Forward and reverse translational approaches to predict efficacy of neutralizing respiratory syncytial virus (RSV) antibody prophylaxis

Neutralizing mAbs can prevent communicable viral diseases. MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing monoclonal antibody (mAb) under development to prevent RSV infection in infants. Development and validation of methods to predict efficacious doses of neutralizing an...

Full description

Saved in:
Bibliographic Details
Published inEBioMedicine Vol. 73; p. 103651
Main Authors Maas, Brian M., Lommerse, Jos, Plock, Nele, Railkar, Radha A., Cheung, S.Y. Amy, Caro, Luzelena, Chen, Jingxian, Liu, Wen, Zhang, Ying, Huang, Qinlei, Gao, Wei, Qin, Li, Meng, Jie, Witjes, Han, Schindler, Emilie, Guiastrennec, Benjamin, Bellanti, Francesco, Spellman, Daniel S., Roadcap, Brad, Kalinova, Mariya, Fok-Seang, Juin, Catchpole, Andrew P., Espeseth, Amy S., Stoch, S. Aubrey, Lai, Eseng, Vora, Kalpit A., Aliprantis, Antonios O., Sachs, Jeffrey R.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neutralizing mAbs can prevent communicable viral diseases. MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing monoclonal antibody (mAb) under development to prevent RSV infection in infants. Development and validation of methods to predict efficacious doses of neutralizing antibodies across patient populations exposed to a time-varying force of infection (i.e., seasonal variation) are necessary. Five decades of clinical trial literature were leveraged to build a model-based meta-analysis (MBMA) describing the relationship between RSV serum neutralizing activity (SNA) and clinical endpoints. The MBMA was validated by backward translation to animal challenge experiments and forward translation to predict results of a recent RSV mAb trial. MBMA predictions were evaluated against a human trial of 70 participants who received either placebo or one of four dose-levels of MK-1654 and were challenged with RSV [NCT04086472]. The MBMA was used to perform clinical trial simulations and predict efficacy of MK-1654 in the infant target population. The MBMA established a quantitative relationship between RSV SNA and clinical endpoints. This relationship was quantitatively consistent with animal model challenge experiments and results of a recently published clinical trial. Additionally, SNA elicited by increasing doses of MK-1654 in humans reduced RSV symptomatic infection rates with a quantitative relationship that approximated the MBMA. The MBMA indicated a high probability that a single dose of ≥ 75 mg of MK-1654 will result in prophylactic efficacy (> 75% for 5 months) in infants. An MBMA approach can predict efficacy of neutralizing antibodies against RSV and potentially other respiratory pathogens.
AbstractList Background: Neutralizing mAbs can prevent communicable viral diseases. MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing monoclonal antibody (mAb) under development to prevent RSV infection in infants. Development and validation of methods to predict efficacious doses of neutralizing antibodies across patient populations exposed to a time-varying force of infection (i.e., seasonal variation) are necessary. Methods: Five decades of clinical trial literature were leveraged to build a model-based meta-analysis (MBMA) describing the relationship between RSV serum neutralizing activity (SNA) and clinical endpoints. The MBMA was validated by backward translation to animal challenge experiments and forward translation to predict results of a recent RSV mAb trial. MBMA predictions were evaluated against a human trial of 70 participants who received either placebo or one of four dose-levels of MK-1654 and were challenged with RSV [NCT04086472]. The MBMA was used to perform clinical trial simulations and predict efficacy of MK-1654 in the infant target population. Findings: The MBMA established a quantitative relationship between RSV SNA and clinical endpoints. This relationship was quantitatively consistent with animal model challenge experiments and results of a recently published clinical trial. Additionally, SNA elicited by increasing doses of MK-1654 in humans reduced RSV symptomatic infection rates with a quantitative relationship that approximated the MBMA. The MBMA indicated a high probability that a single dose of ≥ 75 mg of MK-1654 will result in prophylactic efficacy (> 75% for 5 months) in infants. Interpretation: An MBMA approach can predict efficacy of neutralizing antibodies against RSV and potentially other respiratory pathogens.
Neutralizing mAbs can prevent communicable viral diseases. MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing monoclonal antibody (mAb) under development to prevent RSV infection in infants. Development and validation of methods to predict efficacious doses of neutralizing antibodies across patient populations exposed to a time-varying force of infection (i.e., seasonal variation) are necessary. Five decades of clinical trial literature were leveraged to build a model-based meta-analysis (MBMA) describing the relationship between RSV serum neutralizing activity (SNA) and clinical endpoints. The MBMA was validated by backward translation to animal challenge experiments and forward translation to predict results of a recent RSV mAb trial. MBMA predictions were evaluated against a human trial of 70 participants who received either placebo or one of four dose-levels of MK-1654 and were challenged with RSV [NCT04086472]. The MBMA was used to perform clinical trial simulations and predict efficacy of MK-1654 in the infant target population. The MBMA established a quantitative relationship between RSV SNA and clinical endpoints. This relationship was quantitatively consistent with animal model challenge experiments and results of a recently published clinical trial. Additionally, SNA elicited by increasing doses of MK-1654 in humans reduced RSV symptomatic infection rates with a quantitative relationship that approximated the MBMA. The MBMA indicated a high probability that a single dose of ≥ 75 mg of MK-1654 will result in prophylactic efficacy (> 75% for 5 months) in infants. An MBMA approach can predict efficacy of neutralizing antibodies against RSV and potentially other respiratory pathogens.
Neutralizing mAbs can prevent communicable viral diseases. MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing monoclonal antibody (mAb) under development to prevent RSV infection in infants. Development and validation of methods to predict efficacious doses of neutralizing antibodies across patient populations exposed to a time-varying force of infection (i.e., seasonal variation) are necessary.BACKGROUNDNeutralizing mAbs can prevent communicable viral diseases. MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing monoclonal antibody (mAb) under development to prevent RSV infection in infants. Development and validation of methods to predict efficacious doses of neutralizing antibodies across patient populations exposed to a time-varying force of infection (i.e., seasonal variation) are necessary.Five decades of clinical trial literature were leveraged to build a model-based meta-analysis (MBMA) describing the relationship between RSV serum neutralizing activity (SNA) and clinical endpoints. The MBMA was validated by backward translation to animal challenge experiments and forward translation to predict results of a recent RSV mAb trial. MBMA predictions were evaluated against a human trial of 70 participants who received either placebo or one of four dose-levels of MK-1654 and were challenged with RSV [NCT04086472]. The MBMA was used to perform clinical trial simulations and predict efficacy of MK-1654 in the infant target population.METHODSFive decades of clinical trial literature were leveraged to build a model-based meta-analysis (MBMA) describing the relationship between RSV serum neutralizing activity (SNA) and clinical endpoints. The MBMA was validated by backward translation to animal challenge experiments and forward translation to predict results of a recent RSV mAb trial. MBMA predictions were evaluated against a human trial of 70 participants who received either placebo or one of four dose-levels of MK-1654 and were challenged with RSV [NCT04086472]. The MBMA was used to perform clinical trial simulations and predict efficacy of MK-1654 in the infant target population.The MBMA established a quantitative relationship between RSV SNA and clinical endpoints. This relationship was quantitatively consistent with animal model challenge experiments and results of a recently published clinical trial. Additionally, SNA elicited by increasing doses of MK-1654 in humans reduced RSV symptomatic infection rates with a quantitative relationship that approximated the MBMA. The MBMA indicated a high probability that a single dose of ≥ 75 mg of MK-1654 will result in prophylactic efficacy (> 75% for 5 months) in infants.FINDINGSThe MBMA established a quantitative relationship between RSV SNA and clinical endpoints. This relationship was quantitatively consistent with animal model challenge experiments and results of a recently published clinical trial. Additionally, SNA elicited by increasing doses of MK-1654 in humans reduced RSV symptomatic infection rates with a quantitative relationship that approximated the MBMA. The MBMA indicated a high probability that a single dose of ≥ 75 mg of MK-1654 will result in prophylactic efficacy (> 75% for 5 months) in infants.An MBMA approach can predict efficacy of neutralizing antibodies against RSV and potentially other respiratory pathogens.INTERPRETATIONAn MBMA approach can predict efficacy of neutralizing antibodies against RSV and potentially other respiratory pathogens.
AbstractBackgroundNeutralizing mAbs can prevent communicable viral diseases. MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing monoclonal antibody (mAb) under development to prevent RSV infection in infants. Development and validation of methods to predict efficacious doses of neutralizing antibodies across patient populations exposed to a time-varying force of infection (i.e., seasonal variation) are necessary. MethodsFive decades of clinical trial literature were leveraged to build a model-based meta-analysis (MBMA) describing the relationship between RSV serum neutralizing activity (SNA) and clinical endpoints. The MBMA was validated by backward translation to animal challenge experiments and forward translation to predict results of a recent RSV mAb trial. MBMA predictions were evaluated against a human trial of 70 participants who received either placebo or one of four dose-levels of MK-1654 and were challenged with RSV [NCT04086472]. The MBMA was used to perform clinical trial simulations and predict efficacy of MK-1654 in the infant target population. FindingsThe MBMA established a quantitative relationship between RSV SNA and clinical endpoints. This relationship was quantitatively consistent with animal model challenge experiments and results of a recently published clinical trial. Additionally, SNA elicited by increasing doses of MK-1654 in humans reduced RSV symptomatic infection rates with a quantitative relationship that approximated the MBMA. The MBMA indicated a high probability that a single dose of ≥ 75 mg of MK-1654 will result in prophylactic efficacy (> 75% for 5 months) in infants. InterpretationAn MBMA approach can predict efficacy of neutralizing antibodies against RSV and potentially other respiratory pathogens.
ArticleNumber 103651
Author Spellman, Daniel S.
Caro, Luzelena
Roadcap, Brad
Maas, Brian M.
Bellanti, Francesco
Vora, Kalpit A.
Witjes, Han
Cheung, S.Y. Amy
Fok-Seang, Juin
Plock, Nele
Espeseth, Amy S.
Railkar, Radha A.
Aliprantis, Antonios O.
Lommerse, Jos
Huang, Qinlei
Guiastrennec, Benjamin
Sachs, Jeffrey R.
Gao, Wei
Kalinova, Mariya
Schindler, Emilie
Lai, Eseng
Qin, Li
Catchpole, Andrew P.
Chen, Jingxian
Zhang, Ying
Meng, Jie
Stoch, S. Aubrey
Liu, Wen
Author_xml – sequence: 1
  givenname: Brian M.
  surname: Maas
  fullname: Maas, Brian M.
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 2
  givenname: Jos
  surname: Lommerse
  fullname: Lommerse, Jos
  organization: Certara, 100 Overlook Center STE 101, Princeton, NJ 08540, USA
– sequence: 3
  givenname: Nele
  surname: Plock
  fullname: Plock, Nele
  organization: Certara, 100 Overlook Center STE 101, Princeton, NJ 08540, USA
– sequence: 4
  givenname: Radha A.
  surname: Railkar
  fullname: Railkar, Radha A.
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 5
  givenname: S.Y. Amy
  surname: Cheung
  fullname: Cheung, S.Y. Amy
  organization: Certara, 100 Overlook Center STE 101, Princeton, NJ 08540, USA
– sequence: 6
  givenname: Luzelena
  surname: Caro
  fullname: Caro, Luzelena
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 7
  givenname: Jingxian
  surname: Chen
  fullname: Chen, Jingxian
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 8
  givenname: Wen
  surname: Liu
  fullname: Liu, Wen
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 9
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 10
  givenname: Qinlei
  surname: Huang
  fullname: Huang, Qinlei
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 11
  givenname: Wei
  surname: Gao
  fullname: Gao, Wei
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 12
  givenname: Li
  surname: Qin
  fullname: Qin, Li
  organization: Certara, 100 Overlook Center STE 101, Princeton, NJ 08540, USA
– sequence: 13
  givenname: Jie
  surname: Meng
  fullname: Meng, Jie
  organization: Certara, 100 Overlook Center STE 101, Princeton, NJ 08540, USA
– sequence: 14
  givenname: Han
  surname: Witjes
  fullname: Witjes, Han
  organization: Certara, 100 Overlook Center STE 101, Princeton, NJ 08540, USA
– sequence: 15
  givenname: Emilie
  surname: Schindler
  fullname: Schindler, Emilie
  organization: Certara, 100 Overlook Center STE 101, Princeton, NJ 08540, USA
– sequence: 16
  givenname: Benjamin
  surname: Guiastrennec
  fullname: Guiastrennec, Benjamin
  organization: Certara, 100 Overlook Center STE 101, Princeton, NJ 08540, USA
– sequence: 17
  givenname: Francesco
  surname: Bellanti
  fullname: Bellanti, Francesco
  organization: Certara, 100 Overlook Center STE 101, Princeton, NJ 08540, USA
– sequence: 18
  givenname: Daniel S.
  surname: Spellman
  fullname: Spellman, Daniel S.
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 19
  givenname: Brad
  surname: Roadcap
  fullname: Roadcap, Brad
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 20
  givenname: Mariya
  surname: Kalinova
  fullname: Kalinova, Mariya
  organization: hVivo Services Ltd, 42 New Road, London E1 1JT, UK
– sequence: 21
  givenname: Juin
  surname: Fok-Seang
  fullname: Fok-Seang, Juin
  organization: hVivo Services Ltd, 42 New Road, London E1 1JT, UK
– sequence: 22
  givenname: Andrew P.
  surname: Catchpole
  fullname: Catchpole, Andrew P.
  organization: hVivo Services Ltd, 42 New Road, London E1 1JT, UK
– sequence: 23
  givenname: Amy S.
  surname: Espeseth
  fullname: Espeseth, Amy S.
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 24
  givenname: S. Aubrey
  surname: Stoch
  fullname: Stoch, S. Aubrey
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 25
  givenname: Eseng
  surname: Lai
  fullname: Lai, Eseng
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 26
  givenname: Kalpit A.
  surname: Vora
  fullname: Vora, Kalpit A.
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 27
  givenname: Antonios O.
  surname: Aliprantis
  fullname: Aliprantis, Antonios O.
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
– sequence: 28
  givenname: Jeffrey R.
  surname: Sachs
  fullname: Sachs, Jeffrey R.
  email: jeff_sachs@merck.com
  organization: Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34775220$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhgep2Fr7CwSZy3qxaz7nA7EgxWqhIFgV70ImObObdTYZk8zq-Af822Z2a2kLslcJZ877nCHneZodWGchy55jNMcIF69Wc2iMW88JIjhVaMHxo-yIUE5mtC7YwZ37YXYSwgohhDlLxepJdkhZWXJC0FH258L5n9LrXFqde9iAD5BHL23oZDTOyi6Xfe-dVEsIeXR570EbFXNoW6OkGnPX5haGFOnMb2MXCRJ642V0fszDaNUYTYJsjB9Cfvrp-uvLNCqaxukxsVy_HDv5y4Rn2eNWdgFObs7j7MvFu8_nH2ZXH99fnr-9mqmCkjjTXDJJaIspUxgzpCnmNZSoIhWvaF02IAtcIY5bjXALSDVMVRyzVlc1o5rR4-xyx9VOrkTvzVr6UThpxLbg_EJIH43qQJAaY9RWJQOtWaFBIgSU4oYRqSpWTayzHasfmjVoBXZ6hXvQ-1-sWYqF24iqQBQRkgCnNwDvfgwQoliboKDrpAU3BEF4XZZ1zTBPrS_uzrod8m-TqYHuGpR3IXhob1swEpMyYiW2yohJGbFTJqXqByll4nbx6YdNtyf7ZpeFtK-NAS-CMmBV8sODiulBzZ782YO86oxNUnXfYYSwcoNP-gWBRSACietJ6MlnghFijH9LgNf_B-wd_xd1ygib
CitedBy_id crossref_primary_10_1016_j_virs_2025_01_003
crossref_primary_10_1038_s41541_023_00734_7
crossref_primary_10_4155_bio_2022_0097
crossref_primary_10_2174_0115733963267129230919091338
crossref_primary_10_1016_j_biopha_2023_115851
crossref_primary_10_1542_peds_2024_067174
crossref_primary_10_1002_jcph_2284
crossref_primary_10_1016_j_jinf_2024_106325
crossref_primary_10_1016_j_vaccine_2023_05_062
crossref_primary_10_1016_j_antiviral_2023_105791
crossref_primary_10_3389_fimmu_2023_1186184
crossref_primary_10_4155_bio_2023_0081
crossref_primary_10_1080_14656566_2023_2197590
crossref_primary_10_1097_QCO_0000000000000846
crossref_primary_10_1016_j_chom_2021_11_006
crossref_primary_10_1111_cts_13290
crossref_primary_10_1038_s41541_024_00937_6
crossref_primary_10_1016_j_chom_2022_12_010
crossref_primary_10_1016_S1473_3099_22_00291_2
crossref_primary_10_2147_IDR_S373584
crossref_primary_10_1080_21645515_2023_2252289
crossref_primary_10_1016_j_apsb_2025_02_015
crossref_primary_10_1016_j_antiviral_2023_105783
crossref_primary_10_1093_infdis_jiad210
crossref_primary_10_1093_infdis_jiae582
crossref_primary_10_1016_j_chom_2021_12_012
crossref_primary_10_1093_infdis_jiae581
crossref_primary_10_1016_j_virs_2024_09_002
crossref_primary_10_1038_s41467_023_40057_8
crossref_primary_10_3390_pediatric16030057
crossref_primary_10_1016_j_coviro_2023_101337
crossref_primary_10_2147_DHPS_S348727
crossref_primary_10_1208_s12248_022_00753_7
crossref_primary_10_1016_j_ebiom_2022_104264
Cites_doi 10.1155/2014/571609
10.1002/cpdd.883
10.1038/s41591-021-01377-8
10.1186/s13052-015-0203-x
10.1038/s41541-017-0019-3
10.1126/scitranslmed.aaj1928
10.1093/jpids/piz011
10.1089/vim.2017.0147
10.1128/CVI.00131-10
10.1038/s41467-021-26117-x
10.1016/j.jtbi.2019.01.017
10.1128/AAC.01714-16
10.1001/jama.2020.10245
10.1016/S1473-3099(20)30282-6
10.1371/journal.pone.0175792
10.1016/j.vaccine.2018.09.056
10.1093/biomet/26.4.404
10.1542/peds.2014-1665
10.1097/INF.0000000000000257
10.1080/13543784.2020.1735349
10.1038/sj.ejcn.1602667
10.1038/s41467-019-12137-1
10.1111/irv.12727
10.1177/2040206618770518
10.1097/INF.0000000000001916
10.1016/S1473-3099(15)00247-9
10.1111/j.1442-200X.2006.02179.x
10.1056/NEJMoa1913556
10.1074/jbc.M604292200
ContentType Journal Article
Copyright 2021 Merck Sharp & Dohme Corp., The Author(s)
Merck Sharp & Dohme Corp., The Author(s)
Copyright © 2021 Merck Sharp & Dohme Corp., The Author(s). Published by Elsevier B.V. All rights reserved.
2021 Merck Sharp & Dohme Corp., The Author(s) 2021
Copyright_xml – notice: 2021 Merck Sharp & Dohme Corp., The Author(s)
– notice: Merck Sharp & Dohme Corp., The Author(s)
– notice: Copyright © 2021 Merck Sharp & Dohme Corp., The Author(s). Published by Elsevier B.V. All rights reserved.
– notice: 2021 Merck Sharp & Dohme Corp., The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.ebiom.2021.103651
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2352-3964
EndPage 103651
ExternalDocumentID oai_doaj_org_article_29110f874edd46dea00e331b42ac8484
PMC8603022
34775220
10_1016_j_ebiom_2021_103651
S235239642100445X
1_s2_0_S235239642100445X
Genre Meta-Analysis
Journal Article
GroupedDBID .1-
.FO
0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M48
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c632t-d5a4a23f134c1140d3159e7082858397bea618051fd01fe0cb4c8514fd8943d43
IEDL.DBID M48
ISSN 2352-3964
IngestDate Wed Aug 27 01:29:59 EDT 2025
Thu Aug 21 18:28:19 EDT 2025
Sun Aug 24 03:28:15 EDT 2025
Thu Apr 24 04:15:02 EDT 2025
Tue Jul 01 00:39:00 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Jul 25 20:58:57 EDT 2023
Sun Feb 23 10:19:26 EST 2025
Tue Aug 26 16:33:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RSV, Meta-analysis
Modelling and Simulation
Human Challenge Study
Respiratory Syncytial Virus
Monoclonal Antibody
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 Merck Sharp & Dohme Corp., The Author(s). Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c632t-d5a4a23f134c1140d3159e7082858397bea618051fd01fe0cb4c8514fd8943d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
Present Address: EMD Serono (Business of Merck KGaA, Darmstadt, Germany), Billerica, MA, 01821 USA
Present Address: Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
Present Address: IntiQuan GmbH, Basel 4051, Switzerland
Present Address: Daiichi Sankyo Europe GmbH; 81379 Munich, Germany
Present Address: Flagship Pioneering, Inc. Cambridge, MA 02142 USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.ebiom.2021.103651
PMID 34775220
PQID 2597799415
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_29110f874edd46dea00e331b42ac8484
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8603022
proquest_miscellaneous_2597799415
pubmed_primary_34775220
crossref_primary_10_1016_j_ebiom_2021_103651
crossref_citationtrail_10_1016_j_ebiom_2021_103651
elsevier_sciencedirect_doi_10_1016_j_ebiom_2021_103651
elsevier_clinicalkeyesjournals_1_s2_0_S235239642100445X
elsevier_clinicalkey_doi_10_1016_j_ebiom_2021_103651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle EBioMedicine
PublicationTitleAlternate EBioMedicine
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Marshall, Burghaus, Cosson, Cheung, Chenel, DellaPasqua (bib0005) 2016; 5
Griffin, Khan, Esser, Jensen, Takas, Kankam (bib0022) 2017; 61
Lommerse, Plock, Cheung, Sachs (bib0023) 2021; 10
Aliprantis, Wolford, Caro, Maas, Ma, Montgomery (bib0013) 2021; 10
McGuiness, Boron, Saunders, Edelman, Kumar, Rabon-Stith (bib0017) 2014; 33
Lommerse J., Green M., Espeseth A., Vora K.A., Aliprantis A., Finelli L., (Found in) Translation–Cotton rat modelling and validation with model based meta-analysis (MBMA) for RSV. ACoP11, 2020.
Mas, Nair, Campbell, Melero, Williams (bib0031) 2018; 36
(bib0009) 2014; 134
Hause, Henke, Avadhanula, Shaw, Tapia, Piedra (bib0030) 2017; 12
Tang, Chen, Cox, Su, Callahan, Fridman (bib0012) 2019; 10
Zhu, McLellan, Kallewaard, Ulbrandt, Palaszynski, Zhang (bib0018) 2017; 9
Plotkin (bib0001) 2010; 17
O'Brien, Chandran, Weatherholtz, Jafri, Griffin, Bellamy (bib0007) 2015; 15
Iversen, Kane, Zeng, Panchal, Warren, Radoshitzky (bib0002) 2020; 20
Roozendaal, Solforosi, Stieh, Serroyen, Straetemans, Wegmann (bib0033) 2021; 12
Lively, Curns, Weinberg, Edwards, Staat, Prill (bib0011) 2019; 8
Boukhvalova, Yim, Blanco (bib0027) 2018; 26
Simões, Forleo-Neto, Geba, Kamal, Yang, Cicirello (bib0015) 2020
Bergeron, Tripp (bib0029) 2020; 29
Marovich, Mascola, Cohen (bib0026) 2020; 324
Dall'Acqua, Kiener, Wu (bib0014) 2006; 281
Khoury, Cromer, Reynaldi, Schlub, Wheatley, Juno (bib0034) 2021
Rhodes, Knight, Kirschner, White, Evans (bib0004) 2019; 465
Fenton, Sauve (bib0020) 2007; 61
Domachowske, Khan, Esser, Jensen, Takas, Villafana (bib0021) 2018; 37
Nakazawa, Saji, Ichida, Oyama, Harada, Kusuda (bib0010) 2006; 48
Liu, Lu, Tabor, Tovchigrechko, Wilkins, Jin (bib0032) 2020; 14
Homaira, Rawlinson, Snelling, Jaffe (bib0003) 2014; 2014
Clopper, Pearson (bib0019) 1934; 26
Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow (bib0016) 2021; 372
Kulkarni, Hurwitz, Simões, Piedra (bib0028) 2018; 31
Bollani, Baraldi, Chirico, Dotta, Lanari, Del Vecchio (bib0008) 2015; 41
Griffin, Yuan, Takas, Domachowske, Madhi, Manzoni (bib0006) 2020; 383
Salazar, Zhang, Fu (bib0025) 2017; 2
Page (10.1016/j.ebiom.2021.103651_bib0016) 2021; 372
Boukhvalova (10.1016/j.ebiom.2021.103651_bib0027) 2018; 26
Tang (10.1016/j.ebiom.2021.103651_bib0012) 2019; 10
Griffin (10.1016/j.ebiom.2021.103651_bib0006) 2020; 383
10.1016/j.ebiom.2021.103651_bib0024
Liu (10.1016/j.ebiom.2021.103651_bib0032) 2020; 14
Lommerse (10.1016/j.ebiom.2021.103651_bib0023) 2021; 10
Griffin (10.1016/j.ebiom.2021.103651_bib0022) 2017; 61
Rhodes (10.1016/j.ebiom.2021.103651_bib0004) 2019; 465
Simões (10.1016/j.ebiom.2021.103651_bib0015) 2020
Marshall (10.1016/j.ebiom.2021.103651_bib0005) 2016; 5
Bergeron (10.1016/j.ebiom.2021.103651_bib0029) 2020; 29
Plotkin (10.1016/j.ebiom.2021.103651_bib0001) 2010; 17
O'Brien (10.1016/j.ebiom.2021.103651_bib0007) 2015; 15
McGuiness (10.1016/j.ebiom.2021.103651_bib0017) 2014; 33
Domachowske (10.1016/j.ebiom.2021.103651_bib0021) 2018; 37
Marovich (10.1016/j.ebiom.2021.103651_bib0026) 2020; 324
Nakazawa (10.1016/j.ebiom.2021.103651_bib0010) 2006; 48
(10.1016/j.ebiom.2021.103651_bib0009) 2014; 134
Homaira (10.1016/j.ebiom.2021.103651_bib0003) 2014; 2014
Aliprantis (10.1016/j.ebiom.2021.103651_bib0013) 2021; 10
Zhu (10.1016/j.ebiom.2021.103651_bib0018) 2017; 9
Mas (10.1016/j.ebiom.2021.103651_bib0031) 2018; 36
Khoury (10.1016/j.ebiom.2021.103651_bib0034) 2021
Bollani (10.1016/j.ebiom.2021.103651_bib0008) 2015; 41
Fenton (10.1016/j.ebiom.2021.103651_bib0020) 2007; 61
Lively (10.1016/j.ebiom.2021.103651_bib0011) 2019; 8
Salazar (10.1016/j.ebiom.2021.103651_bib0025) 2017; 2
Roozendaal (10.1016/j.ebiom.2021.103651_bib0033) 2021; 12
Kulkarni (10.1016/j.ebiom.2021.103651_bib0028) 2018; 31
Iversen (10.1016/j.ebiom.2021.103651_bib0002) 2020; 20
Hause (10.1016/j.ebiom.2021.103651_bib0030) 2017; 12
Dall'Acqua (10.1016/j.ebiom.2021.103651_bib0014) 2006; 281
Clopper (10.1016/j.ebiom.2021.103651_bib0019) 1934; 26
References_xml – volume: 10
  start-page: 1092
  year: 2021
  end-page: 1106
  ident: bib0023
  article-title: V2ACHER: Visualization of complex trial data in pharmacometric analysis with covariates
  publication-title: CPT: Pharmacomet Syst Pharmacol
– volume: 9
  year: 2017
  ident: bib0018
  article-title: A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants
  publication-title: Sci Transl Med
– volume: 26
  year: 2018
  ident: bib0027
  article-title: Cotton rat model for testing vaccines and antivirals against respiratory syncytial virus
  publication-title: Antivir Chem Chemother
– volume: 2014
  year: 2014
  ident: bib0003
  article-title: Effectiveness of palivizumab in preventing RSV hospitalization in high risk children: A real-world perspective
  publication-title: Int J Pediatr
– volume: 383
  start-page: 415
  year: 2020
  end-page: 425
  ident: bib0006
  article-title: Single-dose Nirsevimab for prevention of RSV in preterm infants
  publication-title: N Engl J Med
– volume: 12
  start-page: 5877
  year: 2021
  ident: bib0033
  article-title: SARS-CoV-2 binding and neutralizing antibody levels after vaccination with Ad26.COV2.S predict durable protection in rhesus macaques
  publication-title: Nat Commun
– volume: 134
  start-page: 415
  year: 2014
  end-page: 420
  ident: bib0009
  article-title: Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection
  publication-title: Pediatrics
– volume: 465
  start-page: 51
  year: 2019
  end-page: 55
  ident: bib0004
  article-title: Dose finding for new vaccines: The role for immunostimulation/immunodynamic modelling
  publication-title: J Theor Biol
– volume: 14
  start-page: 403
  year: 2020
  end-page: 411
  ident: bib0032
  article-title: Characterization of human respiratory syncytial virus (RSV) isolated from HIV-exposed-uninfected and HIV-unexposed infants in South Africa during 2015-2017
  publication-title: Influenza Other Respir Viruses
– volume: 10
  start-page: 556
  year: 2021
  end-page: 566
  ident: bib0013
  article-title: A phase 1 randomized, double-blind, placebo-controlled trial to assess the safety, tolerability, and pharmacokinetics of a respiratory syncytial virus neutralizing monoclonal antibody MK-1654 in healthy adults
  publication-title: Clin Pharmacol Drug Dev
– reference: Lommerse J., Green M., Espeseth A., Vora K.A., Aliprantis A., Finelli L., (Found in) Translation–Cotton rat modelling and validation with model based meta-analysis (MBMA) for RSV. ACoP11, 2020.
– volume: 20
  year: 2020
  ident: bib0002
  article-title: Recent successes in therapeutics for Ebola virus disease: no time for complacency
  publication-title: Lancet Infect Dis
– volume: 8
  start-page: 284
  year: 2019
  end-page: 286
  ident: bib0011
  article-title: Respiratory Syncytial Virus–Associated Outpatient Visits Among Children Younger Than 24 Months
  publication-title: J Pediat Infect Dis Soc
– volume: 26
  start-page: 404
  year: 1934
  end-page: 413
  ident: bib0019
  article-title: The use of confidence of fiducial limits illustrated in the case of the binomial
  publication-title: Biometrika
– volume: 15
  start-page: 1398
  year: 2015
  end-page: 1408
  ident: bib0007
  article-title: Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy Native American infants: a phase 3 randomised double-blind placebo-controlled trial
  publication-title: Lancet Infect Dis
– volume: 37
  start-page: 886
  year: 2018
  end-page: 892
  ident: bib0021
  article-title: Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose Respiratory Syncytial Virus prefusion F-targeting monoclonal antibody administered as a single Dose to healthy preterm infants
  publication-title: Pediatr Infect Dis J
– volume: 10
  start-page: 4153
  year: 2019
  ident: bib0012
  article-title: A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein
  publication-title: Nat Commun
– volume: 2
  start-page: 19
  year: 2017
  ident: bib0025
  article-title: An Z. Antibody therapies for the prevention and treatment of viral infections
  publication-title: NPJ Vaccines
– year: 2021
  ident: bib0034
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat Med
– volume: 36
  start-page: 6660
  year: 2018
  end-page: 6673
  ident: bib0031
  article-title: Antigenic and sequence variability of the human respiratory syncytial virus F glycoprotein compared to related viruses in a comprehensive dataset
  publication-title: Vaccine
– volume: 41
  start-page: 97
  year: 2015
  ident: bib0008
  article-title: Revised recommendations concerning palivizumab prophylaxis for respiratory syncytial virus (RSV)
  publication-title: Ital J Pediatr
– volume: 48
  start-page: 190
  year: 2006
  end-page: 193
  ident: bib0010
  article-title: Guidelines for the use of palivizumab in infants and young children with congenital heart disease
  publication-title: Pediatr Int: Off J Jpn Pediatr Soc
– volume: 281
  start-page: 23514
  year: 2006
  end-page: 23524
  ident: bib0014
  article-title: Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn)
  publication-title: J Biol Chem
– volume: 31
  start-page: 195
  year: 2018
  end-page: 203
  ident: bib0028
  article-title: Establishing correlates of protection for vaccine development: Considerations for the respiratory syncytial virus vaccine field
  publication-title: Viral Immunol
– volume: 61
  start-page: 1380
  year: 2007
  end-page: 1385
  ident: bib0020
  article-title: Using the LMS method to calculate z-scores for the Fenton preterm infant growth chart
  publication-title: Eur J Clin Nutr
– volume: 324
  start-page: 131
  year: 2020
  end-page: 132
  ident: bib0026
  article-title: Monoclonal antibodies for prevention and treatment of COVID-19
  publication-title: Jama
– volume: 372
  start-page: n71
  year: 2021
  ident: bib0016
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ (Clin Res Ed)
– volume: 5
  start-page: 93
  year: 2016
  end-page: 122
  ident: bib0005
  article-title: Good practices in model-informed drug discovery and development: practice, application, and documentation
  publication-title: CPT: Pharmacomet Syst Pharmacol
– volume: 29
  start-page: 285
  year: 2020
  end-page: 294
  ident: bib0029
  article-title: Emerging small and large molecule therapeutics for respiratory syncytial virus
  publication-title: Expert Opin Investig Drugs
– volume: 33
  start-page: 589
  year: 2014
  end-page: 594
  ident: bib0017
  article-title: Respiratory syncytial virus surveillance in the United States, 2007–2012: results from a national surveillance system
  publication-title: Pediatr Infect Dis J
– year: 2020
  ident: bib0015
  article-title: Suptavumab for the prevention of medically attended respiratory syncytial virus infection in preterm infants
  publication-title: Clin Infect Dis An Off Publ Infect Dis Soc Am
– volume: 17
  start-page: 1055
  year: 2010
  end-page: 1065
  ident: bib0001
  article-title: Correlates of protection induced by vaccination
  publication-title: Clin Vaccine Immunol: CVI
– volume: 61
  year: 2017
  ident: bib0022
  article-title: Safety, tolerability, and pharmacokinetics of MEDI8897, the Respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults
  publication-title: Antimicrobial Agents Chemother
– volume: 12
  year: 2017
  ident: bib0030
  article-title: Sequence variability of the respiratory syncytial virus (RSV) fusion gene among contemporary and historical genotypes of RSV/A and RSV/B
  publication-title: PloS One
– volume: 2014
  year: 2014
  ident: 10.1016/j.ebiom.2021.103651_bib0003
  article-title: Effectiveness of palivizumab in preventing RSV hospitalization in high risk children: A real-world perspective
  publication-title: Int J Pediatr
  doi: 10.1155/2014/571609
– volume: 10
  start-page: 556
  issue: 5
  year: 2021
  ident: 10.1016/j.ebiom.2021.103651_bib0013
  article-title: A phase 1 randomized, double-blind, placebo-controlled trial to assess the safety, tolerability, and pharmacokinetics of a respiratory syncytial virus neutralizing monoclonal antibody MK-1654 in healthy adults
  publication-title: Clin Pharmacol Drug Dev
  doi: 10.1002/cpdd.883
– year: 2021
  ident: 10.1016/j.ebiom.2021.103651_bib0034
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01377-8
– volume: 41
  start-page: 97
  year: 2015
  ident: 10.1016/j.ebiom.2021.103651_bib0008
  article-title: Revised recommendations concerning palivizumab prophylaxis for respiratory syncytial virus (RSV)
  publication-title: Ital J Pediatr
  doi: 10.1186/s13052-015-0203-x
– volume: 2
  start-page: 19
  year: 2017
  ident: 10.1016/j.ebiom.2021.103651_bib0025
  article-title: An Z. Antibody therapies for the prevention and treatment of viral infections
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-017-0019-3
– volume: 5
  start-page: 93
  issue: 3
  year: 2016
  ident: 10.1016/j.ebiom.2021.103651_bib0005
  article-title: Good practices in model-informed drug discovery and development: practice, application, and documentation
  publication-title: CPT: Pharmacomet Syst Pharmacol
– volume: 9
  issue: 388
  year: 2017
  ident: 10.1016/j.ebiom.2021.103651_bib0018
  article-title: A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaj1928
– volume: 8
  start-page: 284
  issue: 3
  year: 2019
  ident: 10.1016/j.ebiom.2021.103651_bib0011
  article-title: Respiratory Syncytial Virus–Associated Outpatient Visits Among Children Younger Than 24 Months
  publication-title: J Pediat Infect Dis Soc
  doi: 10.1093/jpids/piz011
– volume: 372
  start-page: n71
  year: 2021
  ident: 10.1016/j.ebiom.2021.103651_bib0016
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ (Clin Res Ed)
– volume: 31
  start-page: 195
  issue: 2
  year: 2018
  ident: 10.1016/j.ebiom.2021.103651_bib0028
  article-title: Establishing correlates of protection for vaccine development: Considerations for the respiratory syncytial virus vaccine field
  publication-title: Viral Immunol
  doi: 10.1089/vim.2017.0147
– volume: 17
  start-page: 1055
  issue: 7
  year: 2010
  ident: 10.1016/j.ebiom.2021.103651_bib0001
  article-title: Correlates of protection induced by vaccination
  publication-title: Clin Vaccine Immunol: CVI
  doi: 10.1128/CVI.00131-10
– volume: 12
  start-page: 5877
  year: 2021
  ident: 10.1016/j.ebiom.2021.103651_bib0033
  article-title: SARS-CoV-2 binding and neutralizing antibody levels after vaccination with Ad26.COV2.S predict durable protection in rhesus macaques
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26117-x
– volume: 465
  start-page: 51
  year: 2019
  ident: 10.1016/j.ebiom.2021.103651_bib0004
  article-title: Dose finding for new vaccines: The role for immunostimulation/immunodynamic modelling
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2019.01.017
– volume: 61
  issue: 3
  year: 2017
  ident: 10.1016/j.ebiom.2021.103651_bib0022
  article-title: Safety, tolerability, and pharmacokinetics of MEDI8897, the Respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults
  publication-title: Antimicrobial Agents Chemother
  doi: 10.1128/AAC.01714-16
– volume: 324
  start-page: 131
  issue: 2
  year: 2020
  ident: 10.1016/j.ebiom.2021.103651_bib0026
  article-title: Monoclonal antibodies for prevention and treatment of COVID-19
  publication-title: Jama
  doi: 10.1001/jama.2020.10245
– volume: 10
  start-page: 1092
  year: 2021
  ident: 10.1016/j.ebiom.2021.103651_bib0023
  article-title: V2ACHER: Visualization of complex trial data in pharmacometric analysis with covariates
  publication-title: CPT: Pharmacomet Syst Pharmacol
– volume: 20
  issue: 9
  year: 2020
  ident: 10.1016/j.ebiom.2021.103651_bib0002
  article-title: Recent successes in therapeutics for Ebola virus disease: no time for complacency
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(20)30282-6
– volume: 12
  issue: 4
  year: 2017
  ident: 10.1016/j.ebiom.2021.103651_bib0030
  article-title: Sequence variability of the respiratory syncytial virus (RSV) fusion gene among contemporary and historical genotypes of RSV/A and RSV/B
  publication-title: PloS One
  doi: 10.1371/journal.pone.0175792
– volume: 36
  start-page: 6660
  issue: 45
  year: 2018
  ident: 10.1016/j.ebiom.2021.103651_bib0031
  article-title: Antigenic and sequence variability of the human respiratory syncytial virus F glycoprotein compared to related viruses in a comprehensive dataset
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2018.09.056
– volume: 26
  start-page: 404
  issue: 4
  year: 1934
  ident: 10.1016/j.ebiom.2021.103651_bib0019
  article-title: The use of confidence of fiducial limits illustrated in the case of the binomial
  publication-title: Biometrika
  doi: 10.1093/biomet/26.4.404
– volume: 134
  start-page: 415
  issue: 2
  year: 2014
  ident: 10.1016/j.ebiom.2021.103651_bib0009
  article-title: Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection
  publication-title: Pediatrics
  doi: 10.1542/peds.2014-1665
– volume: 33
  start-page: 589
  issue: 6
  year: 2014
  ident: 10.1016/j.ebiom.2021.103651_bib0017
  article-title: Respiratory syncytial virus surveillance in the United States, 2007–2012: results from a national surveillance system
  publication-title: Pediatr Infect Dis J
  doi: 10.1097/INF.0000000000000257
– volume: 29
  start-page: 285
  issue: 3
  year: 2020
  ident: 10.1016/j.ebiom.2021.103651_bib0029
  article-title: Emerging small and large molecule therapeutics for respiratory syncytial virus
  publication-title: Expert Opin Investig Drugs
  doi: 10.1080/13543784.2020.1735349
– volume: 61
  start-page: 1380
  issue: 12
  year: 2007
  ident: 10.1016/j.ebiom.2021.103651_bib0020
  article-title: Using the LMS method to calculate z-scores for the Fenton preterm infant growth chart
  publication-title: Eur J Clin Nutr
  doi: 10.1038/sj.ejcn.1602667
– year: 2020
  ident: 10.1016/j.ebiom.2021.103651_bib0015
  article-title: Suptavumab for the prevention of medically attended respiratory syncytial virus infection in preterm infants
  publication-title: Clin Infect Dis An Off Publ Infect Dis Soc Am
– volume: 10
  start-page: 4153
  issue: 1
  year: 2019
  ident: 10.1016/j.ebiom.2021.103651_bib0012
  article-title: A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12137-1
– volume: 14
  start-page: 403
  issue: 4
  year: 2020
  ident: 10.1016/j.ebiom.2021.103651_bib0032
  article-title: Characterization of human respiratory syncytial virus (RSV) isolated from HIV-exposed-uninfected and HIV-unexposed infants in South Africa during 2015-2017
  publication-title: Influenza Other Respir Viruses
  doi: 10.1111/irv.12727
– volume: 26
  year: 2018
  ident: 10.1016/j.ebiom.2021.103651_bib0027
  article-title: Cotton rat model for testing vaccines and antivirals against respiratory syncytial virus
  publication-title: Antivir Chem Chemother
  doi: 10.1177/2040206618770518
– volume: 37
  start-page: 886
  issue: 9
  year: 2018
  ident: 10.1016/j.ebiom.2021.103651_bib0021
  article-title: Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose Respiratory Syncytial Virus prefusion F-targeting monoclonal antibody administered as a single Dose to healthy preterm infants
  publication-title: Pediatr Infect Dis J
  doi: 10.1097/INF.0000000000001916
– volume: 15
  start-page: 1398
  issue: 12
  year: 2015
  ident: 10.1016/j.ebiom.2021.103651_bib0007
  article-title: Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy Native American infants: a phase 3 randomised double-blind placebo-controlled trial
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(15)00247-9
– volume: 48
  start-page: 190
  issue: 2
  year: 2006
  ident: 10.1016/j.ebiom.2021.103651_bib0010
  article-title: Guidelines for the use of palivizumab in infants and young children with congenital heart disease
  publication-title: Pediatr Int: Off J Jpn Pediatr Soc
  doi: 10.1111/j.1442-200X.2006.02179.x
– ident: 10.1016/j.ebiom.2021.103651_bib0024
– volume: 383
  start-page: 415
  issue: 5
  year: 2020
  ident: 10.1016/j.ebiom.2021.103651_bib0006
  article-title: Single-dose Nirsevimab for prevention of RSV in preterm infants
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1913556
– volume: 281
  start-page: 23514
  issue: 33
  year: 2006
  ident: 10.1016/j.ebiom.2021.103651_bib0014
  article-title: Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M604292200
SSID ssj0001542358
Score 2.403014
SecondaryResourceType review_article
Snippet Neutralizing mAbs can prevent communicable viral diseases. MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing monoclonal antibody (mAb)...
AbstractBackgroundNeutralizing mAbs can prevent communicable viral diseases. MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing...
Background: Neutralizing mAbs can prevent communicable viral diseases. MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing monoclonal...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103651
SubjectTerms Adolescent
Adult
Advanced Basic Science
Aged
Algorithms
Antibodies, Monoclonal
Antibodies, Neutralizing - administration & dosage
Antibodies, Neutralizing - immunology
Antibodies, Viral - administration & dosage
Antibodies, Viral - immunology
Clinical Trials as Topic
Female
Human Challenge Study
Humans
Incidence
Internal Medicine
Male
Middle Aged
Modelling and Simulation
Models, Theoretical
Monoclonal Antibody
Premedication
Research paper
Respiratory Syncytial Virus
Respiratory Syncytial Virus Infections - epidemiology
Respiratory Syncytial Virus Infections - immunology
Respiratory Syncytial Virus Infections - prevention & control
Respiratory Syncytial Virus, Human - immunology
RSV, Meta-analysis
Seasons
Translational Research, Biomedical - methods
Young Adult
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yIPgi3j3eiOCDgsU2SZP2UcXDIuiD68p5C2mSYuXQLm2P7Nk_4N92Jr1wqrL74mvbJO3MZOZLk_mGkBesVEVeehWlDtYmIsdNQiN5ZLCwRVIkVklMcP70WR6fio-bdHNQ6gvPhA30wIPg3jCYjXGZKeGdE9J5E8ee86QQzNhMZIEJFGLewWJqyA8WmAMaKsulLOK5FBPlUDjc5TG5HVaHLMGsc5kmi7AU2PsX0elv9PnnIcqDqLS-RW6OcJK-HT7jNrnm6zvk-lBgcn-X_Fo3LR6LpaZ2FMma2s7THsPTdvwJSCdScd_RvqFnLW7c9NQjs4Sxe9qUtPa78DvkAqIcdDJvzdNuD54ZPMSW_qzaXUdffjn59gqG6quicXvoqwEdbs151d0jp-sPX98fR2PphchKzvrIpUYYxsuECwsrpthxgD1eBb47gFSq8EYmGUzo0sVJ6WNbCAvYTZQO-dyd4PfJUd3U_iGhSsRl6UD1NpNId5_zwvjcSmezzKTKrgibJK_tyEuO5TG2ejqA9kMHdWlUlx7UtSKv50ZnAy3H5Y-_Q5XOjyKndrgAlqZHS9NXWdqKiMkg9JS2Co4WOqouH1v9q5nvRmfR6UR3TMf6BE0VLZUFFr90syJybjnioQHnXD3k88leNXgL3AIytW92nWZIN5jngNpW5MFgv7NQuFAK0HgML7yw7IXUlnfq6ntgJM8kxArGHv0PMT8mN_BThnzPJ-Sob3f-KQC_vngW5vhvBhVVyQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Forward and reverse translational approaches to predict efficacy of neutralizing respiratory syncytial virus (RSV) antibody prophylaxis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S235239642100445X
https://www.clinicalkey.es/playcontent/1-s2.0-S235239642100445X
https://dx.doi.org/10.1016/j.ebiom.2021.103651
https://www.ncbi.nlm.nih.gov/pubmed/34775220
https://www.proquest.com/docview/2597799415
https://pubmed.ncbi.nlm.nih.gov/PMC8603022
https://doaj.org/article/29110f874edd46dea00e331b42ac8484
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7LiuCLeHdcXSL4oGClTdKkfRBRcViE9cF1ZN5CmqTryNDuth3Z8Q_4tz2nN60OK_jYaZMM55Lz5XK-Q8gTlqsszb0KYgdrE5HiIaGRPDBY2CLKIqskJjgff5BHC_F-GS_3yFAVtRdgvXNph_WkFtX6xcX59hU4_Mtfd7U85qrDYo9FmEQuMaX6CoQmhSUNjnu836UNC0wNbQvOxSzgqRQDE9HufibRqiX1nwStv0Hpn3crfwtW8xvkeo8y6evOLG6SPV_cIle7upPb2-THvKzwtiw1haPI4VTVnjYYtdb93iAduMZ9TZuSnlV4ntNQj4QTxm5pmdPCb9pdku8Q_KCT8cSe1luYsGHiWNNvq2pT06cfTz4_g6GaVVa6LfRVgmrX5mJV3yGL-btPb4-CviJDYCVnTeBiIwzjecSFhYVU6DigIa9aGjxAWirzRkYJ-Hnuwij3oc2EBUgncoc0707wu2S_KAt_n1Alwjx3YBE2kciCn_LM-NRKZ5PExMrOCBskr21PV45VM9Z6uJf2Vbfq0qgu3alrRp6Pjc46to7LP3-DKh0_Rart9oeyOtW952oG4SDMEyW8c0I6b8LQcx5lghmbiETMiBgMQg_ZrDD_Qkery8dWu5r5enABHema6VCfoKmipbKW3C9ezogcW_YwqYM__x7y8WCvGiYRPBkyhS83tWbIQpimAOZm5F5nv6NQuFAKQHoIf3hi2ROpTd8Uqy8tUXkiIYQw9uD_JHRAruFTl_j5kOw31cY_AgTYZIftzslh69s_AVCcWvw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forward+and+reverse+translational+approaches+to+predict+efficacy+of+neutralizing+respiratory+syncytial+virus+%28RSV%29+antibody+prophylaxis&rft.jtitle=EBioMedicine&rft.au=Maas%2C+Brian+M.&rft.au=Lommerse%2C+Jos&rft.au=Plock%2C+Nele&rft.au=Railkar%2C+Radha+A.&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=73&rft_id=info:doi/10.1016%2Fj.ebiom.2021.103651&rft.externalDocID=S235239642100445X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2FS2352396421X00114%2Fcov150h.gif