A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors
Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run‐to‐run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC‐MS proteomics dataset is...
Saved in:
Published in | Proteomics (Weinheim) Vol. 11; no. 24; pp. 4736 - 4741 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.12.2011
WILEY‐VCH Verlag Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run‐to‐run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC‐MS proteomics dataset is a fundamental step in pre‐processing. However, the downstream analysis of LC‐MS proteomics data can be dramatically affected by the normalization method selected. Current normalization procedures for LC‐MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori. If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, possibly affecting downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, which includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between‐group variance structure in order to identify the most appropriate normalization methods that improve the structure of the data without introducing bias into the normalized peak intensities. |
---|---|
AbstractList | Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run‐to‐run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC‐MS proteomics dataset is a fundamental step in pre‐processing. However, the downstream analysis of LC‐MS proteomics data can be dramatically affected by the normalization method selected. Current normalization procedures for LC‐MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori. If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, possibly affecting downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, which includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between‐group variance structure in order to identify the most appropriate normalization methods that improve the structure of the data without introducing bias into the normalized peak intensities. Abstract Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run‐to‐run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC‐MS proteomics dataset is a fundamental step in pre‐processing. However, the downstream analysis of LC‐MS proteomics data can be dramatically affected by the normalization method selected. Current normalization procedures for LC‐MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori. If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, possibly affecting downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, which includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between‐group variance structure in order to identify the most appropriate normalization methods that improve the structure of the data without introducing bias into the normalized peak intensities. Quantification of LC-MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run-to-run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across a LC-MS proteomics dataset is a fundamental step in pre-processing. However, the downstream analysis of LC-MS proteomics data can be dramatically affected by the normalization method selected. Current normalization procedures for LC-MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori . If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, possibly affecting downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, which includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between-group variance structure in order to identify the most appropriate normalization methods that improve the structure of the data without introducing bias into the normalized peak intensities. |
Author | Matzke, Melissa M. Waters, Katrina M. Jacobs, Jon M. Webb-Robertson, Bobbie-Jo M. Pounds, Joel G. |
Author_xml | – sequence: 1 givenname: Bobbie-Jo M. surname: Webb-Robertson fullname: Webb-Robertson, Bobbie-Jo M. email: bj@pnl.gov organization: Pacific Northwest National Laboratory, USA – sequence: 2 givenname: Melissa M. surname: Matzke fullname: Matzke, Melissa M. organization: Pacific Northwest National Laboratory, USA – sequence: 3 givenname: Jon M. surname: Jacobs fullname: Jacobs, Jon M. organization: Pacific Northwest National Laboratory, USA – sequence: 4 givenname: Joel G. surname: Pounds fullname: Pounds, Joel G. organization: Pacific Northwest National Laboratory, USA – sequence: 5 givenname: Katrina M. surname: Waters fullname: Waters, Katrina M. organization: Pacific Northwest National Laboratory, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25340754$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22038874$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURD_gyhHlguglix3HsX1BqhZainYBqSCOluNMdk2zdrC9pcuv4afisMtSOMDJ45lnxu-M5zg7sM5Clj3GaIIRKp8PK6MnJcLpghi_lx3hGtNC8Bof7G1KDrPjED4jhBkX7EF2WJaIcM6qo-z7WR6iiiZEo1WfB-hBR-Ns8noVYbHJO-dz6_xK9eab-hkavNPQrj2E3Nh8Ni3mV6MvgktiQg63A3izAhtDHpferRfLvFVRBYhFCwPYNoVyr-y1sYvcdX9VD0nHGOiUjs6Hh9n9TvUBHu3Ok-zj-asP09fF7N3F5fRsVuiaEF4w1NSNqDGCpm04UZjUvG0xpaKpmprxRiCtqa6IQlxxQAC00UoTxZJV1oycZC-2dYd1s4JWJ41e9XJInSi_kU4Z-WfEmqVcuBtJKGa4QqnAs10B776sIUS5MkFD3ysLbh2kQJwRIQhN5Ok_SUxLIUpC6yqhky2qvQvBQ7cXhJEcF0COCyD3C5ASntxtY4__-vEEPN0Bapx0l_5Bm_Cbo6RCjI6c2HJfTQ-b_zwr388vp3dFFNvctFZwu89V_lqmSTMqP729kDV5WV29mZ_LOfkBH3HhHg |
CitedBy_id | crossref_primary_10_1164_rccm_202008_3303OC crossref_primary_10_1186_s40168_023_01476_3 crossref_primary_10_1186_s40779_023_00477_5 crossref_primary_10_4236_abb_2018_98022 crossref_primary_10_1371_journal_pone_0069374 crossref_primary_10_1002_cbic_202000616 crossref_primary_10_1155_2013_613529 crossref_primary_10_3390_proteomes6020020 crossref_primary_10_1128_JVI_02520_12 crossref_primary_10_1021_acs_jproteome_3c00512 crossref_primary_10_1021_ac500855q crossref_primary_10_1016_j_scitotenv_2023_165689 crossref_primary_10_1021_pr501138h crossref_primary_10_1186_s12859_023_05360_7 crossref_primary_10_1074_mcp_M113_030932 crossref_primary_10_1128_mBio_00857_17 crossref_primary_10_1128_msystems_00913_22 crossref_primary_10_1074_mcp_M114_045260 crossref_primary_10_1021_acs_jproteome_8b00840 crossref_primary_10_1021_pr400866r crossref_primary_10_1038_s41467_024_45838_3 crossref_primary_10_1021_acs_jproteome_8b00760 crossref_primary_10_1016_j_ebiom_2024_105187 crossref_primary_10_1038_s41597_024_03124_3 crossref_primary_10_1186_1752_0509_7_69 crossref_primary_10_1016_j_virol_2015_03_045 crossref_primary_10_1093_bib_bby127 crossref_primary_10_1038_s41467_023_41963_7 crossref_primary_10_1021_acs_jproteome_2c00610 crossref_primary_10_1371_journal_pbio_3000870 crossref_primary_10_1517_17530059_2012_718329 crossref_primary_10_1021_pr401264n crossref_primary_10_1074_mcp_M112_026534 crossref_primary_10_1371_journal_pcbi_1007241 crossref_primary_10_1021_acs_jproteome_3c00604 crossref_primary_10_1038_s41467_019_13858_z crossref_primary_10_1038_sdata_2014_33 crossref_primary_10_1074_mcp_RA118_001169 crossref_primary_10_1021_acsomega_0c02564 crossref_primary_10_1016_j_heliyon_2023_e13795 crossref_primary_10_2174_1381612825666190618123306 crossref_primary_10_1002_pmic_201200269 crossref_primary_10_1111_mec_13872 crossref_primary_10_1002_jms_3629 crossref_primary_10_1002_pmic_202000068 crossref_primary_10_1038_s41596_021_00566_6 crossref_primary_10_1073_pnas_1706928115 crossref_primary_10_1074_mcp_M113_030593 crossref_primary_10_1186_s13063_020_04769_2 crossref_primary_10_1038_s41597_023_02057_7 crossref_primary_10_1016_j_cmet_2019_12_005 crossref_primary_10_1073_pnas_1815356116 crossref_primary_10_1093_bib_bbw095 crossref_primary_10_1128_mSystems_00043_16 crossref_primary_10_1074_jbc_M115_655001 crossref_primary_10_1016_j_talanta_2023_124953 crossref_primary_10_1021_acs_jnatprod_5b00288 crossref_primary_10_1016_j_bbapap_2013_03_026 crossref_primary_10_1108_IJQRM_06_2017_0117 crossref_primary_10_1186_1755_8794_7_58 crossref_primary_10_1002_rcm_9068 crossref_primary_10_1016_j_jbc_2021_100340 crossref_primary_10_3389_fbioe_2020_603488 crossref_primary_10_1016_j_taap_2015_01_019 crossref_primary_10_3389_fcimb_2022_926352 crossref_primary_10_1007_s11306_014_0642_1 crossref_primary_10_1038_s41467_020_17433_9 crossref_primary_10_1371_journal_pone_0092332 |
Cites_doi | 10.1021/pr8010099 10.1186/gb-2001-2-12-research0055 10.1021/pr050300l 10.1002/1615-9861(200205)2:5<513::AID-PROT513>3.0.CO;2-W 10.1038/ng1032 10.1093/bioinformatics/btp426 10.1142/9789812701626_0029 10.1021/pr1005247 10.1093/bioinformatics/btp038 10.1093/bioinformatics/btr479 10.1074/mcp.M800514-MCP200 |
ContentType | Journal Article |
Copyright | Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS – notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 5PM |
DOI | 10.1002/pmic.201100078 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Chemistry |
EISSN | 1615-9861 |
EndPage | 4741 |
ExternalDocumentID | 10_1002_pmic_201100078 22038874 25340754 PMIC201100078 ark_67375_WNG_63D4SJMF_M |
Genre | miscellaneous Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: 1R011GM084892; U54‐016015; U54‐AI081680; HHSN272200800060C – fundername: U.S. Department of Energy funderid: DE‐AC05‐76RL01830 – fundername: NIGMS NIH HHS grantid: 1R011GM084892 – fundername: NIAID NIH HHS grantid: HHSN272200800060C – fundername: NIEHS NIH HHS grantid: U54 ES016015 – fundername: NIAID NIH HHS grantid: U54-AI081680 – fundername: NIAID NIH HHS grantid: U54 AI081680 – fundername: NIGMS NIH HHS grantid: R01 GM084892 – fundername: National Institute of Environmental Health Sciences : NIEHS grantid: U54 ES016015 || ES – fundername: NIAID Research Support : NIAID grantid: HHSN272200800060C || AO |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-1 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 Y6R ZGI ZZTAW ~IA ~KM ~WT AAPBV ABHUG ABWRO ACXME ADAWD ADDAD AFVGU AGJLS IQODW ZA5 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c6338-70b6b9610ebdb83a1368dd1559b4b678b90cc5c43a08a8e0ee5bcac3a7ee52673 |
IEDL.DBID | DR2 |
ISSN | 1615-9853 |
IngestDate | Tue Sep 17 21:03:02 EDT 2024 Fri Aug 16 10:06:06 EDT 2024 Fri Aug 16 10:32:44 EDT 2024 Fri Aug 23 00:31:43 EDT 2024 Sat Sep 28 08:13:47 EDT 2024 Sun Oct 22 16:06:14 EDT 2023 Sat Aug 24 00:46:52 EDT 2024 Wed Oct 30 09:52:33 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Statistical models Peptides Bias Proteomics Peptide filtering Models Normalization Shotgun proteomics Bioinformatics |
Language | English |
License | CC BY 4.0 Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6338-70b6b9610ebdb83a1368dd1559b4b678b90cc5c43a08a8e0ee5bcac3a7ee52673 |
Notes | National Institutes of Health - No. 1R011GM084892; No. U54-016015; No. U54-AI081680; No. HHSN272200800060C ArticleID:PMIC201100078 ark:/67375/WNG-63D4SJMF-M U.S. Department of Energy - No. DE-AC05-76RL01830 istex:A832DA28AF8FCC9BC99A1BB3EAA8FEE98B061F43 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://europepmc.org/articles/pmc3517140?pdf=render |
PMID | 22038874 |
PQID | 1529923564 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3517140 proquest_miscellaneous_908739935 proquest_miscellaneous_1529923564 crossref_primary_10_1002_pmic_201100078 pubmed_primary_22038874 pascalfrancis_primary_25340754 wiley_primary_10_1002_pmic_201100078_PMIC201100078 istex_primary_ark_67375_WNG_63D4SJMF_M |
PublicationCentury | 2000 |
PublicationDate | December 2011 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: December 2011 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Proteomics (Weinheim) |
PublicationTitleAlternate | Proteomics |
PublicationYear | 2011 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH |
References | Matzke, M. M., Waters, K. M., Metz, T. O., Jacobs, J. M. et al., Improved quality control processing of peptide-centric LC-MS Proteomics data. Bioinformatics 2011, 27, 2866-2872. Hill, A. A., Brown, E. L., Whitley, M. Z., Tucker-Kellogg, G. et al., Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls. Genome Biol. 2001, 2, RESEARCH0055. Wang, P., Tang, H., Zhang, H., Whiteaker, J. et al., Normalization regarding non-random missing values in high-throughput mass spectrometry data. Pac. Symp. Biocomput. 2006, 315-326. Quackenbush, J., Microarray data normalization and transformation. Nat. Genet. 2002, 32, 496-501. Karpievitch, Y. V., Taverner, T., Adkins, J. N., Callister, S. J. et al., Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition. Bioinformatics 2009, 25, 2573-2580. Kultima, K., Nilsson, A., Scholz, B., Rossbach, U. L. et al., Development and evaluation of normalization methods for label-free relative quantification of endogenous peptides. Mol. Cell. Proteomics 2009, 8, 2285-2295. Smith, R. D., Anderson, G. A., Lipton, M. S., Pasa-Tolic, L. et al., An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2002, 2, 513-523. Rocke, D. M., Ideker, T., Troyanskaya, O., Quackenbush, E. J., Dopazo, J., Papers on normalization, variable selection, classification or clustering of microarray data. Bioinformatics 2009, 25, 701-702. Callister, S. J., Barry, R. C., Adkins, J. N., Johnson, E. T. et al., Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res. 2006, 5, 277-286. Webb-Robertson, B. J., McCue, L. A., Waters, K. M., Matzke, M. M. et al., Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data. J. Proteome Res. 2010, 9, 5748-5756. Oberg, A. L., Vitek, O., Statistical design of quantitative mass spectrometry-based proteomic experiments. J. Proteome Res. 2009, 8, 2144-2156. 2002; 2 2006; 5 2009; 25 2009; 8 2006 2001; 2 2011; 27 2002; 32 2010; 9 e_1_2_3_5_2 e_1_2_3_4_2 e_1_2_3_3_2 e_1_2_3_2_2 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_7_2 e_1_2_3_6_2 e_1_2_3_10_2 |
References_xml | – volume: 25 start-page: 2573 year: 2009 end-page: 2580 article-title: Normalization of peak intensities in bottom‐up MS‐based proteomics using singular value decomposition publication-title: Bioinformatics – start-page: 315 year: 2006 end-page: 326 article-title: Normalization regarding non‐random missing values in high‐throughput mass spectrometry data publication-title: Pac. Symp. Biocomput. – volume: 2 year: 2001 article-title: Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls publication-title: Genome Biol. – volume: 5 start-page: 277 year: 2006 end-page: 286 article-title: Normalization approaches for removing systematic biases associated with mass spectrometry and label‐free proteomics publication-title: J. Proteome Res. – volume: 8 start-page: 2144 year: 2009 end-page: 2156 article-title: Statistical design of quantitative mass spectrometry‐based proteomic experiments publication-title: J. Proteome Res. – volume: 27 start-page: 2866 year: 2011 end-page: 2872 article-title: Improved quality control processing of peptide‐centric LC‐MS Proteomics data publication-title: Bioinformatics – volume: 8 start-page: 2285 year: 2009 end-page: 2295 article-title: Development and evaluation of normalization methods for label‐free relative quantification of endogenous peptides publication-title: Mol. Cell. Proteomics – volume: 25 start-page: 701 year: 2009 end-page: 702 article-title: Papers on normalization, variable selection, classification or clustering of microarray data publication-title: Bioinformatics – volume: 9 start-page: 5748 year: 2010 end-page: 5756 article-title: Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS‐based proteomics data publication-title: J. Proteome Res. – volume: 32 start-page: 496 year: 2002 end-page: 501 article-title: Microarray data normalization and transformation publication-title: Nat. Genet. – volume: 2 start-page: 513 year: 2002 end-page: 523 article-title: An accurate mass tag strategy for quantitative and high‐throughput proteome measurements publication-title: Proteomics – ident: e_1_2_3_9_2 doi: 10.1021/pr8010099 – ident: e_1_2_3_2_2 doi: 10.1186/gb-2001-2-12-research0055 – ident: e_1_2_3_4_2 doi: 10.1021/pr050300l – ident: e_1_2_3_11_2 doi: 10.1002/1615-9861(200205)2:5<513::AID-PROT513>3.0.CO;2-W – ident: e_1_2_3_3_2 doi: 10.1038/ng1032 – ident: e_1_2_3_5_2 doi: 10.1093/bioinformatics/btp426 – ident: e_1_2_3_7_2 doi: 10.1142/9789812701626_0029 – ident: e_1_2_3_10_2 doi: 10.1021/pr1005247 – ident: e_1_2_3_8_2 doi: 10.1093/bioinformatics/btp038 – ident: e_1_2_3_12_2 doi: 10.1093/bioinformatics/btr479 – ident: e_1_2_3_6_2 doi: 10.1074/mcp.M800514-MCP200 |
SSID | ssj0017897 |
Score | 2.3674986 |
Snippet | Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run‐to‐run of... Quantification of LC-MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run-to-run of... Abstract Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4736 |
SubjectTerms | Analytical, structural and metabolic biochemistry Bias Bioinformatics Biological and medical sciences Biometry - methods Chromatography, Liquid - methods Data Interpretation, Statistical Fundamental and applied biological sciences. Psychology Mass Spectrometry - methods Miscellaneous Normalization Peptide filtering Peptides Proteins Proteins - analysis Proteomics - instrumentation Proteomics - methods Shotgun proteomics Statistical models |
Title | A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors |
URI | https://api.istex.fr/ark:/67375/WNG-63D4SJMF-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.201100078 https://www.ncbi.nlm.nih.gov/pubmed/22038874 https://search.proquest.com/docview/1529923564 https://search.proquest.com/docview/908739935 https://pubmed.ncbi.nlm.nih.gov/PMC3517140 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQWQCLAlMe4VEZCZVV2iS242Q5mjJUFVMhSkV3ll8Ro9JMNclILSs-gY_gy_gSrp1JZlJASLBLFDsP-9r32Ln3HIRe6jyLrIlYaC2MJlpoGWYxMSFNI6KLgnBjXHLy5Cg9OKGHp-x0LYu_4YfoNtzcyPDztRvgUlV7K9LQi_Op9hSc3s3BJBwT7mK69t93_FExzxp1FXDbYQ6OqWVtjJK9fvWeV7rpGvjSRUnKChqqaBQufgdBf42kXEe43kWN7yLZflwTmXK2u6jVrv5yjffxf77-Htpc4lc8bAzuPrphywHaGpawdj-_wjvYR5T6rfoBujVq1eQG6M4a8eEW-j7ELpPJk0TD3SovxgMWgquGLPcKA5bGpcPTn5eJoti7WrOY2wpPS_x29OPrt8kx9jwTLrO6wiuxggov5YewC4CtbA1lW7XfGjuZengLPCuuPcF1g7uw1CB6gE7Grz-MDsKlXkSoU1hphzxSqcoBD1plVEZkTNLMGPffVVEFTlnlkdZMUyKjTGY2spYpLTWRHI6SlJOHaKOclfYxwrk2khbScAC0NLcUUL0i4LpZxolhJA_Qq9ZexEVDCyIaAuhEuK4RXdcEaMebU1dMzs9cMB1n4uPRG5GSfXp8OBmLSYC2e_bWVUgYgVU3owF60RqggM5zP3ZkaWeLSgAGywGosxTK4D-UySN4dQCjLECPGptdPSBxlEAcKvOeNXcFHAV5_0o5_eSpyAmLHeNjgBJvrH9pC_EOppbu7Mm_VHqKbvtdfR9Q9Axt1POFfQ6wsFbbfuj_BKmbYn0 |
link.rule.ids | 230,315,783,787,888,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgexh74NIxCJdhJDSesqVxnMtj1VHKaCvENsGb5VtEtS2dmlZiPPET-BH8Mn4J5zhNug4QErwlip2Lfezz2Tnn-wh5obM0sCbgvrUwmqJcSz9tM-NHccB0nrPEGExOHo7i_kl0-JHX0YSYC1PxQzQbbjgy3HyNAxw3pPeXrKEX52PtODidn7tJ1mHMMxQxOHjfMEi1k7TSVwHH7WfgmmrexiDcX62_4pfWsYk_Y5ykLKGp8krj4ncg9NdYyqsY1zmp3h2i6s-rYlNO9-Yztae_XGN-_K_vv0tuLyAs7VQ2d4_csEWLbHUKWL6fX9Jd6oJK3W59i2x0a0G5Ftm8wn24Rb53KCYzOZ5ouFvp9HjASGhZ8eVeUoDTtEBIfbbIFaXO25r51JZ0XNBB98fXb8Mj6qgmMLm6pEu9gpIuFIgoxsCWdgZla8HfGUWlengLOsmvPQH7AS8sZIjuk5Peq-Nu319IRvg6hsW2nwQqVhlAQquMSplsszg1Bn-9qkiBX1ZZoDXXEZNBKlMbWMuVlprJBI5CsJ9tslZMCvuQ0EwbGeXSJIBpo8xGAOwVA-_N04QZzjKPvKwNRlxUzCCi4oAOBXaNaLrGI7vOnppicnqK8XQJFx9Gr0XMDqKjw2FPDD2ys2JwTYWQM1h488gjz2sLFNB5-G9HFnYyLwXAsAywOo-hDP1DmSyAVwc8yj3yoDLa5QNCZAVKoHKyYs5NAWQhX71SjD85NnLG20j66JHQWetf2kK8g9mlOXv0L5WekY3-8XAgBm9Gbx-TW26T38UXPSFrs-ncPgWUOFM7bh74CYETZpc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTeLywKXjEi7DSGg8ZUtjO5fHqqWMsVYTY2JvlmM7ohpLq6aVGE_8BH4Ev4xfwrHTpO0AIcFboti52Mc-n51zvg_ghUqTwOiA-8bgaGK5kn7SptpnUUBVntNYa5ucPBhG-yfs4JSfrmTxV_wQzYabHRluvrYDfKLzvSVp6OR8pBwFp3NzV2GTRTSwQV29dw2BVDtOKnkV9Nt-ip6ppm0Mwr31-mtuadO28GcbJilLbKm8krj4HQb9NZRyFeI6H9W_DbL-uio05Wx3Pst21ZdLxI__8_l34NYCwJJOZXF34YopWrDVKXDxfn5BdogLKXV79S243q3l5Fpwc4X5cAu-d4hNZXIs0Xi30qnxoImQsmLLvSAIpklhAfWnRaYocb5Wz6emJKOCHHZ_fP02OCaOaMKmVpdkqVZQkoX-ELERsKWZYdla7ndGrE49vgUZ55eeYLvBXliIEN2Dk_6r9919fyEY4asIl9p-HGRRliIgNJnOEirbNEq0tj9eM5ahV87SQCmuGJVBIhMTGMMzJRWVMR6FUUzvw0YxLsxDIKnSkuVSx4hoWWoYwvqMou_mSUw1p6kHL2t7EZOKF0RUDNChsF0jmq7xYMeZU1NMTs9sNF3MxYfhaxHRHjs-GPTFwIPtNXtrKoSc4rKbMw-e1wYosPPsnx1ZmPG8FAjCUkTqPMIy5A9l0gBfHdEo9-BBZbPLB4SWEyjGyvGaNTcFLAf5-pVi9NFxkVPetpSPHoTOWP_SFuII55bm7NG_VHoG1456fXH4Zvj2MdxwO_wuuOgJbMymc_MUIeIs23azwE8OA2VG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+statistical+selection+strategy+for+normalization+procedures+in+LC%E2%80%90MS+proteomics+experiments+through+dataset%E2%80%90dependent+ranking+of+normalization+scaling+factors&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=Webb%E2%80%90Robertson%2C+Bobbie%E2%80%90Jo+M.&rft.au=Matzke%2C+Melissa+M.&rft.au=Jacobs%2C+Jon+M.&rft.au=Pounds%2C+Joel+G.&rft.date=2011-12-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1615-9853&rft.eissn=1615-9861&rft.volume=11&rft.issue=24&rft.spage=4736&rft.epage=4741&rft_id=info:doi/10.1002%2Fpmic.201100078&rft.externalDBID=10.1002%252Fpmic.201100078&rft.externalDocID=PMIC201100078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon |