An accurate estimation of bone density improves the accuracy of subject-specific finite element models
An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylin...
Saved in:
Published in | Journal of biomechanics Vol. 41; no. 11; pp. 2483 - 2491 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
2008
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones.
Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy.
CT and ash density were linearly correlated (
R
2=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598±0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459±0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598±0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (
R
2=0.95, RMSE=7%).
The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling. |
---|---|
AbstractList | An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling. An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R super(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R super(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling. An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R2=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598±0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459±0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598±0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R2=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling. Abstract An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated ( R2 =0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598±0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459±0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598±0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy ( R2 =0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling. An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated ( R 2=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598±0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459±0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598±0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy ( R 2=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling. An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling. |
Author | Baleani, Massimiliano Viceconti, Marco Taddei, Fulvia Schotkamp, Tom Schileo, Enrico Dall’Ara, Enrico Malandrino, Andrea |
Author_xml | – sequence: 1 givenname: Enrico surname: Schileo fullname: Schileo, Enrico – sequence: 2 givenname: Enrico surname: Dall’Ara fullname: Dall’Ara, Enrico – sequence: 3 givenname: Fulvia surname: Taddei fullname: Taddei, Fulvia – sequence: 4 givenname: Andrea surname: Malandrino fullname: Malandrino, Andrea – sequence: 5 givenname: Tom surname: Schotkamp fullname: Schotkamp, Tom – sequence: 6 givenname: Massimiliano surname: Baleani fullname: Baleani, Massimiliano email: baleani@tecno.ior.it – sequence: 7 givenname: Marco surname: Viceconti fullname: Viceconti, Marco |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18606417$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstqHDEQRUVwiMdOfsE0BLLrcUnqhwQhxJg8DIYskqyFWqrG6vRjIqkN8_dWz4wxzGasjbQ496qqbl2Qs3EakZArCmsKtLru1l3jpgHNw5oBiDWUa6D1G7KiouY54wLOyAqA0VwyCefkIoQOAOqilu_IORUVVAWtV6S9GTNtzOx1xAxDdIOObhqzqc2a9GNmcQwubjM3bPz0iCGLD3gQmO1Chbnp0MQ8bNC41pmsdaNbvHoccIzZMFnsw3vyttV9wA-H-5L8_f7tz-3P_P7Xj7vbm_vcVJzFXNc1VFBLWklelCit5tai5ChQF4VptCkb3lphmS2kacpS09Sj1EKUFbel5Jfk0943Vft_Tv2owQWDfa9HnOagkq9gdYJPgVSWqRLJXgWmUyTw4xHYTbMfU7eKAi8kE2z379WBmpsBrdr4NHG_Vc-JJKDaA8ZPIXhsXxBQS_SqU8_RqyV6BaWCnfDzkdC4uAszeu360_Kve3lKCx8dehWMw9GgdT7lq-zkTlt8ObIwfVoGo_t_uMXwMg4VmAL1e1nPZTtBpFdRnTB4TQVPCIX4Fg |
CitedBy_id | crossref_primary_10_1016_j_clinbiomech_2018_06_012 crossref_primary_10_1002_cnm_2880 crossref_primary_10_1016_j_jbiomech_2017_04_007 crossref_primary_10_1007_s11831_014_9115_y crossref_primary_10_1016_j_jmbbm_2018_10_013 crossref_primary_10_3389_fbioe_2023_1120430 crossref_primary_10_1016_j_cmpb_2020_105484 crossref_primary_10_3389_fmats_2017_00031 crossref_primary_10_1016_j_procir_2020_05_142 crossref_primary_10_1007_s10237_021_01422_y crossref_primary_10_1016_j_jbiomech_2014_03_036 crossref_primary_10_1080_10255842_2022_2109415 crossref_primary_10_1016_j_jmbbm_2016_10_002 crossref_primary_10_1177_0954406219856028 crossref_primary_10_1016_j_bone_2014_09_022 crossref_primary_10_1080_10255842_2016_1181173 crossref_primary_10_1016_j_jocd_2017_09_001 crossref_primary_10_1016_j_jbiomech_2012_02_006 crossref_primary_10_1142_S0219519417500154 crossref_primary_10_1371_journal_pone_0245121 crossref_primary_10_1002_cnm_2530 crossref_primary_10_1016_j_compstruct_2018_09_006 crossref_primary_10_1002_jor_22266 crossref_primary_10_1038_s41598_022_06267_8 crossref_primary_10_1080_10255842_2018_1556260 crossref_primary_10_1002_cnm_2536 crossref_primary_10_1080_10255842_2020_1813431 crossref_primary_10_1186_s12891_022_05168_1 crossref_primary_10_1016_j_medengphy_2019_03_007 crossref_primary_10_1016_j_mad_2018_07_001 crossref_primary_10_1016_j_bone_2020_115678 crossref_primary_10_1016_j_bone_2011_07_021 crossref_primary_10_1016_j_knee_2023_06_008 crossref_primary_10_1115_1_4050928 crossref_primary_10_1016_j_crad_2019_08_026 crossref_primary_10_1016_j_medengphy_2011_07_006 crossref_primary_10_1002_rcs_1418 crossref_primary_10_1016_j_bone_2018_05_028 crossref_primary_10_1016_j_jbiomech_2008_10_039 crossref_primary_10_1080_10255842_2019_1699545 crossref_primary_10_1115_1_4047991 crossref_primary_10_1007_s00402_023_05080_w crossref_primary_10_3389_fbioe_2019_00220 crossref_primary_10_1016_j_jmbbm_2022_105415 crossref_primary_10_1115_1_4053875 crossref_primary_10_1007_s10237_017_0913_7 crossref_primary_10_1098_rsta_2010_0046 crossref_primary_10_1007_s10237_016_0866_2 crossref_primary_10_1016_j_bone_2020_115348 crossref_primary_10_1016_j_clinbiomech_2020_105027 crossref_primary_10_1016_j_bone_2022_116517 crossref_primary_10_3389_fbioe_2021_643154 crossref_primary_10_12989_aba_2013_1_1_015 crossref_primary_10_1111_str_12029 crossref_primary_10_3390_app122010256 crossref_primary_10_1038_s41598_018_36503_z crossref_primary_10_1016_j_compbiomed_2024_109544 crossref_primary_10_1007_s00198_020_05384_2 crossref_primary_10_1016_j_jmbbm_2020_104190 crossref_primary_10_3389_fsurg_2021_740008 crossref_primary_10_1007_s10237_022_01642_w crossref_primary_10_1016_j_jmbbm_2019_01_014 crossref_primary_10_1016_j_jbiomech_2014_11_042 crossref_primary_10_1016_j_jbiomech_2021_110363 crossref_primary_10_1371_journal_pone_0251297 crossref_primary_10_1002_jbmr_2291 crossref_primary_10_1016_j_bone_2018_09_014 crossref_primary_10_1016_j_cma_2012_09_006 crossref_primary_10_1016_j_jmbbm_2023_105706 crossref_primary_10_1007_s00466_012_0684_z crossref_primary_10_1016_j_medengphy_2014_06_021 crossref_primary_10_1016_j_medengphy_2018_10_007 crossref_primary_10_1007_s10237_015_0689_6 crossref_primary_10_1016_j_cmpb_2021_106499 crossref_primary_10_3390_ma13010106 crossref_primary_10_3390_ma17030673 crossref_primary_10_1016_j_injury_2023_111162 crossref_primary_10_1016_j_medengphy_2015_10_002 crossref_primary_10_1177_23814683231202993 crossref_primary_10_3390_ma15020442 crossref_primary_10_1016_j_jbiomech_2016_02_032 crossref_primary_10_1016_j_cmpb_2009_11_009 crossref_primary_10_1016_j_jcp_2012_05_027 crossref_primary_10_3389_fmech_2017_00023 crossref_primary_10_1016_j_jbiomech_2016_02_036 crossref_primary_10_1115_1_4034653 crossref_primary_10_1016_j_bone_2021_116219 crossref_primary_10_3390_bioengineering3040036 crossref_primary_10_1016_j_bone_2020_115769 crossref_primary_10_1142_S0219519418300028 crossref_primary_10_1007_s11914_018_0438_8 crossref_primary_10_1016_j_medengphy_2019_02_005 crossref_primary_10_1016_j_clinbiomech_2022_105801 crossref_primary_10_1186_s13018_024_04936_0 crossref_primary_10_1016_j_medengphy_2016_06_011 crossref_primary_10_1109_JBHI_2015_2406883 crossref_primary_10_1007_s10237_016_0787_0 crossref_primary_10_1016_j_injury_2022_04_018 crossref_primary_10_1186_s13018_022_03060_1 crossref_primary_10_1647_20_00018 crossref_primary_10_1080_10255842_2017_1291805 crossref_primary_10_1016_j_jbiomech_2010_12_028 crossref_primary_10_3389_fbioe_2022_953119 crossref_primary_10_1080_10255842_2011_641122 crossref_primary_10_1016_j_mex_2024_102879 crossref_primary_10_1016_j_jbiomech_2023_111434 crossref_primary_10_1007_s12210_021_00998_y crossref_primary_10_1109_ACCESS_2021_3129097 crossref_primary_10_1016_j_bone_2020_115759 crossref_primary_10_1016_j_bone_2021_116125 crossref_primary_10_1016_j_cct_2021_106326 crossref_primary_10_1016_j_jbiomech_2013_06_035 crossref_primary_10_1115_1_4024159 crossref_primary_10_1016_j_cmpb_2019_03_010 crossref_primary_10_1186_s40634_016_0072_2 crossref_primary_10_1002_cnm_2989 crossref_primary_10_1016_j_jbiomech_2010_06_033 crossref_primary_10_1007_s00198_015_3404_7 crossref_primary_10_1016_j_bone_2014_06_038 crossref_primary_10_1016_j_medengphy_2010_09_014 crossref_primary_10_1016_j_arth_2013_01_010 crossref_primary_10_3389_fbioe_2022_893337 crossref_primary_10_1016_j_tripleo_2009_11_010 crossref_primary_10_1177_0954411911416048 crossref_primary_10_1016_j_jbiomech_2021_110315 crossref_primary_10_1016_j_jmbbm_2016_06_004 crossref_primary_10_1142_S0219519417500129 crossref_primary_10_1016_j_medengphy_2014_02_019 crossref_primary_10_1016_j_medengphy_2019_06_015 crossref_primary_10_1016_j_jbiomech_2014_04_050 crossref_primary_10_1016_j_jbiomech_2017_08_017 crossref_primary_10_1016_j_jbiomech_2014_08_030 crossref_primary_10_1038_s41598_024_61305_x crossref_primary_10_3389_fphys_2018_00545 crossref_primary_10_1016_j_medengphy_2012_08_022 crossref_primary_10_1186_s41747_020_00180_3 crossref_primary_10_1016_j_jmbbm_2020_103866 crossref_primary_10_1016_j_jbiomech_2022_111039 crossref_primary_10_3390_bdcc4040040 crossref_primary_10_1016_j_clinbiomech_2013_12_018 crossref_primary_10_1016_j_jbiomech_2009_01_013 crossref_primary_10_1038_s41598_024_57768_7 crossref_primary_10_1016_j_jbiomech_2009_01_014 crossref_primary_10_3390_bioengineering11040344 crossref_primary_10_1007_s10237_018_1008_9 crossref_primary_10_1016_j_jbiomech_2014_08_024 crossref_primary_10_1016_j_jmbbm_2024_106681 crossref_primary_10_1016_j_jmbbm_2013_02_006 crossref_primary_10_1007_s11012_021_01452_x crossref_primary_10_1016_j_medengphy_2011_05_010 crossref_primary_10_1515_cdbme_2015_0081 crossref_primary_10_1016_j_jmbbm_2019_06_027 crossref_primary_10_1016_j_medengphy_2010_11_005 crossref_primary_10_1016_j_jbiomech_2009_09_049 crossref_primary_10_1016_j_clinbiomech_2019_06_004 crossref_primary_10_1118_1_3582946 crossref_primary_10_1016_j_bone_2011_06_035 crossref_primary_10_1016_j_actbio_2021_01_011 crossref_primary_10_3390_app10186514 crossref_primary_10_1002_jor_25138 crossref_primary_10_1177_0954411914540285 crossref_primary_10_1007_s00198_016_3597_4 crossref_primary_10_1371_journal_pone_0305474 crossref_primary_10_1016_j_compositesb_2014_01_007 crossref_primary_10_1016_j_jmbbm_2016_04_008 crossref_primary_10_1243_09544119JEIM553 crossref_primary_10_1016_j_jbiomech_2011_03_024 crossref_primary_10_1016_j_jbiomech_2018_05_037 crossref_primary_10_1016_j_jbiomech_2015_03_027 crossref_primary_10_1016_j_jbiomech_2011_11_048 crossref_primary_10_1016_j_jos_2018_04_005 crossref_primary_10_1016_j_jmbbm_2016_08_026 crossref_primary_10_1007_s40032_023_00944_x crossref_primary_10_1007_s00198_017_4319_2 crossref_primary_10_1016_j_jbiomech_2020_109599 crossref_primary_10_1016_j_compbiomed_2021_104833 crossref_primary_10_1002_jbmr_4878 crossref_primary_10_1016_j_medengphy_2019_05_005 crossref_primary_10_1016_j_medengphy_2024_104274 crossref_primary_10_1111_jmi_12159 crossref_primary_10_1016_j_jmbbm_2023_106186 crossref_primary_10_1016_j_jbiomech_2011_10_019 crossref_primary_10_1016_j_jbiomech_2009_10_040 crossref_primary_10_1002_jsp2_1176 crossref_primary_10_1016_j_bone_2019_01_001 crossref_primary_10_2139_ssrn_4097564 crossref_primary_10_1002_jsp2_1170 crossref_primary_10_1302_2046_3758_25_2000150 crossref_primary_10_1371_journal_pone_0218268 crossref_primary_10_1007_s11012_019_01097_x crossref_primary_10_1016_j_bone_2022_116351 crossref_primary_10_1016_j_conctc_2023_101181 crossref_primary_10_1007_s10439_019_02312_2 crossref_primary_10_1016_j_jmbbm_2023_105662 crossref_primary_10_1016_j_jmbbm_2024_106773 crossref_primary_10_1016_j_cmpb_2022_106820 crossref_primary_10_1177_0391398818815479 crossref_primary_10_1002_jor_24866 crossref_primary_10_1016_j_jmbbm_2016_07_004 crossref_primary_10_1021_acsomega_0c06144 crossref_primary_10_1111_j_1757_7861_2010_00099_x crossref_primary_10_1016_j_jmbbm_2020_104118 crossref_primary_10_1080_10255842_2020_1789863 crossref_primary_10_1007_s10704_024_00836_w crossref_primary_10_1115_1_4052372 crossref_primary_10_1016_j_clinbiomech_2023_105931 crossref_primary_10_1080_13588265_2012_730212 crossref_primary_10_1016_j_jbiomech_2013_10_033 crossref_primary_10_1080_10255842_2023_2293654 crossref_primary_10_1002_jor_25067 crossref_primary_10_3389_fbioe_2024_1511685 crossref_primary_10_1111_clr_12737 crossref_primary_10_1016_j_heliyon_2024_e26213 crossref_primary_10_1016_j_medengphy_2022_103841 crossref_primary_10_1097_BOR_0000000000000405 crossref_primary_10_1186_s40634_023_00597_w crossref_primary_10_1007_s11012_024_01850_x crossref_primary_10_1007_s10439_020_02483_3 crossref_primary_10_1155_2017_5707568 crossref_primary_10_1016_j_bone_2009_05_023 crossref_primary_10_1016_j_jbiomech_2014_09_016 crossref_primary_10_1097_CORR_0000000000001912 crossref_primary_10_1007_s10237_011_0322_2 crossref_primary_10_1016_j_medengphy_2014_09_006 crossref_primary_10_1007_s10237_018_1081_0 crossref_primary_10_1007_s11914_020_00592_5 crossref_primary_10_1016_j_medengphy_2021_07_012 crossref_primary_10_1155_2015_837585 crossref_primary_10_1016_j_jocd_2024_101471 crossref_primary_10_1371_journal_pone_0173228 crossref_primary_10_1007_s10237_021_01439_3 crossref_primary_10_1016_j_morpho_2019_09_007 crossref_primary_10_4028_www_scientific_net_AMM_553_299 crossref_primary_10_1142_S0219519415300033 crossref_primary_10_1007_s00402_020_03670_6 crossref_primary_10_1016_j_medengphy_2016_08_010 crossref_primary_10_1016_j_jbiomech_2013_04_026 crossref_primary_10_1016_j_engfracmech_2018_04_024 crossref_primary_10_1016_j_medengphy_2020_05_013 crossref_primary_10_1142_S0219519412004478 crossref_primary_10_1142_S0219519414500328 crossref_primary_10_1002_jor_25404 crossref_primary_10_1115_1_4040122 crossref_primary_10_1016_j_jmbbm_2021_104960 crossref_primary_10_1016_j_jbiomech_2010_08_032 crossref_primary_10_3390_life14070841 crossref_primary_10_1016_j_jbiomech_2024_112335 crossref_primary_10_1016_j_bone_2012_09_006 crossref_primary_10_1016_j_medengphy_2013_03_020 crossref_primary_10_1016_j_bone_2025_117465 crossref_primary_10_1016_j_clinbiomech_2017_01_017 crossref_primary_10_1016_j_clinbiomech_2015_02_006 crossref_primary_10_1016_j_jbiomech_2019_01_049 crossref_primary_10_1002_jor_26043 crossref_primary_10_1115_1_4004180 crossref_primary_10_1016_j_medengphy_2016_03_006 crossref_primary_10_1115_1_4062488 crossref_primary_10_1016_j_clinbiomech_2019_05_028 crossref_primary_10_1155_2017_5219541 crossref_primary_10_1098_rsif_2013_1146 crossref_primary_10_1016_j_bone_2025_117457 crossref_primary_10_1186_s13018_021_02614_z |
Cites_doi | 10.1002/jor.1100090315 10.1016/S0268-0033(02)00207-3 10.1016/S0021-9290(99)00099-8 10.1016/0021-9290(94)90056-6 10.1016/j.medengphy.2006.10.014 10.1016/S0021-9290(03)00071-X 10.1016/S0021-9290(00)00036-1 10.1016/j.medengphy.2004.10.001 10.1016/S0021-9290(00)00069-5 10.1243/095441104322984022 10.1016/0021-9290(94)90014-0 10.1067/moe.2002.126451 10.1016/0141-5425(93)90066-8 10.1016/S8756-3282(03)00210-2 10.1016/0021-9290(88)90167-4 10.1016/S0021-9290(97)00123-1 10.1016/j.clinbiomech.2006.01.010 10.1016/j.jbiomech.2003.08.010 10.1097/01.blo.0000164400.37905.22 10.1016/0021-9290(88)90186-8 10.1016/j.jbiomech.2005.07.018 10.2106/00004623-197759070-00021 10.1243/095441105X34293 10.1016/j.cmpb.2007.05.002 10.1016/j.jbiomech.2004.03.005 10.1016/S8756-3282(01)00467-7 10.1002/jbm.820281111 10.1016/j.medengphy.2005.06.003 10.1118/1.596899 10.1016/j.jbiomech.2007.02.010 10.1016/S1350-4533(03)00138-3 10.1016/j.jbiomech.2006.11.020 10.1016/j.clinbiomech.2005.01.010 10.1002/ajpa.1330290113 10.1016/0268-0033(94)90018-3 10.1016/j.clinbiomech.2007.08.024 10.1016/S1350-4533(03)00030-4 10.1115/1.2794181 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Ltd Elsevier Ltd |
Copyright_xml | – notice: 2008 Elsevier Ltd – notice: Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2008.05.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Calcium & Calcified Tissue Abstracts Calcium & Calcified Tissue Abstracts Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 2491 |
ExternalDocumentID | 2744105471 18606417 10_1016_j_jbiomech_2008_05_017 S0021929008002467 1_s2_0_S0021929008002467 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- 3V. AACTN AFCTW AFFDN AFKWA AJOXV ALIPV AMFUW PKN RIG YCJ AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG F3I LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c632t-a7706079169345e9da3dde93e8ea44cbac5b3fd8d2d49cb55a10029a88563d593 |
IEDL.DBID | AIKHN |
ISSN | 0021-9290 |
IngestDate | Fri Jul 11 05:20:00 EDT 2025 Fri Jul 11 01:34:35 EDT 2025 Fri Jul 11 11:46:14 EDT 2025 Wed Aug 13 08:08:54 EDT 2025 Mon Jul 21 05:58:59 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Tue Jul 01 01:13:47 EDT 2025 Fri Feb 23 02:28:27 EST 2024 Sun Feb 23 10:19:39 EST 2025 Tue Aug 26 16:44:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Validation Bone density Computed tomography Bone biomechanics Subject-specific finite element model CT calibration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c632t-a7706079169345e9da3dde93e8ea44cbac5b3fd8d2d49cb55a10029a88563d593 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 18606417 |
PQID | 1034928256 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_69382756 proquest_miscellaneous_19506092 proquest_miscellaneous_19500004 proquest_journals_1034928256 pubmed_primary_18606417 crossref_primary_10_1016_j_jbiomech_2008_05_017 crossref_citationtrail_10_1016_j_jbiomech_2008_05_017 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2008_05_017 elsevier_clinicalkeyesjournals_1_s2_0_S0021929008002467 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2008_05_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-00-00 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – year: 2008 text: 2008-00-00 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2008 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Carter, Hayes (bib5) 1977; 59 Crawford, Cann, Keaveny (bib7) 2003; 33 Gupta, van der Helm, Sterk, van Keulen, Kaptein (bib12) 2004; 218 Kaneko, Bell, Pejcic, Tehranzadeh, Keyak (bib16) 2004; 37 Kaneko, Pejcic, Tehranzadeh, Keyak (bib17) 2003; 25 Morgan, Bayraktar, Keaveny (bib23) 2003; 36 Wagner, Krach, Schicho, Undt, Ploder, Ewers (bib35) 2002; 94 Weinans, Sumner, Igloria, Natarajan (bib36) 2000; 33 Wong, New, Isaacs, Taylor (bib38) 2005; 219 Helgason, Perilli, Schileo, Taddei, Brynjolfsson, Viceconti (bib13) 2008; 23 Kalender (bib15) 1992; 19 Keyak, Rossi, Jones, Skinner (bib22) 1998; 31 Viceconti, Olsen, Nolte, Burton (bib33) 2005; 20 Wirtz, Schiffers, Pandorf, Radermacher, Weichert, Forst (bib37) 2000; 33 Dalstra, Huiskes, van Erning (bib8) 1995; 117 Taddei, Pancanti, Viceconti (bib30) 2004; 26 Keyak, Fourkas, Meagher, Skinner (bib19) 1993; 15 Goulet, Goldstein, Ciarelli, Kuhn, Brown, Feldkamp (bib10) 1994; 27 Edmondston, Singer, Day, Breidahl, Price (bib9) 1994; 9 Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib27) 2007; 40 Ashman, Rho (bib1) 1988; 21 Vazquez, Lauge-Pedersen, Lidgren, Taylor (bib32) 2003; 18 Keyak, Kaneko, Tehranzadeh, Skinner (bib20) 2005 Keller (bib18) 1994; 27 Taddei, Schileo, Helgason, Cristofolini, Viceconti (bib31) 2007; 29 Barker, Netherway, Krishnan, Hearn (bib2) 2005; 27 Peng, Bai, Zeng, Zhou (bib25) 2006; 28 Keyak, Lee, Skinner (bib21) 1994; 28 Cody, Gross, Hou, Spencer, Goldstein, Fyhrie (bib6) 1999; 32 Snyder, Schneider (bib28) 1991; 9 Gupta, New, Taylor (bib11) 2006; 21 Ohman, Baleani, Perilli, Dall’Ara, Tassani, Baruffaldi, Viceconti (bib24) 2007; 40 Schaffler, Burr (bib26) 1988; 21 Bitsakos, Kerner, Fisher, Amis (bib3) 2005; 38 Hernandez, Beaupre, Keller, Carter (bib14) 2001; 29 Blanton, Biggs (bib4) 1968; 29 Taddei, Cristofolini, Martelli, Gill, Viceconti (bib29) 2006; 39 Viceconti, Taddei, Montanari, Testi, Leardini, Clapworthy, Van Sint Jan (bib34) 2007; 87 Edmondston (10.1016/j.jbiomech.2008.05.017_bib9) 1994; 9 Goulet (10.1016/j.jbiomech.2008.05.017_bib10) 1994; 27 Dalstra (10.1016/j.jbiomech.2008.05.017_bib8) 1995; 117 Morgan (10.1016/j.jbiomech.2008.05.017_bib23) 2003; 36 Weinans (10.1016/j.jbiomech.2008.05.017_bib36) 2000; 33 Keyak (10.1016/j.jbiomech.2008.05.017_bib22) 1998; 31 Wong (10.1016/j.jbiomech.2008.05.017_bib38) 2005; 219 Taddei (10.1016/j.jbiomech.2008.05.017_bib30) 2004; 26 Keyak (10.1016/j.jbiomech.2008.05.017_bib21) 1994; 28 Kaneko (10.1016/j.jbiomech.2008.05.017_bib16) 2004; 37 Keller (10.1016/j.jbiomech.2008.05.017_bib18) 1994; 27 Cody (10.1016/j.jbiomech.2008.05.017_bib6) 1999; 32 Ohman (10.1016/j.jbiomech.2008.05.017_bib24) 2007; 40 Helgason (10.1016/j.jbiomech.2008.05.017_bib13) 2008; 23 Bitsakos (10.1016/j.jbiomech.2008.05.017_bib3) 2005; 38 Kaneko (10.1016/j.jbiomech.2008.05.017_bib17) 2003; 25 Vazquez (10.1016/j.jbiomech.2008.05.017_bib32) 2003; 18 Hernandez (10.1016/j.jbiomech.2008.05.017_bib14) 2001; 29 Keyak (10.1016/j.jbiomech.2008.05.017_bib19) 1993; 15 Peng (10.1016/j.jbiomech.2008.05.017_bib25) 2006; 28 Blanton (10.1016/j.jbiomech.2008.05.017_bib4) 1968; 29 Crawford (10.1016/j.jbiomech.2008.05.017_bib7) 2003; 33 Wagner (10.1016/j.jbiomech.2008.05.017_bib35) 2002; 94 Viceconti (10.1016/j.jbiomech.2008.05.017_bib34) 2007; 87 Carter (10.1016/j.jbiomech.2008.05.017_bib5) 1977; 59 Keyak (10.1016/j.jbiomech.2008.05.017_bib20) 2005 Taddei (10.1016/j.jbiomech.2008.05.017_bib29) 2006; 39 Viceconti (10.1016/j.jbiomech.2008.05.017_bib33) 2005; 20 Kalender (10.1016/j.jbiomech.2008.05.017_bib15) 1992; 19 Gupta (10.1016/j.jbiomech.2008.05.017_bib12) 2004; 218 Taddei (10.1016/j.jbiomech.2008.05.017_bib31) 2007; 29 Barker (10.1016/j.jbiomech.2008.05.017_bib2) 2005; 27 Schaffler (10.1016/j.jbiomech.2008.05.017_bib26) 1988; 21 Wirtz (10.1016/j.jbiomech.2008.05.017_bib37) 2000; 33 Snyder (10.1016/j.jbiomech.2008.05.017_bib28) 1991; 9 Gupta (10.1016/j.jbiomech.2008.05.017_bib11) 2006; 21 Schileo (10.1016/j.jbiomech.2008.05.017_bib27) 2007; 40 Ashman (10.1016/j.jbiomech.2008.05.017_bib1) 1988; 21 J Biomech. 2008 Nov 14;41(15):3294 |
References_xml | – volume: 32 start-page: 1013 year: 1999 end-page: 1020 ident: bib6 article-title: Femoral strength is better predicted by finite element models than QCT and DXA publication-title: Journal of Biomechanics – volume: 29 start-page: 74 year: 2001 end-page: 78 ident: bib14 article-title: The influence of bone volume fraction and ash fraction on bone strength and modulus publication-title: Bone – volume: 94 start-page: 678 year: 2002 end-page: 686 ident: bib35 article-title: A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process publication-title: Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics – volume: 33 start-page: 1325 year: 2000 end-page: 1330 ident: bib37 article-title: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur publication-title: Journal of Biomechanics – volume: 9 start-page: 422 year: 1991 end-page: 431 ident: bib28 article-title: Estimation of mechanical properties of cortical bone by computed tomography publication-title: Journal of Orthopaedic Research – volume: 218 start-page: 127 year: 2004 end-page: 142 ident: bib12 article-title: Development and experimental validation of a three-dimensional finite element model of the human scapula publication-title: Proceedings of the Institute of Mechanical Engineers [H] – volume: 28 start-page: 227 year: 2006 end-page: 233 ident: bib25 article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions publication-title: Medical Engineering and Physics – volume: 20 start-page: 451 year: 2005 end-page: 454 ident: bib33 article-title: Extracting clinically relevant data from finite element simulations publication-title: Clinical Biomechanics – volume: 21 start-page: 177 year: 1988 end-page: 181 ident: bib1 article-title: Elastic modulus of trabecular bone material publication-title: Journal of Biomechanics – volume: 27 start-page: 1159 year: 1994 end-page: 1168 ident: bib18 article-title: Predicting the compressive mechanical behavior of bone publication-title: Journal of Biomechanics – volume: 36 start-page: 897 year: 2003 end-page: 904 ident: bib23 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: Journal of Biomechanics – volume: 38 start-page: 133 year: 2005 end-page: 139 ident: bib3 article-title: The effect of muscle loading on the simulation of bone remodelling in the proximal femur publication-title: Journal of Biomechanics – volume: 31 start-page: 125 year: 1998 end-page: 133 ident: bib22 article-title: Prediction of femoral fracture load using automated finite element modeling publication-title: Journal of Biomechanics – volume: 117 start-page: 272 year: 1995 end-page: 278 ident: bib8 article-title: Development and validation of a three-dimensional finite element model of the pelvic bone publication-title: Journal of Biomechanical Engineering – volume: 87 start-page: 148 year: 2007 end-page: 159 ident: bib34 article-title: Multimod data manager: a tool for data fusion publication-title: Computer Methods and Programs in Biomedicine – volume: 21 start-page: 594 year: 2006 end-page: 602 ident: bib11 article-title: Bone remodelling inside a cemented resurfaced femoral head publication-title: Clinical Biomechanics – volume: 21 start-page: 13 year: 1988 end-page: 16 ident: bib26 article-title: Stiffness of compact bone: effects of porosity and density publication-title: Journal of Biomechanics – volume: 25 start-page: 445 year: 2003 end-page: 454 ident: bib17 article-title: Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions publication-title: Medical Engineering and Physics – volume: 23 start-page: 135 year: 2008 end-page: 146 ident: bib13 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clinical Biomechanics – volume: 59 start-page: 954 year: 1977 end-page: 962 ident: bib5 article-title: The compressive behavior of bone as a two-phase porous structure publication-title: The Journal of Bone and Joint Surgery American – volume: 37 start-page: 523 year: 2004 end-page: 530 ident: bib16 article-title: Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases publication-title: Journal of Biomechanics – volume: 39 start-page: 2457 year: 2006 end-page: 2467 ident: bib29 article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy publication-title: Journal of Biomechanics – start-page: 219 year: 2005 end-page: 228 ident: bib20 article-title: Predicting proximal femoral strength using structural engineering models publication-title: Clinical Orthopaedics and Related Research – volume: 40 start-page: 2426 year: 2007 ident: bib24 article-title: Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements publication-title: Journal of Biomechanics – volume: 219 start-page: 265 year: 2005 end-page: 275 ident: bib38 article-title: Effect of bone material properties on the initial stability of a cementless hip stem: a finite element study publication-title: Proceedings of the Institution of Mechanical Engineers [H] – volume: 27 start-page: 103 year: 2005 end-page: 113 ident: bib2 article-title: Validation of a finite element model of the human metacarpal publication-title: Medical Engineering and Physics – volume: 33 start-page: 809 year: 2000 end-page: 817 ident: bib36 article-title: Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models publication-title: Journal of Biomechanics – volume: 28 start-page: 1329 year: 1994 end-page: 1336 ident: bib21 article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures publication-title: Journal of Biomedical Materials Research – volume: 40 start-page: 2982 year: 2007 end-page: 2989 ident: bib27 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: Journal of Biomechanics – volume: 19 start-page: 583 year: 1992 end-page: 586 ident: bib15 article-title: A phantom for standardization and quality control in spinal bone mineral measurements by QCT and DXA: design considerations and specifications publication-title: Medical Physics – volume: 9 start-page: 175 year: 1994 ident: bib9 article-title: Formalin fixation effects on vertebral bone density and failure mechanics: an in-vitro study of human and sheep vertebrae publication-title: Clinical Biomechanics – volume: 29 start-page: 973 year: 2007 end-page: 979 ident: bib31 article-title: The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements publication-title: Medical Engineering and Physics – volume: 29 start-page: 39 year: 1968 end-page: 44 ident: bib4 article-title: Density of fresh and embalmed human compact and cancellous bone publication-title: American Journal of Physical Anthropology – volume: 15 start-page: 505 year: 1993 end-page: 509 ident: bib19 article-title: Validation of an automated method of three-dimensional finite element modelling of bone publication-title: Journal of Biomedical Engineering – volume: 26 start-page: 61 year: 2004 end-page: 69 ident: bib30 article-title: An improved method for the automatic mapping of computed tomography numbers onto finite element models publication-title: Medical Engineering and Physics – volume: 33 start-page: 744 year: 2003 end-page: 750 ident: bib7 article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography publication-title: Bone – volume: 27 start-page: 375 year: 1994 end-page: 389 ident: bib10 article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone publication-title: Journal of Biomechanics – volume: 18 start-page: 244 year: 2003 end-page: 253 ident: bib32 article-title: Finite element analysis of the initial stability of ankle arthrodesis with internal fixation: flat cut versus intact joint contours publication-title: Clinical Biomechanics – volume: 9 start-page: 422 year: 1991 ident: 10.1016/j.jbiomech.2008.05.017_bib28 article-title: Estimation of mechanical properties of cortical bone by computed tomography publication-title: Journal of Orthopaedic Research doi: 10.1002/jor.1100090315 – volume: 18 start-page: 244 year: 2003 ident: 10.1016/j.jbiomech.2008.05.017_bib32 article-title: Finite element analysis of the initial stability of ankle arthrodesis with internal fixation: flat cut versus intact joint contours publication-title: Clinical Biomechanics doi: 10.1016/S0268-0033(02)00207-3 – volume: 32 start-page: 1013 year: 1999 ident: 10.1016/j.jbiomech.2008.05.017_bib6 article-title: Femoral strength is better predicted by finite element models than QCT and DXA publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(99)00099-8 – volume: 27 start-page: 1159 year: 1994 ident: 10.1016/j.jbiomech.2008.05.017_bib18 article-title: Predicting the compressive mechanical behavior of bone publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(94)90056-6 – volume: 29 start-page: 973 year: 2007 ident: 10.1016/j.jbiomech.2008.05.017_bib31 article-title: The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements publication-title: Medical Engineering and Physics doi: 10.1016/j.medengphy.2006.10.014 – volume: 36 start-page: 897 year: 2003 ident: 10.1016/j.jbiomech.2008.05.017_bib23 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(03)00071-X – volume: 33 start-page: 809 year: 2000 ident: 10.1016/j.jbiomech.2008.05.017_bib36 article-title: Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(00)00036-1 – volume: 27 start-page: 103 year: 2005 ident: 10.1016/j.jbiomech.2008.05.017_bib2 article-title: Validation of a finite element model of the human metacarpal publication-title: Medical Engineering and Physics doi: 10.1016/j.medengphy.2004.10.001 – volume: 33 start-page: 1325 year: 2000 ident: 10.1016/j.jbiomech.2008.05.017_bib37 article-title: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(00)00069-5 – volume: 218 start-page: 127 year: 2004 ident: 10.1016/j.jbiomech.2008.05.017_bib12 article-title: Development and experimental validation of a three-dimensional finite element model of the human scapula publication-title: Proceedings of the Institute of Mechanical Engineers [H] doi: 10.1243/095441104322984022 – volume: 27 start-page: 375 year: 1994 ident: 10.1016/j.jbiomech.2008.05.017_bib10 article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(94)90014-0 – volume: 94 start-page: 678 year: 2002 ident: 10.1016/j.jbiomech.2008.05.017_bib35 article-title: A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process publication-title: Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics doi: 10.1067/moe.2002.126451 – volume: 15 start-page: 505 year: 1993 ident: 10.1016/j.jbiomech.2008.05.017_bib19 article-title: Validation of an automated method of three-dimensional finite element modelling of bone publication-title: Journal of Biomedical Engineering doi: 10.1016/0141-5425(93)90066-8 – volume: 33 start-page: 744 year: 2003 ident: 10.1016/j.jbiomech.2008.05.017_bib7 article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography publication-title: Bone doi: 10.1016/S8756-3282(03)00210-2 – volume: 21 start-page: 177 year: 1988 ident: 10.1016/j.jbiomech.2008.05.017_bib1 article-title: Elastic modulus of trabecular bone material publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(88)90167-4 – volume: 31 start-page: 125 year: 1998 ident: 10.1016/j.jbiomech.2008.05.017_bib22 article-title: Prediction of femoral fracture load using automated finite element modeling publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(97)00123-1 – volume: 21 start-page: 594 year: 2006 ident: 10.1016/j.jbiomech.2008.05.017_bib11 article-title: Bone remodelling inside a cemented resurfaced femoral head publication-title: Clinical Biomechanics doi: 10.1016/j.clinbiomech.2006.01.010 – volume: 37 start-page: 523 year: 2004 ident: 10.1016/j.jbiomech.2008.05.017_bib16 article-title: Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2003.08.010 – start-page: 219 year: 2005 ident: 10.1016/j.jbiomech.2008.05.017_bib20 article-title: Predicting proximal femoral strength using structural engineering models publication-title: Clinical Orthopaedics and Related Research doi: 10.1097/01.blo.0000164400.37905.22 – volume: 21 start-page: 13 year: 1988 ident: 10.1016/j.jbiomech.2008.05.017_bib26 article-title: Stiffness of compact bone: effects of porosity and density publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(88)90186-8 – volume: 39 start-page: 2457 year: 2006 ident: 10.1016/j.jbiomech.2008.05.017_bib29 article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2005.07.018 – volume: 59 start-page: 954 year: 1977 ident: 10.1016/j.jbiomech.2008.05.017_bib5 article-title: The compressive behavior of bone as a two-phase porous structure publication-title: The Journal of Bone and Joint Surgery American doi: 10.2106/00004623-197759070-00021 – volume: 219 start-page: 265 year: 2005 ident: 10.1016/j.jbiomech.2008.05.017_bib38 article-title: Effect of bone material properties on the initial stability of a cementless hip stem: a finite element study publication-title: Proceedings of the Institution of Mechanical Engineers [H] doi: 10.1243/095441105X34293 – volume: 87 start-page: 148 year: 2007 ident: 10.1016/j.jbiomech.2008.05.017_bib34 article-title: Multimod data manager: a tool for data fusion publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2007.05.002 – volume: 38 start-page: 133 year: 2005 ident: 10.1016/j.jbiomech.2008.05.017_bib3 article-title: The effect of muscle loading on the simulation of bone remodelling in the proximal femur publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2004.03.005 – volume: 29 start-page: 74 year: 2001 ident: 10.1016/j.jbiomech.2008.05.017_bib14 article-title: The influence of bone volume fraction and ash fraction on bone strength and modulus publication-title: Bone doi: 10.1016/S8756-3282(01)00467-7 – volume: 28 start-page: 1329 year: 1994 ident: 10.1016/j.jbiomech.2008.05.017_bib21 article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures publication-title: Journal of Biomedical Materials Research doi: 10.1002/jbm.820281111 – volume: 28 start-page: 227 year: 2006 ident: 10.1016/j.jbiomech.2008.05.017_bib25 article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions publication-title: Medical Engineering and Physics doi: 10.1016/j.medengphy.2005.06.003 – volume: 19 start-page: 583 year: 1992 ident: 10.1016/j.jbiomech.2008.05.017_bib15 article-title: A phantom for standardization and quality control in spinal bone mineral measurements by QCT and DXA: design considerations and specifications publication-title: Medical Physics doi: 10.1118/1.596899 – volume: 40 start-page: 2982 year: 2007 ident: 10.1016/j.jbiomech.2008.05.017_bib27 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2007.02.010 – volume: 26 start-page: 61 year: 2004 ident: 10.1016/j.jbiomech.2008.05.017_bib30 article-title: An improved method for the automatic mapping of computed tomography numbers onto finite element models publication-title: Medical Engineering and Physics doi: 10.1016/S1350-4533(03)00138-3 – volume: 40 start-page: 2426 year: 2007 ident: 10.1016/j.jbiomech.2008.05.017_bib24 article-title: Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2006.11.020 – volume: 20 start-page: 451 year: 2005 ident: 10.1016/j.jbiomech.2008.05.017_bib33 article-title: Extracting clinically relevant data from finite element simulations publication-title: Clinical Biomechanics doi: 10.1016/j.clinbiomech.2005.01.010 – volume: 29 start-page: 39 year: 1968 ident: 10.1016/j.jbiomech.2008.05.017_bib4 article-title: Density of fresh and embalmed human compact and cancellous bone publication-title: American Journal of Physical Anthropology doi: 10.1002/ajpa.1330290113 – volume: 9 start-page: 175 year: 1994 ident: 10.1016/j.jbiomech.2008.05.017_bib9 article-title: Formalin fixation effects on vertebral bone density and failure mechanics: an in-vitro study of human and sheep vertebrae publication-title: Clinical Biomechanics doi: 10.1016/0268-0033(94)90018-3 – volume: 23 start-page: 135 year: 2008 ident: 10.1016/j.jbiomech.2008.05.017_bib13 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clinical Biomechanics doi: 10.1016/j.clinbiomech.2007.08.024 – volume: 25 start-page: 445 year: 2003 ident: 10.1016/j.jbiomech.2008.05.017_bib17 article-title: Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions publication-title: Medical Engineering and Physics doi: 10.1016/S1350-4533(03)00030-4 – volume: 117 start-page: 272 year: 1995 ident: 10.1016/j.jbiomech.2008.05.017_bib8 article-title: Development and validation of a three-dimensional finite element model of the pelvic bone publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2794181 – reference: - J Biomech. 2008 Nov 14;41(15):3294 |
SSID | ssj0007479 |
Score | 2.3915343 |
Snippet | An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash... Abstract An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between... An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2483 |
SubjectTerms | Accuracy Bone biomechanics Bone density Bone Density - physiology Calibration Computed tomography CT calibration Data processing Digital libraries Finite Element Analysis Geometry Hydroxyapatite Minerals Models, Biological Physical Medicine and Rehabilitation Studies Subject-specific finite element model Tomography Scanners, X-Ray Computed Validation |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAcUNnyCBTwAXEzbBI_4hNaVa0qJDhRaW-WYztSV5Btye5h_z0e20l72YJ6jkeJMvZ4Ht98A_BR1cxwKQU1hivKTMloq1xJQyBWKdYo1iaA7A9xfsG-LfkyJ9yGDKscbWI01G5tMUceTjfy6IV4Rny9uqY4NQqrq3mExkN4hNRlCOmSyyngQm74DPEoaXAD5rc6hFefV7G_PRUkmsTeKfddTvucz3gJnR3Cs-w9kkVS93N44PsZHC36EDn_3pFPJOI5Y6J8Bk9vUQ3O4PH3XEQ_gm7RE2PtFkkiCJJspO5Fsu5Iu-49cYhp3-zIZcw3-IEEHzEL2B2uGrYtZm8odmki0oh0l-i5Ep-g6CRO1xlewMXZ6c-Tc5rHLVAr6mpDjUQmHamQnoVxr5ypg-1TtW-8Ycy2xvK27lzjKseUbTk3SN-qTNNwUTuu6pdw0IfPfA3EV0IKwXjnhGdz44Js7XnXVbbpqtr5Avj4n7XNXOQ4EuOXHkFnKz3qJw_K5Drop4Avk9xVYuP4p4Qc1ajHXtNgHXW4MO4n6Yd8yAdd6qHSc4317hK3V3S-w8VTgJoksx-T_JP_euvxuNf0zYumvV_Ah-lxsANY3DG9X2_DGsVjvHf3CjFX1f4VQfENjgMo4FXa5Tc_uQmBLivlm7s_7y08SXgaTFEdw8Hmz9a_C07bpn0fT-ZfkNtAzg priority: 102 providerName: ProQuest |
Title | An accurate estimation of bone density improves the accuracy of subject-specific finite element models |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929008002467 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929008002467 https://dx.doi.org/10.1016/j.jbiomech.2008.05.017 https://www.ncbi.nlm.nih.gov/pubmed/18606417 https://www.proquest.com/docview/1034928256 https://www.proquest.com/docview/19500004 https://www.proquest.com/docview/19506092 https://www.proquest.com/docview/69382756 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tQ0JwQNDlEVgWHxC3bJv4FR_LalcFRIUQK_VmObEjtYJ0RdpDL_vbdxw73UWogOCSSIlHcezxeGx_8w3AG0WZ4VKK1BiuUmYylpbKZikuxHLFCsXKAJCdiskl-zDjsz0462NhPKwy2v5g0ztrHZ8MY2sOr-ZzH-OLoy1XwefB8b4PhzlVAlX7cPz-42S6NcjoMUekR5Z6gTuBwovTRRfmHs4likDiKXfNUbt80G4uungED6MTScahno9hzzUDOBo3uID-viFvSQfr7PbLB_DgDuPgAO59imfpR1CPG2Kqau25Iojn2ghBjGRZk3LZOGI9tH21IfNu28G1BF3FKFBtfKl2XfpNnNQHa3rAEann3oElLiDSSZdkp30ClxfnX88macy6kFaC5qvUSE-oI5VnaWHcKWsomkBFXeEMY1VpKl7S2hY2t0xVJefGs7gqUxRcUMsVfQoHDVbzORCXCykE47UVjo2MRVnqeF3nVVHn1LoEeN_OuoqU5D4zxjfdY88Wuu-fmC-Ta-yfBIZbuatAyvFHCdl3o-5DTtFIapw3_k3StXGstzrTba5H-hd9TEBtJX9S6b_66nGva_r2Q55LyMcaiwReb1-jOfBnPKZxyzWWUbxb9v2-hBipfHcJ7PjCZwVI4FnQ8ttGLnC9yzL54j9-7SXcD5gbv411DAerH2v3Ch27VXkC-6fXGV7lTJ7EQYz3d-fTz19uADUZUBo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VW4mPA4ItlEChPgC3wCaxk_iA0AKttrRdIdRKvRkndqSuIFvIrtD-KX4jM7GT9rIFIfUcjxJlxuM345k3AC9kwrXIsjTUWsiQ64iHhTRRiIFYLHkueeEKZKfp5JR_OhNnG_C764WhssrOJ7aO2sxLypHj7iYePYxn0ncXP0KaGkW3q90IDWcWh3b1C0O25u3BR9Tvyzje3zv5MAn9VIGwTJN4EeqMCGMySSwkXFhpdIJbXCY2t5rzstClKJLK5CY2XJaFEJpYSqXOc5EmRhD5Err8TZ5gKDOAzfd7089fet-P4NwXlUQhAo_RlZ7k2etZ21HvrkByxxearTsO18Hd9tjbvw_3PF5lY2dgD2DD1kPYGtcYq39fsVesrSBtU_NDuHuF3HAIt479tf0WVOOa6bJcEi0FI1oP1y_J5hUr5rVlhqroFyt23mY4bMMQlXqBckWrmmVB-aKQ-kKptolV54SVmXXF76yd59M8hNMbUcUjGNT4mY-B2TjN0pSLyqSWj7RB2cSKqorLvIoTYwMQ3X9WpWc_pyEc31RX5jZTnX78aE6hUD8BvOnlLhz_x18lsk6NqutuRX-s8Ij6P0nbeLfSqEg1sRopumGPyLxauI9HXQCyl_TIySGif3rrTmdr6vJF_W4LYLd_jJ6HrpN0bedLXCNFG2FevyIdyXj9ClR8TgMIAth2Vn75k3MMrXmUPbn-83bh9uTk-EgdHUwPn8IdV81DCbIdGCx-Lu0zhIyL4rnfpwy-3rRr-AOIH37v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRarggGDLI1CoD8DNdJPYSXxAaEVZtRQqDlTam3FiR-oKsoXsCu1f49cxEztpL1sQUs_xKFHm4Xl-A_BCpcLIPM-4MVJxYWLBS2VjjoFYokShROkbZE-zozPxYSZnW_C7n4WhtsreJnaG2i4qypGjdhOOHsYz2UEd2iI-H07fXvzgtEGKKq39Og0vIidu_QvDt_bN8SHy-mWSTN9_eXfEw4YBXmVpsuQmJ_CYXBEiiZBOWZOiuqvUFc4IUZWmkmVa28ImVqiqlNIQYqkyRSGz1EoCYkLzfytPZUw6ls-GYI9w6UN7SczRBRlfmU6ev553s_W-GFJ45NB808W4yfHtLsDpPbgbPFc28aJ2H7ZcM4LdSYNR-_c1e8W6XtIuST-CO1dgDkew8ykU8HehnjTMVNWKACoYAXz4yUm2qFm5aByz1E-_XLPzLtfhWob-aSCo1nSqXZWUOeI0IUpdTqw-J6-ZOd8Gz7rNPu0DOLsRRjyE7QY_8zEwl2R5lglZ28yJsbFImzpZ10lV1ElqXQSy_8-6CjjotI7jm-4b3ua6509Y0ik18ieCg4HuwiOB_JUi79mo-zlXtMwaL6v_o3RtMDCtjnWb6LGmWntM4tU5_njpRaAGyuBDed_on96618uavnzRoHcR7A-P0QZRYck0brHCM0p2seb1J7KxSjafQMYXtIoggkdeyi9_coFBtojzJ9d_3j7soEHQH49PT57Cbd_WQ5myPdhe_ly5Z-g7LsvnnZIy-HrTVuEP9lKBvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+estimation+of+bone+density+improves+the+accuracy+of+subject-specific+finite+element+models&rft.jtitle=Journal+of+biomechanics&rft.au=Schileo%2C+Enrico&rft.au=Dall%E2%80%99Ara%2C+Enrico&rft.au=Taddei%2C+Fulvia&rft.au=Malandrino%2C+Andrea&rft.date=2008&rft.issn=0021-9290&rft.volume=41&rft.issue=11&rft.spage=2483&rft.epage=2491&rft_id=info:doi/10.1016%2Fj.jbiomech.2008.05.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2008_05_017 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929008X00107%2Fcov150h.gif |