A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors

Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run‐to‐run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC‐MS proteomics dataset is...

Full description

Saved in:
Bibliographic Details
Published inProteomics (Weinheim) Vol. 11; no. 24; pp. 4736 - 4741
Main Authors Webb-Robertson, Bobbie-Jo M., Matzke, Melissa M., Jacobs, Jon M., Pounds, Joel G., Waters, Katrina M.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.12.2011
WILEY‐VCH Verlag
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run‐to‐run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC‐MS proteomics dataset is a fundamental step in pre‐processing. However, the downstream analysis of LC‐MS proteomics data can be dramatically affected by the normalization method selected. Current normalization procedures for LC‐MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori. If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, possibly affecting downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, which includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between‐group variance structure in order to identify the most appropriate normalization methods that improve the structure of the data without introducing bias into the normalized peak intensities.
AbstractList Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run‐to‐run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC‐MS proteomics dataset is a fundamental step in pre‐processing. However, the downstream analysis of LC‐MS proteomics data can be dramatically affected by the normalization method selected. Current normalization procedures for LC‐MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori. If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, possibly affecting downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, which includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between‐group variance structure in order to identify the most appropriate normalization methods that improve the structure of the data without introducing bias into the normalized peak intensities.
Abstract Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run‐to‐run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC‐MS proteomics dataset is a fundamental step in pre‐processing. However, the downstream analysis of LC‐MS proteomics data can be dramatically affected by the normalization method selected. Current normalization procedures for LC‐MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori. If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, possibly affecting downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, which includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between‐group variance structure in order to identify the most appropriate normalization methods that improve the structure of the data without introducing bias into the normalized peak intensities.
Quantification of LC-MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run-to-run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across a LC-MS proteomics dataset is a fundamental step in pre-processing. However, the downstream analysis of LC-MS proteomics data can be dramatically affected by the normalization method selected. Current normalization procedures for LC-MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori . If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, possibly affecting downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, which includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between-group variance structure in order to identify the most appropriate normalization methods that improve the structure of the data without introducing bias into the normalized peak intensities.
Author Matzke, Melissa M.
Waters, Katrina M.
Jacobs, Jon M.
Webb-Robertson, Bobbie-Jo M.
Pounds, Joel G.
Author_xml – sequence: 1
  givenname: Bobbie-Jo M.
  surname: Webb-Robertson
  fullname: Webb-Robertson, Bobbie-Jo M.
  email: bj@pnl.gov
  organization: Pacific Northwest National Laboratory, USA
– sequence: 2
  givenname: Melissa M.
  surname: Matzke
  fullname: Matzke, Melissa M.
  organization: Pacific Northwest National Laboratory, USA
– sequence: 3
  givenname: Jon M.
  surname: Jacobs
  fullname: Jacobs, Jon M.
  organization: Pacific Northwest National Laboratory, USA
– sequence: 4
  givenname: Joel G.
  surname: Pounds
  fullname: Pounds, Joel G.
  organization: Pacific Northwest National Laboratory, USA
– sequence: 5
  givenname: Katrina M.
  surname: Waters
  fullname: Waters, Katrina M.
  organization: Pacific Northwest National Laboratory, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25340754$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22038874$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gyhHlguglix3HsX1BqhZainYBqSCOluNMdk2zdrC9pcuv4afisMtSOMDJ45lnxu-M5zg7sM5Clj3GaIIRKp8PK6MnJcLpghi_lx3hGtNC8Bof7G1KDrPjED4jhBkX7EF2WJaIcM6qo-z7WR6iiiZEo1WfB-hBR-Ns8noVYbHJO-dz6_xK9eab-hkavNPQrj2E3Nh8Ni3mV6MvgktiQg63A3izAhtDHpferRfLvFVRBYhFCwPYNoVyr-y1sYvcdX9VD0nHGOiUjs6Hh9n9TvUBHu3Ok-zj-asP09fF7N3F5fRsVuiaEF4w1NSNqDGCpm04UZjUvG0xpaKpmprxRiCtqa6IQlxxQAC00UoTxZJV1oycZC-2dYd1s4JWJ41e9XJInSi_kU4Z-WfEmqVcuBtJKGa4QqnAs10B776sIUS5MkFD3ysLbh2kQJwRIQhN5Ok_SUxLIUpC6yqhky2qvQvBQ7cXhJEcF0COCyD3C5ASntxtY4__-vEEPN0Bapx0l_5Bm_Cbo6RCjI6c2HJfTQ-b_zwr388vp3dFFNvctFZwu89V_lqmSTMqP729kDV5WV29mZ_LOfkBH3HhHg
CitedBy_id crossref_primary_10_1164_rccm_202008_3303OC
crossref_primary_10_1186_s40168_023_01476_3
crossref_primary_10_1186_s40779_023_00477_5
crossref_primary_10_4236_abb_2018_98022
crossref_primary_10_1371_journal_pone_0069374
crossref_primary_10_1002_cbic_202000616
crossref_primary_10_1155_2013_613529
crossref_primary_10_3390_proteomes6020020
crossref_primary_10_1128_JVI_02520_12
crossref_primary_10_1021_acs_jproteome_3c00512
crossref_primary_10_1021_ac500855q
crossref_primary_10_1016_j_scitotenv_2023_165689
crossref_primary_10_1021_pr501138h
crossref_primary_10_1186_s12859_023_05360_7
crossref_primary_10_1074_mcp_M113_030932
crossref_primary_10_1128_mBio_00857_17
crossref_primary_10_1128_msystems_00913_22
crossref_primary_10_1074_mcp_M114_045260
crossref_primary_10_1021_acs_jproteome_8b00840
crossref_primary_10_1021_pr400866r
crossref_primary_10_1038_s41467_024_45838_3
crossref_primary_10_1021_acs_jproteome_8b00760
crossref_primary_10_1016_j_ebiom_2024_105187
crossref_primary_10_1038_s41597_024_03124_3
crossref_primary_10_1186_1752_0509_7_69
crossref_primary_10_1016_j_virol_2015_03_045
crossref_primary_10_1093_bib_bby127
crossref_primary_10_1038_s41467_023_41963_7
crossref_primary_10_1021_acs_jproteome_2c00610
crossref_primary_10_1371_journal_pbio_3000870
crossref_primary_10_1517_17530059_2012_718329
crossref_primary_10_1021_pr401264n
crossref_primary_10_1074_mcp_M112_026534
crossref_primary_10_1371_journal_pcbi_1007241
crossref_primary_10_1021_acs_jproteome_3c00604
crossref_primary_10_1038_s41467_019_13858_z
crossref_primary_10_1038_sdata_2014_33
crossref_primary_10_1074_mcp_RA118_001169
crossref_primary_10_1021_acsomega_0c02564
crossref_primary_10_1016_j_heliyon_2023_e13795
crossref_primary_10_2174_1381612825666190618123306
crossref_primary_10_1002_pmic_201200269
crossref_primary_10_1111_mec_13872
crossref_primary_10_1002_jms_3629
crossref_primary_10_1002_pmic_202000068
crossref_primary_10_1038_s41596_021_00566_6
crossref_primary_10_1073_pnas_1706928115
crossref_primary_10_1074_mcp_M113_030593
crossref_primary_10_1186_s13063_020_04769_2
crossref_primary_10_1038_s41597_023_02057_7
crossref_primary_10_1016_j_cmet_2019_12_005
crossref_primary_10_1073_pnas_1815356116
crossref_primary_10_1093_bib_bbw095
crossref_primary_10_1128_mSystems_00043_16
crossref_primary_10_1074_jbc_M115_655001
crossref_primary_10_1016_j_talanta_2023_124953
crossref_primary_10_1021_acs_jnatprod_5b00288
crossref_primary_10_1016_j_bbapap_2013_03_026
crossref_primary_10_1108_IJQRM_06_2017_0117
crossref_primary_10_1186_1755_8794_7_58
crossref_primary_10_1002_rcm_9068
crossref_primary_10_1016_j_jbc_2021_100340
crossref_primary_10_3389_fbioe_2020_603488
crossref_primary_10_1016_j_taap_2015_01_019
crossref_primary_10_3389_fcimb_2022_926352
crossref_primary_10_1007_s11306_014_0642_1
crossref_primary_10_1038_s41467_020_17433_9
crossref_primary_10_1371_journal_pone_0092332
Cites_doi 10.1021/pr8010099
10.1186/gb-2001-2-12-research0055
10.1021/pr050300l
10.1002/1615-9861(200205)2:5<513::AID-PROT513>3.0.CO;2-W
10.1038/ng1032
10.1093/bioinformatics/btp426
10.1142/9789812701626_0029
10.1021/pr1005247
10.1093/bioinformatics/btp038
10.1093/bioinformatics/btr479
10.1074/mcp.M800514-MCP200
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
5PM
DOI 10.1002/pmic.201100078
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Engineering Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1615-9861
EndPage 4741
ExternalDocumentID 10_1002_pmic_201100078
22038874
25340754
PMIC201100078
ark_67375_WNG_63D4SJMF_M
Genre miscellaneous
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: 1R011GM084892; U54‐016015; U54‐AI081680; HHSN272200800060C
– fundername: U.S. Department of Energy
  funderid: DE‐AC05‐76RL01830
– fundername: NIGMS NIH HHS
  grantid: 1R011GM084892
– fundername: NIAID NIH HHS
  grantid: HHSN272200800060C
– fundername: NIEHS NIH HHS
  grantid: U54 ES016015
– fundername: NIAID NIH HHS
  grantid: U54-AI081680
– fundername: NIAID NIH HHS
  grantid: U54 AI081680
– fundername: NIGMS NIH HHS
  grantid: R01 GM084892
– fundername: National Institute of Environmental Health Sciences : NIEHS
  grantid: U54 ES016015 || ES
– fundername: NIAID Research Support : NIAID
  grantid: HHSN272200800060C || AO
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-1
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZGI
ZZTAW
~IA
~KM
~WT
AAPBV
ABHUG
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c6338-70b6b9610ebdb83a1368dd1559b4b678b90cc5c43a08a8e0ee5bcac3a7ee52673
IEDL.DBID DR2
ISSN 1615-9853
IngestDate Tue Sep 17 21:03:02 EDT 2024
Fri Aug 16 10:06:06 EDT 2024
Fri Aug 16 10:32:44 EDT 2024
Fri Aug 23 00:31:43 EDT 2024
Sat Sep 28 08:13:47 EDT 2024
Sun Oct 22 16:06:14 EDT 2023
Sat Aug 24 00:46:52 EDT 2024
Wed Oct 30 09:52:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Statistical models
Peptides
Bias
Proteomics
Peptide filtering
Models
Normalization
Shotgun proteomics
Bioinformatics
Language English
License CC BY 4.0
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6338-70b6b9610ebdb83a1368dd1559b4b678b90cc5c43a08a8e0ee5bcac3a7ee52673
Notes National Institutes of Health - No. 1R011GM084892; No. U54-016015; No. U54-AI081680; No. HHSN272200800060C
ArticleID:PMIC201100078
ark:/67375/WNG-63D4SJMF-M
U.S. Department of Energy - No. DE-AC05-76RL01830
istex:A832DA28AF8FCC9BC99A1BB3EAA8FEE98B061F43
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://europepmc.org/articles/pmc3517140?pdf=render
PMID 22038874
PQID 1529923564
PQPubID 23462
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3517140
proquest_miscellaneous_908739935
proquest_miscellaneous_1529923564
crossref_primary_10_1002_pmic_201100078
pubmed_primary_22038874
pascalfrancis_primary_25340754
wiley_primary_10_1002_pmic_201100078_PMIC201100078
istex_primary_ark_67375_WNG_63D4SJMF_M
PublicationCentury 2000
PublicationDate December 2011
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: December 2011
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Proteomics (Weinheim)
PublicationTitleAlternate Proteomics
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
References Matzke, M. M., Waters, K. M., Metz, T. O., Jacobs, J. M. et al., Improved quality control processing of peptide-centric LC-MS Proteomics data. Bioinformatics 2011, 27, 2866-2872.
Hill, A. A., Brown, E. L., Whitley, M. Z., Tucker-Kellogg, G. et al., Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls. Genome Biol. 2001, 2, RESEARCH0055.
Wang, P., Tang, H., Zhang, H., Whiteaker, J. et al., Normalization regarding non-random missing values in high-throughput mass spectrometry data. Pac. Symp. Biocomput. 2006, 315-326.
Quackenbush, J., Microarray data normalization and transformation. Nat. Genet. 2002, 32, 496-501.
Karpievitch, Y. V., Taverner, T., Adkins, J. N., Callister, S. J. et al., Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition. Bioinformatics 2009, 25, 2573-2580.
Kultima, K., Nilsson, A., Scholz, B., Rossbach, U. L. et al., Development and evaluation of normalization methods for label-free relative quantification of endogenous peptides. Mol. Cell. Proteomics 2009, 8, 2285-2295.
Smith, R. D., Anderson, G. A., Lipton, M. S., Pasa-Tolic, L. et al., An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2002, 2, 513-523.
Rocke, D. M., Ideker, T., Troyanskaya, O., Quackenbush, E. J., Dopazo, J., Papers on normalization, variable selection, classification or clustering of microarray data. Bioinformatics 2009, 25, 701-702.
Callister, S. J., Barry, R. C., Adkins, J. N., Johnson, E. T. et al., Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res. 2006, 5, 277-286.
Webb-Robertson, B. J., McCue, L. A., Waters, K. M., Matzke, M. M. et al., Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data. J. Proteome Res. 2010, 9, 5748-5756.
Oberg, A. L., Vitek, O., Statistical design of quantitative mass spectrometry-based proteomic experiments. J. Proteome Res. 2009, 8, 2144-2156.
2002; 2
2006; 5
2009; 25
2009; 8
2006
2001; 2
2011; 27
2002; 32
2010; 9
e_1_2_3_5_2
e_1_2_3_4_2
e_1_2_3_3_2
e_1_2_3_2_2
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_7_2
e_1_2_3_6_2
e_1_2_3_10_2
References_xml – volume: 25
  start-page: 2573
  year: 2009
  end-page: 2580
  article-title: Normalization of peak intensities in bottom‐up MS‐based proteomics using singular value decomposition
  publication-title: Bioinformatics
– start-page: 315
  year: 2006
  end-page: 326
  article-title: Normalization regarding non‐random missing values in high‐throughput mass spectrometry data
  publication-title: Pac. Symp. Biocomput.
– volume: 2
  year: 2001
  article-title: Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls
  publication-title: Genome Biol.
– volume: 5
  start-page: 277
  year: 2006
  end-page: 286
  article-title: Normalization approaches for removing systematic biases associated with mass spectrometry and label‐free proteomics
  publication-title: J. Proteome Res.
– volume: 8
  start-page: 2144
  year: 2009
  end-page: 2156
  article-title: Statistical design of quantitative mass spectrometry‐based proteomic experiments
  publication-title: J. Proteome Res.
– volume: 27
  start-page: 2866
  year: 2011
  end-page: 2872
  article-title: Improved quality control processing of peptide‐centric LC‐MS Proteomics data
  publication-title: Bioinformatics
– volume: 8
  start-page: 2285
  year: 2009
  end-page: 2295
  article-title: Development and evaluation of normalization methods for label‐free relative quantification of endogenous peptides
  publication-title: Mol. Cell. Proteomics
– volume: 25
  start-page: 701
  year: 2009
  end-page: 702
  article-title: Papers on normalization, variable selection, classification or clustering of microarray data
  publication-title: Bioinformatics
– volume: 9
  start-page: 5748
  year: 2010
  end-page: 5756
  article-title: Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS‐based proteomics data
  publication-title: J. Proteome Res.
– volume: 32
  start-page: 496
  year: 2002
  end-page: 501
  article-title: Microarray data normalization and transformation
  publication-title: Nat. Genet.
– volume: 2
  start-page: 513
  year: 2002
  end-page: 523
  article-title: An accurate mass tag strategy for quantitative and high‐throughput proteome measurements
  publication-title: Proteomics
– ident: e_1_2_3_9_2
  doi: 10.1021/pr8010099
– ident: e_1_2_3_2_2
  doi: 10.1186/gb-2001-2-12-research0055
– ident: e_1_2_3_4_2
  doi: 10.1021/pr050300l
– ident: e_1_2_3_11_2
  doi: 10.1002/1615-9861(200205)2:5<513::AID-PROT513>3.0.CO;2-W
– ident: e_1_2_3_3_2
  doi: 10.1038/ng1032
– ident: e_1_2_3_5_2
  doi: 10.1093/bioinformatics/btp426
– ident: e_1_2_3_7_2
  doi: 10.1142/9789812701626_0029
– ident: e_1_2_3_10_2
  doi: 10.1021/pr1005247
– ident: e_1_2_3_8_2
  doi: 10.1093/bioinformatics/btp038
– ident: e_1_2_3_12_2
  doi: 10.1093/bioinformatics/btr479
– ident: e_1_2_3_6_2
  doi: 10.1074/mcp.M800514-MCP200
SSID ssj0017897
Score 2.3674986
Snippet Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run‐to‐run of...
Quantification of LC-MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run-to-run of...
Abstract Quantification of LC‐MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4736
SubjectTerms Analytical, structural and metabolic biochemistry
Bias
Bioinformatics
Biological and medical sciences
Biometry - methods
Chromatography, Liquid - methods
Data Interpretation, Statistical
Fundamental and applied biological sciences. Psychology
Mass Spectrometry - methods
Miscellaneous
Normalization
Peptide filtering
Peptides
Proteins
Proteins - analysis
Proteomics - instrumentation
Proteomics - methods
Shotgun proteomics
Statistical models
Title A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors
URI https://api.istex.fr/ark:/67375/WNG-63D4SJMF-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.201100078
https://www.ncbi.nlm.nih.gov/pubmed/22038874
https://search.proquest.com/docview/1529923564
https://search.proquest.com/docview/908739935
https://pubmed.ncbi.nlm.nih.gov/PMC3517140
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQWQCLAlMe4VEZCZVV2iS242Q5mjJUFVMhSkV3ll8Ro9JMNclILSs-gY_gy_gSrp1JZlJASLBLFDsP-9r32Ln3HIRe6jyLrIlYaC2MJlpoGWYxMSFNI6KLgnBjXHLy5Cg9OKGHp-x0LYu_4YfoNtzcyPDztRvgUlV7K9LQi_Op9hSc3s3BJBwT7mK69t93_FExzxp1FXDbYQ6OqWVtjJK9fvWeV7rpGvjSRUnKChqqaBQufgdBf42kXEe43kWN7yLZflwTmXK2u6jVrv5yjffxf77-Htpc4lc8bAzuPrphywHaGpawdj-_wjvYR5T6rfoBujVq1eQG6M4a8eEW-j7ELpPJk0TD3SovxgMWgquGLPcKA5bGpcPTn5eJoti7WrOY2wpPS_x29OPrt8kx9jwTLrO6wiuxggov5YewC4CtbA1lW7XfGjuZengLPCuuPcF1g7uw1CB6gE7Grz-MDsKlXkSoU1hphzxSqcoBD1plVEZkTNLMGPffVVEFTlnlkdZMUyKjTGY2spYpLTWRHI6SlJOHaKOclfYxwrk2khbScAC0NLcUUL0i4LpZxolhJA_Qq9ZexEVDCyIaAuhEuK4RXdcEaMebU1dMzs9cMB1n4uPRG5GSfXp8OBmLSYC2e_bWVUgYgVU3owF60RqggM5zP3ZkaWeLSgAGywGosxTK4D-UySN4dQCjLECPGptdPSBxlEAcKvOeNXcFHAV5_0o5_eSpyAmLHeNjgBJvrH9pC_EOppbu7Mm_VHqKbvtdfR9Q9Axt1POFfQ6wsFbbfuj_BKmbYn0
link.rule.ids 230,315,783,787,888,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgexh74NIxCJdhJDSesqVxnMtj1VHKaCvENsGb5VtEtS2dmlZiPPET-BH8Mn4J5zhNug4QErwlip2Lfezz2Tnn-wh5obM0sCbgvrUwmqJcSz9tM-NHccB0nrPEGExOHo7i_kl0-JHX0YSYC1PxQzQbbjgy3HyNAxw3pPeXrKEX52PtODidn7tJ1mHMMxQxOHjfMEi1k7TSVwHH7WfgmmrexiDcX62_4pfWsYk_Y5ykLKGp8krj4ncg9NdYyqsY1zmp3h2i6s-rYlNO9-Yztae_XGN-_K_vv0tuLyAs7VQ2d4_csEWLbHUKWL6fX9Jd6oJK3W59i2x0a0G5Ftm8wn24Rb53KCYzOZ5ouFvp9HjASGhZ8eVeUoDTtEBIfbbIFaXO25r51JZ0XNBB98fXb8Mj6qgmMLm6pEu9gpIuFIgoxsCWdgZla8HfGUWlengLOsmvPQH7AS8sZIjuk5Peq-Nu319IRvg6hsW2nwQqVhlAQquMSplsszg1Bn-9qkiBX1ZZoDXXEZNBKlMbWMuVlprJBI5CsJ9tslZMCvuQ0EwbGeXSJIBpo8xGAOwVA-_N04QZzjKPvKwNRlxUzCCi4oAOBXaNaLrGI7vOnppicnqK8XQJFx9Gr0XMDqKjw2FPDD2ys2JwTYWQM1h488gjz2sLFNB5-G9HFnYyLwXAsAywOo-hDP1DmSyAVwc8yj3yoDLa5QNCZAVKoHKyYs5NAWQhX71SjD85NnLG20j66JHQWetf2kK8g9mlOXv0L5WekY3-8XAgBm9Gbx-TW26T38UXPSFrs-ncPgWUOFM7bh74CYETZpc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTeLywKXjEi7DSGg8ZUtjO5fHqqWMsVYTY2JvlmM7ohpLq6aVGE_8BH4Ev4xfwrHTpO0AIcFboti52Mc-n51zvg_ghUqTwOiA-8bgaGK5kn7SptpnUUBVntNYa5ucPBhG-yfs4JSfrmTxV_wQzYabHRluvrYDfKLzvSVp6OR8pBwFp3NzV2GTRTSwQV29dw2BVDtOKnkV9Nt-ip6ppm0Mwr31-mtuadO28GcbJilLbKm8krj4HQb9NZRyFeI6H9W_DbL-uio05Wx3Pst21ZdLxI__8_l34NYCwJJOZXF34YopWrDVKXDxfn5BdogLKXV79S243q3l5Fpwc4X5cAu-d4hNZXIs0Xi30qnxoImQsmLLvSAIpklhAfWnRaYocb5Wz6emJKOCHHZ_fP02OCaOaMKmVpdkqVZQkoX-ELERsKWZYdla7ndGrE49vgUZ55eeYLvBXliIEN2Dk_6r9919fyEY4asIl9p-HGRRliIgNJnOEirbNEq0tj9eM5ahV87SQCmuGJVBIhMTGMMzJRWVMR6FUUzvw0YxLsxDIKnSkuVSx4hoWWoYwvqMou_mSUw1p6kHL2t7EZOKF0RUDNChsF0jmq7xYMeZU1NMTs9sNF3MxYfhaxHRHjs-GPTFwIPtNXtrKoSc4rKbMw-e1wYosPPsnx1ZmPG8FAjCUkTqPMIy5A9l0gBfHdEo9-BBZbPLB4SWEyjGyvGaNTcFLAf5-pVi9NFxkVPetpSPHoTOWP_SFuII55bm7NG_VHoG1456fXH4Zvj2MdxwO_wuuOgJbMymc_MUIeIs23azwE8OA2VG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+statistical+selection+strategy+for+normalization+procedures+in+LC%E2%80%90MS+proteomics+experiments+through+dataset%E2%80%90dependent+ranking+of+normalization+scaling+factors&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=Webb%E2%80%90Robertson%2C+Bobbie%E2%80%90Jo+M.&rft.au=Matzke%2C+Melissa+M.&rft.au=Jacobs%2C+Jon+M.&rft.au=Pounds%2C+Joel+G.&rft.date=2011-12-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1615-9853&rft.eissn=1615-9861&rft.volume=11&rft.issue=24&rft.spage=4736&rft.epage=4741&rft_id=info:doi/10.1002%2Fpmic.201100078&rft.externalDBID=10.1002%252Fpmic.201100078&rft.externalDocID=PMIC201100078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon