Accurate RNA velocity estimation based on multibatch network reveals complex lineage in batch scRNA-seq data

RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in...

Full description

Saved in:
Bibliographic Details
Published inBMC biology Vol. 22; no. 1; pp. 290 - 16
Main Authors Huang, Zhaoyang, Guo, Xinyang, Qin, Jie, Gao, Lin, Ju, Fen, Zhao, Chenguang, Yu, Liang
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 18.12.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance.
AbstractList RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance.
RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance. Keywords: scRNA-seq data, RNA velocity, Batch effect, Complex lineage, Optimal transport
RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance.RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance.
Abstract RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI’s velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance.
ArticleNumber 290
Audience Academic
Author Qin, Jie
Huang, Zhaoyang
Zhao, Chenguang
Guo, Xinyang
Yu, Liang
Gao, Lin
Ju, Fen
Author_xml – sequence: 1
  givenname: Zhaoyang
  surname: Huang
  fullname: Huang, Zhaoyang
– sequence: 2
  givenname: Xinyang
  surname: Guo
  fullname: Guo, Xinyang
– sequence: 3
  givenname: Jie
  surname: Qin
  fullname: Qin, Jie
– sequence: 4
  givenname: Lin
  surname: Gao
  fullname: Gao, Lin
– sequence: 5
  givenname: Fen
  surname: Ju
  fullname: Ju, Fen
– sequence: 6
  givenname: Chenguang
  surname: Zhao
  fullname: Zhao, Chenguang
– sequence: 7
  givenname: Liang
  surname: Yu
  fullname: Yu, Liang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39696422$$D View this record in MEDLINE/PubMed
BookMark eNqNkltr3DAQhU1JaS7tH-hDMfQlfXAqyZZkPZUl9LIQGkgvr0KWxxttbSuR5G3y7zu7m6bZUEoRQoP0nSNmOIfZ3uhHyLKXlJxQWou3kTJFeUFYhZvUvKifZAdUVrSQhMi9B_V-dhjjkhDGpSyfZfulEkpUjB1k_czaKZgE-cXnWb6C3luXbnOIyQ0mOT_mjYnQ5lgMU59cY5K9zEdIP334kQdYgeljbv1w1cNN3rsRzAJyt5atwWjRtohwnbcmmefZ0w5xeHF3HmXfPrz_evqpODv_OD-dnRVWlCwVTW0NJ50EVhnJjWlEJ0urOJXW8rLiHbXEtsAEU0YwIbuSW9s1iquWVKBoeZTNt76tN0t9FbCVcKu9cXpz4cNCm5Cc7UHTVnBVcqW4JFVpatVV0BImeC1ILaxBr3dbr6upGaC1MKZg-h3T3ZfRXeqFX2lKBZdCMHQ4vnMI_nrCyerBRQt9b0bwU9QlrSQtKaME0deP0KWfwoizQopjq4oo-YdaGOzAjZ3Hj-3aVM9qRpAjQiB18hcKVwuDs5ikzuH9juDNjgCZBDdpYaYY9fzLxf-z59932VcPJ3g_ut8hRIBtARt8jAG6e4QSvU663iZdY9L1Jum6RlH9SITB3SQW23T9v6S_AGpX_oE
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2025_142255
Cites_doi 10.1038/nbt.4091
10.3390/cells10123332
10.15252/msb.20178046
10.1038/s41586-018-0414-6
10.1016/j.crmeth.2023.100581
10.1038/s41392-022-00885-4
10.1038/s41587-020-0591-3
10.1016/j.cell.2021.12.045
10.1038/nrn3053
10.1186/s13059-024-03422-4
10.1038/s41592-021-01336-8
10.15252/msb.202110282
10.1038/s41592-018-0229-2
10.1038/s41592-021-01346-6
10.1242/dev.156059
10.1038/s41592-023-01994-w
10.1126/sciadv.abq3745
10.1038/s41587-021-01206-w
10.1038/s41576-021-00444-7
10.1016/j.cell.2019.01.006
10.1038/s41592-022-01408-3
10.1038/s41587-021-00870-2
10.1016/j.cell.2021.04.048
10.1038/nature18323
10.1371/journal.pcbi.1008585
10.1038/s41587-019-0071-9
10.1101/2022.09.12.507691
10.1038/s41467-022-34188-7
10.1073/pnas.2105859118
10.1101/2022.07.08.499381
ContentType Journal Article
Copyright 2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12915-024-02085-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
University Readers
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
ProQuest Research Library
ProQuest Biological Science Database (NC LIVE)
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
University Readers
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic


Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1741-7007
EndPage 16
ExternalDocumentID oai_doaj_org_article_1d659359957043a89f4ed026586086ca
PMC11657662
A820526066
39696422
10_1186_s12915_024_02085_8
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
8G5
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IOV
ISE
ISR
ITC
KQ8
LK8
M1P
M2O
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PADUT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c632t-b8ca50f7e24a75aab6f73c9517cc5345f1c0cde2629a6267f35ccfb959d04e913
IEDL.DBID DOA
ISSN 1741-7007
IngestDate Wed Aug 27 01:30:12 EDT 2025
Thu Aug 21 18:30:29 EDT 2025
Tue Aug 05 10:39:16 EDT 2025
Fri Jul 25 19:04:10 EDT 2025
Tue Jun 17 21:57:55 EDT 2025
Tue Jun 10 21:05:32 EDT 2025
Fri Jun 27 05:14:46 EDT 2025
Fri Jun 27 05:14:30 EDT 2025
Thu Apr 03 07:04:59 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Tue Jul 01 02:58:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Complex lineage
scRNA-seq data
Batch effect
Optimal transport
RNA velocity
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c632t-b8ca50f7e24a75aab6f73c9517cc5345f1c0cde2629a6267f35ccfb959d04e913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/1d659359957043a89f4ed026586086ca
PMID 39696422
PQID 3152679097
PQPubID 42637
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_1d659359957043a89f4ed026586086ca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11657662
proquest_miscellaneous_3147131210
proquest_journals_3152679097
gale_infotracmisc_A820526066
gale_infotracacademiconefile_A820526066
gale_incontextgauss_ISR_A820526066
gale_incontextgauss_IOV_A820526066
pubmed_primary_39696422
crossref_primary_10_1186_s12915_024_02085_8
crossref_citationtrail_10_1186_s12915_024_02085_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-18
PublicationDateYYYYMMDD 2024-12-18
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC biology
PublicationTitleAlternate BMC Biol
PublicationYear 2024
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References R Lopez (2085_CR22) 2018; 15
M Lange (2085_CR5) 2022; 19
G Schiebinger (2085_CR20) 2019; 176
Z Chen (2085_CR9) 2022; 8
2085_CR25
Y Hao (2085_CR30) 2021; 184
X Qiu (2085_CR6) 2022; 185
MD Luecken (2085_CR15) 2022; 19
2085_CR23
2085_CR24
D He (2085_CR16) 2022; 19
J Ding (2085_CR13) 2022; 23
W Saelens (2085_CR2) 2019; 37
R Chevreau (2085_CR26) 2021; 10
B Treutlein (2085_CR14) 2016; 534
V Bergen (2085_CR18) 2021; 17
C Li (2085_CR27) 2022; 7
M Gao (2085_CR8) 2022; 13
V Bergen (2085_CR4) 2020; 38
2085_CR12
2085_CR10
2085_CR32
C Qiao (2085_CR7) 2021; 118
2085_CR11
P Melsted (2085_CR17) 2021; 39
2085_CR33
A Gayoso (2085_CR31) 2022; 40
L Haghverdi (2085_CR21) 2018; 36
S David (2085_CR29) 2011; 12
JA Griffiths (2085_CR1) 2018; 14
K Obernier (2085_CR28) 2019; 146
C Soneson (2085_CR19) 2021; 17
G La Manno (2085_CR3) 2018; 560
39966937 - BMC Biol. 2025 Feb 18;23(1):46. doi: 10.1186/s12915-025-02152-8.
References_xml – volume: 36
  start-page: 421
  issue: 5
  year: 2018
  ident: 2085_CR21
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4091
– volume: 10
  start-page: 3332
  issue: 12
  year: 2021
  ident: 2085_CR26
  publication-title: Cells
  doi: 10.3390/cells10123332
– volume: 14
  issue: 4
  year: 2018
  ident: 2085_CR1
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20178046
– volume: 560
  start-page: 494
  issue: 7719
  year: 2018
  ident: 2085_CR3
  publication-title: Nature
  doi: 10.1038/s41586-018-0414-6
– ident: 2085_CR12
  doi: 10.1016/j.crmeth.2023.100581
– volume: 7
  start-page: 65
  issue: 1
  year: 2022
  ident: 2085_CR27
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-022-00885-4
– volume: 38
  start-page: 1408
  issue: 12
  year: 2020
  ident: 2085_CR4
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0591-3
– volume: 185
  start-page: 690
  issue: 4
  year: 2022
  ident: 2085_CR6
  publication-title: Cell.
  doi: 10.1016/j.cell.2021.12.045
– volume: 12
  start-page: 388
  issue: 7
  year: 2011
  ident: 2085_CR29
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3053
– ident: 2085_CR25
  doi: 10.1186/s13059-024-03422-4
– volume: 19
  start-page: 41
  issue: 1
  year: 2022
  ident: 2085_CR15
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01336-8
– volume: 17
  issue: 8
  year: 2021
  ident: 2085_CR18
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.202110282
– volume: 15
  start-page: 1053
  issue: 12
  year: 2018
  ident: 2085_CR22
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 19
  start-page: 159
  issue: 2
  year: 2022
  ident: 2085_CR5
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01346-6
– volume: 146
  start-page: dev156059
  issue: 4
  year: 2019
  ident: 2085_CR28
  publication-title: Development.
  doi: 10.1242/dev.156059
– ident: 2085_CR24
  doi: 10.1038/s41592-023-01994-w
– ident: 2085_CR32
– volume: 8
  start-page: eabq3745
  issue: 48
  year: 2022
  ident: 2085_CR9
  publication-title: Science Advances.
  doi: 10.1126/sciadv.abq3745
– volume: 40
  start-page: 163
  issue: 2
  year: 2022
  ident: 2085_CR31
  publication-title: Nature biotechnology.
  doi: 10.1038/s41587-021-01206-w
– volume: 23
  start-page: 355
  issue: 6
  year: 2022
  ident: 2085_CR13
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-021-00444-7
– volume: 176
  start-page: 928
  issue: 4
  year: 2019
  ident: 2085_CR20
  publication-title: Cell.
  doi: 10.1016/j.cell.2019.01.006
– volume: 19
  start-page: 316
  issue: 3
  year: 2022
  ident: 2085_CR16
  publication-title: Nat Methods
  doi: 10.1038/s41592-022-01408-3
– volume: 39
  start-page: 813
  issue: 7
  year: 2021
  ident: 2085_CR17
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-00870-2
– ident: 2085_CR23
– volume: 184
  start-page: 3573
  issue: 13
  year: 2021
  ident: 2085_CR30
  publication-title: Cell.
  doi: 10.1016/j.cell.2021.04.048
– volume: 534
  start-page: 391
  issue: 7607
  year: 2016
  ident: 2085_CR14
  publication-title: Nature
  doi: 10.1038/nature18323
– volume: 17
  issue: 1
  year: 2021
  ident: 2085_CR19
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008585
– volume: 37
  start-page: 547
  issue: 5
  year: 2019
  ident: 2085_CR2
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0071-9
– ident: 2085_CR11
  doi: 10.1101/2022.09.12.507691
– volume: 13
  start-page: 6586
  issue: 1
  year: 2022
  ident: 2085_CR8
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34188-7
– volume: 118
  issue: 49
  year: 2021
  ident: 2085_CR7
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2105859118
– ident: 2085_CR33
– ident: 2085_CR10
  doi: 10.1101/2022.07.08.499381
– reference: 39966937 - BMC Biol. 2025 Feb 18;23(1):46. doi: 10.1186/s12915-025-02152-8.
SSID ssj0025773
Score 2.4628565
Snippet RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq)...
Abstract RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 290
SubjectTerms Analysis
Animals
Batch effect
Cell research
Complex lineage
Data mining
Datasets
Deep learning
Effectiveness
Gene expression
Gene sequencing
Machine learning
Methods
Mice
Olfactory bulb
Optimal transport
Ribonucleic acid
RNA
RNA - genetics
RNA sequencing
RNA velocity
RNA-Seq - methods
scRNA-seq data
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Single-Cell Gene Expression Analysis
Spinal cord
Spinal cord injuries
Stem cells
Trends
Velocity
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0IvgifjdaZRXBB1ma7GfyJKdYqmCFauXelt3Nblsouba5A_3vnUn2rg1i38LtbEh2Zmdmc7_5DSFvuZO-Cqlhvm05kzx55p002DU1pWSkdxzrnb8d6P0j-XWu5vmDW59hlWufODjqdhHwG_mugECjTVM25sP5BcOuUfjvam6hcZvcQeoyhHSZ-dWBSxkj1oUytd7tIbZVWI8s2dCaktWTYDRw9v_rma-Fpils8loc2ntA7ucEks5GjT8kt2L3iNwdW0r-eUzOZiGskP6BHh7MKAKCAuTZFLk0xiJFinGrpXAxYAk9uOIT2o1gcIp8TmCPdACax98Uc1BwOPQUp6FgH-C2rI8XFKGlT8jR3uefn_ZZ7qjAghZ8yXyNHRCSiVw6o5zzOhkRIMkyISghVapCGdrINW8cnHRMEiqE5BvVtKWMTSWekq1u0cVtQr3hvORByFq0soyV1w3cUhrvjNFaqYJU66W1IdONY9eLMzscO2ptR3VYUIcd1GHrgrzfzDkfyTZulP6IGttIIlH28MPi8tjmfWerVissPm6UKaVwdZNkbOHcqWoNh7ngCvIG9W2RCqNDrM2xW_W9_fL9l51BcgQ2BznZ_4R-HE6E3mWhtIAXDS7XN8ByIcXWRHJnIgkbOkyH17Zns0Pp7ZX5F-T1ZhhnIkiui4sVykCmIZARriDPRlPdLI5AFiTJeUHqiRFPVm860p2eDHTjSNAEKuXPb36uF-Qex61VcVbVO2RrebmKLyFhW_pXw678C-7gPOQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF9qRfBF_G60yiqCDxJN9jN5EDnFUoVWqJ70bdnd7LaFI2cvd9D-987kiwarT76F7OxC5mNnhsz8hpBXzAqX-1imrqpYKlh0qbNC49TUGKMWzjLsdz44VPtz8fVYHm-RYdxRz8Dm2tQO50nNV4u3F-eXH8Dg37cGX6h3DfisHPuMRdqOnEyLG-QmeCaNhnogxr8KoJ2aD40z1-6bOKcWw__Pm_qKq5qWUV7xS3t3yZ0-oKSzTgPuka1Q3ye3uhGTlw_IYub9BuEg6NHhjGKBkIe4myK2Rte0SNGPVRQe2tpCB1fzKa274nCK-E7AJ9oWnocLijEpXED0DLchYePh2LQJ5xRLTR-S-d7nH5_2037CQuoVZ-vUFTgRIerAhNXSWqei5h6CLu295ELG3Ge-Ckyx0kLmoyOX3kdXyrLKRChz_ohs18s67BDqNGMZ81wUvBJZyJ0q4UihndVaKSkTkg-sNb6HH8cpGAvTpiGFMp04DIjDtOIwRULejHt-deAb_6T-iBIbKRE4u32xXJ2Y3g5NXimJzcil1JngtiijCBXkobJQkNx5m5CXKG-D0Bg11t6c2E3TmC_ffpoZBEuSYcL3N6LvRxOi1z1RXMKHetv3OwC7EHJrQrk7oQQD99PlQffMYB-GQ9yldJmVOiEvxmXciUVzdVhukAYiD44IcQl53KnqyByOqEiCsYQUEyWecG-6Up-dtvDjCNgEImVP_ge_n5LbDA0wZ2le7JLt9WoTnkGYt3bPW9v9DU5PTDM
  priority: 102
  providerName: Scholars Portal
Title Accurate RNA velocity estimation based on multibatch network reveals complex lineage in batch scRNA-seq data
URI https://www.ncbi.nlm.nih.gov/pubmed/39696422
https://www.proquest.com/docview/3152679097
https://www.proquest.com/docview/3147131210
https://pubmed.ncbi.nlm.nih.gov/PMC11657662
https://doaj.org/article/1d659359957043a89f4ed026586086ca
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96Ivgifls9lyiCD1KuzWfzuCt3nMKtsnpy-BKSNLk7OLpqd0H_e2fa7rJF1BdfSmkmZXdmmvkNzPyGkJfMCV-GZHJf1ywXLPncO6FxampKSQvvGPY7n8zV8al4dybPdkZ9YU1YTw_cK-6grJXE7lEjdSG4q0wSsYbEQVYK0HjooBHEvE0yNaRaUmu-aZGp1EELUa3ETmSRd0Mp82oUhjq2_t_P5J2gNC6Y3IlAR3fI7QE60mn_k--Sa7G5R272wyR_3idX0xDWSPxAF_MpxVKgAAibIotG355IMWLVFG66KkIPh_AFbfoycIpMTuCJtCsxjz8ook84auglbkPBNsBr8zZ-o1hU-oCcHh1-enOcD7MU8qA4W-W-wtkHSUcmnJbOeZU0DwCvdAiSC5nKUIQ6MsWMgxxHJy5DSN5IUxcimpI_JHvNsomPCfWasYIFLipeiyKWXhl4pdDeaa2UlBkpN6q1YSAax3kXV7ZLOCple3NYMIftzGGrjLze7vna02z8VXqGFttKIkV29wAcxw6OY__lOBl5gfa2SILRYJXNuVu3rX37_rOdAiySDFO7Pwl9XIyEXg1CaQl_NLihswHUheRaI8n9kSR8ymG8vPE9OxwlreWAsJQ2hdEZeb5dxp1YHtfE5RplAGNw5ILLyKPeVbfK4ch_JBjLSDVy4pH2xivN5UVHNI7UTGBS9uR_6PspucWwdQSrgYp9srf6vo7PANCt_IRc12d6Qm7MDucfFpPuS4briajguph9-QVEHUgV
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiDeGAgsCcUBW7X3aB4RSaNXQNqDQVr0t3vW6rVQ5bZ0I-qf4jcz4EWoheuvNys6unJnZeSQz3xDyhmXCxq5IQ5vnLBSssKHNhMapqUVRaGEzhv3OO2O1uSe-HMiDJfK764XBssrOJtaGOp86_I18lYOjUTqNUv3x9CzEqVH472o3QqNRiy1_8RNSturD6DPI9y1jG-u7nzbDdqpA6BRns9AmOAWg0J6JTMsss6rQ3EGgoZ2TXMgidpHLPVMszSDa1wWXzhU2lWkeCZ_GHM69QZYFh1RmQJbX1sffJosUT2rNu9acRK1W4E1j7IAWYT0MM0x67q-eEvCvL7jkDPuFmpc838ZdcqcNWemw0bF7ZMmX98nNZojlxQNyMnRujoATdDIeUixBchDZU0TvaNoiKXrKnMJDXb1owfgf0bIpP6eIIAU3gNal7f4XxagXTBw9xm1IWDk4Nqz8GcVi1odk71q4_YgMymnpnxBqNWMRc1wkPBeRj61K4Uihbaa1UlIGJO5Ya1wLcI5zNk5MnegkyjTiMCAOU4vDJAF5v9hz2sB7XEm9hhJbUCI0d_3B9PzQtDfdxLmS2O6cSh0JniVpIXwOma5MFKSPLgvIa5S3QfCNEqt7DrN5VZnR130zhHAMtByiwP8RfZ_0iN61RMUUvqjL2o4KYBeCevUoV3qUYEJcf7nTPdOasMr8vXABebVYxp1Yllf66RxpILbhiEEXkMeNqi6YwxF3STAWkKSnxD3u9VfK46Ma4BwhoUCk7OnV7_WS3Nrc3dk226Px1jNym-E1i1kYJytkMDuf--cQLs7si_aOUvLjus3CHwQge7M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxBtDgQWBOCCr8T7tA0KBEjUUAiq0ym3ZXXvbSpXT1omgf41fx4wfaS1Eb71Z2dmVs_NOZr4h5CWzwiU-ZLHLcxYLFlzsrNA4NTWEoIWzDPudv0zU5o74NJXTFfKn64XBssrOJtaGOp95_I18nYOjUTpDwMXQlkV82xi9OzqOcYIU_tPajdNoRGSrOP0F6Vv1drwBvH7F2Ojjjw-bcTthIPaKs3nsUpwIEHTBhNXSWqeC5h6CDu295EKGxA98XjDFMguRvw5ceh9cJrN8IIos4XDuFXJVc5mgjunpWbInteZdk06q1ivwqwn2Qou4HosZpz1HWM8L-NcrnHOL_ZLNcz5wdIvcbINXOmyk7TZZKco75FozzvL0Ljkcer9A6Am6PRlSLEbyEONTxPFoGiQp-sycwkNdx-jADezTsilEp4glBbpA6yL34jfF-BeMHT3AbUhYeTg2ropjimWt98jOpdz1fbJazsriIaFOMzZgnouU52JQJE5lcKTQzmqtlJQRSbqrNb6FOseJG4emTnlSZRp2GGCHqdlh0oi8We45aoA-LqR-jxxbUiJId_3B7GTPtDpvklxJbHzOpB4IbtMsiCKHnFemChJJbyPyAvltEIajRIHes4uqMuOvu2YIgRnIO8SD_yP6vt0jet0ShRl8UW_b3gq4LoT36lGu9SjBmPj-cid7pjVmlTlTvYg8Xy7jTizQK4vZAmkgyuGIRheRB42oLi-HIwKTYCwiaU-Ie7fXXykP9muocwSHApayRxe_1zNyHYyB-TyebD0mNxhqWcLiJF0jq_OTRfEE4sa5e1orKCU_L9si_AV-2H6D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+RNA+velocity+estimation+based+on+multibatch+network+reveals+complex+lineage+in+batch+scRNA-seq+data&rft.jtitle=BMC+biology&rft.au=Zhaoyang+Huang&rft.au=Xinyang+Guo&rft.au=Jie+Qin&rft.au=Lin+Gao&rft.date=2024-12-18&rft.pub=BMC&rft.eissn=1741-7007&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1186%2Fs12915-024-02085-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1d659359957043a89f4ed026586086ca
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon