An accurate estimation of bone density improves the accuracy of subject-specific finite element models

An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylin...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 41; no. 11; pp. 2483 - 2491
Main Authors Schileo, Enrico, Dall’Ara, Enrico, Taddei, Fulvia, Malandrino, Andrea, Schotkamp, Tom, Baleani, Massimiliano, Viceconti, Marco
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 2008
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated ( R 2=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598±0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459±0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598±0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy ( R 2=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.
AbstractList An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.
An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R super(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R super(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.
An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R2=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598±0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459±0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598±0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R2=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.
Abstract An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated ( R2 =0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598±0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459±0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598±0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy ( R2 =0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.
An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated ( R 2=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598±0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459±0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598±0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy ( R 2=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.
An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.
Author Baleani, Massimiliano
Viceconti, Marco
Taddei, Fulvia
Schotkamp, Tom
Schileo, Enrico
Dall’Ara, Enrico
Malandrino, Andrea
Author_xml – sequence: 1
  givenname: Enrico
  surname: Schileo
  fullname: Schileo, Enrico
– sequence: 2
  givenname: Enrico
  surname: Dall’Ara
  fullname: Dall’Ara, Enrico
– sequence: 3
  givenname: Fulvia
  surname: Taddei
  fullname: Taddei, Fulvia
– sequence: 4
  givenname: Andrea
  surname: Malandrino
  fullname: Malandrino, Andrea
– sequence: 5
  givenname: Tom
  surname: Schotkamp
  fullname: Schotkamp, Tom
– sequence: 6
  givenname: Massimiliano
  surname: Baleani
  fullname: Baleani, Massimiliano
  email: baleani@tecno.ior.it
– sequence: 7
  givenname: Marco
  surname: Viceconti
  fullname: Viceconti, Marco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18606417$$D View this record in MEDLINE/PubMed
BookMark eNqNkstqHDEQRUVwiMdOfsE0BLLrcUnqhwQhxJg8DIYskqyFWqrG6vRjIqkN8_dWz4wxzGasjbQ496qqbl2Qs3EakZArCmsKtLru1l3jpgHNw5oBiDWUa6D1G7KiouY54wLOyAqA0VwyCefkIoQOAOqilu_IORUVVAWtV6S9GTNtzOx1xAxDdIOObhqzqc2a9GNmcQwubjM3bPz0iCGLD3gQmO1Chbnp0MQ8bNC41pmsdaNbvHoccIzZMFnsw3vyttV9wA-H-5L8_f7tz-3P_P7Xj7vbm_vcVJzFXNc1VFBLWklelCit5tai5ChQF4VptCkb3lphmS2kacpS09Sj1EKUFbel5Jfk0943Vft_Tv2owQWDfa9HnOagkq9gdYJPgVSWqRLJXgWmUyTw4xHYTbMfU7eKAi8kE2z379WBmpsBrdr4NHG_Vc-JJKDaA8ZPIXhsXxBQS_SqU8_RqyV6BaWCnfDzkdC4uAszeu360_Kve3lKCx8dehWMw9GgdT7lq-zkTlt8ObIwfVoGo_t_uMXwMg4VmAL1e1nPZTtBpFdRnTB4TQVPCIX4Fg
CitedBy_id crossref_primary_10_1016_j_clinbiomech_2018_06_012
crossref_primary_10_1002_cnm_2880
crossref_primary_10_1016_j_jbiomech_2017_04_007
crossref_primary_10_1007_s11831_014_9115_y
crossref_primary_10_1016_j_jmbbm_2018_10_013
crossref_primary_10_3389_fbioe_2023_1120430
crossref_primary_10_1016_j_cmpb_2020_105484
crossref_primary_10_3389_fmats_2017_00031
crossref_primary_10_1016_j_procir_2020_05_142
crossref_primary_10_1007_s10237_021_01422_y
crossref_primary_10_1016_j_jbiomech_2014_03_036
crossref_primary_10_1080_10255842_2022_2109415
crossref_primary_10_1016_j_jmbbm_2016_10_002
crossref_primary_10_1177_0954406219856028
crossref_primary_10_1016_j_bone_2014_09_022
crossref_primary_10_1080_10255842_2016_1181173
crossref_primary_10_1016_j_jocd_2017_09_001
crossref_primary_10_1016_j_jbiomech_2012_02_006
crossref_primary_10_1142_S0219519417500154
crossref_primary_10_1371_journal_pone_0245121
crossref_primary_10_1002_cnm_2530
crossref_primary_10_1016_j_compstruct_2018_09_006
crossref_primary_10_1002_jor_22266
crossref_primary_10_1038_s41598_022_06267_8
crossref_primary_10_1080_10255842_2018_1556260
crossref_primary_10_1002_cnm_2536
crossref_primary_10_1080_10255842_2020_1813431
crossref_primary_10_1186_s12891_022_05168_1
crossref_primary_10_1016_j_medengphy_2019_03_007
crossref_primary_10_1016_j_mad_2018_07_001
crossref_primary_10_1016_j_bone_2020_115678
crossref_primary_10_1016_j_bone_2011_07_021
crossref_primary_10_1016_j_knee_2023_06_008
crossref_primary_10_1115_1_4050928
crossref_primary_10_1016_j_crad_2019_08_026
crossref_primary_10_1016_j_medengphy_2011_07_006
crossref_primary_10_1002_rcs_1418
crossref_primary_10_1016_j_bone_2018_05_028
crossref_primary_10_1016_j_jbiomech_2008_10_039
crossref_primary_10_1080_10255842_2019_1699545
crossref_primary_10_1115_1_4047991
crossref_primary_10_1007_s00402_023_05080_w
crossref_primary_10_3389_fbioe_2019_00220
crossref_primary_10_1016_j_jmbbm_2022_105415
crossref_primary_10_1115_1_4053875
crossref_primary_10_1007_s10237_017_0913_7
crossref_primary_10_1098_rsta_2010_0046
crossref_primary_10_1007_s10237_016_0866_2
crossref_primary_10_1016_j_bone_2020_115348
crossref_primary_10_1016_j_clinbiomech_2020_105027
crossref_primary_10_1016_j_bone_2022_116517
crossref_primary_10_3389_fbioe_2021_643154
crossref_primary_10_12989_aba_2013_1_1_015
crossref_primary_10_1111_str_12029
crossref_primary_10_3390_app122010256
crossref_primary_10_1038_s41598_018_36503_z
crossref_primary_10_1016_j_compbiomed_2024_109544
crossref_primary_10_1007_s00198_020_05384_2
crossref_primary_10_1016_j_jmbbm_2020_104190
crossref_primary_10_3389_fsurg_2021_740008
crossref_primary_10_1007_s10237_022_01642_w
crossref_primary_10_1016_j_jmbbm_2019_01_014
crossref_primary_10_1016_j_jbiomech_2014_11_042
crossref_primary_10_1016_j_jbiomech_2021_110363
crossref_primary_10_1371_journal_pone_0251297
crossref_primary_10_1002_jbmr_2291
crossref_primary_10_1016_j_bone_2018_09_014
crossref_primary_10_1016_j_cma_2012_09_006
crossref_primary_10_1016_j_jmbbm_2023_105706
crossref_primary_10_1007_s00466_012_0684_z
crossref_primary_10_1016_j_medengphy_2014_06_021
crossref_primary_10_1016_j_medengphy_2018_10_007
crossref_primary_10_1007_s10237_015_0689_6
crossref_primary_10_1016_j_cmpb_2021_106499
crossref_primary_10_3390_ma13010106
crossref_primary_10_3390_ma17030673
crossref_primary_10_1016_j_injury_2023_111162
crossref_primary_10_1016_j_medengphy_2015_10_002
crossref_primary_10_1177_23814683231202993
crossref_primary_10_3390_ma15020442
crossref_primary_10_1016_j_jbiomech_2016_02_032
crossref_primary_10_1016_j_cmpb_2009_11_009
crossref_primary_10_1016_j_jcp_2012_05_027
crossref_primary_10_3389_fmech_2017_00023
crossref_primary_10_1016_j_jbiomech_2016_02_036
crossref_primary_10_1115_1_4034653
crossref_primary_10_1016_j_bone_2021_116219
crossref_primary_10_3390_bioengineering3040036
crossref_primary_10_1016_j_bone_2020_115769
crossref_primary_10_1142_S0219519418300028
crossref_primary_10_1007_s11914_018_0438_8
crossref_primary_10_1016_j_medengphy_2019_02_005
crossref_primary_10_1016_j_clinbiomech_2022_105801
crossref_primary_10_1186_s13018_024_04936_0
crossref_primary_10_1016_j_medengphy_2016_06_011
crossref_primary_10_1109_JBHI_2015_2406883
crossref_primary_10_1007_s10237_016_0787_0
crossref_primary_10_1016_j_injury_2022_04_018
crossref_primary_10_1186_s13018_022_03060_1
crossref_primary_10_1647_20_00018
crossref_primary_10_1080_10255842_2017_1291805
crossref_primary_10_1016_j_jbiomech_2010_12_028
crossref_primary_10_3389_fbioe_2022_953119
crossref_primary_10_1080_10255842_2011_641122
crossref_primary_10_1016_j_mex_2024_102879
crossref_primary_10_1016_j_jbiomech_2023_111434
crossref_primary_10_1007_s12210_021_00998_y
crossref_primary_10_1109_ACCESS_2021_3129097
crossref_primary_10_1016_j_bone_2020_115759
crossref_primary_10_1016_j_bone_2021_116125
crossref_primary_10_1016_j_cct_2021_106326
crossref_primary_10_1016_j_jbiomech_2013_06_035
crossref_primary_10_1115_1_4024159
crossref_primary_10_1016_j_cmpb_2019_03_010
crossref_primary_10_1186_s40634_016_0072_2
crossref_primary_10_1002_cnm_2989
crossref_primary_10_1016_j_jbiomech_2010_06_033
crossref_primary_10_1007_s00198_015_3404_7
crossref_primary_10_1016_j_bone_2014_06_038
crossref_primary_10_1016_j_medengphy_2010_09_014
crossref_primary_10_1016_j_arth_2013_01_010
crossref_primary_10_3389_fbioe_2022_893337
crossref_primary_10_1016_j_tripleo_2009_11_010
crossref_primary_10_1177_0954411911416048
crossref_primary_10_1016_j_jbiomech_2021_110315
crossref_primary_10_1016_j_jmbbm_2016_06_004
crossref_primary_10_1142_S0219519417500129
crossref_primary_10_1016_j_medengphy_2014_02_019
crossref_primary_10_1016_j_medengphy_2019_06_015
crossref_primary_10_1016_j_jbiomech_2014_04_050
crossref_primary_10_1016_j_jbiomech_2017_08_017
crossref_primary_10_1016_j_jbiomech_2014_08_030
crossref_primary_10_1038_s41598_024_61305_x
crossref_primary_10_3389_fphys_2018_00545
crossref_primary_10_1016_j_medengphy_2012_08_022
crossref_primary_10_1186_s41747_020_00180_3
crossref_primary_10_1016_j_jmbbm_2020_103866
crossref_primary_10_1016_j_jbiomech_2022_111039
crossref_primary_10_3390_bdcc4040040
crossref_primary_10_1016_j_clinbiomech_2013_12_018
crossref_primary_10_1016_j_jbiomech_2009_01_013
crossref_primary_10_1038_s41598_024_57768_7
crossref_primary_10_1016_j_jbiomech_2009_01_014
crossref_primary_10_3390_bioengineering11040344
crossref_primary_10_1007_s10237_018_1008_9
crossref_primary_10_1016_j_jbiomech_2014_08_024
crossref_primary_10_1016_j_jmbbm_2024_106681
crossref_primary_10_1016_j_jmbbm_2013_02_006
crossref_primary_10_1007_s11012_021_01452_x
crossref_primary_10_1016_j_medengphy_2011_05_010
crossref_primary_10_1515_cdbme_2015_0081
crossref_primary_10_1016_j_jmbbm_2019_06_027
crossref_primary_10_1016_j_medengphy_2010_11_005
crossref_primary_10_1016_j_jbiomech_2009_09_049
crossref_primary_10_1016_j_clinbiomech_2019_06_004
crossref_primary_10_1118_1_3582946
crossref_primary_10_1016_j_bone_2011_06_035
crossref_primary_10_1016_j_actbio_2021_01_011
crossref_primary_10_3390_app10186514
crossref_primary_10_1002_jor_25138
crossref_primary_10_1177_0954411914540285
crossref_primary_10_1007_s00198_016_3597_4
crossref_primary_10_1371_journal_pone_0305474
crossref_primary_10_1016_j_compositesb_2014_01_007
crossref_primary_10_1016_j_jmbbm_2016_04_008
crossref_primary_10_1243_09544119JEIM553
crossref_primary_10_1016_j_jbiomech_2011_03_024
crossref_primary_10_1016_j_jbiomech_2018_05_037
crossref_primary_10_1016_j_jbiomech_2015_03_027
crossref_primary_10_1016_j_jbiomech_2011_11_048
crossref_primary_10_1016_j_jos_2018_04_005
crossref_primary_10_1016_j_jmbbm_2016_08_026
crossref_primary_10_1007_s40032_023_00944_x
crossref_primary_10_1007_s00198_017_4319_2
crossref_primary_10_1016_j_jbiomech_2020_109599
crossref_primary_10_1016_j_compbiomed_2021_104833
crossref_primary_10_1002_jbmr_4878
crossref_primary_10_1016_j_medengphy_2019_05_005
crossref_primary_10_1016_j_medengphy_2024_104274
crossref_primary_10_1111_jmi_12159
crossref_primary_10_1016_j_jmbbm_2023_106186
crossref_primary_10_1016_j_jbiomech_2011_10_019
crossref_primary_10_1016_j_jbiomech_2009_10_040
crossref_primary_10_1002_jsp2_1176
crossref_primary_10_1016_j_bone_2019_01_001
crossref_primary_10_2139_ssrn_4097564
crossref_primary_10_1002_jsp2_1170
crossref_primary_10_1302_2046_3758_25_2000150
crossref_primary_10_1371_journal_pone_0218268
crossref_primary_10_1007_s11012_019_01097_x
crossref_primary_10_1016_j_bone_2022_116351
crossref_primary_10_1016_j_conctc_2023_101181
crossref_primary_10_1007_s10439_019_02312_2
crossref_primary_10_1016_j_jmbbm_2023_105662
crossref_primary_10_1016_j_jmbbm_2024_106773
crossref_primary_10_1016_j_cmpb_2022_106820
crossref_primary_10_1177_0391398818815479
crossref_primary_10_1002_jor_24866
crossref_primary_10_1016_j_jmbbm_2016_07_004
crossref_primary_10_1021_acsomega_0c06144
crossref_primary_10_1111_j_1757_7861_2010_00099_x
crossref_primary_10_1016_j_jmbbm_2020_104118
crossref_primary_10_1080_10255842_2020_1789863
crossref_primary_10_1007_s10704_024_00836_w
crossref_primary_10_1115_1_4052372
crossref_primary_10_1016_j_clinbiomech_2023_105931
crossref_primary_10_1080_13588265_2012_730212
crossref_primary_10_1016_j_jbiomech_2013_10_033
crossref_primary_10_1080_10255842_2023_2293654
crossref_primary_10_1002_jor_25067
crossref_primary_10_3389_fbioe_2024_1511685
crossref_primary_10_1111_clr_12737
crossref_primary_10_1016_j_heliyon_2024_e26213
crossref_primary_10_1016_j_medengphy_2022_103841
crossref_primary_10_1097_BOR_0000000000000405
crossref_primary_10_1186_s40634_023_00597_w
crossref_primary_10_1007_s11012_024_01850_x
crossref_primary_10_1007_s10439_020_02483_3
crossref_primary_10_1155_2017_5707568
crossref_primary_10_1016_j_bone_2009_05_023
crossref_primary_10_1016_j_jbiomech_2014_09_016
crossref_primary_10_1097_CORR_0000000000001912
crossref_primary_10_1007_s10237_011_0322_2
crossref_primary_10_1016_j_medengphy_2014_09_006
crossref_primary_10_1007_s10237_018_1081_0
crossref_primary_10_1007_s11914_020_00592_5
crossref_primary_10_1016_j_medengphy_2021_07_012
crossref_primary_10_1155_2015_837585
crossref_primary_10_1016_j_jocd_2024_101471
crossref_primary_10_1371_journal_pone_0173228
crossref_primary_10_1007_s10237_021_01439_3
crossref_primary_10_1016_j_morpho_2019_09_007
crossref_primary_10_4028_www_scientific_net_AMM_553_299
crossref_primary_10_1142_S0219519415300033
crossref_primary_10_1007_s00402_020_03670_6
crossref_primary_10_1016_j_medengphy_2016_08_010
crossref_primary_10_1016_j_jbiomech_2013_04_026
crossref_primary_10_1016_j_engfracmech_2018_04_024
crossref_primary_10_1016_j_medengphy_2020_05_013
crossref_primary_10_1142_S0219519412004478
crossref_primary_10_1142_S0219519414500328
crossref_primary_10_1002_jor_25404
crossref_primary_10_1115_1_4040122
crossref_primary_10_1016_j_jmbbm_2021_104960
crossref_primary_10_1016_j_jbiomech_2010_08_032
crossref_primary_10_3390_life14070841
crossref_primary_10_1016_j_jbiomech_2024_112335
crossref_primary_10_1016_j_bone_2012_09_006
crossref_primary_10_1016_j_medengphy_2013_03_020
crossref_primary_10_1016_j_bone_2025_117465
crossref_primary_10_1016_j_clinbiomech_2017_01_017
crossref_primary_10_1016_j_clinbiomech_2015_02_006
crossref_primary_10_1016_j_jbiomech_2019_01_049
crossref_primary_10_1002_jor_26043
crossref_primary_10_1115_1_4004180
crossref_primary_10_1016_j_medengphy_2016_03_006
crossref_primary_10_1115_1_4062488
crossref_primary_10_1016_j_clinbiomech_2019_05_028
crossref_primary_10_1155_2017_5219541
crossref_primary_10_1098_rsif_2013_1146
crossref_primary_10_1016_j_bone_2025_117457
crossref_primary_10_1186_s13018_021_02614_z
Cites_doi 10.1002/jor.1100090315
10.1016/S0268-0033(02)00207-3
10.1016/S0021-9290(99)00099-8
10.1016/0021-9290(94)90056-6
10.1016/j.medengphy.2006.10.014
10.1016/S0021-9290(03)00071-X
10.1016/S0021-9290(00)00036-1
10.1016/j.medengphy.2004.10.001
10.1016/S0021-9290(00)00069-5
10.1243/095441104322984022
10.1016/0021-9290(94)90014-0
10.1067/moe.2002.126451
10.1016/0141-5425(93)90066-8
10.1016/S8756-3282(03)00210-2
10.1016/0021-9290(88)90167-4
10.1016/S0021-9290(97)00123-1
10.1016/j.clinbiomech.2006.01.010
10.1016/j.jbiomech.2003.08.010
10.1097/01.blo.0000164400.37905.22
10.1016/0021-9290(88)90186-8
10.1016/j.jbiomech.2005.07.018
10.2106/00004623-197759070-00021
10.1243/095441105X34293
10.1016/j.cmpb.2007.05.002
10.1016/j.jbiomech.2004.03.005
10.1016/S8756-3282(01)00467-7
10.1002/jbm.820281111
10.1016/j.medengphy.2005.06.003
10.1118/1.596899
10.1016/j.jbiomech.2007.02.010
10.1016/S1350-4533(03)00138-3
10.1016/j.jbiomech.2006.11.020
10.1016/j.clinbiomech.2005.01.010
10.1002/ajpa.1330290113
10.1016/0268-0033(94)90018-3
10.1016/j.clinbiomech.2007.08.024
10.1016/S1350-4533(03)00030-4
10.1115/1.2794181
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2008.05.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Calcium & Calcified Tissue Abstracts
Calcium & Calcified Tissue Abstracts


Research Library Prep
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 2491
ExternalDocumentID 2744105471
18606417
10_1016_j_jbiomech_2008_05_017
S0021929008002467
1_s2_0_S0021929008002467
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YQT
Z5R
ZGI
ZMT
~G-
3V.
AACTN
AFCTW
AFFDN
AFKWA
AJOXV
ALIPV
AMFUW
PKN
RIG
YCJ
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
F3I
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c632t-a7706079169345e9da3dde93e8ea44cbac5b3fd8d2d49cb55a10029a88563d593
IEDL.DBID AIKHN
ISSN 0021-9290
IngestDate Fri Jul 11 05:20:00 EDT 2025
Fri Jul 11 01:34:35 EDT 2025
Fri Jul 11 11:46:14 EDT 2025
Wed Aug 13 08:08:54 EDT 2025
Mon Jul 21 05:58:59 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Tue Jul 01 01:13:47 EDT 2025
Fri Feb 23 02:28:27 EST 2024
Sun Feb 23 10:19:39 EST 2025
Tue Aug 26 16:44:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Validation
Bone density
Computed tomography
Bone biomechanics
Subject-specific finite element model
CT calibration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c632t-a7706079169345e9da3dde93e8ea44cbac5b3fd8d2d49cb55a10029a88563d593
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 18606417
PQID 1034928256
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_69382756
proquest_miscellaneous_19506092
proquest_miscellaneous_19500004
proquest_journals_1034928256
pubmed_primary_18606417
crossref_primary_10_1016_j_jbiomech_2008_05_017
crossref_citationtrail_10_1016_j_jbiomech_2008_05_017
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2008_05_017
elsevier_clinicalkeyesjournals_1_s2_0_S0021929008002467
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2008_05_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-00-00
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008-00-00
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Carter, Hayes (bib5) 1977; 59
Crawford, Cann, Keaveny (bib7) 2003; 33
Gupta, van der Helm, Sterk, van Keulen, Kaptein (bib12) 2004; 218
Kaneko, Bell, Pejcic, Tehranzadeh, Keyak (bib16) 2004; 37
Kaneko, Pejcic, Tehranzadeh, Keyak (bib17) 2003; 25
Morgan, Bayraktar, Keaveny (bib23) 2003; 36
Wagner, Krach, Schicho, Undt, Ploder, Ewers (bib35) 2002; 94
Weinans, Sumner, Igloria, Natarajan (bib36) 2000; 33
Wong, New, Isaacs, Taylor (bib38) 2005; 219
Helgason, Perilli, Schileo, Taddei, Brynjolfsson, Viceconti (bib13) 2008; 23
Kalender (bib15) 1992; 19
Keyak, Rossi, Jones, Skinner (bib22) 1998; 31
Viceconti, Olsen, Nolte, Burton (bib33) 2005; 20
Wirtz, Schiffers, Pandorf, Radermacher, Weichert, Forst (bib37) 2000; 33
Dalstra, Huiskes, van Erning (bib8) 1995; 117
Taddei, Pancanti, Viceconti (bib30) 2004; 26
Keyak, Fourkas, Meagher, Skinner (bib19) 1993; 15
Goulet, Goldstein, Ciarelli, Kuhn, Brown, Feldkamp (bib10) 1994; 27
Edmondston, Singer, Day, Breidahl, Price (bib9) 1994; 9
Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib27) 2007; 40
Ashman, Rho (bib1) 1988; 21
Vazquez, Lauge-Pedersen, Lidgren, Taylor (bib32) 2003; 18
Keyak, Kaneko, Tehranzadeh, Skinner (bib20) 2005
Keller (bib18) 1994; 27
Taddei, Schileo, Helgason, Cristofolini, Viceconti (bib31) 2007; 29
Barker, Netherway, Krishnan, Hearn (bib2) 2005; 27
Peng, Bai, Zeng, Zhou (bib25) 2006; 28
Keyak, Lee, Skinner (bib21) 1994; 28
Cody, Gross, Hou, Spencer, Goldstein, Fyhrie (bib6) 1999; 32
Snyder, Schneider (bib28) 1991; 9
Gupta, New, Taylor (bib11) 2006; 21
Ohman, Baleani, Perilli, Dall’Ara, Tassani, Baruffaldi, Viceconti (bib24) 2007; 40
Schaffler, Burr (bib26) 1988; 21
Bitsakos, Kerner, Fisher, Amis (bib3) 2005; 38
Hernandez, Beaupre, Keller, Carter (bib14) 2001; 29
Blanton, Biggs (bib4) 1968; 29
Taddei, Cristofolini, Martelli, Gill, Viceconti (bib29) 2006; 39
Viceconti, Taddei, Montanari, Testi, Leardini, Clapworthy, Van Sint Jan (bib34) 2007; 87
Edmondston (10.1016/j.jbiomech.2008.05.017_bib9) 1994; 9
Goulet (10.1016/j.jbiomech.2008.05.017_bib10) 1994; 27
Dalstra (10.1016/j.jbiomech.2008.05.017_bib8) 1995; 117
Morgan (10.1016/j.jbiomech.2008.05.017_bib23) 2003; 36
Weinans (10.1016/j.jbiomech.2008.05.017_bib36) 2000; 33
Keyak (10.1016/j.jbiomech.2008.05.017_bib22) 1998; 31
Wong (10.1016/j.jbiomech.2008.05.017_bib38) 2005; 219
Taddei (10.1016/j.jbiomech.2008.05.017_bib30) 2004; 26
Keyak (10.1016/j.jbiomech.2008.05.017_bib21) 1994; 28
Kaneko (10.1016/j.jbiomech.2008.05.017_bib16) 2004; 37
Keller (10.1016/j.jbiomech.2008.05.017_bib18) 1994; 27
Cody (10.1016/j.jbiomech.2008.05.017_bib6) 1999; 32
Ohman (10.1016/j.jbiomech.2008.05.017_bib24) 2007; 40
Helgason (10.1016/j.jbiomech.2008.05.017_bib13) 2008; 23
Bitsakos (10.1016/j.jbiomech.2008.05.017_bib3) 2005; 38
Kaneko (10.1016/j.jbiomech.2008.05.017_bib17) 2003; 25
Vazquez (10.1016/j.jbiomech.2008.05.017_bib32) 2003; 18
Hernandez (10.1016/j.jbiomech.2008.05.017_bib14) 2001; 29
Keyak (10.1016/j.jbiomech.2008.05.017_bib19) 1993; 15
Peng (10.1016/j.jbiomech.2008.05.017_bib25) 2006; 28
Blanton (10.1016/j.jbiomech.2008.05.017_bib4) 1968; 29
Crawford (10.1016/j.jbiomech.2008.05.017_bib7) 2003; 33
Wagner (10.1016/j.jbiomech.2008.05.017_bib35) 2002; 94
Viceconti (10.1016/j.jbiomech.2008.05.017_bib34) 2007; 87
Carter (10.1016/j.jbiomech.2008.05.017_bib5) 1977; 59
Keyak (10.1016/j.jbiomech.2008.05.017_bib20) 2005
Taddei (10.1016/j.jbiomech.2008.05.017_bib29) 2006; 39
Viceconti (10.1016/j.jbiomech.2008.05.017_bib33) 2005; 20
Kalender (10.1016/j.jbiomech.2008.05.017_bib15) 1992; 19
Gupta (10.1016/j.jbiomech.2008.05.017_bib12) 2004; 218
Taddei (10.1016/j.jbiomech.2008.05.017_bib31) 2007; 29
Barker (10.1016/j.jbiomech.2008.05.017_bib2) 2005; 27
Schaffler (10.1016/j.jbiomech.2008.05.017_bib26) 1988; 21
Wirtz (10.1016/j.jbiomech.2008.05.017_bib37) 2000; 33
Snyder (10.1016/j.jbiomech.2008.05.017_bib28) 1991; 9
Gupta (10.1016/j.jbiomech.2008.05.017_bib11) 2006; 21
Schileo (10.1016/j.jbiomech.2008.05.017_bib27) 2007; 40
Ashman (10.1016/j.jbiomech.2008.05.017_bib1) 1988; 21
J Biomech. 2008 Nov 14;41(15):3294
References_xml – volume: 32
  start-page: 1013
  year: 1999
  end-page: 1020
  ident: bib6
  article-title: Femoral strength is better predicted by finite element models than QCT and DXA
  publication-title: Journal of Biomechanics
– volume: 29
  start-page: 74
  year: 2001
  end-page: 78
  ident: bib14
  article-title: The influence of bone volume fraction and ash fraction on bone strength and modulus
  publication-title: Bone
– volume: 94
  start-page: 678
  year: 2002
  end-page: 686
  ident: bib35
  article-title: A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process
  publication-title: Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics
– volume: 33
  start-page: 1325
  year: 2000
  end-page: 1330
  ident: bib37
  article-title: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur
  publication-title: Journal of Biomechanics
– volume: 9
  start-page: 422
  year: 1991
  end-page: 431
  ident: bib28
  article-title: Estimation of mechanical properties of cortical bone by computed tomography
  publication-title: Journal of Orthopaedic Research
– volume: 218
  start-page: 127
  year: 2004
  end-page: 142
  ident: bib12
  article-title: Development and experimental validation of a three-dimensional finite element model of the human scapula
  publication-title: Proceedings of the Institute of Mechanical Engineers [H]
– volume: 28
  start-page: 227
  year: 2006
  end-page: 233
  ident: bib25
  article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions
  publication-title: Medical Engineering and Physics
– volume: 20
  start-page: 451
  year: 2005
  end-page: 454
  ident: bib33
  article-title: Extracting clinically relevant data from finite element simulations
  publication-title: Clinical Biomechanics
– volume: 21
  start-page: 177
  year: 1988
  end-page: 181
  ident: bib1
  article-title: Elastic modulus of trabecular bone material
  publication-title: Journal of Biomechanics
– volume: 27
  start-page: 1159
  year: 1994
  end-page: 1168
  ident: bib18
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: Journal of Biomechanics
– volume: 36
  start-page: 897
  year: 2003
  end-page: 904
  ident: bib23
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: Journal of Biomechanics
– volume: 38
  start-page: 133
  year: 2005
  end-page: 139
  ident: bib3
  article-title: The effect of muscle loading on the simulation of bone remodelling in the proximal femur
  publication-title: Journal of Biomechanics
– volume: 31
  start-page: 125
  year: 1998
  end-page: 133
  ident: bib22
  article-title: Prediction of femoral fracture load using automated finite element modeling
  publication-title: Journal of Biomechanics
– volume: 117
  start-page: 272
  year: 1995
  end-page: 278
  ident: bib8
  article-title: Development and validation of a three-dimensional finite element model of the pelvic bone
  publication-title: Journal of Biomechanical Engineering
– volume: 87
  start-page: 148
  year: 2007
  end-page: 159
  ident: bib34
  article-title: Multimod data manager: a tool for data fusion
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 21
  start-page: 594
  year: 2006
  end-page: 602
  ident: bib11
  article-title: Bone remodelling inside a cemented resurfaced femoral head
  publication-title: Clinical Biomechanics
– volume: 21
  start-page: 13
  year: 1988
  end-page: 16
  ident: bib26
  article-title: Stiffness of compact bone: effects of porosity and density
  publication-title: Journal of Biomechanics
– volume: 25
  start-page: 445
  year: 2003
  end-page: 454
  ident: bib17
  article-title: Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions
  publication-title: Medical Engineering and Physics
– volume: 23
  start-page: 135
  year: 2008
  end-page: 146
  ident: bib13
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clinical Biomechanics
– volume: 59
  start-page: 954
  year: 1977
  end-page: 962
  ident: bib5
  article-title: The compressive behavior of bone as a two-phase porous structure
  publication-title: The Journal of Bone and Joint Surgery American
– volume: 37
  start-page: 523
  year: 2004
  end-page: 530
  ident: bib16
  article-title: Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases
  publication-title: Journal of Biomechanics
– volume: 39
  start-page: 2457
  year: 2006
  end-page: 2467
  ident: bib29
  article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy
  publication-title: Journal of Biomechanics
– start-page: 219
  year: 2005
  end-page: 228
  ident: bib20
  article-title: Predicting proximal femoral strength using structural engineering models
  publication-title: Clinical Orthopaedics and Related Research
– volume: 40
  start-page: 2426
  year: 2007
  ident: bib24
  article-title: Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements
  publication-title: Journal of Biomechanics
– volume: 219
  start-page: 265
  year: 2005
  end-page: 275
  ident: bib38
  article-title: Effect of bone material properties on the initial stability of a cementless hip stem: a finite element study
  publication-title: Proceedings of the Institution of Mechanical Engineers [H]
– volume: 27
  start-page: 103
  year: 2005
  end-page: 113
  ident: bib2
  article-title: Validation of a finite element model of the human metacarpal
  publication-title: Medical Engineering and Physics
– volume: 33
  start-page: 809
  year: 2000
  end-page: 817
  ident: bib36
  article-title: Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models
  publication-title: Journal of Biomechanics
– volume: 28
  start-page: 1329
  year: 1994
  end-page: 1336
  ident: bib21
  article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures
  publication-title: Journal of Biomedical Materials Research
– volume: 40
  start-page: 2982
  year: 2007
  end-page: 2989
  ident: bib27
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: Journal of Biomechanics
– volume: 19
  start-page: 583
  year: 1992
  end-page: 586
  ident: bib15
  article-title: A phantom for standardization and quality control in spinal bone mineral measurements by QCT and DXA: design considerations and specifications
  publication-title: Medical Physics
– volume: 9
  start-page: 175
  year: 1994
  ident: bib9
  article-title: Formalin fixation effects on vertebral bone density and failure mechanics: an in-vitro study of human and sheep vertebrae
  publication-title: Clinical Biomechanics
– volume: 29
  start-page: 973
  year: 2007
  end-page: 979
  ident: bib31
  article-title: The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements
  publication-title: Medical Engineering and Physics
– volume: 29
  start-page: 39
  year: 1968
  end-page: 44
  ident: bib4
  article-title: Density of fresh and embalmed human compact and cancellous bone
  publication-title: American Journal of Physical Anthropology
– volume: 15
  start-page: 505
  year: 1993
  end-page: 509
  ident: bib19
  article-title: Validation of an automated method of three-dimensional finite element modelling of bone
  publication-title: Journal of Biomedical Engineering
– volume: 26
  start-page: 61
  year: 2004
  end-page: 69
  ident: bib30
  article-title: An improved method for the automatic mapping of computed tomography numbers onto finite element models
  publication-title: Medical Engineering and Physics
– volume: 33
  start-page: 744
  year: 2003
  end-page: 750
  ident: bib7
  article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
  publication-title: Bone
– volume: 27
  start-page: 375
  year: 1994
  end-page: 389
  ident: bib10
  article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone
  publication-title: Journal of Biomechanics
– volume: 18
  start-page: 244
  year: 2003
  end-page: 253
  ident: bib32
  article-title: Finite element analysis of the initial stability of ankle arthrodesis with internal fixation: flat cut versus intact joint contours
  publication-title: Clinical Biomechanics
– volume: 9
  start-page: 422
  year: 1991
  ident: 10.1016/j.jbiomech.2008.05.017_bib28
  article-title: Estimation of mechanical properties of cortical bone by computed tomography
  publication-title: Journal of Orthopaedic Research
  doi: 10.1002/jor.1100090315
– volume: 18
  start-page: 244
  year: 2003
  ident: 10.1016/j.jbiomech.2008.05.017_bib32
  article-title: Finite element analysis of the initial stability of ankle arthrodesis with internal fixation: flat cut versus intact joint contours
  publication-title: Clinical Biomechanics
  doi: 10.1016/S0268-0033(02)00207-3
– volume: 32
  start-page: 1013
  year: 1999
  ident: 10.1016/j.jbiomech.2008.05.017_bib6
  article-title: Femoral strength is better predicted by finite element models than QCT and DXA
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(99)00099-8
– volume: 27
  start-page: 1159
  year: 1994
  ident: 10.1016/j.jbiomech.2008.05.017_bib18
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(94)90056-6
– volume: 29
  start-page: 973
  year: 2007
  ident: 10.1016/j.jbiomech.2008.05.017_bib31
  article-title: The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2006.10.014
– volume: 36
  start-page: 897
  year: 2003
  ident: 10.1016/j.jbiomech.2008.05.017_bib23
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(03)00071-X
– volume: 33
  start-page: 809
  year: 2000
  ident: 10.1016/j.jbiomech.2008.05.017_bib36
  article-title: Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(00)00036-1
– volume: 27
  start-page: 103
  year: 2005
  ident: 10.1016/j.jbiomech.2008.05.017_bib2
  article-title: Validation of a finite element model of the human metacarpal
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2004.10.001
– volume: 33
  start-page: 1325
  year: 2000
  ident: 10.1016/j.jbiomech.2008.05.017_bib37
  article-title: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(00)00069-5
– volume: 218
  start-page: 127
  year: 2004
  ident: 10.1016/j.jbiomech.2008.05.017_bib12
  article-title: Development and experimental validation of a three-dimensional finite element model of the human scapula
  publication-title: Proceedings of the Institute of Mechanical Engineers [H]
  doi: 10.1243/095441104322984022
– volume: 27
  start-page: 375
  year: 1994
  ident: 10.1016/j.jbiomech.2008.05.017_bib10
  article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(94)90014-0
– volume: 94
  start-page: 678
  year: 2002
  ident: 10.1016/j.jbiomech.2008.05.017_bib35
  article-title: A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process
  publication-title: Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics
  doi: 10.1067/moe.2002.126451
– volume: 15
  start-page: 505
  year: 1993
  ident: 10.1016/j.jbiomech.2008.05.017_bib19
  article-title: Validation of an automated method of three-dimensional finite element modelling of bone
  publication-title: Journal of Biomedical Engineering
  doi: 10.1016/0141-5425(93)90066-8
– volume: 33
  start-page: 744
  year: 2003
  ident: 10.1016/j.jbiomech.2008.05.017_bib7
  article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
  publication-title: Bone
  doi: 10.1016/S8756-3282(03)00210-2
– volume: 21
  start-page: 177
  year: 1988
  ident: 10.1016/j.jbiomech.2008.05.017_bib1
  article-title: Elastic modulus of trabecular bone material
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(88)90167-4
– volume: 31
  start-page: 125
  year: 1998
  ident: 10.1016/j.jbiomech.2008.05.017_bib22
  article-title: Prediction of femoral fracture load using automated finite element modeling
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(97)00123-1
– volume: 21
  start-page: 594
  year: 2006
  ident: 10.1016/j.jbiomech.2008.05.017_bib11
  article-title: Bone remodelling inside a cemented resurfaced femoral head
  publication-title: Clinical Biomechanics
  doi: 10.1016/j.clinbiomech.2006.01.010
– volume: 37
  start-page: 523
  year: 2004
  ident: 10.1016/j.jbiomech.2008.05.017_bib16
  article-title: Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2003.08.010
– start-page: 219
  year: 2005
  ident: 10.1016/j.jbiomech.2008.05.017_bib20
  article-title: Predicting proximal femoral strength using structural engineering models
  publication-title: Clinical Orthopaedics and Related Research
  doi: 10.1097/01.blo.0000164400.37905.22
– volume: 21
  start-page: 13
  year: 1988
  ident: 10.1016/j.jbiomech.2008.05.017_bib26
  article-title: Stiffness of compact bone: effects of porosity and density
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(88)90186-8
– volume: 39
  start-page: 2457
  year: 2006
  ident: 10.1016/j.jbiomech.2008.05.017_bib29
  article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2005.07.018
– volume: 59
  start-page: 954
  year: 1977
  ident: 10.1016/j.jbiomech.2008.05.017_bib5
  article-title: The compressive behavior of bone as a two-phase porous structure
  publication-title: The Journal of Bone and Joint Surgery American
  doi: 10.2106/00004623-197759070-00021
– volume: 219
  start-page: 265
  year: 2005
  ident: 10.1016/j.jbiomech.2008.05.017_bib38
  article-title: Effect of bone material properties on the initial stability of a cementless hip stem: a finite element study
  publication-title: Proceedings of the Institution of Mechanical Engineers [H]
  doi: 10.1243/095441105X34293
– volume: 87
  start-page: 148
  year: 2007
  ident: 10.1016/j.jbiomech.2008.05.017_bib34
  article-title: Multimod data manager: a tool for data fusion
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2007.05.002
– volume: 38
  start-page: 133
  year: 2005
  ident: 10.1016/j.jbiomech.2008.05.017_bib3
  article-title: The effect of muscle loading on the simulation of bone remodelling in the proximal femur
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2004.03.005
– volume: 29
  start-page: 74
  year: 2001
  ident: 10.1016/j.jbiomech.2008.05.017_bib14
  article-title: The influence of bone volume fraction and ash fraction on bone strength and modulus
  publication-title: Bone
  doi: 10.1016/S8756-3282(01)00467-7
– volume: 28
  start-page: 1329
  year: 1994
  ident: 10.1016/j.jbiomech.2008.05.017_bib21
  article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures
  publication-title: Journal of Biomedical Materials Research
  doi: 10.1002/jbm.820281111
– volume: 28
  start-page: 227
  year: 2006
  ident: 10.1016/j.jbiomech.2008.05.017_bib25
  article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2005.06.003
– volume: 19
  start-page: 583
  year: 1992
  ident: 10.1016/j.jbiomech.2008.05.017_bib15
  article-title: A phantom for standardization and quality control in spinal bone mineral measurements by QCT and DXA: design considerations and specifications
  publication-title: Medical Physics
  doi: 10.1118/1.596899
– volume: 40
  start-page: 2982
  year: 2007
  ident: 10.1016/j.jbiomech.2008.05.017_bib27
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2007.02.010
– volume: 26
  start-page: 61
  year: 2004
  ident: 10.1016/j.jbiomech.2008.05.017_bib30
  article-title: An improved method for the automatic mapping of computed tomography numbers onto finite element models
  publication-title: Medical Engineering and Physics
  doi: 10.1016/S1350-4533(03)00138-3
– volume: 40
  start-page: 2426
  year: 2007
  ident: 10.1016/j.jbiomech.2008.05.017_bib24
  article-title: Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2006.11.020
– volume: 20
  start-page: 451
  year: 2005
  ident: 10.1016/j.jbiomech.2008.05.017_bib33
  article-title: Extracting clinically relevant data from finite element simulations
  publication-title: Clinical Biomechanics
  doi: 10.1016/j.clinbiomech.2005.01.010
– volume: 29
  start-page: 39
  year: 1968
  ident: 10.1016/j.jbiomech.2008.05.017_bib4
  article-title: Density of fresh and embalmed human compact and cancellous bone
  publication-title: American Journal of Physical Anthropology
  doi: 10.1002/ajpa.1330290113
– volume: 9
  start-page: 175
  year: 1994
  ident: 10.1016/j.jbiomech.2008.05.017_bib9
  article-title: Formalin fixation effects on vertebral bone density and failure mechanics: an in-vitro study of human and sheep vertebrae
  publication-title: Clinical Biomechanics
  doi: 10.1016/0268-0033(94)90018-3
– volume: 23
  start-page: 135
  year: 2008
  ident: 10.1016/j.jbiomech.2008.05.017_bib13
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clinical Biomechanics
  doi: 10.1016/j.clinbiomech.2007.08.024
– volume: 25
  start-page: 445
  year: 2003
  ident: 10.1016/j.jbiomech.2008.05.017_bib17
  article-title: Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions
  publication-title: Medical Engineering and Physics
  doi: 10.1016/S1350-4533(03)00030-4
– volume: 117
  start-page: 272
  year: 1995
  ident: 10.1016/j.jbiomech.2008.05.017_bib8
  article-title: Development and validation of a three-dimensional finite element model of the pelvic bone
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2794181
– reference: - J Biomech. 2008 Nov 14;41(15):3294
SSID ssj0007479
Score 2.3915343
Snippet An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash...
Abstract An experimental–numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between...
An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2483
SubjectTerms Accuracy
Bone biomechanics
Bone density
Bone Density - physiology
Calibration
Computed tomography
CT calibration
Data processing
Digital libraries
Finite Element Analysis
Geometry
Hydroxyapatite
Minerals
Models, Biological
Physical Medicine and Rehabilitation
Studies
Subject-specific finite element model
Tomography Scanners, X-Ray Computed
Validation
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAcUNnyCBTwAXEzbBI_4hNaVa0qJDhRaW-WYztSV5Btye5h_z0e20l72YJ6jkeJMvZ4Ht98A_BR1cxwKQU1hivKTMloq1xJQyBWKdYo1iaA7A9xfsG-LfkyJ9yGDKscbWI01G5tMUceTjfy6IV4Rny9uqY4NQqrq3mExkN4hNRlCOmSyyngQm74DPEoaXAD5rc6hFefV7G_PRUkmsTeKfddTvucz3gJnR3Cs-w9kkVS93N44PsZHC36EDn_3pFPJOI5Y6J8Bk9vUQ3O4PH3XEQ_gm7RE2PtFkkiCJJspO5Fsu5Iu-49cYhp3-zIZcw3-IEEHzEL2B2uGrYtZm8odmki0oh0l-i5Ep-g6CRO1xlewMXZ6c-Tc5rHLVAr6mpDjUQmHamQnoVxr5ypg-1TtW-8Ycy2xvK27lzjKseUbTk3SN-qTNNwUTuu6pdw0IfPfA3EV0IKwXjnhGdz44Js7XnXVbbpqtr5Avj4n7XNXOQ4EuOXHkFnKz3qJw_K5Drop4Avk9xVYuP4p4Qc1ajHXtNgHXW4MO4n6Yd8yAdd6qHSc4317hK3V3S-w8VTgJoksx-T_JP_euvxuNf0zYumvV_Ah-lxsANY3DG9X2_DGsVjvHf3CjFX1f4VQfENjgMo4FXa5Tc_uQmBLivlm7s_7y08SXgaTFEdw8Hmz9a_C07bpn0fT-ZfkNtAzg
  priority: 102
  providerName: ProQuest
Title An accurate estimation of bone density improves the accuracy of subject-specific finite element models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929008002467
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929008002467
https://dx.doi.org/10.1016/j.jbiomech.2008.05.017
https://www.ncbi.nlm.nih.gov/pubmed/18606417
https://www.proquest.com/docview/1034928256
https://www.proquest.com/docview/19500004
https://www.proquest.com/docview/19506092
https://www.proquest.com/docview/69382756
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tQ0JwQNDlEVgWHxC3bJv4FR_LalcFRIUQK_VmObEjtYJ0RdpDL_vbdxw73UWogOCSSIlHcezxeGx_8w3AG0WZ4VKK1BiuUmYylpbKZikuxHLFCsXKAJCdiskl-zDjsz0462NhPKwy2v5g0ztrHZ8MY2sOr-ZzH-OLoy1XwefB8b4PhzlVAlX7cPz-42S6NcjoMUekR5Z6gTuBwovTRRfmHs4likDiKXfNUbt80G4uungED6MTScahno9hzzUDOBo3uID-viFvSQfr7PbLB_DgDuPgAO59imfpR1CPG2Kqau25Iojn2ghBjGRZk3LZOGI9tH21IfNu28G1BF3FKFBtfKl2XfpNnNQHa3rAEann3oElLiDSSZdkp30ClxfnX88macy6kFaC5qvUSE-oI5VnaWHcKWsomkBFXeEMY1VpKl7S2hY2t0xVJefGs7gqUxRcUMsVfQoHDVbzORCXCykE47UVjo2MRVnqeF3nVVHn1LoEeN_OuoqU5D4zxjfdY88Wuu-fmC-Ta-yfBIZbuatAyvFHCdl3o-5DTtFIapw3_k3StXGstzrTba5H-hd9TEBtJX9S6b_66nGva_r2Q55LyMcaiwReb1-jOfBnPKZxyzWWUbxb9v2-hBipfHcJ7PjCZwVI4FnQ8ttGLnC9yzL54j9-7SXcD5gbv411DAerH2v3Ch27VXkC-6fXGV7lTJ7EQYz3d-fTz19uADUZUBo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VW4mPA4ItlEChPgC3wCaxk_iA0AKttrRdIdRKvRkndqSuIFvIrtD-KX4jM7GT9rIFIfUcjxJlxuM345k3AC9kwrXIsjTUWsiQ64iHhTRRiIFYLHkueeEKZKfp5JR_OhNnG_C764WhssrOJ7aO2sxLypHj7iYePYxn0ncXP0KaGkW3q90IDWcWh3b1C0O25u3BR9Tvyzje3zv5MAn9VIGwTJN4EeqMCGMySSwkXFhpdIJbXCY2t5rzstClKJLK5CY2XJaFEJpYSqXOc5EmRhD5Err8TZ5gKDOAzfd7089fet-P4NwXlUQhAo_RlZ7k2etZ21HvrkByxxearTsO18Hd9tjbvw_3PF5lY2dgD2DD1kPYGtcYq39fsVesrSBtU_NDuHuF3HAIt479tf0WVOOa6bJcEi0FI1oP1y_J5hUr5rVlhqroFyt23mY4bMMQlXqBckWrmmVB-aKQ-kKptolV54SVmXXF76yd59M8hNMbUcUjGNT4mY-B2TjN0pSLyqSWj7RB2cSKqorLvIoTYwMQ3X9WpWc_pyEc31RX5jZTnX78aE6hUD8BvOnlLhz_x18lsk6NqutuRX-s8Ij6P0nbeLfSqEg1sRopumGPyLxauI9HXQCyl_TIySGif3rrTmdr6vJF_W4LYLd_jJ6HrpN0bedLXCNFG2FevyIdyXj9ClR8TgMIAth2Vn75k3MMrXmUPbn-83bh9uTk-EgdHUwPn8IdV81DCbIdGCx-Lu0zhIyL4rnfpwy-3rRr-AOIH37v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRarggGDLI1CoD8DNdJPYSXxAaEVZtRQqDlTam3FiR-oKsoXsCu1f49cxEztpL1sQUs_xKFHm4Xl-A_BCpcLIPM-4MVJxYWLBS2VjjoFYokShROkbZE-zozPxYSZnW_C7n4WhtsreJnaG2i4qypGjdhOOHsYz2UEd2iI-H07fXvzgtEGKKq39Og0vIidu_QvDt_bN8SHy-mWSTN9_eXfEw4YBXmVpsuQmJ_CYXBEiiZBOWZOiuqvUFc4IUZWmkmVa28ImVqiqlNIQYqkyRSGz1EoCYkLzfytPZUw6ls-GYI9w6UN7SczRBRlfmU6ev553s_W-GFJ45NB808W4yfHtLsDpPbgbPFc28aJ2H7ZcM4LdSYNR-_c1e8W6XtIuST-CO1dgDkew8ykU8HehnjTMVNWKACoYAXz4yUm2qFm5aByz1E-_XLPzLtfhWob-aSCo1nSqXZWUOeI0IUpdTqw-J6-ZOd8Gz7rNPu0DOLsRRjyE7QY_8zEwl2R5lglZ28yJsbFImzpZ10lV1ElqXQSy_8-6CjjotI7jm-4b3ua6509Y0ik18ieCg4HuwiOB_JUi79mo-zlXtMwaL6v_o3RtMDCtjnWb6LGmWntM4tU5_njpRaAGyuBDed_on96618uavnzRoHcR7A-P0QZRYck0brHCM0p2seb1J7KxSjafQMYXtIoggkdeyi9_coFBtojzJ9d_3j7soEHQH49PT57Cbd_WQ5myPdhe_ly5Z-g7LsvnnZIy-HrTVuEP9lKBvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+estimation+of+bone+density+improves+the+accuracy+of+subject-specific+finite+element+models&rft.jtitle=Journal+of+biomechanics&rft.au=Schileo%2C+Enrico&rft.au=Dall%E2%80%99Ara%2C+Enrico&rft.au=Taddei%2C+Fulvia&rft.au=Malandrino%2C+Andrea&rft.date=2008&rft.issn=0021-9290&rft.volume=41&rft.issue=11&rft.spage=2483&rft.epage=2491&rft_id=info:doi/10.1016%2Fj.jbiomech.2008.05.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2008_05_017
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929008X00107%2Fcov150h.gif