2015
  end-page: 417
  ident: CR29
  article-title: Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.69
– volume: 15
  start-page: 7388
  year: 2015
  end-page: 7393
  ident: CR31
  article-title: Nonlinear fano-resonant dielectric metasurfaces
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02802
– volume: 1
  start-page: 516
  year: 2014
  end-page: 523
  ident: CR20
  article-title: Second-harmonic generation in GaAs photonic crystal cavities in (111)b and (001) crystal orientations
  publication-title: ACS Photonics
  doi: 10.1021/ph500054u
– volume: 12
  start-page: 4997
  year: 2012
  end-page: 5002
  ident: CR28
  article-title: Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light
  publication-title: Nano Lett.
  doi: 10.1021/nl302665m
– volume: 14
  start-page: 4778
  year: 2014
  end-page: 4784
  ident: CR27
  article-title: Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas
  publication-title: Nano Lett.
  doi: 10.1021/nl5019589
– volume: 12
  start-page: 675
  year: 2017
  end-page: 683
  ident: CR34
  article-title: Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.50
– ident: CR9
– volume: 25
  start-page: 174
  year: 1989
  end-page: 175
  ident: CR1
  article-title: Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide
  publication-title: Electron. Lett.
  doi: 10.1049/el:19890127
– volume: 89
  start-page: 141119
  year: 2006
  ident: CR3
  article-title: Terahertz-wave generation in quasi-phase-matched GaAs
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2357551
– volume: 6
  start-page: 737
  year: 2012
  end-page: 748
  ident: CR24
  article-title: Nonlinear plasmonics
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.244
– volume: 73
  start-page: 111
  year: 2001
  end-page: 114
  ident: CR2
  article-title: Fabrication of periodically poled lithium tantalate for UV generation with diode lasers
  publication-title: Appl. Phys. B.
  doi: 10.1007/s003400100623
– volume: 450
  start-page: 1214
  year: 2007
  end-page: 1217
  ident: CR6
  article-title: Optical frequency comb generation from a monolithic microresonator
  publication-title: Nature
  doi: 10.1038/nature06401
– volume: 22
  start-page: 30924
  year: 2014
  end-page: 30933
  ident: CR37
  article-title: Integrated high quality factor lithium niobate microdisk resonators
  publication-title: Opt. Express
  doi: 10.1364/OE.22.030924
– volume: 437
  start-page: 116
  year: 2005
  end-page: 120
  ident: CR4
  article-title: A photonic quantum information interface
  publication-title: Nature
  doi: 10.1038/nature04009
– volume: 3
  start-page: 206
  year: 2009
  end-page: 210
  ident: CR15
  article-title: Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.28
– volume: 12
  start-page: 4997
  year: 2012
  ident: 2189_CR28
  publication-title: Nano Lett.
  doi: 10.1021/nl302665m
– volume: 3
  start-page: 531
  year: 2016
  ident: 2189_CR17
  publication-title: Optica
  doi: 10.1364/OPTICA.3.000531
– volume: 3
  start-page: 233
  year: 2016
  ident: 2189_CR21
  publication-title: Optica
  doi: 10.1364/OPTICA.3.000233
– volume: 431
  start-page: 1081
  year: 2004
  ident: 2189_CR7
  publication-title: Nature
  doi: 10.1038/nature02921
– volume: 25
  start-page: 6963
  year: 2017
  ident: 2189_CR12
  publication-title: Opt. Express
  doi: 10.1364/OE.25.006963
– volume: 22
  start-page: 30924
  year: 2014
  ident: 2189_CR37
  publication-title: Opt. Express
  doi: 10.1364/OE.22.030924
– volume: 14
  start-page: 6488
  year: 2014
  ident: 2189_CR30
  publication-title: Nano Lett.
  doi: 10.1021/nl503029j
– volume: 17
  start-page: 20099
  year: 2009
  ident: 2189_CR19
  publication-title: Opt. Express
  doi: 10.1364/OE.17.020099
– volume: 14
  start-page: 4778
  year: 2014
  ident: 2189_CR27
  publication-title: Nano Lett.
  doi: 10.1021/nl5019589
– volume: 98
  start-page: 263113
  year: 2011
  ident: 2189_CR14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3607288
– volume: 10
  start-page: 412
  year: 2015
  ident: 2189_CR29
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.69
– volume: 100
  start-page: 223501
  year: 2012
  ident: 2189_CR11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4722941
– volume: 17
  start-page: 9241
  year: 2009
  ident: 2189_CR18
  publication-title: Opt. Express
  doi: 10.1364/OE.17.009241
– volume: 73
  start-page: 111
  year: 2001
  ident: 2189_CR2
  publication-title: Appl. Phys. B.
  doi: 10.1007/s003400100623
– volume: 15
  start-page: 1838
  year: 1998
  ident: 2189_CR35
  publication-title: J. Opt. Soc. Am. A.
  doi: 10.1364/JOSAA.15.001838
– volume: 6
  start-page: 248
  year: 2012
  ident: 2189_CR8
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.2
– volume: 12
  start-page: 675
  year: 2017
  ident: 2189_CR34
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.50
– volume: 109
  start-page: 015502
  year: 2012
  ident: 2189_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.015502
– volume: 12
  start-page: 992
  year: 2012
  ident: 2189_CR22
  publication-title: Nano Lett.
  doi: 10.1021/nl2041047
– volume: 25
  start-page: 174
  year: 1989
  ident: 2189_CR1
  publication-title: Electron. Lett.
  doi: 10.1049/el:19890127
– volume: 450
  start-page: 1214
  year: 2007
  ident: 2189_CR6
  publication-title: Nature
  doi: 10.1038/nature06401
– volume: 5
  year: 2015
  ident: 2189_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/srep08072
– volume: 1
  start-page: 516
  year: 2014
  ident: 2189_CR20
  publication-title: ACS Photonics
  doi: 10.1021/ph500054u
– volume: 6
  start-page: 737
  year: 2012
  ident: 2189_CR24
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.244
– volume: 109
  start-page: 147404
  year: 2012
  ident: 2189_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.147404
– volume: 6
  start-page: 488
  year: 2012
  ident: 2189_CR36
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201100035
– ident: 2189_CR9
– volume: 15
  start-page: 7388
  year: 2015
  ident: 2189_CR31
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02802
– volume: 437
  start-page: 116
  year: 2005
  ident: 2189_CR4
  publication-title: Nature
  doi: 10.1038/nature04009
– ident: 2189_CR16
  doi: 10.1038/ncomms4109
– ident: 2189_CR33
– volume: 3
  start-page: 206
  year: 2009
  ident: 2189_CR15
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.28
– volume: 40
  start-page: 2902
  year: 2015
  ident: 2189_CR32
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.002902
– ident: 2189_CR39
– volume: 332
  start-page: 555
  year: 2011
  ident: 2189_CR10
  publication-title: Science
  doi: 10.1126/science.1193968
– volume: 12
  start-page: 673
  year: 2012
  ident: 2189_CR23
  publication-title: Nano Lett.
  doi: 10.1021/nl203524k
– volume: 20
  start-page: 7526
  year: 2012
  ident: 2189_CR13
  publication-title: Opt. Express
  doi: 10.1364/OE.20.007526
– volume: 13
  start-page: 1847
  year: 2013
  ident: 2189_CR26
  publication-title: Nano Lett.
  doi: 10.1021/nl400636z
– volume: 89
  start-page: 141119
  year: 2006
  ident: 2189_CR3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2357551
SSID ssj0000391844
Score 2.604785
Snippet The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes...
Phase matching is a crucial condition for nonlinear optical processes. Here, Wang et al. demonstrate that a gradient metasurface composed of phased array...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2098
SubjectTerms 639/624/399/1015
639/624/400/385
Antenna arrays
Antennas
Conversion
Crystals
ENGINEERING
Humanities and Social Sciences
Lithium
Lithium niobates
metamaterials
Metasurfaces
multidisciplinary
Narrowband
nonlinear optics
Phase matching
Photons
Science
science & technology
Science (multidisciplinary)
Second harmonic generation
Thin films
Waveguides
Wavelength
Wavelengths
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIPgi3u3uKhF807DNpbk8qrgswvrkwr6FNEl3CtpZdjqK_95z0s4w4_XFp0KTluZccr40J98h5KVos7Wt5sw2zjGlOpgHXarBryB2KFnnUJJozj_qswv14bK53Cn1hTlhEz3wJLiTrrUtD3UrjeGKZ-NCFDp2wQlhQgzlmC_EvJ3FVJmDpYOli5pPydTSnqxUmRNwUsaw5pjei0SFsB8uS3Cs34HNX3Mmf9o4LfHo9B65OwNJ-mYawH1yKw8PyO2ptOT3hySc5xH__nUhZgYAGbWZ6PUCghYDkFoyKFl3kzNd4ZI4UaSwRppcelWIqFFftB8ooPRFv_5Chx4cf8z0W_iar9Z9yqtH5OL0_ad3Z2wup8CilnJkPCXHlUgiuNAEE5MJgaOUGptiE6ToVAasbU2UClaNNYdmB4LWQbXcNUk-JgfDcshPCbU8OmETgBN4Y4yuBZilrQk2gnYd7yrCN6L1ceYax5IXn33Z85bWT-rwoA5f1OF1RV5tn7memDb-2vstamzbE1myyw2wHT_bjv-X7VTkCPXtAWwgY27E1KI4eq4R5siKHG_MwM-OvfLcWeRMBOBWkRfbZnBJ3GcJQ16usY8BlIkFgyvyZLKa7XcKANRY7rkiZs-e9gay3zL0i0L73SDUdLwirzeWt_NZfxTU4f8Q1BG5I9BzuGBcHpOD8WadnwEYG9vnxe9-AKTiLws
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwEB0ti5C4IL4Ju6AgcYNA_ZHYPiAEiNUKqZyotDfLsZ220m66tCmw_54ZJ60olD1Fip0o9szzPMf2G4CXvI5a1xUrdGlMIWWD46AJI8QVxg4pRtGlTTTjr9XpRH45K88OYJPuaOjA1d6pHeWTmizP3_z6fvUeAf-uPzKu365kgjuNtxSxTFHdgJsYmRQBdTzQ_TQyC4MTGjmcndn_6E58SjL-eFkg3PZR0H93Uv61nJqi1MlduDPQy_xD7w_34CC29-FWn3Dy6gG4cezon2DjfCyQNpONQ345w1BWIHVN-yqLZhljvqKJcshJ2JrEc_NpkqcmK-bzNkfuPpuvL_J2jsNBF_Of7kecruchrh7C5OTzt0-nxZBkofCVEF3BQjBM8sCdcaVTPijnGPVSqYMvneCNjMjAtfJC4lxyxLDYNM5UTtbMlEE8gsN20cYnkGvmDdcBKQu-0XtTI_mqtHLao80NazJgm661flAgp0QY5zathAtte3NYNIdN5rBVBq-2z1z2-hvX1v5IFtvWJO3sdGOxnNoBirapdc3cqBZKMcmiMs7zymOTOFfOO53BEdnbIgUhHV1PG458Z1lF5EdkcLxxA7vxVsuMJiVFpHMZvNgWI1Bp9cW1cbGmOgq5J6URzuBx7zXb7-RIsykJdAZqx592GrJb0s5nSQy8JAJqWAavN573x2f9t6OeXt-KI7jNCROMF0wcw2G3XMdnSL66-nlC1G8OVyj1
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8fvqnVLBNy02H22TR108DuF88uDeQpqkuwXtHrtdj_vvnUk_cPUUfCo0aUkyM5lfkslvAN7wOihVlyxThdaZlA3Og9rnaFfoO6TIg41BNOdfyrML-fmyuDwAPt2FiUH7kdIyTtNTdNj7rYwmTXMqeSWdlXfgLlG3k1YvysW8r0KM50rK8X5MLtQtn-75oEjVj481mtRtMPPPaMnfjkyjJzp9CA9GCJl-GBr9CA5C9xjuDUklb56APQ897fs11oUMoTHJ0adXK3RXGcLTGDuZNZsQ0i0thn1K5NVEkJsuIwU1SSptuxTx-ardfU-7Fk2-D-m1_RGWu9aH7VO4OP30dXGWjYkUMlcK0WfMe80k99xqW9jK-cpaRqNUKO8KK3gjA6JsVTkhcb2YMyzWjdWllTXThRfP4LBbd-EIUsWc5sojLME_OqdrBFilqqxyKFfNmgTYNLTGjSzjlOzim4mn3UKZQRwGxWGiOEyZwNv5m6uBY-OftT-SxOaaxI8dX6w3SzPqi2lqVTOb16KqmGSh0tbx0mGXOK-ssyqBY5K3QZhBXLmOgopcb1hJAEckcDKpgRlNemuYVsSWiJAtgddzMRojnbDYLqx3VKdCfEmpghN4PmjN3E6OUJoSPSdQ7enTXkf2S7p2FQm_CwKZmiXwbtK8X5r114F68X_Vj-E-JxthPGPiBA77zS68RMDV16-ihf0E2PcjmA
  priority: 102
  providerName: Springer Nature
Title Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides
URI https://link.springer.com/article/10.1038/s41467-017-02189-6
https://www.ncbi.nlm.nih.gov/pubmed/29235473
https://www.proquest.com/docview/1983423065
https://www.proquest.com/docview/1976442152
https://www.osti.gov/servlets/purl/1624063
https://pubmed.ncbi.nlm.nih.gov/PMC5727391
https://doaj.org/article/fb8b1a0b377141e79ac26cfa9227aca8
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG_CRhUk3sBa7Tix_YS6amWq1AkBk_pmObbTRoK0tCmI_547Ny2Uj70kUuxWse_O9_P58jtCXvEyKFUWjKpcaypEBeug9n2wK_AdIusHG5NoJlfF5bUYT_NpF3Bbd2mVuzUxLtR-4TBGfgabYySrA4_5dvmVYtUoPF3tSmjcJsdIXYYpXXIq9zEWZD9XQnTfyvQzdbYWcWXApRmdm6bFgT-KtP1wW4B5_Qty_p05-cfxafRKo_vkXgcn08FW_g_IrdA8JHe2BSZ_PCJ2ElqMAVbWBQowGWXq0-UcXBcFqBrzKGm1CiFd48bYp0hkjWS56SzSUaPU0rpJAavP682XtKnB_NuQfrffwmxT-7B-TK5HF5-Gl7QrqkBdkWUtZd5rJrjnVtvcSueltQxnKVfe5TbjlQiAuJV0mYC9Y59Bs66sLqwoYYp99oQcNYsmPCOpYk5z5QGiwD86p0sAW4WSVjmQsWZVQthuao3rGMex8MVnE0--M2W24jAgDhPFYYqEvN7_Zrnl27ix9zlKbN8TubLjg8VqZjrTM1WpSmb7ZSYlEyxIbR0vHAyJc2mdVQk5QXkbgBzIm-swwci1hhUIdrKEnO7UwHTmvTa_lDEhL_fNYJh42mKbsNhgHwlYE8sGJ-TpVmv278kBVmPR54TIA306GMhhS1PPI_l3joBTs4S82Wneb6_134l6fvMoTshdjjbBOGXZKTlqV5vwAsBWW_aiRcFVjd71yPFgMP44hvv5xdX7D_B0WAx7MYwB14lQPwEkPSx-
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxDdhA4IETxAtdpzYfkCIr6lj6542qW_GsZ22EqSlTZn2T_E3cuckhfKxtz1Vqh0r9v3u7ne2c0fIc1Z6KcuCJjJXKuG8AjuoXAp6Bb6DZ6k34RLN8LgYnPJPo3y0RX7038LgtcreJgZD7WYW98j3IDjGZHXgMd_MvyVYNQpPV_sSGi0sDv35GYRsy9cHH0C-Lxjb_3jyfpB0VQUSW2RZk1DnFOXMMaNMboR1whhg2Zzn0tncZKziHiinFDbjEDylFJpVZVRheElV7jIY9wq5Co43RY0SI7He08Fs6zBQ921Omsm9JQ-WCF0BOlOVFBv-L5QJgJ8ZqPO_KO7fNzX_OK4NXnD_FrnZ0df4bYu322TL13fItbag5fldYoa-wT3HylifAC1HDLl4PgFXmQA1Dvc2k2rhfbzEQNzFmDgbk_PG45D-GlEST-sYYoPJdPU1rqdgbhofn5nvfryaOr-8R04vZbnvk-16VvuHJJbUKiYdUCIY0VpVArkrpDDSAqYUrSJC-6XVtstwjoU2vuhw0p5J3YpDgzh0EIcuIvJy_cy8ze9xYe93KLF1T8zNHf6YLca6U3VdlbKkJi0zISinXihjWWFhSowJY42MyA7KWwPFwTy9Fi802UbTAslVFpHdHga6MydL_Qv8EXm2bgZDgKc7pvazFfYRwG2xTHFEHrSoWb8nAxqPRaYjIjbwtDGRzZZ6OgnJxnMkuIpG5FWPvN9e678L9ejiWTwl1wcnwyN9dHB8uENuMNQPyhKa7ZLtZrHyj4HoNeWToF0x-XzZ6vwTf5xh-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ2wAUGCJ4haXxLbDwgBo9oYm3hgUt-MYzttJUhLmzLtr_HrOMdJC-Wytz1Vqh0r9rl9tk--Q8hTVgalyoJmKtc6E6ICP6h9H-wKYofg_WBjEs3RcbF_It4P8-EW-bH6FgbTKlc-MTpqP3V4Rt6DzTGS1UHE7FVdWsTHvcGr2bcMK0jhTeuqnEarIofh7BS2b4uXB3sg62eMDd59erufdRUGMldw3mTUe00F88xqm1vpvLQWELcQufIut5xVIgD8VNJxARupPoVmXVldWFFSnXsO414ilyXPKdqYHMr1-Q4yr8NA3Xc6fa56CxG9EoYFDKw6KzZiYSwZAD9TMO1_wd2_szb_uLqNEXFwg1zvoGz6utW9m2Qr1LfIlba45dltYo9Cg-ePlXUhA4iO-uTT2RjCZgYwOeZwZtU8hHSBm3KfIok2EvWmo0iFjRqTTuoU9gnjyfJrWk_A9TQhPbXfw2g58WFxh5xcyHLfJdv1tA73Saqo00x5gEcwonO6BKBXKGmVA_3StEoIXS2tcR3bORbd-GLirTtXphWHAXGYKA5TJOT5-plZy_Vxbu83KLF1T-Tpjn9M5yPTmb2pSlVS2y-5lFTQILV1rHAwJcakdVYlZAflbQDuIGevw-Qm1xhaINDiCdldqYHpXMvC_DKEhDxZN4NTwJseW4fpEvtIwLlYsjgh91qtWb8nA0iPBacTIjf0aWMimy31ZByJx3MEu5om5MVK8357rf8u1IPzZ_GYXAVDNh8Ojg93yDWG5kFZRvku2W7my_AQMF9TPorGlZLPF23NPwEqpGYv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metasurface-assisted+phase-matching-free+second+harmonic+generation+in+lithium+niobate+waveguides&rft.jtitle=Nature+communications&rft.au=Wang%2C+Cheng&rft.au=Li%2C+Zhaoyi&rft.au=Kim%2C+Myoung-Hwan&rft.au=Xiong%2C+Xiao&rft.date=2017-12-13&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=8&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1038%2Fs41467-017-02189-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon