Improvement in endothelial cell adhesion and retention under physiological shear stress using a laminin–apatite composite layer on titanium

Apatite (Ap), laminin–apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin–apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml−1) or albumin (800 μg ml−1). With an increase in t...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Society interface Vol. 10; no. 81; p. 20130014
Main Authors He, Fupo, Wang, Xiupeng, Maruyama, Osamu, Kosaka, Ryo, Sogo, Yu, Ito, Atsuo, Ye, Jiandong
Format Journal Article
LanguageEnglish
Published England The Royal Society 06.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Apatite (Ap), laminin–apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin–apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml−1) or albumin (800 μg ml−1). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin–apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin–apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin–apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials.
AbstractList Apatite (Ap), laminin-apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin-apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml(-1)) or albumin (800 μg ml(-1)). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin-apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin-apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin-apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials.Apatite (Ap), laminin-apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin-apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml(-1)) or albumin (800 μg ml(-1)). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin-apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin-apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin-apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials.
Apatite (Ap), laminin–apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin–apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml−1) or albumin (800 μg ml−1). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin–apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin–apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin–apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials.
Apatite (Ap), laminin–apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin–apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml −1 ) or albumin (800 μg ml −1 ). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin–apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin–apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin–apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials.
Apatite (Ap), laminin-apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin-apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml(-1)) or albumin (800 μg ml(-1)). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin-apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin-apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin-apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials.
Author Maruyama, Osamu
Ye, Jiandong
Kosaka, Ryo
He, Fupo
Wang, Xiupeng
Sogo, Yu
Ito, Atsuo
AuthorAffiliation 3 Human Technology Research Institute , National Institute of Advanced Industrial Science and Technology , Namiki1-2-1, Tsukuba, Ibaraki 305-8564 , Japan
2 School of Materials Science and Engineering , South China University of Technology , Guangzhou 510641 , People's Republic of China
4 National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006 , People's Republic of China
1 Human Technology Research Institute , National Institute of Advanced Industrial Science and Technology , Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 , Japan
AuthorAffiliation_xml – name: 1 Human Technology Research Institute , National Institute of Advanced Industrial Science and Technology , Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 , Japan
– name: 4 National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006 , People's Republic of China
– name: 2 School of Materials Science and Engineering , South China University of Technology , Guangzhou 510641 , People's Republic of China
– name: 3 Human Technology Research Institute , National Institute of Advanced Industrial Science and Technology , Namiki1-2-1, Tsukuba, Ibaraki 305-8564 , Japan
Author_xml – sequence: 1
  givenname: Fupo
  surname: He
  fullname: He, Fupo
  organization: Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
– sequence: 2
  givenname: Xiupeng
  surname: Wang
  fullname: Wang, Xiupeng
  email: xp-wang@aist.go.jp
  organization: Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
– sequence: 3
  givenname: Osamu
  surname: Maruyama
  fullname: Maruyama, Osamu
  organization: Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Namiki1-2-1, Tsukuba, Ibaraki 305-8564, Japan
– sequence: 4
  givenname: Ryo
  surname: Kosaka
  fullname: Kosaka, Ryo
  organization: Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Namiki1-2-1, Tsukuba, Ibaraki 305-8564, Japan
– sequence: 5
  givenname: Yu
  surname: Sogo
  fullname: Sogo, Yu
  organization: Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
– sequence: 6
  givenname: Atsuo
  surname: Ito
  fullname: Ito, Atsuo
  organization: Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
– sequence: 7
  givenname: Jiandong
  surname: Ye
  fullname: Ye, Jiandong
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23407573$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUjVARfcCWJfKSzQx-JXY3SKiiMFIFaCggsbEc-2bGJbGDnYwYVvwAK_6QL8HRlBEFlZXv45xzfe85Lg588FAUDwmeE3wqn8TkmjnFhM0xJvxOcUQEp7OyqujBPpanh8VxSlcYM8HK8l5xSBnHohTsqPi-6PoYNtCBH5DzCLwNwxpap1tkoG2RtmtILnikvUURhoybstFbiKhfb3OvDStnMj6tQUeUhggpoTE5v0Iatbpz3vmf337oXg9uAGRC14c0Ra3eZpGsluvau7G7X9xtdJvgwfV7Urw7f3559nJ28frF4uzZxcxUjA6z2hBu61JYYyvNBG8ayzijVFgrBTS5WEteEcmorpq6NqySldXMgikJAWDspHi60-3HugNr8lJRt6qPrtNxq4J26mbHu7VahY1iFRWEkizw-Foghs8jpEF1Lk330h7CmBShUjLCqlJm6KM_Z-2H_PYgA-Y7gIkhpQjNHkKwmkxWk8lqMllNJmcC_4tg8v0mW_JfXXs7je1oMWzzcYNxMGzVVRijz-ntLPgfa_l2cb4h2EmicN4YC8pLrr66fqeTRV1KI6jcvyn875zZbo5LA3zZn0DHT6oSTJTqveTq1YePS3a5JOoN-wVZEvS8
CitedBy_id crossref_primary_10_1039_C6RA02070D
crossref_primary_10_1089_ten_teb_2021_0148
crossref_primary_10_4103_1673_5374_152380
crossref_primary_10_1172_JCI73683
crossref_primary_10_4103_1673_5374_158362
crossref_primary_10_1039_C9BM00128J
Cites_doi 10.1016/S0169-409X(00)00094-6
10.1016/j.actbio.2012.02.003
10.1002/jbm.a.32375
10.1002/jbm.a.32436
10.1016/S0142-9612(03)00046-2
10.2106/00004623-200002000-00001
10.1088/1748-6041/6/4/045004
10.1007/s10719-008-9188-7
10.1106/088532802027861
10.1161/CIRCULATIONAHA.110.936773
10.1016/j.actbio.2009.07.013
10.1074/jbc.273.49.32491
10.1016/j.biomaterials.2007.04.026
10.1016/0945-053X(94)90192-9
10.1002/jbm.a.30512
10.1163/016942410X507966
10.1016/j.colsurfb.2010.04.018
10.1096/fj.01-0826com
10.1163/156856204322752246
10.1002/jbm.a.33066
10.1001/archsurg.1980.01380110033005
10.1002/jbm.a.10494
10.1016/j.biomaterials.2007.01.039
10.1067/mva.1987.avs0060017
10.1067/mva.1985.avs0020778
10.1046/j.1525-1594.1998.6184R.x
10.1016/0142-9612(96)00028-2
10.1016/j.actbio.2009.03.020
10.1016/j.biomaterials.2005.06.001
10.1016/S0300-9084(97)82738-1
10.1002/jbm.b.30135
10.1088/1758-5082/3/2/022001
10.1126/science.1068555
10.1002/path.1396
10.1016/j.msec.2008.06.012
10.1083/jcb.110.6.2145
10.1016/1357-2725(96)00042-8
10.1016/j.actbio.2009.08.038
10.1586/17434440.6.1.51
10.1067/mva.1988.avs0070591
10.1016/j.msec.2009.01.012
10.1016/S0142-9612(02)00252-1
10.1016/0142-9612(93)90222-N
10.1039/c0jm00399a
10.1097/MAT.0b013e3181a7b540
10.1163/156856298X00433
10.1016/j.biomaterials.2005.04.066
ContentType Journal Article
Copyright 2013 The Author(s) Published by the Royal Society. All rights reserved.
2013 The Author(s) Published by the Royal Society. All rights reserved. 2013
Copyright_xml – notice: 2013 The Author(s) Published by the Royal Society. All rights reserved.
– notice: 2013 The Author(s) Published by the Royal Society. All rights reserved. 2013
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1098/rsif.2013.0014
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Improvement in endothelial cell adhesion and retention under physiological shear stress using a laminin–apatite composite layer on titanium
EISSN 1742-5662
ExternalDocumentID PMC3627121
23407573
10_1098_rsif_2013_0014
ark_67375_V84_NWZR3TR1_P
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
0R~
18M
29L
2WC
4.4
53G
5GY
5VS
ACGFO
ACQIA
ADBBV
ADDVE
AENEX
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BGBPD
BSCLL
BTFSW
CS3
DIK
DU5
EBS
EJD
GX1
H13
HH5
HYE
HZ~
KQ8
MRS
MV1
NSAHA
O9-
OK1
OP1
P2P
RHF
RPM
RRY
TR2
V1E
W8F
XSW
ABXXB
AAYXX
ACRPL
ADNMO
AGPVY
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c632t-bc14db57dcd6a374ffd343227dd87efd6ab8461832a6fbbc3686da3dec511ee33
ISSN 1742-5689
1742-5662
IngestDate Thu Aug 21 18:15:51 EDT 2025
Fri Jul 11 06:11:54 EDT 2025
Thu Apr 03 07:05:51 EDT 2025
Thu Apr 24 22:50:52 EDT 2025
Tue Jul 01 01:43:05 EDT 2025
Wed Jan 17 02:37:13 EST 2024
Tue May 24 16:17:55 EDT 2022
Wed Oct 30 10:00:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 81
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c632t-bc14db57dcd6a374ffd343227dd87efd6ab8461832a6fbbc3686da3dec511ee33
Notes href:rsif20130014.pdf
ark:/67375/V84-NWZR3TR1-P
ArticleID:rsif20130014
istex:C54FAC87C89EAAD0BDCA30C54992253E01D9E703
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2013.0014
PMID 23407573
PQID 1288313658
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3627121
proquest_miscellaneous_1288313658
crossref_primary_10_1098_rsif_2013_0014
pubmed_primary_23407573
royalsociety_journals_10_1098_rsif_2013_0014
royalsociety_journals_RSIFv10i81_0831072454_zip_rsif_10_issue_81_rsif_2013_0014_rsif_2013_0014
istex_primary_ark_67375_V84_NWZR3TR1_P
crossref_citationtrail_10_1098_rsif_2013_0014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-06
20130406
2013-Apr-06
PublicationDateYYYYMMDD 2013-04-06
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the Royal Society interface
PublicationTitleAbbrev J. R. Soc. Interface
PublicationTitleAlternate J. R. Soc. Interface
PublicationYear 2013
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
16138324 - J Biomed Mater Res A. 2006 Jan;76(1):86-94
2955133 - J Vasc Surg. 1987 Jul;6(1):17-25
6449186 - Arch Surg. 1980 Nov;115(11):1289-94
9754460 - Artif Organs. 1998 Sep;22(9):753-8
12417179 - Biomaterials. 2003 Jan;24(1):65-70
19375998 - Acta Biomater. 2009 Sep;5(7):2647-56
21636885 - Biomed Mater. 2011 Aug;6(4):045004
19729081 - Acta Biomater. 2010 Mar;6(3):962-8
9829982 - J Biol Chem. 1998 Dec 4;273(49):32491-9
18814027 - Glycoconj J. 2009 Aug;26(6):697-704
22343517 - Acta Biomater. 2012 Jul;8(6):2034-46
9451447 - Biochimie. 1997 Sep;79(8):467-76
3352078 - J Vasc Surg. 1988 Apr;7(4):591-9
12761829 - J Biomed Mater Res A. 2003 Jun 15;65(4):409-16
20547042 - Colloids Surf B Biointerfaces. 2010 Sep 1;79(2):357-64
12699653 - Biomaterials. 2003 Jun;24(13):2177-87
12845613 - J Pathol. 2003 Jul;200(4):465-70
8922600 - Biomaterials. 1996 Nov;17(22):2147-56
21484986 - J Biomed Mater Res A. 2011 Jun 15;97(4):423-32
11072114 - Adv Drug Deliv Rev. 2000 Nov 15;44(2-3):185-94
8930117 - Int J Biochem Cell Biol. 1996 Sep;28(9):957-9
19607942 - Acta Biomater. 2010 Feb;6(2):534-46
19471159 - ASAIO J. 2009 Jul-Aug;55(4):314-22
19189389 - J Biomed Mater Res A. 2010 Jan;92(1):350-8
17316788 - Biomaterials. 2007 Jun;28(16):2547-71
12039860 - FASEB J. 2002 Jun;16(8):791-6
21474887 - Biofabrication. 2011 Jun;3(2):022001
4057435 - J Vasc Surg. 1985 Nov;2(6):778-84
11834809 - Science. 2002 Feb 8;295(5557):998-9
1693624 - J Cell Biol. 1990 Jun;110(6):2145-55
15389489 - J Biomed Mater Res B Appl Biomater. 2005 Jan 15;72(1):131-9
19322819 - J Biomed Mater Res A. 2010 Mar 1;92(3):1181-9
16024072 - Biomaterials. 2006 Jan;27(2):167-75
15027844 - J Biomater Sci Polym Ed. 2004;15(1):73-94
7827749 - Matrix Biol. 1994 Aug;14(4):275-81
19105780 - Expert Rev Med Devices. 2009 Jan;6(1):51-60
12222757 - J Biomater Appl. 2002 Jul;17(1):45-70
8435455 - Biomaterials. 1993;14(2):122-6
17507089 - Biomaterials. 2007 Aug;28(24):3537-48
21098468 - Circulation. 2010 Nov 16;122(20):2068-77
10682724 - J Bone Joint Surg Am. 2000 Feb;82(2):151-60
15967494 - Biomaterials. 2005 Dec;26(34):6924-31
9860174 - J Biomater Sci Polym Ed. 1998;9(12):1349-59
References_xml – ident: e_1_3_2_30_2
  doi: 10.1016/S0169-409X(00)00094-6
– ident: e_1_3_2_37_2
  doi: 10.1016/j.actbio.2012.02.003
– ident: e_1_3_2_14_2
  doi: 10.1002/jbm.a.32375
– ident: e_1_3_2_35_2
  doi: 10.1002/jbm.a.32436
– ident: e_1_3_2_9_2
  doi: 10.1016/S0142-9612(03)00046-2
– ident: e_1_3_2_29_2
  doi: 10.2106/00004623-200002000-00001
– ident: e_1_3_2_38_2
  doi: 10.1088/1748-6041/6/4/045004
– ident: e_1_3_2_46_2
  doi: 10.1007/s10719-008-9188-7
– ident: e_1_3_2_20_2
  doi: 10.1106/088532802027861
– ident: e_1_3_2_6_2
  doi: 10.1161/CIRCULATIONAHA.110.936773
– ident: e_1_3_2_13_2
  doi: 10.1016/j.actbio.2009.07.013
– ident: e_1_3_2_28_2
  doi: 10.1074/jbc.273.49.32491
– ident: e_1_3_2_24_2
  doi: 10.1016/j.biomaterials.2007.04.026
– ident: e_1_3_2_45_2
  doi: 10.1016/0945-053X(94)90192-9
– ident: e_1_3_2_11_2
  doi: 10.1002/jbm.a.30512
– ident: e_1_3_2_43_2
  doi: 10.1163/016942410X507966
– ident: e_1_3_2_7_2
  doi: 10.1016/j.colsurfb.2010.04.018
– ident: e_1_3_2_25_2
  doi: 10.1096/fj.01-0826com
– ident: e_1_3_2_23_2
  doi: 10.1163/156856204322752246
– ident: e_1_3_2_15_2
  doi: 10.1002/jbm.a.33066
– ident: e_1_3_2_17_2
  doi: 10.1001/archsurg.1980.01380110033005
– ident: e_1_3_2_10_2
  doi: 10.1002/jbm.a.10494
– ident: e_1_3_2_18_2
  doi: 10.1016/j.biomaterials.2007.01.039
– ident: e_1_3_2_16_2
  doi: 10.1067/mva.1987.avs0060017
– ident: e_1_3_2_19_2
  doi: 10.1067/mva.1985.avs0020778
– ident: e_1_3_2_4_2
  doi: 10.1046/j.1525-1594.1998.6184R.x
– ident: e_1_3_2_22_2
  doi: 10.1016/0142-9612(96)00028-2
– ident: e_1_3_2_33_2
  doi: 10.1016/j.actbio.2009.03.020
– ident: e_1_3_2_40_2
  doi: 10.1016/j.biomaterials.2005.06.001
– ident: e_1_3_2_44_2
  doi: 10.1016/S0300-9084(97)82738-1
– ident: e_1_3_2_21_2
  doi: 10.1002/jbm.b.30135
– ident: e_1_3_2_36_2
  doi: 10.1088/1758-5082/3/2/022001
– ident: e_1_3_2_3_2
  doi: 10.1126/science.1068555
– ident: e_1_3_2_27_2
  doi: 10.1002/path.1396
– ident: e_1_3_2_32_2
  doi: 10.1016/j.msec.2008.06.012
– ident: e_1_3_2_47_2
  doi: 10.1083/jcb.110.6.2145
– ident: e_1_3_2_26_2
  doi: 10.1016/1357-2725(96)00042-8
– ident: e_1_3_2_34_2
  doi: 10.1016/j.actbio.2009.08.038
– ident: e_1_3_2_8_2
  doi: 10.1586/17434440.6.1.51
– ident: e_1_3_2_48_2
  doi: 10.1067/mva.1988.avs0070591
– ident: e_1_3_2_42_2
  doi: 10.1016/j.msec.2009.01.012
– ident: e_1_3_2_41_2
  doi: 10.1016/S0142-9612(02)00252-1
– ident: e_1_3_2_5_2
  doi: 10.1016/0142-9612(93)90222-N
– ident: e_1_3_2_31_2
  doi: 10.1039/c0jm00399a
– ident: e_1_3_2_39_2
  doi: 10.1097/MAT.0b013e3181a7b540
– ident: e_1_3_2_2_2
  doi: 10.1163/156856298X00433
– ident: e_1_3_2_12_2
  doi: 10.1016/j.biomaterials.2005.04.066
– reference: 19607942 - Acta Biomater. 2010 Feb;6(2):534-46
– reference: 9754460 - Artif Organs. 1998 Sep;22(9):753-8
– reference: 21474887 - Biofabrication. 2011 Jun;3(2):022001
– reference: 12699653 - Biomaterials. 2003 Jun;24(13):2177-87
– reference: 4057435 - J Vasc Surg. 1985 Nov;2(6):778-84
– reference: 10682724 - J Bone Joint Surg Am. 2000 Feb;82(2):151-60
– reference: 17507089 - Biomaterials. 2007 Aug;28(24):3537-48
– reference: 6449186 - Arch Surg. 1980 Nov;115(11):1289-94
– reference: 18814027 - Glycoconj J. 2009 Aug;26(6):697-704
– reference: 20547042 - Colloids Surf B Biointerfaces. 2010 Sep 1;79(2):357-64
– reference: 22343517 - Acta Biomater. 2012 Jul;8(6):2034-46
– reference: 11072114 - Adv Drug Deliv Rev. 2000 Nov 15;44(2-3):185-94
– reference: 15967494 - Biomaterials. 2005 Dec;26(34):6924-31
– reference: 3352078 - J Vasc Surg. 1988 Apr;7(4):591-9
– reference: 8435455 - Biomaterials. 1993;14(2):122-6
– reference: 16138324 - J Biomed Mater Res A. 2006 Jan;76(1):86-94
– reference: 21098468 - Circulation. 2010 Nov 16;122(20):2068-77
– reference: 9829982 - J Biol Chem. 1998 Dec 4;273(49):32491-9
– reference: 19375998 - Acta Biomater. 2009 Sep;5(7):2647-56
– reference: 2955133 - J Vasc Surg. 1987 Jul;6(1):17-25
– reference: 19105780 - Expert Rev Med Devices. 2009 Jan;6(1):51-60
– reference: 8930117 - Int J Biochem Cell Biol. 1996 Sep;28(9):957-9
– reference: 19729081 - Acta Biomater. 2010 Mar;6(3):962-8
– reference: 8922600 - Biomaterials. 1996 Nov;17(22):2147-56
– reference: 7827749 - Matrix Biol. 1994 Aug;14(4):275-81
– reference: 17316788 - Biomaterials. 2007 Jun;28(16):2547-71
– reference: 15389489 - J Biomed Mater Res B Appl Biomater. 2005 Jan 15;72(1):131-9
– reference: 16024072 - Biomaterials. 2006 Jan;27(2):167-75
– reference: 21484986 - J Biomed Mater Res A. 2011 Jun 15;97(4):423-32
– reference: 19471159 - ASAIO J. 2009 Jul-Aug;55(4):314-22
– reference: 12761829 - J Biomed Mater Res A. 2003 Jun 15;65(4):409-16
– reference: 19189389 - J Biomed Mater Res A. 2010 Jan;92(1):350-8
– reference: 21636885 - Biomed Mater. 2011 Aug;6(4):045004
– reference: 12417179 - Biomaterials. 2003 Jan;24(1):65-70
– reference: 12039860 - FASEB J. 2002 Jun;16(8):791-6
– reference: 12222757 - J Biomater Appl. 2002 Jul;17(1):45-70
– reference: 19322819 - J Biomed Mater Res A. 2010 Mar 1;92(3):1181-9
– reference: 9860174 - J Biomater Sci Polym Ed. 1998;9(12):1349-59
– reference: 11834809 - Science. 2002 Feb 8;295(5557):998-9
– reference: 15027844 - J Biomater Sci Polym Ed. 2004;15(1):73-94
– reference: 1693624 - J Cell Biol. 1990 Jun;110(6):2145-55
– reference: 12845613 - J Pathol. 2003 Jul;200(4):465-70
– reference: 9451447 - Biochimie. 1997 Sep;79(8):467-76
SSID ssj0037355
Score 2.0656197
Snippet Apatite (Ap), laminin–apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin–apatite (AlbAp) composite layers were prepared on titanium (Ti) using a...
Apatite (Ap), laminin-apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin-apatite (AlbAp) composite layers were prepared on titanium (Ti) using a...
SourceID pubmedcentral
proquest
pubmed
crossref
royalsociety
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20130014
SubjectTerms Albumins - chemistry
Apatite
Apatites - chemistry
Biocompatible Materials
Biotechnology - methods
Cell Adhesion
Cell Adhesion - physiology
Cell Retention
Endothelialization
Human Umbilical Vein Endothelial Cells - physiology
Humans
Laminin
Laminin - chemistry
Shear Strength - physiology
Titanium
Titanium - chemistry
Title Improvement in endothelial cell adhesion and retention under physiological shear stress using a laminin–apatite composite layer on titanium
URI https://api.istex.fr/ark:/67375/V84-NWZR3TR1-P/fulltext.pdf
https://royalsocietypublishing.org/doi/full/10.1098/rsif.2013.0014
https://www.ncbi.nlm.nih.gov/pubmed/23407573
https://www.proquest.com/docview/1288313658
https://pubmed.ncbi.nlm.nih.gov/PMC3627121
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe-GCKM_lJSMhHiopSZzN44gQVUGioLKFFQcsJ3bUqG12lWwQ7Yk_wInfwZ_ilzBjJ252u5Uol2jXGXmzmS_jz5N5EPIIlohEDn3p-FkSOkGeCCfJ8MHDald-JoECoGvg3U64vRe8HQ_HKyu_e1FLzSzdzE6W5pX8j1ZhDPSKWbIX0KydFAbgM-gXjqBhOP6Tjo1HQDv4dOmPUmI-1SE6wdEhvyHkvqq7eOMK6bHWNuaNVcanYU1fjZ2tu8yRRjsQxAagBftHdAERTGD49UzpOHQM9lIgAZRdv3AogGUWbV2Hs2QX6a3xVHRholinospFD1gm0LiZTk6d_MYQjYtmqtoV1lQ-aI7FkWa972tx1NhFY1KLA0OGjyd9dwa2lggcN7QAHC1eTs82wy7eAQQZC6v6YwsG3e0B1zSEObNQuAkmP1R1ocu4YpVbk8u6UHzbvKKPOQpyFMQYwOASWfNhV6Jzy8c2oohFTDfZtddpa4TGL-Z_aI4DreHj_H3ZBmdJnG6Ft6Y2d6bHg0ZXyZVWp_SlQeM6WVHlNbLeLhE1fdrWMX92nfzswZMWJe3BkyI8aQdPCvCkFp5Uw5POwZNqeFIDT6rhSQVt4fnnx68WmNQCk2pgUpitA-YNsrf1evRq22m7fzhZyPyZk2ZeINNhJDMZChYFeS4xCdqPpIwjlcNgCtwZVyQR5mmasTAOpWBSZbCHUIqxm2S1nJTqNqEC7FAqFAOguEhg0yxxoyT28yAVQAbcAXE6ffCsLY2PHVoO-XL9D8gTKz81RWHOlXys1WvFRHWAoZTRkH-KA77z-csuG-16_MOAPOz0z8HAoxZEqSZNzT3sB47BqPGA3DJ4sLP5LADKH7EBieaQYgWwePz8mbLY10XkgbhGnu8NyPM-pnhr3epz_8_X5eK7H99sffPcIva47l0Y-cEw4CfF1EwAs-nHkcP5-RkXvt652PXcJZdPjcg9sjqrGnUfdgmz9IF-Nv8CMy8ctA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+in+endothelial+cell+adhesion+and+retention+under+physiological+shear+stress+using+a+laminin%E2%80%93apatite+composite+layer+on+titanium&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=He%2C+Fupo&rft.au=Wang%2C+Xiupeng&rft.au=Maruyama%2C+Osamu&rft.au=Kosaka%2C+Ryo&rft.date=2013-04-06&rft.pub=The+Royal+Society&rft.issn=1742-5689&rft.eissn=1742-5662&rft.volume=10&rft.issue=81&rft_id=info:doi/10.1098%2Frsif.2013.0014&rft.externalDocID=10_1098_rsif_2013_0014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5689&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5689&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5689&client=summon