Accurate RNA velocity estimation based on multibatch network reveals complex lineage in batch scRNA-seq data
RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in...
Saved in:
Published in | BMC biology Vol. 22; no. 1; pp. 290 - 16 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
18.12.2024
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance. |
---|---|
AbstractList | RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance. RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance. Keywords: scRNA-seq data, RNA velocity, Batch effect, Complex lineage, Optimal transport RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance.RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance. Abstract RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI’s velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance. |
ArticleNumber | 290 |
Audience | Academic |
Author | Qin, Jie Huang, Zhaoyang Zhao, Chenguang Guo, Xinyang Yu, Liang Gao, Lin Ju, Fen |
Author_xml | – sequence: 1 givenname: Zhaoyang surname: Huang fullname: Huang, Zhaoyang – sequence: 2 givenname: Xinyang surname: Guo fullname: Guo, Xinyang – sequence: 3 givenname: Jie surname: Qin fullname: Qin, Jie – sequence: 4 givenname: Lin surname: Gao fullname: Gao, Lin – sequence: 5 givenname: Fen surname: Ju fullname: Ju, Fen – sequence: 6 givenname: Chenguang surname: Zhao fullname: Zhao, Chenguang – sequence: 7 givenname: Liang surname: Yu fullname: Yu, Liang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39696422$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltr3DAQhU1JaS7tH-hDMfQlfXAqyZZkPZUl9LIQGkgvr0KWxxttbSuR5G3y7zu7m6bZUEoRQoP0nSNmOIfZ3uhHyLKXlJxQWou3kTJFeUFYhZvUvKifZAdUVrSQhMi9B_V-dhjjkhDGpSyfZfulEkpUjB1k_czaKZgE-cXnWb6C3luXbnOIyQ0mOT_mjYnQ5lgMU59cY5K9zEdIP334kQdYgeljbv1w1cNN3rsRzAJyt5atwWjRtohwnbcmmefZ0w5xeHF3HmXfPrz_evqpODv_OD-dnRVWlCwVTW0NJ50EVhnJjWlEJ0urOJXW8rLiHbXEtsAEU0YwIbuSW9s1iquWVKBoeZTNt76tN0t9FbCVcKu9cXpz4cNCm5Cc7UHTVnBVcqW4JFVpatVV0BImeC1ILaxBr3dbr6upGaC1MKZg-h3T3ZfRXeqFX2lKBZdCMHQ4vnMI_nrCyerBRQt9b0bwU9QlrSQtKaME0deP0KWfwoizQopjq4oo-YdaGOzAjZ3Hj-3aVM9qRpAjQiB18hcKVwuDs5ikzuH9juDNjgCZBDdpYaYY9fzLxf-z59932VcPJ3g_ut8hRIBtARt8jAG6e4QSvU663iZdY9L1Jum6RlH9SITB3SQW23T9v6S_AGpX_oE |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2025_142255 |
Cites_doi | 10.1038/nbt.4091 10.3390/cells10123332 10.15252/msb.20178046 10.1038/s41586-018-0414-6 10.1016/j.crmeth.2023.100581 10.1038/s41392-022-00885-4 10.1038/s41587-020-0591-3 10.1016/j.cell.2021.12.045 10.1038/nrn3053 10.1186/s13059-024-03422-4 10.1038/s41592-021-01336-8 10.15252/msb.202110282 10.1038/s41592-018-0229-2 10.1038/s41592-021-01346-6 10.1242/dev.156059 10.1038/s41592-023-01994-w 10.1126/sciadv.abq3745 10.1038/s41587-021-01206-w 10.1038/s41576-021-00444-7 10.1016/j.cell.2019.01.006 10.1038/s41592-022-01408-3 10.1038/s41587-021-00870-2 10.1016/j.cell.2021.04.048 10.1038/nature18323 10.1371/journal.pcbi.1008585 10.1038/s41587-019-0071-9 10.1101/2022.09.12.507691 10.1038/s41467-022-34188-7 10.1073/pnas.2105859118 10.1101/2022.07.08.499381 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 4U- 7QG 7QP 7QR 7SN 7SS 7TK 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC P64 PADUT PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12915-024-02085-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) University Readers Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database ProQuest Research Library ProQuest Biological Science Database (NC LIVE) Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) University Readers Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1741-7007 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_1d659359957043a89f4ed026586086ca PMC11657662 A820526066 39696422 10_1186_s12915_024_02085_8 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ 8G5 AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR IOV ISE ISR ITC KQ8 LK8 M1P M2O M48 M7P M~E O5R O5S OK1 OVT P2P PADUT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 3V. 4U- 7QG 7QP 7QR 7SN 7SS 7TK 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c632t-b8ca50f7e24a75aab6f73c9517cc5345f1c0cde2629a6267f35ccfb959d04e913 |
IEDL.DBID | DOA |
ISSN | 1741-7007 |
IngestDate | Wed Aug 27 01:30:12 EDT 2025 Thu Aug 21 18:30:29 EDT 2025 Tue Aug 05 10:39:16 EDT 2025 Fri Jul 25 19:04:10 EDT 2025 Tue Jun 17 21:57:55 EDT 2025 Tue Jun 10 21:05:32 EDT 2025 Fri Jun 27 05:14:46 EDT 2025 Fri Jun 27 05:14:30 EDT 2025 Thu Apr 03 07:04:59 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Tue Jul 01 02:58:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Complex lineage scRNA-seq data Batch effect Optimal transport RNA velocity |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c632t-b8ca50f7e24a75aab6f73c9517cc5345f1c0cde2629a6267f35ccfb959d04e913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/1d659359957043a89f4ed026586086ca |
PMID | 39696422 |
PQID | 3152679097 |
PQPubID | 42637 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d659359957043a89f4ed026586086ca pubmedcentral_primary_oai_pubmedcentral_nih_gov_11657662 proquest_miscellaneous_3147131210 proquest_journals_3152679097 gale_infotracmisc_A820526066 gale_infotracacademiconefile_A820526066 gale_incontextgauss_ISR_A820526066 gale_incontextgauss_IOV_A820526066 pubmed_primary_39696422 crossref_primary_10_1186_s12915_024_02085_8 crossref_citationtrail_10_1186_s12915_024_02085_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-18 |
PublicationDateYYYYMMDD | 2024-12-18 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC biology |
PublicationTitleAlternate | BMC Biol |
PublicationYear | 2024 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | R Lopez (2085_CR22) 2018; 15 M Lange (2085_CR5) 2022; 19 G Schiebinger (2085_CR20) 2019; 176 Z Chen (2085_CR9) 2022; 8 2085_CR25 Y Hao (2085_CR30) 2021; 184 X Qiu (2085_CR6) 2022; 185 MD Luecken (2085_CR15) 2022; 19 2085_CR23 2085_CR24 D He (2085_CR16) 2022; 19 J Ding (2085_CR13) 2022; 23 W Saelens (2085_CR2) 2019; 37 R Chevreau (2085_CR26) 2021; 10 B Treutlein (2085_CR14) 2016; 534 V Bergen (2085_CR18) 2021; 17 C Li (2085_CR27) 2022; 7 M Gao (2085_CR8) 2022; 13 V Bergen (2085_CR4) 2020; 38 2085_CR12 2085_CR10 2085_CR32 C Qiao (2085_CR7) 2021; 118 2085_CR11 P Melsted (2085_CR17) 2021; 39 2085_CR33 A Gayoso (2085_CR31) 2022; 40 L Haghverdi (2085_CR21) 2018; 36 S David (2085_CR29) 2011; 12 JA Griffiths (2085_CR1) 2018; 14 K Obernier (2085_CR28) 2019; 146 C Soneson (2085_CR19) 2021; 17 G La Manno (2085_CR3) 2018; 560 39966937 - BMC Biol. 2025 Feb 18;23(1):46. doi: 10.1186/s12915-025-02152-8. |
References_xml | – volume: 36 start-page: 421 issue: 5 year: 2018 ident: 2085_CR21 publication-title: Nat Biotechnol doi: 10.1038/nbt.4091 – volume: 10 start-page: 3332 issue: 12 year: 2021 ident: 2085_CR26 publication-title: Cells doi: 10.3390/cells10123332 – volume: 14 issue: 4 year: 2018 ident: 2085_CR1 publication-title: Mol Syst Biol doi: 10.15252/msb.20178046 – volume: 560 start-page: 494 issue: 7719 year: 2018 ident: 2085_CR3 publication-title: Nature doi: 10.1038/s41586-018-0414-6 – ident: 2085_CR12 doi: 10.1016/j.crmeth.2023.100581 – volume: 7 start-page: 65 issue: 1 year: 2022 ident: 2085_CR27 publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-022-00885-4 – volume: 38 start-page: 1408 issue: 12 year: 2020 ident: 2085_CR4 publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0591-3 – volume: 185 start-page: 690 issue: 4 year: 2022 ident: 2085_CR6 publication-title: Cell. doi: 10.1016/j.cell.2021.12.045 – volume: 12 start-page: 388 issue: 7 year: 2011 ident: 2085_CR29 publication-title: Nat Rev Neurosci doi: 10.1038/nrn3053 – ident: 2085_CR25 doi: 10.1186/s13059-024-03422-4 – volume: 19 start-page: 41 issue: 1 year: 2022 ident: 2085_CR15 publication-title: Nat Methods doi: 10.1038/s41592-021-01336-8 – volume: 17 issue: 8 year: 2021 ident: 2085_CR18 publication-title: Mol Syst Biol doi: 10.15252/msb.202110282 – volume: 15 start-page: 1053 issue: 12 year: 2018 ident: 2085_CR22 publication-title: Nat Methods doi: 10.1038/s41592-018-0229-2 – volume: 19 start-page: 159 issue: 2 year: 2022 ident: 2085_CR5 publication-title: Nat Methods doi: 10.1038/s41592-021-01346-6 – volume: 146 start-page: dev156059 issue: 4 year: 2019 ident: 2085_CR28 publication-title: Development. doi: 10.1242/dev.156059 – ident: 2085_CR24 doi: 10.1038/s41592-023-01994-w – ident: 2085_CR32 – volume: 8 start-page: eabq3745 issue: 48 year: 2022 ident: 2085_CR9 publication-title: Science Advances. doi: 10.1126/sciadv.abq3745 – volume: 40 start-page: 163 issue: 2 year: 2022 ident: 2085_CR31 publication-title: Nature biotechnology. doi: 10.1038/s41587-021-01206-w – volume: 23 start-page: 355 issue: 6 year: 2022 ident: 2085_CR13 publication-title: Nat Rev Genet doi: 10.1038/s41576-021-00444-7 – volume: 176 start-page: 928 issue: 4 year: 2019 ident: 2085_CR20 publication-title: Cell. doi: 10.1016/j.cell.2019.01.006 – volume: 19 start-page: 316 issue: 3 year: 2022 ident: 2085_CR16 publication-title: Nat Methods doi: 10.1038/s41592-022-01408-3 – volume: 39 start-page: 813 issue: 7 year: 2021 ident: 2085_CR17 publication-title: Nat Biotechnol doi: 10.1038/s41587-021-00870-2 – ident: 2085_CR23 – volume: 184 start-page: 3573 issue: 13 year: 2021 ident: 2085_CR30 publication-title: Cell. doi: 10.1016/j.cell.2021.04.048 – volume: 534 start-page: 391 issue: 7607 year: 2016 ident: 2085_CR14 publication-title: Nature doi: 10.1038/nature18323 – volume: 17 issue: 1 year: 2021 ident: 2085_CR19 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008585 – volume: 37 start-page: 547 issue: 5 year: 2019 ident: 2085_CR2 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0071-9 – ident: 2085_CR11 doi: 10.1101/2022.09.12.507691 – volume: 13 start-page: 6586 issue: 1 year: 2022 ident: 2085_CR8 publication-title: Nat Commun doi: 10.1038/s41467-022-34188-7 – volume: 118 issue: 49 year: 2021 ident: 2085_CR7 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2105859118 – ident: 2085_CR33 – ident: 2085_CR10 doi: 10.1101/2022.07.08.499381 – reference: 39966937 - BMC Biol. 2025 Feb 18;23(1):46. doi: 10.1186/s12915-025-02152-8. |
SSID | ssj0025773 |
Score | 2.4628565 |
Snippet | RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq)... Abstract RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 290 |
SubjectTerms | Analysis Animals Batch effect Cell research Complex lineage Data mining Datasets Deep learning Effectiveness Gene expression Gene sequencing Machine learning Methods Mice Olfactory bulb Optimal transport Ribonucleic acid RNA RNA - genetics RNA sequencing RNA velocity RNA-Seq - methods scRNA-seq data Sequence Analysis, RNA - methods Single-Cell Analysis - methods Single-Cell Gene Expression Analysis Spinal cord Spinal cord injuries Stem cells Trends Velocity |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0IvgifjdaZRXBB1ma7GfyJKdYqmCFauXelt3Nblsouba5A_3vnUn2rg1i38LtbEh2Zmdmc7_5DSFvuZO-Cqlhvm05kzx55p002DU1pWSkdxzrnb8d6P0j-XWu5vmDW59hlWufODjqdhHwG_mugECjTVM25sP5BcOuUfjvam6hcZvcQeoyhHSZ-dWBSxkj1oUytd7tIbZVWI8s2dCaktWTYDRw9v_rma-Fpils8loc2ntA7ucEks5GjT8kt2L3iNwdW0r-eUzOZiGskP6BHh7MKAKCAuTZFLk0xiJFinGrpXAxYAk9uOIT2o1gcIp8TmCPdACax98Uc1BwOPQUp6FgH-C2rI8XFKGlT8jR3uefn_ZZ7qjAghZ8yXyNHRCSiVw6o5zzOhkRIMkyISghVapCGdrINW8cnHRMEiqE5BvVtKWMTSWekq1u0cVtQr3hvORByFq0soyV1w3cUhrvjNFaqYJU66W1IdONY9eLMzscO2ptR3VYUIcd1GHrgrzfzDkfyTZulP6IGttIIlH28MPi8tjmfWerVissPm6UKaVwdZNkbOHcqWoNh7ngCvIG9W2RCqNDrM2xW_W9_fL9l51BcgQ2BznZ_4R-HE6E3mWhtIAXDS7XN8ByIcXWRHJnIgkbOkyH17Zns0Pp7ZX5F-T1ZhhnIkiui4sVykCmIZARriDPRlPdLI5AFiTJeUHqiRFPVm860p2eDHTjSNAEKuXPb36uF-Qex61VcVbVO2RrebmKLyFhW_pXw678C-7gPOQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF9qRfBF_G60yiqCDxJN9jN5EDnFUoVWqJ70bdnd7LaFI2cvd9D-987kiwarT76F7OxC5mNnhsz8hpBXzAqX-1imrqpYKlh0qbNC49TUGKMWzjLsdz44VPtz8fVYHm-RYdxRz8Dm2tQO50nNV4u3F-eXH8Dg37cGX6h3DfisHPuMRdqOnEyLG-QmeCaNhnogxr8KoJ2aD40z1-6bOKcWw__Pm_qKq5qWUV7xS3t3yZ0-oKSzTgPuka1Q3ye3uhGTlw_IYub9BuEg6NHhjGKBkIe4myK2Rte0SNGPVRQe2tpCB1fzKa274nCK-E7AJ9oWnocLijEpXED0DLchYePh2LQJ5xRLTR-S-d7nH5_2037CQuoVZ-vUFTgRIerAhNXSWqei5h6CLu295ELG3Ge-Ckyx0kLmoyOX3kdXyrLKRChz_ohs18s67BDqNGMZ81wUvBJZyJ0q4UihndVaKSkTkg-sNb6HH8cpGAvTpiGFMp04DIjDtOIwRULejHt-deAb_6T-iBIbKRE4u32xXJ2Y3g5NXimJzcil1JngtiijCBXkobJQkNx5m5CXKG-D0Bg11t6c2E3TmC_ffpoZBEuSYcL3N6LvRxOi1z1RXMKHetv3OwC7EHJrQrk7oQQD99PlQffMYB-GQ9yldJmVOiEvxmXciUVzdVhukAYiD44IcQl53KnqyByOqEiCsYQUEyWecG-6Up-dtvDjCNgEImVP_ge_n5LbDA0wZ2le7JLt9WoTnkGYt3bPW9v9DU5PTDM priority: 102 providerName: Scholars Portal |
Title | Accurate RNA velocity estimation based on multibatch network reveals complex lineage in batch scRNA-seq data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39696422 https://www.proquest.com/docview/3152679097 https://www.proquest.com/docview/3147131210 https://pubmed.ncbi.nlm.nih.gov/PMC11657662 https://doaj.org/article/1d659359957043a89f4ed026586086ca |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96Ivgifls9lyiCD1KuzWfzuCt3nMKtsnpy-BKSNLk7OLpqd0H_e2fa7rJF1BdfSmkmZXdmmvkNzPyGkJfMCV-GZHJf1ywXLPncO6FxampKSQvvGPY7n8zV8al4dybPdkZ9YU1YTw_cK-6grJXE7lEjdSG4q0wSsYbEQVYK0HjooBHEvE0yNaRaUmu-aZGp1EELUa3ETmSRd0Mp82oUhjq2_t_P5J2gNC6Y3IlAR3fI7QE60mn_k--Sa7G5R272wyR_3idX0xDWSPxAF_MpxVKgAAibIotG355IMWLVFG66KkIPh_AFbfoycIpMTuCJtCsxjz8ook84auglbkPBNsBr8zZ-o1hU-oCcHh1-enOcD7MU8qA4W-W-wtkHSUcmnJbOeZU0DwCvdAiSC5nKUIQ6MsWMgxxHJy5DSN5IUxcimpI_JHvNsomPCfWasYIFLipeiyKWXhl4pdDeaa2UlBkpN6q1YSAax3kXV7ZLOCple3NYMIftzGGrjLze7vna02z8VXqGFttKIkV29wAcxw6OY__lOBl5gfa2SILRYJXNuVu3rX37_rOdAiySDFO7Pwl9XIyEXg1CaQl_NLihswHUheRaI8n9kSR8ymG8vPE9OxwlreWAsJQ2hdEZeb5dxp1YHtfE5RplAGNw5ILLyKPeVbfK4ch_JBjLSDVy4pH2xivN5UVHNI7UTGBS9uR_6PspucWwdQSrgYp9srf6vo7PANCt_IRc12d6Qm7MDucfFpPuS4briajguph9-QVEHUgV |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiDeGAgsCcUBW7X3aB4RSaNXQNqDQVr0t3vW6rVQ5bZ0I-qf4jcz4EWoheuvNys6unJnZeSQz3xDyhmXCxq5IQ5vnLBSssKHNhMapqUVRaGEzhv3OO2O1uSe-HMiDJfK764XBssrOJtaGOp86_I18lYOjUTqNUv3x9CzEqVH472o3QqNRiy1_8RNSturD6DPI9y1jG-u7nzbDdqpA6BRns9AmOAWg0J6JTMsss6rQ3EGgoZ2TXMgidpHLPVMszSDa1wWXzhU2lWkeCZ_GHM69QZYFh1RmQJbX1sffJosUT2rNu9acRK1W4E1j7IAWYT0MM0x67q-eEvCvL7jkDPuFmpc838ZdcqcNWemw0bF7ZMmX98nNZojlxQNyMnRujoATdDIeUixBchDZU0TvaNoiKXrKnMJDXb1owfgf0bIpP6eIIAU3gNal7f4XxagXTBw9xm1IWDk4Nqz8GcVi1odk71q4_YgMymnpnxBqNWMRc1wkPBeRj61K4Uihbaa1UlIGJO5Ya1wLcI5zNk5MnegkyjTiMCAOU4vDJAF5v9hz2sB7XEm9hhJbUCI0d_3B9PzQtDfdxLmS2O6cSh0JniVpIXwOma5MFKSPLgvIa5S3QfCNEqt7DrN5VZnR130zhHAMtByiwP8RfZ_0iN61RMUUvqjL2o4KYBeCevUoV3qUYEJcf7nTPdOasMr8vXABebVYxp1Yllf66RxpILbhiEEXkMeNqi6YwxF3STAWkKSnxD3u9VfK46Ma4BwhoUCk7OnV7_WS3Nrc3dk226Px1jNym-E1i1kYJytkMDuf--cQLs7si_aOUvLjus3CHwQge7M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxBtDgQWBOCCr8T7tA0KBEjUUAiq0ym3ZXXvbSpXT1omgf41fx4wfaS1Eb71Z2dmVs_NOZr4h5CWzwiU-ZLHLcxYLFlzsrNA4NTWEoIWzDPudv0zU5o74NJXTFfKn64XBssrOJtaGOp95_I18nYOjUTpDwMXQlkV82xi9OzqOcYIU_tPajdNoRGSrOP0F6Vv1drwBvH7F2Ojjjw-bcTthIPaKs3nsUpwIEHTBhNXSWqeC5h6CDu295EKGxA98XjDFMguRvw5ceh9cJrN8IIos4XDuFXJVc5mgjunpWbInteZdk06q1ivwqwn2Qou4HosZpz1HWM8L-NcrnHOL_ZLNcz5wdIvcbINXOmyk7TZZKco75FozzvL0Ljkcer9A6Am6PRlSLEbyEONTxPFoGiQp-sycwkNdx-jADezTsilEp4glBbpA6yL34jfF-BeMHT3AbUhYeTg2ropjimWt98jOpdz1fbJazsriIaFOMzZgnouU52JQJE5lcKTQzmqtlJQRSbqrNb6FOseJG4emTnlSZRp2GGCHqdlh0oi8We45aoA-LqR-jxxbUiJId_3B7GTPtDpvklxJbHzOpB4IbtMsiCKHnFemChJJbyPyAvltEIajRIHes4uqMuOvu2YIgRnIO8SD_yP6vt0jet0ShRl8UW_b3gq4LoT36lGu9SjBmPj-cid7pjVmlTlTvYg8Xy7jTizQK4vZAmkgyuGIRheRB42oLi-HIwKTYCwiaU-Ie7fXXykP9muocwSHApayRxe_1zNyHYyB-TyebD0mNxhqWcLiJF0jq_OTRfEE4sa5e1orKCU_L9si_AV-2H6D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+RNA+velocity+estimation+based+on+multibatch+network+reveals+complex+lineage+in+batch+scRNA-seq+data&rft.jtitle=BMC+biology&rft.au=Zhaoyang+Huang&rft.au=Xinyang+Guo&rft.au=Jie+Qin&rft.au=Lin+Gao&rft.date=2024-12-18&rft.pub=BMC&rft.eissn=1741-7007&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1186%2Fs12915-024-02085-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1d659359957043a89f4ed026586086ca |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon |