The Long Noncoding RNAs NEAT1 and MALAT1 Bind Active Chromatin Sites
Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNA...
Saved in:
Published in | Molecular cell Vol. 55; no. 5; pp. 791 - 802 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process.
[Display omitted]
•High-resolution genomic binding sites for the human lncRNAs NEAT1 and MALAT1•NEAT1 and MALAT1 exhibit distinct colocalized binding at active chromatin•Transcription impacts NEAT1 localization patterns•CHART-MS identifies proteins associated with endogenous RNAs in vivo
NEAT1 and MALAT1 are two of the most abundant mammalian lncRNAs. West et al. map the genomic binding of NEAT1 and MALAT1 and identify interacting proteins via RNA pull-down followed by mass spectrometry, showing these RNAs play a synergistic role in nuclear organization linking active genes and nuclear subdomains. |
---|---|
AbstractList | Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process. Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process. [Display omitted] •High-resolution genomic binding sites for the human lncRNAs NEAT1 and MALAT1•NEAT1 and MALAT1 exhibit distinct colocalized binding at active chromatin•Transcription impacts NEAT1 localization patterns•CHART-MS identifies proteins associated with endogenous RNAs in vivo NEAT1 and MALAT1 are two of the most abundant mammalian lncRNAs. West et al. map the genomic binding of NEAT1 and MALAT1 and identify interacting proteins via RNA pull-down followed by mass spectrometry, showing these RNAs play a synergistic role in nuclear organization linking active genes and nuclear subdomains. Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process.Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process. |
Author | Sadreyev, Ruslan I. Davis, Christopher P. Simon, Matthew D. Tolstorukov, Michael Y. West, Jason A. Sunwoo, Hongjae Kingston, Robert E. Wang, Peggy I. |
AuthorAffiliation | 2 Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA 1 Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA 3 Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA |
AuthorAffiliation_xml | – name: 1 Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA – name: 3 Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA – name: 2 Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA |
Author_xml | – sequence: 1 givenname: Jason A. surname: West fullname: West, Jason A. organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 2 givenname: Christopher P. surname: Davis fullname: Davis, Christopher P. organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 3 givenname: Hongjae surname: Sunwoo fullname: Sunwoo, Hongjae organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 4 givenname: Matthew D. surname: Simon fullname: Simon, Matthew D. organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 5 givenname: Ruslan I. surname: Sadreyev fullname: Sadreyev, Ruslan I. organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 6 givenname: Peggy I. surname: Wang fullname: Wang, Peggy I. organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 7 givenname: Michael Y. surname: Tolstorukov fullname: Tolstorukov, Michael Y. organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 8 givenname: Robert E. surname: Kingston fullname: Kingston, Robert E. email: kingston@molbio.mgh.harvard.edu organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25155612$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU2P0zAUtNAi9gP-AUI5cml4duw44YAUyvIhdYsE5Ww59svWVWLvxmkl_j0u7a4WDrunN9KbGY1mzsmJDx4JeU0hp0DLd5t8CL3BPmdAeQ4yB8qekTMKtZxxWvKTI2ayFKfkPMYNJKKo6hfklAkqREnZGfm0WmO2CP46WwZvgnUJ_Vg2MVteNiuaaW-zq2axhx9dwo2Z3A6z-XoMg56cz366CeNL8rzTfcRXx3tBfn2-XM2_zhbfv3ybN4uZKQs2zbjEoqamsrZjXWs6Uwigpu20BtsCdG0naA1GSqSFpjWCLWtmpAErW6h5W1yQDwffm207oDXop1H36mZ0gx5_q6Cd-vfj3Vpdh53inFWiKpPB26PBGG63GCc1uJg67LXHsI2KAQCDipfFk1QqShAVlxVP1DcPY93nuWs5Ed4fCGYMMY7YKeOmVF_Yp3S9oqD2k6qNOkyq9pMqkAr-ivl_4jv_J2THrjANsnM4qmgceoPWjWgmZYN73OAPw-67Mw |
CitedBy_id | crossref_primary_10_1038_s41585_019_0195_1 crossref_primary_10_1111_jcmm_13739 crossref_primary_10_1158_0008_5472_CAN_18_0688 crossref_primary_10_1038_s41594_018_0143_4 crossref_primary_10_4049_jimmunol_1900940 crossref_primary_10_1101_gad_348621_121 crossref_primary_10_1101_cshperspect_a032151 crossref_primary_10_1186_s13578_015_0050_x crossref_primary_10_3390_cancers12061458 crossref_primary_10_1371_journal_pone_0181628 crossref_primary_10_3389_fcell_2022_866820 crossref_primary_10_1038_s41467_024_52862_w crossref_primary_10_1093_nar_gkw065 crossref_primary_10_15252_embj_2020106276 crossref_primary_10_1016_j_ccell_2019_01_019 crossref_primary_10_1016_j_sjbs_2022_103344 crossref_primary_10_1101_cshperspect_a032276 crossref_primary_10_1002_jcla_23601 crossref_primary_10_1002_1873_3468_12315 crossref_primary_10_1016_j_neuint_2022_105467 crossref_primary_10_1016_j_molcel_2019_12_015 crossref_primary_10_1038_nrd_2016_117 crossref_primary_10_3390_ncrna6020022 crossref_primary_10_1016_j_isci_2022_105740 crossref_primary_10_1016_j_molcel_2021_10_009 crossref_primary_10_1093_bib_bbac445 crossref_primary_10_1093_nar_gkw195 crossref_primary_10_1038_s41598_023_34157_0 crossref_primary_10_3390_ncrna6020020 crossref_primary_10_1080_15476286_2019_1700332 crossref_primary_10_1016_j_bcp_2021_114657 crossref_primary_10_1083_jcb_201904098 crossref_primary_10_3390_ijms19030682 crossref_primary_10_1128_MCB_00702_15 crossref_primary_10_3389_fgene_2021_668313 crossref_primary_10_1042_EBC20200010 crossref_primary_10_1038_s41588_018_0207_8 crossref_primary_10_1093_nar_gkaa628 crossref_primary_10_3390_ijms21031166 crossref_primary_10_1002_jnr_24825 crossref_primary_10_3389_fonc_2024_1415801 crossref_primary_10_1016_j_ccell_2016_03_010 crossref_primary_10_1038_ncb3595 crossref_primary_10_1016_j_biopha_2018_12_070 crossref_primary_10_1016_j_celrep_2016_09_078 crossref_primary_10_1038_nrm_2016_126 crossref_primary_10_3390_ijms20081924 crossref_primary_10_1016_j_arr_2024_102391 crossref_primary_10_1093_plcell_koac166 crossref_primary_10_1146_annurev_cancerbio_050216_034443 crossref_primary_10_1016_j_tcb_2018_12_003 crossref_primary_10_1093_molbev_msac175 crossref_primary_10_1042_EBC20200004 crossref_primary_10_1016_j_mce_2021_111317 crossref_primary_10_1261_rna_079436_122 crossref_primary_10_3390_biom12101441 crossref_primary_10_3390_ncrna8040052 crossref_primary_10_3390_ncrna6030040 crossref_primary_10_7554_eLife_98900_3 crossref_primary_10_1007_s10555_017_9718_5 crossref_primary_10_1016_j_semcdb_2017_09_018 crossref_primary_10_1038_s41375_018_0104_2 crossref_primary_10_1016_j_ajpath_2015_03_008 crossref_primary_10_1093_cei_uxad034 crossref_primary_10_1080_15476286_2016_1197482 crossref_primary_10_1016_j_biochi_2015_03_014 crossref_primary_10_1016_j_celrep_2020_107629 crossref_primary_10_1016_j_jmb_2023_168094 crossref_primary_10_3389_fonc_2019_00407 crossref_primary_10_1007_s00018_019_03074_9 crossref_primary_10_1042_BST20191226 crossref_primary_10_1038_s41698_022_00283_7 crossref_primary_10_1055_s_0041_1729780 crossref_primary_10_1038_s41586_021_03589_x crossref_primary_10_3390_ijms16011395 crossref_primary_10_1038_s41419_023_05892_z crossref_primary_10_1038_s41467_024_48333_x crossref_primary_10_1038_nature17676 crossref_primary_10_1016_j_csbj_2022_07_002 crossref_primary_10_1016_j_bbagrm_2019_194449 crossref_primary_10_1186_s12915_020_00770_y crossref_primary_10_1016_j_jpsychires_2018_09_005 crossref_primary_10_1016_j_ab_2021_114520 crossref_primary_10_1007_s11515_016_1433_z crossref_primary_10_1016_j_heliyon_2021_e06395 crossref_primary_10_1002_wrna_1378 crossref_primary_10_1016_j_cancergen_2023_12_006 crossref_primary_10_3389_fcell_2021_728242 crossref_primary_10_1038_s41467_023_39011_5 crossref_primary_10_3390_ijms19072022 crossref_primary_10_15252_embj_2020107270 crossref_primary_10_3389_fgene_2020_00093 crossref_primary_10_3390_ncrna6010006 crossref_primary_10_3389_fonc_2020_591181 crossref_primary_10_1186_s13024_018_0263_7 crossref_primary_10_1186_s13045_020_00945_8 crossref_primary_10_1016_j_celrep_2018_04_061 crossref_primary_10_1083_jcb_201609008 crossref_primary_10_1371_journal_pbio_3000143 crossref_primary_10_1080_07853890_2023_2192049 crossref_primary_10_1172_JCI94233 crossref_primary_10_1101_sqb_2019_84_039404 crossref_primary_10_3390_ijms26031137 crossref_primary_10_1021_acs_jproteome_8b00189 crossref_primary_10_1098_rsob_180150 crossref_primary_10_1080_19491034_2015_1119353 crossref_primary_10_1038_s43587_022_00198_9 crossref_primary_10_1002_jcp_30556 crossref_primary_10_1016_j_jaut_2022_102982 crossref_primary_10_1007_s11033_017_4103_6 crossref_primary_10_1038_srep36572 crossref_primary_10_3390_ijms22020632 crossref_primary_10_1038_nbt_3968 crossref_primary_10_3390_ijms22073478 crossref_primary_10_1111_acer_13871 crossref_primary_10_1042_BCJ20170280 crossref_primary_10_3390_ijms20225610 crossref_primary_10_1261_rna_072157_119 crossref_primary_10_1101_gad_257048_114 crossref_primary_10_1093_nar_gkad639 crossref_primary_10_1155_2017_4723193 crossref_primary_10_1038_nrm_2017_104 crossref_primary_10_3389_fgene_2019_00680 crossref_primary_10_1080_15476286_2017_1358347 crossref_primary_10_1038_s41416_021_01588_3 crossref_primary_10_3390_ijms21093030 crossref_primary_10_1093_bib_bby050 crossref_primary_10_1080_15476286_2019_1592072 crossref_primary_10_1016_j_cell_2018_10_048 crossref_primary_10_1038_nsmb_2921 crossref_primary_10_1038_s41556_018_0204_2 crossref_primary_10_1186_s12957_016_0799_3 crossref_primary_10_1261_rna_078971_121 crossref_primary_10_3390_ijms25020922 crossref_primary_10_7717_peerj_11946 crossref_primary_10_1093_bib_bby055 crossref_primary_10_1111_jcmm_13224 crossref_primary_10_1080_15476286_2021_1971439 crossref_primary_10_1186_s13046_022_02449_4 crossref_primary_10_1093_nar_gky095 crossref_primary_10_1126_sciadv_abq7289 crossref_primary_10_1007_s00335_022_09952_1 crossref_primary_10_3390_ijms21103711 crossref_primary_10_1093_humupd_dmw035 crossref_primary_10_1038_s41598_021_89921_x crossref_primary_10_1038_s43018_023_00695_9 crossref_primary_10_1093_carcin_bgv136 crossref_primary_10_1038_s42003_020_0784_9 crossref_primary_10_1016_j_tibs_2016_07_003 crossref_primary_10_1016_j_heliyon_2021_e06502 crossref_primary_10_1038_s41419_020_02954_4 crossref_primary_10_1093_nar_gkz037 crossref_primary_10_1016_j_celrep_2018_03_064 crossref_primary_10_1002_1878_0261_12819 crossref_primary_10_1080_19491034_2024_2350180 crossref_primary_10_1093_nar_gkac771 crossref_primary_10_3390_biom10081160 crossref_primary_10_1007_s10577_019_09625_x crossref_primary_10_3389_fmolb_2018_00090 crossref_primary_10_1016_j_molcel_2022_05_010 crossref_primary_10_18632_oncotarget_28447 crossref_primary_10_1038_s41375_024_02322_7 crossref_primary_10_1126_scisignal_aaw9277 crossref_primary_10_1371_journal_pone_0192264 crossref_primary_10_1155_2018_1243858 crossref_primary_10_1186_s12645_020_00066_4 crossref_primary_10_1038_s41594_020_0390_z crossref_primary_10_1016_j_lfs_2023_122285 crossref_primary_10_1016_j_tig_2017_04_004 crossref_primary_10_1016_j_cell_2018_01_011 crossref_primary_10_1186_s13046_015_0123_z crossref_primary_10_1093_nar_gkad557 crossref_primary_10_1007_s11011_020_00564_9 crossref_primary_10_1038_s41576_019_0135_1 crossref_primary_10_15252_embj_2021109711 crossref_primary_10_3389_fonc_2022_746643 crossref_primary_10_1083_jcb_201601024 crossref_primary_10_1186_s12864_023_09498_9 crossref_primary_10_1261_rna_079972_124 crossref_primary_10_3389_fcell_2021_711352 crossref_primary_10_1038_s41467_020_14978_7 crossref_primary_10_3389_fcell_2022_943519 crossref_primary_10_1016_j_cub_2017_01_011 crossref_primary_10_1371_journal_pone_0150236 crossref_primary_10_1007_s00412_017_0632_y crossref_primary_10_15252_embj_2021109823 crossref_primary_10_1002_jgm_3104 crossref_primary_10_1093_nar_gkab1208 crossref_primary_10_1253_circj_CJ_18_0169 crossref_primary_10_1016_j_bbagrm_2015_06_003 crossref_primary_10_1038_s41598_017_16793_5 crossref_primary_10_3390_ncrna6030026 crossref_primary_10_7554_eLife_14837 crossref_primary_10_1016_j_bbadis_2024_167261 crossref_primary_10_1093_nar_gkac1237 crossref_primary_10_1007_s10238_021_00748_2 crossref_primary_10_1002_mrd_22581 crossref_primary_10_15252_embj_2022110921 crossref_primary_10_1016_j_bbamcr_2021_119058 crossref_primary_10_3390_ijms22136922 crossref_primary_10_1021_acs_jproteome_1c00074 crossref_primary_10_1038_ncomms10812 crossref_primary_10_1002_jcp_26800 crossref_primary_10_1126_sciadv_adf3264 crossref_primary_10_1038_s41398_020_0854_2 crossref_primary_10_1002_ijc_30039 crossref_primary_10_1016_j_tibs_2018_09_012 crossref_primary_10_3389_fgene_2019_00342 crossref_primary_10_1177_2472630318780639 crossref_primary_10_1111_jcmm_13238 crossref_primary_10_3389_fimmu_2020_00024 crossref_primary_10_1538_expanim_19_0058 crossref_primary_10_1016_j_fmre_2023_03_006 crossref_primary_10_1039_C9CC06251C crossref_primary_10_3233_CBM_230123 crossref_primary_10_1038_s41537_019_0071_2 crossref_primary_10_1016_j_biochi_2023_08_015 crossref_primary_10_1016_j_ijbiomac_2017_07_053 crossref_primary_10_3389_fmed_2021_734643 crossref_primary_10_1016_j_semcancer_2021_03_007 crossref_primary_10_1093_nar_gkab245 crossref_primary_10_3390_ncrna5040054 crossref_primary_10_1038_s41467_019_12050_7 crossref_primary_10_1016_j_semcdb_2018_07_001 crossref_primary_10_1080_16078454_2022_2164449 crossref_primary_10_1016_j_jbc_2024_107595 crossref_primary_10_1038_s41389_019_0182_7 crossref_primary_10_1016_j_bbagrm_2015_05_007 crossref_primary_10_1186_s12915_021_01044_x crossref_primary_10_1016_j_bbagrm_2019_03_003 crossref_primary_10_1111_pcmr_12537 crossref_primary_10_3390_cimb45060301 crossref_primary_10_1111_apha_13339 crossref_primary_10_1261_rna_060798_117 crossref_primary_10_1016_j_isci_2021_103680 crossref_primary_10_1093_nar_gkx1169 crossref_primary_10_2147_JIR_S338162 crossref_primary_10_3390_molecules26082270 crossref_primary_10_1016_j_exer_2018_06_004 crossref_primary_10_1016_j_bbagrm_2015_09_012 crossref_primary_10_1080_15476286_2021_1873620 crossref_primary_10_1093_cvr_cvy202 crossref_primary_10_18632_aging_102159 crossref_primary_10_1016_j_tig_2017_11_005 crossref_primary_10_1038_s41586_020_2249_1 crossref_primary_10_1186_s12977_023_00619_6 crossref_primary_10_1007_s13402_017_0356_2 crossref_primary_10_1016_j_ymthe_2022_03_011 crossref_primary_10_3389_fmed_2018_00193 crossref_primary_10_1016_j_jhep_2016_01_019 crossref_primary_10_1289_EHP3281 crossref_primary_10_1016_j_bbagrm_2015_09_004 crossref_primary_10_1038_nm_3981 crossref_primary_10_2217_bmm_2018_0128 crossref_primary_10_3390_ijms23073695 crossref_primary_10_1161_ATVBAHA_115_305043 crossref_primary_10_1093_nar_gkz1176 crossref_primary_10_1038_s41596_021_00555_9 crossref_primary_10_3390_cells10081892 crossref_primary_10_1146_annurev_genom_090314_024939 crossref_primary_10_1158_0008_5472_CAN_16_1508 crossref_primary_10_1080_15476286_2023_2287302 crossref_primary_10_3390_biom12121802 crossref_primary_10_1038_s42003_024_07199_x crossref_primary_10_1016_j_jhepr_2020_100177 crossref_primary_10_2217_epi_15_108 crossref_primary_10_1016_j_jbc_2025_108207 crossref_primary_10_1016_j_bbcan_2021_188502 crossref_primary_10_1053_j_gastro_2018_02_018 crossref_primary_10_3389_fcvm_2021_707529 crossref_primary_10_3390_ijms23084432 crossref_primary_10_1021_acs_analchem_2c05635 crossref_primary_10_1186_s13059_019_1880_3 crossref_primary_10_1186_s12967_021_03211_8 crossref_primary_10_1002_wrna_1863 crossref_primary_10_3390_ncrna7040074 crossref_primary_10_1016_j_lungcan_2015_11_002 crossref_primary_10_3389_fgene_2022_857759 crossref_primary_10_1007_s10577_020_09628_z crossref_primary_10_3389_fonc_2022_867886 crossref_primary_10_3390_ijms25105515 crossref_primary_10_15252_embj_201798219 crossref_primary_10_1093_biolre_ioae007 crossref_primary_10_1038_s41598_018_34864_z crossref_primary_10_1038_s41598_019_56869_y crossref_primary_10_18632_oncotarget_5357 crossref_primary_10_1016_j_semcdb_2016_03_023 crossref_primary_10_1016_j_gendis_2022_10_024 crossref_primary_10_1093_procel_pwae057 crossref_primary_10_1186_s12870_024_05249_4 crossref_primary_10_3389_fcell_2021_719247 crossref_primary_10_1074_jbc_RA119_008732 crossref_primary_10_1038_s41467_024_45183_5 crossref_primary_10_1126_sciimmunol_adh5462 crossref_primary_10_2337_dbi18_0001 crossref_primary_10_1177_1535370216685434 crossref_primary_10_3389_fgene_2017_00208 crossref_primary_10_1038_s41392_022_01076_x crossref_primary_10_1111_liv_14629 crossref_primary_10_3389_fmolb_2022_974772 crossref_primary_10_1016_j_tig_2016_10_002 crossref_primary_10_1016_j_yexmp_2020_104484 crossref_primary_10_1093_nargab_lqae023 crossref_primary_10_1016_j_celrep_2017_05_006 crossref_primary_10_1096_fj_202001951R crossref_primary_10_1371_journal_pone_0228160 crossref_primary_10_3390_genes12071036 crossref_primary_10_1134_S1062359020120092 crossref_primary_10_3389_fgene_2020_00659 crossref_primary_10_1002_jcp_26759 crossref_primary_10_3390_ijms23020942 crossref_primary_10_1038_s41467_023_36137_4 crossref_primary_10_1038_ncomms10406 crossref_primary_10_1039_D2SC04656C crossref_primary_10_1002_1878_0261_13049 crossref_primary_10_3390_molecules26103022 crossref_primary_10_3390_ncrna7010006 crossref_primary_10_1016_j_jdermsci_2021_02_005 crossref_primary_10_1038_s41419_019_1742_7 crossref_primary_10_1186_s12943_015_0455_5 crossref_primary_10_1016_j_omtn_2020_09_039 crossref_primary_10_1080_15476286_2018_1534524 crossref_primary_10_3389_fonc_2021_687629 crossref_primary_10_3390_cancers11111638 crossref_primary_10_3390_cancers13143530 crossref_primary_10_1016_j_gde_2022_101940 crossref_primary_10_1097_WNR_0000000000001538 crossref_primary_10_1007_s12253_016_0172_4 crossref_primary_10_1016_j_gde_2019_06_008 crossref_primary_10_1126_sciadv_abl4150 crossref_primary_10_1016_j_cell_2021_10_014 crossref_primary_10_1016_j_stemcr_2020_10_011 crossref_primary_10_1016_j_tibs_2017_12_001 crossref_primary_10_1038_s41467_020_18411_x crossref_primary_10_1002_jcb_29364 crossref_primary_10_1186_s40104_019_0424_8 crossref_primary_10_1261_rna_059477_116 crossref_primary_10_1093_nar_gkac083 crossref_primary_10_1101_gad_284661_116 crossref_primary_10_1038_s41388_024_03171_5 crossref_primary_10_3390_cells12070987 crossref_primary_10_1038_celldisc_2017_2 crossref_primary_10_18632_aging_204262 crossref_primary_10_3389_fgene_2021_638217 crossref_primary_10_3390_ncrna7010011 crossref_primary_10_2217_epi_15_79 crossref_primary_10_1038_s41380_023_02377_5 crossref_primary_10_1186_s12964_022_00960_x crossref_primary_10_18632_oncotarget_9622 crossref_primary_10_1002_edm2_10 crossref_primary_10_1080_15384101_2018_1464835 crossref_primary_10_1080_15476286_2021_1894025 crossref_primary_10_1093_nargab_lqae045 crossref_primary_10_1002_hep_28882 crossref_primary_10_3390_cancers12071918 crossref_primary_10_3390_ijms25010597 crossref_primary_10_1038_s41556_020_0572_2 crossref_primary_10_1007_s13402_022_00752_y crossref_primary_10_1016_j_tibtech_2020_11_011 crossref_primary_10_1093_nargab_lqae054 crossref_primary_10_3390_ijms23020968 crossref_primary_10_7554_eLife_98900 crossref_primary_10_3390_ijms17050702 crossref_primary_10_1186_s12885_019_5822_y crossref_primary_10_1261_rna_071456_119 crossref_primary_10_1016_j_cell_2018_11_027 crossref_primary_10_1186_s43042_020_00074_4 crossref_primary_10_3389_fmolb_2022_925058 crossref_primary_10_1083_jcb_201601071 crossref_primary_10_7717_peerj_13986 crossref_primary_10_1016_j_virol_2017_08_006 crossref_primary_10_1016_j_isci_2024_109914 crossref_primary_10_1002_wrna_1712 crossref_primary_10_1002_wrna_1715 crossref_primary_10_1016_j_mcpro_2021_100141 crossref_primary_10_1073_pnas_2102175118 crossref_primary_10_1016_j_gde_2021_11_005 crossref_primary_10_1016_j_bcp_2018_03_019 crossref_primary_10_1038_s41467_020_14337_6 crossref_primary_10_15252_embr_202255345 crossref_primary_10_1007_s00018_024_05204_4 crossref_primary_10_1111_imm_12698 crossref_primary_10_7759_cureus_66393 crossref_primary_10_3390_ijms24032260 crossref_primary_10_3389_fcell_2023_1205540 crossref_primary_10_1016_j_ncrna_2021_03_002 crossref_primary_10_18632_aging_101341 crossref_primary_10_1038_s41580_023_00694_9 crossref_primary_10_1016_j_omto_2021_10_004 crossref_primary_10_1038_s41467_023_39160_7 crossref_primary_10_1016_j_isci_2020_101659 crossref_primary_10_1038_nsmb_3455 crossref_primary_10_1080_15476286_2021_1889253 crossref_primary_10_1089_dna_2015_3187 crossref_primary_10_3390_cancers12051243 crossref_primary_10_1038_s41592_019_0330_1 crossref_primary_10_1042_BST20160376 crossref_primary_10_1093_cvr_cvz149 crossref_primary_10_1371_journal_pone_0237463 crossref_primary_10_3390_cancers14164009 crossref_primary_10_1093_nar_gkaa814 crossref_primary_10_1093_nar_gkw599 crossref_primary_10_3389_fphys_2022_949378 crossref_primary_10_1111_febs_15678 crossref_primary_10_1002_wrna_1699 crossref_primary_10_1016_j_csbj_2022_06_017 crossref_primary_10_1002_jcb_25927 crossref_primary_10_3390_genes16030313 crossref_primary_10_1002_ctm2_70135 crossref_primary_10_1080_15476286_2023_2286099 crossref_primary_10_1093_nar_gky1305 crossref_primary_10_1186_s12885_016_2735_x crossref_primary_10_1038_s41598_018_25451_3 crossref_primary_10_1101_gad_270959_115 crossref_primary_10_1039_D2CB00015F crossref_primary_10_1007_s00335_021_09901_4 crossref_primary_10_1016_j_ncrna_2018_11_003 crossref_primary_10_1038_srep38414 crossref_primary_10_1093_nar_gkab1066 crossref_primary_10_1042_BCJ20180440 crossref_primary_10_1093_nar_gkv591 crossref_primary_10_1093_nar_gkae038 crossref_primary_10_1101_gad_351913_124 crossref_primary_10_1016_j_ceb_2020_02_015 crossref_primary_10_1002_jcp_28557 crossref_primary_10_1261_rna_079569_122 crossref_primary_10_1016_j_cell_2015_03_025 crossref_primary_10_3389_fcell_2022_945668 crossref_primary_10_1016_j_ccell_2016_05_004 crossref_primary_10_1038_s41556_019_0311_8 crossref_primary_10_1186_s12859_019_2646_3 crossref_primary_10_3390_ncrna9010010 crossref_primary_10_1016_j_cmet_2021_11_011 crossref_primary_10_1016_j_bbrc_2017_10_137 crossref_primary_10_15252_embr_201948977 crossref_primary_10_1016_j_semcancer_2020_07_013 crossref_primary_10_2147_CMAR_S286804 crossref_primary_10_1007_s00018_016_2398_4 crossref_primary_10_1038_s41419_018_0418_z crossref_primary_10_1093_nar_gkaf139 crossref_primary_10_1016_j_bbrc_2019_01_032 crossref_primary_10_3390_ijms24054538 crossref_primary_10_1016_j_cmet_2019_09_013 crossref_primary_10_1097_HRP_0000000000000206 crossref_primary_10_1515_jib_2019_0027 crossref_primary_10_1016_j_celrep_2021_109576 crossref_primary_10_3390_ijms21031027 crossref_primary_10_1038_s41467_023_41848_9 crossref_primary_10_3390_cancers11020216 crossref_primary_10_3389_fcvm_2022_881916 crossref_primary_10_3390_ijms25126719 crossref_primary_10_1038_s41598_017_18649_4 crossref_primary_10_1038_s41598_021_03993_3 crossref_primary_10_1042_BST20210758 crossref_primary_10_1007_s00018_020_03503_0 crossref_primary_10_3389_fnmol_2021_714768 crossref_primary_10_1038_s41580_022_00558_8 crossref_primary_10_1128_mBio_00937_19 crossref_primary_10_1158_0008_5472_CAN_15_2018 crossref_primary_10_1038_s41556_024_01448_1 crossref_primary_10_1080_15476286_2019_1710405 crossref_primary_10_1016_j_bbrc_2018_08_158 crossref_primary_10_1084_jem_20211756 crossref_primary_10_1093_abbs_gmaa087 crossref_primary_10_1007_s13277_015_4605_6 crossref_primary_10_1080_26895293_2019_1702108 crossref_primary_10_1093_nar_gky570 crossref_primary_10_2174_2211536612666230330184006 crossref_primary_10_1016_j_tibs_2023_03_007 crossref_primary_10_1155_2016_1823482 crossref_primary_10_3389_fonc_2024_1453807 crossref_primary_10_1093_bib_bbab195 crossref_primary_10_1093_nar_gkv156 crossref_primary_10_1002_1873_3468_13182 crossref_primary_10_1007_s12035_021_02359_0 crossref_primary_10_1093_nar_gkv390 crossref_primary_10_2142_biophys_64_71 crossref_primary_10_1016_j_cell_2016_05_075 crossref_primary_10_1186_s40478_019_0658_x crossref_primary_10_1038_s41590_017_0005_y crossref_primary_10_1134_S0026893322020121 crossref_primary_10_1016_j_bbagrm_2018_12_002 crossref_primary_10_1155_2021_5519720 crossref_primary_10_1186_s12943_020_01293_4 crossref_primary_10_1038_srep17794 crossref_primary_10_1038_srep36045 crossref_primary_10_1007_s13238_020_00706_w crossref_primary_10_2139_ssrn_3188350 crossref_primary_10_1042_BCJ20160649 crossref_primary_10_1016_j_omtn_2018_07_014 crossref_primary_10_15252_embj_201695848 crossref_primary_10_37349_emed_2023_00159 crossref_primary_10_1038_s41598_018_20727_0 crossref_primary_10_3390_cancers12051136 |
Cites_doi | 10.1083/jcb.133.4.719 10.1083/jcb.144.4.617 10.1126/science.1237973 10.1186/gb-2008-9-9-r137 10.1038/nrg2521 10.1038/nn.2778 10.1038/nrg3049 10.1101/cshperspect.a000646 10.1038/nature12719 10.1016/S0960-9822(01)00632-7 10.1126/science.1163045 10.1016/j.molcel.2014.01.009 10.1146/annurev-physiol-021909-135840 10.1186/1471-2164-8-39 10.1038/emboj.2012.251 10.1016/j.molcel.2013.02.010 10.1073/pnas.0807899106 10.1091/mbc.E04-03-0253 10.1017/S135583820100245X 10.1091/mbc.E13-09-0558 10.1126/science.1105136 10.1038/nature12644 10.1016/S1097-2765(04)00239-4 10.1242/jcs.03344 10.1242/jeb.005017 10.1016/j.tig.2011.05.006 10.1038/387523a0 10.1038/nbt.1508 10.4161/rna.21089 10.1093/bioinformatics/btr095 10.1016/j.molcel.2009.01.025 10.1261/rna.037598.112 10.1074/jbc.M102306200 10.1016/j.molcel.2009.01.026 10.1101/gr.087775.108 10.1016/j.celrep.2012.06.003 10.4161/cc.8.3.7585 10.1101/gr.131037.111 10.1073/pnas.1113536108 10.1016/j.cell.2011.08.054 10.1186/gb-2004-5-9-r66 10.1128/MCB.21.1.343-353.2001 10.1126/science.1192002 10.1016/j.molcel.2011.08.027 10.1101/gr.132159.111 10.1016/j.cell.2011.11.055 10.1126/science.1090095 10.1016/j.cell.2011.03.042 10.1074/jbc.C000446200 10.1038/sj.onc.1206928 10.1073/pnas.182427099 10.1261/rna.033217.112 10.1083/jcb.201011110 10.1093/emboj/16.6.1401 10.1016/j.cell.2008.11.045 10.1371/journal.pgen.0020047 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. 2014 Elsevier Inc. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: 2014 Elsevier Inc. All rights reserved. 2014 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2014.07.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 802 |
ExternalDocumentID | PMC4428586 25155612 10_1016_j_molcel_2014_07_012 S1097276514006054 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01GM043901 – fundername: NIGMS NIH HHS grantid: R37 GM048405 – fundername: NIGMS NIH HHS grantid: R37GM048405 – fundername: NIGMS NIH HHS grantid: R01 GM043901 – fundername: NIGMS NIH HHS grantid: F32GM093491 – fundername: NIDDK NIH HHS grantid: P30 DK040561 – fundername: NIGMS NIH HHS grantid: F32 GM093491 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 5VS 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G AAHBH AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c632t-47e391c8ddf2fbcfc3501cbfaa0db00fbf5190c77e13a19e0d692c7c0d7b094b3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 13:41:07 EDT 2025 Fri Jul 11 11:25:16 EDT 2025 Fri Jul 11 04:02:58 EDT 2025 Thu Apr 03 07:08:34 EDT 2025 Tue Jul 01 03:40:43 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Fri Feb 23 02:30:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c632t-47e391c8ddf2fbcfc3501cbfaa0db00fbf5190c77e13a19e0d692c7c0d7b094b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first authors Present address: Therapeutic Innovation Unit, Amgen, Inc. Cambridge, Massachusetts 02142, USA Present address: Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520, USA |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276514006054 |
PMID | 25155612 |
PQID | 1560584784 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4428586 proquest_miscellaneous_2000208463 proquest_miscellaneous_1560584784 pubmed_primary_25155612 crossref_citationtrail_10_1016_j_molcel_2014_07_012 crossref_primary_10_1016_j_molcel_2014_07_012 elsevier_sciencedirect_doi_10_1016_j_molcel_2014_07_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-04 |
PublicationDateYYYYMMDD | 2014-09-04 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Tollervey, Curk, Rogelj, Briese, Cereda, Kayikci, König, Hortobágyi, Nishimura, Zupunski (bib45) 2011; 14 Zeng, Kim, Warren, Berget (bib53) 1997; 16 Chao, Price (bib2) 2001; 276 Simon, Pinter, Fang, Sarma, Rutenberg-Schoenberg, Bowman, Kesner, Maier, Kingston, Lee (bib40) 2013; 504 Gilbert, Kristjuhan, Winkler, Svejstrup (bib16) 2004; 14 Imamura, Imamachi, Akizuki, Kumakura, Kawaguchi, Nagata, Kato, Kawaguchi, Sato, Yoneda (bib21) 2014; 53 Brockdorff (bib1) 2013; 19 Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li, Liu (bib54) 2008; 9 Chao, Fujinaga, Marion, Taube, Sausville, Senderowicz, Peterlin, Price (bib3) 2000; 275 Hutchinson, Ensminger, Clemson, Lynch, Lawrence, Chess (bib20) 2007; 8 Kamentsky, Jones, Fraser, Bray, Logan, Madden, Ljosa, Rueden, Eliceiri, Carpenter (bib24) 2011; 27 Fox, Lam, Leung, Lyon, Andersen, Mann, Lamond (bib14) 2002; 12 Kharchenko, Tolstorukov, Park (bib25) 2008; 26 Huang, Spector (bib19) 1996; 133 Zhou, Sim, Griffith, Reed (bib57) 2002; 99 Wan, Kertesz, Spitale, Segal, Chang (bib49) 2011; 12 Zhang, Arun, Mao, Lazar, Hung, Bhattacharjee, Xiao, Booth, Wu, Zhang, Spector (bib55) 2012; 2 Clark, Johnston, Inostroza-Ponta, Fox, Fortini, Moscato, Dinger, Mattick (bib6) 2012; 22 Eißmann, Gutschner, Hämmerle, Günther, Caudron-Herger, Groß, Schirmacher, Rippe, Braun, Zörnig, Diederichs (bib10) 2012; 9 Smith, Moen, Wydner, Coleman, Lawrence (bib41) 1999; 144 Srisawat, Engelke (bib43) 2001; 7 Derrien, Johnson, Bussotti, Tanzer, Djebali, Tilgner, Guernec, Martin, Merkel, Knowles (bib9) 2012; 22 Sabin, Delás, Hannon (bib34) 2013; 49 Saitoh, Spahr, Patterson, Bubulya, Neuwald, Spector (bib35) 2004; 15 Simon, Wang, Kharchenko, West, Chapman, Alekseyenko, Borowsky, Kuroda, Kingston (bib39) 2011; 108 Engreitz, Pandya-Jones, McDonel, Shishkin, Sirokman, Surka, Kadri, Xing, Goren, Lander (bib12) 2013; 341 Naganuma, Nakagawa, Tanigawa, Sasaki, Goshima, Hirose (bib31) 2012; 31 Ji, Diederichs, Wang, Böing, Metzger, Schneider, Tidow, Brandt, Buerger, Bulk (bib22) 2003; 22 (bib11) 2004; 306 Chu, Qu, Zhong, Artandi, Chang (bib5) 2011; 44 Hah, Danko, Core, Waterfall, Siepel, Lis, Kraus (bib17) 2011; 145 Yang, Lin, Liu, Zhang, Ohgi, Grinstein, Dorrestein, Rosenfeld (bib52) 2011; 147 Nakagawa, Ip, Shioi, Tripathi, Zong, Hirose, Prasanth (bib33) 2012; 18 Mao, Zhang, Spector (bib27) 2011; 27 Engström, Suzuki, Ninomiya, Akalin, Sessa, Lavorgna, Brozzi, Luzi, Tan, Yang (bib13) 2006; 2 Mercer, Dinger, Mattick (bib29) 2009; 10 Sergeant, Bourgeois, Dalgliesh, Venables, Stevenin, Elliott (bib38) 2007; 120 Hirose, Virnicchi, Tanigawa, Naganuma, Li, Kimura, Yokoi, Nakagawa, Bénard, Fox, Pierron (bib18) 2014; 25 Clemson, Hutchinson, Sara, Ensminger, Fox, Chess, Lawrence (bib7) 2009; 33 Sauvé, McBroom, Gallant, Moraitis, Labrie, Giguère (bib37) 2001; 21 Sunwoo, Dinger, Wilusz, Amaral, Mattick, Spector (bib44) 2009; 19 Jin, Li, Dixon, Selvaraj, Ye, Lee, Yen, Schmitt, Espinoza, Ren (bib23) 2013; 503 Spector, Lamond (bib42) 2011; 3 Déjardin, Kingston (bib8) 2009; 136 Nakagawa, Naganuma, Shioi, Hirose (bib32) 2011; 193 Ule, Jensen, Ruggiu, Mele, Ule, Darnell (bib47) 2003; 302 Zhao, Sun, Erwin, Song, Lee (bib56) 2008; 322 Lin, Ström, Vega, Kong, Yeo, Thomsen, Chan, Doray, Bangarusamy, Ramasamy (bib26) 2004; 5 Misteli, Cáceres, Spector (bib30) 1997; 387 Warzecha, Sato, Nabet, Hogenesch, Carstens (bib50) 2009; 33 White, Johnson, Khalili (bib51) 2009; 8 Ulitsky, Shkumatava, Jan, Sive, Bartel (bib48) 2011; 147 Cheung, Kraus (bib4) 2010; 72 Tsai, Manor, Wan, Mosammaparast, Wang, Lan, Shi, Segal, Chang (bib46) 2010; 329 Sasaki, Ideue, Sano, Mituyama, Hirose (bib36) 2009; 106 Ghosh, Thompson, Weigel (bib15) 2000; 60 Mattick (bib28) 2007; 210 Clark (10.1016/j.molcel.2014.07.012_bib6) 2012; 22 Sabin (10.1016/j.molcel.2014.07.012_bib34) 2013; 49 Imamura (10.1016/j.molcel.2014.07.012_bib21) 2014; 53 Wan (10.1016/j.molcel.2014.07.012_bib49) 2011; 12 Tsai (10.1016/j.molcel.2014.07.012_bib46) 2010; 329 Zhang (10.1016/j.molcel.2014.07.012_bib54) 2008; 9 Warzecha (10.1016/j.molcel.2014.07.012_bib50) 2009; 33 Tollervey (10.1016/j.molcel.2014.07.012_bib45) 2011; 14 Sauvé (10.1016/j.molcel.2014.07.012_bib37) 2001; 21 Déjardin (10.1016/j.molcel.2014.07.012_bib8) 2009; 136 Ji (10.1016/j.molcel.2014.07.012_bib22) 2003; 22 Zhang (10.1016/j.molcel.2014.07.012_bib55) 2012; 2 Saitoh (10.1016/j.molcel.2014.07.012_bib35) 2004; 15 Engreitz (10.1016/j.molcel.2014.07.012_bib12) 2013; 341 Mattick (10.1016/j.molcel.2014.07.012_bib28) 2007; 210 Derrien (10.1016/j.molcel.2014.07.012_bib9) 2012; 22 Simon (10.1016/j.molcel.2014.07.012_bib40) 2013; 504 Engström (10.1016/j.molcel.2014.07.012_bib13) 2006; 2 Ulitsky (10.1016/j.molcel.2014.07.012_bib48) 2011; 147 Cheung (10.1016/j.molcel.2014.07.012_bib4) 2010; 72 Sunwoo (10.1016/j.molcel.2014.07.012_bib44) 2009; 19 Zeng (10.1016/j.molcel.2014.07.012_bib53) 1997; 16 Nakagawa (10.1016/j.molcel.2014.07.012_bib32) 2011; 193 Spector (10.1016/j.molcel.2014.07.012_bib42) 2011; 3 Nakagawa (10.1016/j.molcel.2014.07.012_bib33) 2012; 18 Hah (10.1016/j.molcel.2014.07.012_bib17) 2011; 145 Hutchinson (10.1016/j.molcel.2014.07.012_bib20) 2007; 8 Lin (10.1016/j.molcel.2014.07.012_bib26) 2004; 5 Simon (10.1016/j.molcel.2014.07.012_bib39) 2011; 108 Mercer (10.1016/j.molcel.2014.07.012_bib29) 2009; 10 Chu (10.1016/j.molcel.2014.07.012_bib5) 2011; 44 Kharchenko (10.1016/j.molcel.2014.07.012_bib25) 2008; 26 Eißmann (10.1016/j.molcel.2014.07.012_bib10) 2012; 9 Kamentsky (10.1016/j.molcel.2014.07.012_bib24) 2011; 27 Smith (10.1016/j.molcel.2014.07.012_bib41) 1999; 144 Zhao (10.1016/j.molcel.2014.07.012_bib56) 2008; 322 Srisawat (10.1016/j.molcel.2014.07.012_bib43) 2001; 7 Chao (10.1016/j.molcel.2014.07.012_bib3) 2000; 275 Clemson (10.1016/j.molcel.2014.07.012_bib7) 2009; 33 Gilbert (10.1016/j.molcel.2014.07.012_bib16) 2004; 14 Hirose (10.1016/j.molcel.2014.07.012_bib18) 2014; 25 (10.1016/j.molcel.2014.07.012_bib11) 2004; 306 Chao (10.1016/j.molcel.2014.07.012_bib2) 2001; 276 Jin (10.1016/j.molcel.2014.07.012_bib23) 2013; 503 Brockdorff (10.1016/j.molcel.2014.07.012_bib1) 2013; 19 Fox (10.1016/j.molcel.2014.07.012_bib14) 2002; 12 Misteli (10.1016/j.molcel.2014.07.012_bib30) 1997; 387 Yang (10.1016/j.molcel.2014.07.012_bib52) 2011; 147 Mao (10.1016/j.molcel.2014.07.012_bib27) 2011; 27 Sasaki (10.1016/j.molcel.2014.07.012_bib36) 2009; 106 Zhou (10.1016/j.molcel.2014.07.012_bib57) 2002; 99 Huang (10.1016/j.molcel.2014.07.012_bib19) 1996; 133 Ule (10.1016/j.molcel.2014.07.012_bib47) 2003; 302 Naganuma (10.1016/j.molcel.2014.07.012_bib31) 2012; 31 Ghosh (10.1016/j.molcel.2014.07.012_bib15) 2000; 60 Sergeant (10.1016/j.molcel.2014.07.012_bib38) 2007; 120 White (10.1016/j.molcel.2014.07.012_bib51) 2009; 8 18974356 - Science. 2008 Oct 31;322(5902):750-6 16683030 - PLoS Genet. 2006 Apr;2(4):e47 20926517 - Cold Spring Harb Perspect Biol. 2011 Feb;3(2). pii: a000646. doi: 10.1101/cshperspect.a000646 21526222 - PLoS Biol. 2011 Apr;9(4):e1001046 22143764 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20497-502 14615540 - Science. 2003 Nov 14;302(5648):1212-5 22955988 - Genome Res. 2012 Sep;22(9):1775-89 19106332 - Genome Res. 2009 Mar;19(3):347-59 17270048 - BMC Genomics. 2007;8:39 21444682 - J Cell Biol. 2011 Apr 4;193(1):31-9 12970751 - Oncogene. 2003 Sep 11;22(39):8031-41 22858678 - RNA Biol. 2012 Aug;9(8):1076-87 21358640 - Nat Neurosci. 2011 Apr;14(4):452-8 11345441 - RNA. 2001 Apr;7(4):632-41 12215496 - Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12203-7 8666659 - J Cell Biol. 1996 May;133(4):719-32 23828888 - Science. 2013 Aug 16;341(6147):1237973 19029915 - Nat Biotechnol. 2008 Dec;26(12):1351-9 15169873 - Mol Biol Cell. 2004 Aug;15(8):3876-90 21850044 - Nat Rev Genet. 2011 Sep;12(9):641-55 9135155 - EMBO J. 1997 Mar 17;16(6):1401-12 15149595 - Mol Cell. 2004 May 21;14(4):457-64 17449818 - J Exp Biol. 2007 May;210(Pt 9):1526-47 22718948 - RNA. 2012 Aug;18(8):1487-99 20616235 - Science. 2010 Aug 6;329(5992):689-93 22406755 - Genome Res. 2012 May;22(5):885-98 21680045 - Trends Genet. 2011 Aug;27(8):295-306 15345050 - Genome Biol. 2004;5(9):R66 21963238 - Mol Cell. 2011 Nov 18;44(4):667-78 24141950 - Nature. 2013 Nov 14;503(7475):290-4 22840402 - Cell Rep. 2012 Jul 26;2(1):111-23 22960638 - EMBO J. 2012 Oct 17;31(20):4020-34 19217333 - Mol Cell. 2009 Mar 27;33(6):717-26 17200140 - J Cell Sci. 2007 Jan 15;120(Pt 2):309-19 22196729 - Cell. 2011 Dec 23;147(7):1537-50 24173718 - Mol Biol Cell. 2014 Jan;25(1):169-83 9168118 - Nature. 1997 May 29;387(6632):523-7 24162848 - Nature. 2013 Dec 19;504(7480):465-9 11790299 - Curr Biol. 2002 Jan 8;12(1):13-25 23431328 - RNA. 2013 Apr;19(4):429-42 19188922 - Nat Rev Genet. 2009 Mar;10(3):155-9 20148673 - Annu Rev Physiol. 2010;72:191-218 19285943 - Mol Cell. 2009 Mar 13;33(5):591-601 22078878 - Cell. 2011 Nov 11;147(4):773-88 11431468 - J Biol Chem. 2001 Aug 24;276(34):31793-9 11103799 - Cancer Res. 2000 Nov 15;60(22):6367-75 15499007 - Science. 2004 Oct 22;306(5696):636-40 19135898 - Cell. 2009 Jan 9;136(1):175-86 18798982 - Genome Biol. 2008;9(9):R137 19182532 - Cell Cycle. 2009 Feb 1;8(3):1-7 21349861 - Bioinformatics. 2011 Apr 15;27(8):1179-80 23473599 - Mol Cell. 2013 Mar 7;49(5):783-94 21549415 - Cell. 2011 May 13;145(4):622-34 10037785 - J Cell Biol. 1999 Feb 22;144(4):617-29 11113208 - Mol Cell Biol. 2001 Jan;21(1):343-53 24507715 - Mol Cell. 2014 Feb 6;53(3):393-406 19188602 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2525-30 10906320 - J Biol Chem. 2000 Sep 15;275(37):28345-8 |
References_xml | – volume: 147 start-page: 1537 year: 2011 end-page: 1550 ident: bib48 article-title: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution publication-title: Cell – volume: 25 start-page: 169 year: 2014 end-page: 183 ident: bib18 article-title: NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies publication-title: Mol. Biol. Cell – volume: 22 start-page: 885 year: 2012 end-page: 898 ident: bib6 article-title: Genome-wide analysis of long noncoding RNA stability publication-title: Genome Res. – volume: 108 start-page: 20497 year: 2011 end-page: 20502 ident: bib39 article-title: The genomic binding sites of a noncoding RNA publication-title: Proc. Natl. Acad. Sci. USA – volume: 99 start-page: 12203 year: 2002 end-page: 12207 ident: bib57 article-title: Purification and electron microscopic visualization of functional human spliceosomes publication-title: Proc. Natl. Acad. Sci. USA – volume: 275 start-page: 28345 year: 2000 end-page: 28348 ident: bib3 article-title: Flavopiridol inhibits P-TEFb and blocks HIV-1 replication publication-title: J. Biol. Chem. – volume: 12 start-page: 641 year: 2011 end-page: 655 ident: bib49 article-title: Understanding the transcriptome through RNA structure publication-title: Nat. Rev. Genet. – volume: 120 start-page: 309 year: 2007 end-page: 319 ident: bib38 article-title: Alternative RNA splicing complexes containing the scaffold attachment factor SAFB2 publication-title: J. Cell Sci. – volume: 27 start-page: 295 year: 2011 end-page: 306 ident: bib27 article-title: Biogenesis and function of nuclear bodies publication-title: Trends Genet. – volume: 106 start-page: 2525 year: 2009 end-page: 2530 ident: bib36 article-title: MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: R66 year: 2004 ident: bib26 article-title: Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells publication-title: Genome Biol. – volume: 8 start-page: 39 year: 2007 ident: bib20 article-title: A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains publication-title: BMC Genomics – volume: 21 start-page: 343 year: 2001 end-page: 353 ident: bib37 article-title: CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant publication-title: Mol. Cell. Biol. – volume: 22 start-page: 1775 year: 2012 end-page: 1789 ident: bib9 article-title: The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression publication-title: Genome Res. – volume: 8 start-page: 1 year: 2009 end-page: 7 ident: bib51 article-title: Multiple roles for Puralpha in cellular and viral regulation publication-title: Cell Cycle – volume: 60 start-page: 6367 year: 2000 end-page: 6375 ident: bib15 article-title: PDZK1 and GREB1 are estrogen-regulated genes expressed in hormone-responsive breast cancer publication-title: Cancer Res. – volume: 44 start-page: 667 year: 2011 end-page: 678 ident: bib5 article-title: Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions publication-title: Mol. Cell – volume: 193 start-page: 31 year: 2011 end-page: 39 ident: bib32 article-title: Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice publication-title: J. Cell Biol. – volume: 15 start-page: 3876 year: 2004 end-page: 3890 ident: bib35 article-title: Proteomic analysis of interchromatin granule clusters publication-title: Mol. Biol. Cell – volume: 9 start-page: R137 year: 2008 ident: bib54 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. – volume: 2 start-page: e47 year: 2006 ident: bib13 article-title: Complex loci in human and mouse genomes publication-title: PLoS Genet. – volume: 3 start-page: a000646 year: 2011 ident: bib42 article-title: Nuclear speckles publication-title: Cold Spring Harb. Perspect. Biol. – volume: 22 start-page: 8031 year: 2003 end-page: 8041 ident: bib22 article-title: MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer publication-title: Oncogene – volume: 2 start-page: 111 year: 2012 end-page: 123 ident: bib55 article-title: The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult publication-title: Cell Rep. – volume: 7 start-page: 632 year: 2001 end-page: 641 ident: bib43 article-title: Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins publication-title: RNA – volume: 322 start-page: 750 year: 2008 end-page: 756 ident: bib56 article-title: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome publication-title: Science – volume: 276 start-page: 31793 year: 2001 end-page: 31799 ident: bib2 article-title: Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo publication-title: J. Biol. Chem. – volume: 133 start-page: 719 year: 1996 end-page: 732 ident: bib19 article-title: Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription publication-title: J. Cell Biol. – volume: 147 start-page: 773 year: 2011 end-page: 788 ident: bib52 article-title: ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs publication-title: Cell – volume: 503 start-page: 290 year: 2013 end-page: 294 ident: bib23 article-title: A high-resolution map of the three-dimensional chromatin interactome in human cells publication-title: Nature – volume: 12 start-page: 13 year: 2002 end-page: 25 ident: bib14 article-title: Paraspeckles: a novel nuclear domain publication-title: Curr. Biol. – volume: 136 start-page: 175 year: 2009 end-page: 186 ident: bib8 article-title: Purification of proteins associated with specific genomic loci publication-title: Cell – volume: 53 start-page: 393 year: 2014 end-page: 406 ident: bib21 article-title: Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli publication-title: Mol. Cell – volume: 306 start-page: 636 year: 2004 end-page: 640 ident: bib11 article-title: The ENCODE (ENCyclopedia Of DNA Elements) Project publication-title: Science – volume: 9 start-page: 1076 year: 2012 end-page: 1087 ident: bib10 article-title: Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development publication-title: RNA Biol. – volume: 19 start-page: 347 year: 2009 end-page: 359 ident: bib44 article-title: MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles publication-title: Genome Res. – volume: 27 start-page: 1179 year: 2011 end-page: 1180 ident: bib24 article-title: Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software publication-title: Bioinformatics – volume: 19 start-page: 429 year: 2013 end-page: 442 ident: bib1 article-title: Noncoding RNA and Polycomb recruitment publication-title: RNA – volume: 14 start-page: 452 year: 2011 end-page: 458 ident: bib45 article-title: Characterizing the RNA targets and position-dependent splicing regulation by TDP-43 publication-title: Nat. Neurosci. – volume: 49 start-page: 783 year: 2013 end-page: 794 ident: bib34 article-title: Dogma derailed: the many influences of RNA on the genome publication-title: Mol. Cell – volume: 33 start-page: 591 year: 2009 end-page: 601 ident: bib50 article-title: ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing publication-title: Mol. Cell – volume: 341 start-page: 1237973 year: 2013 ident: bib12 article-title: The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome publication-title: Science – volume: 145 start-page: 622 year: 2011 end-page: 634 ident: bib17 article-title: A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells publication-title: Cell – volume: 18 start-page: 1487 year: 2012 end-page: 1499 ident: bib33 article-title: Malat1 is not an essential component of nuclear speckles in mice publication-title: RNA – volume: 33 start-page: 717 year: 2009 end-page: 726 ident: bib7 article-title: An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles publication-title: Mol. Cell – volume: 302 start-page: 1212 year: 2003 end-page: 1215 ident: bib47 article-title: CLIP identifies Nova-regulated RNA networks in the brain publication-title: Science – volume: 72 start-page: 191 year: 2010 end-page: 218 ident: bib4 article-title: Genomic analyses of hormone signaling and gene regulation publication-title: Annu. Rev. Physiol. – volume: 504 start-page: 465 year: 2013 end-page: 469 ident: bib40 article-title: High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation publication-title: Nature – volume: 387 start-page: 523 year: 1997 end-page: 527 ident: bib30 article-title: The dynamics of a pre-mRNA splicing factor in living cells publication-title: Nature – volume: 16 start-page: 1401 year: 1997 end-page: 1412 ident: bib53 article-title: Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity publication-title: EMBO J. – volume: 14 start-page: 457 year: 2004 end-page: 464 ident: bib16 article-title: Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation publication-title: Mol. Cell – volume: 10 start-page: 155 year: 2009 end-page: 159 ident: bib29 article-title: Long non-coding RNAs: insights into functions publication-title: Nat. Rev. Genet. – volume: 144 start-page: 617 year: 1999 end-page: 629 ident: bib41 article-title: Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific publication-title: J. Cell Biol. – volume: 329 start-page: 689 year: 2010 end-page: 693 ident: bib46 article-title: Long noncoding RNA as modular scaffold of histone modification complexes publication-title: Science – volume: 210 start-page: 1526 year: 2007 end-page: 1547 ident: bib28 article-title: A new paradigm for developmental biology publication-title: J. Exp. Biol. – volume: 31 start-page: 4020 year: 2012 end-page: 4034 ident: bib31 article-title: Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles publication-title: EMBO J. – volume: 26 start-page: 1351 year: 2008 end-page: 1359 ident: bib25 article-title: Design and analysis of ChIP-seq experiments for DNA-binding proteins publication-title: Nat. Biotechnol. – volume: 133 start-page: 719 year: 1996 ident: 10.1016/j.molcel.2014.07.012_bib19 article-title: Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription publication-title: J. Cell Biol. doi: 10.1083/jcb.133.4.719 – volume: 144 start-page: 617 year: 1999 ident: 10.1016/j.molcel.2014.07.012_bib41 article-title: Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific publication-title: J. Cell Biol. doi: 10.1083/jcb.144.4.617 – volume: 341 start-page: 1237973 year: 2013 ident: 10.1016/j.molcel.2014.07.012_bib12 article-title: The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome publication-title: Science doi: 10.1126/science.1237973 – volume: 9 start-page: R137 year: 2008 ident: 10.1016/j.molcel.2014.07.012_bib54 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 10 start-page: 155 year: 2009 ident: 10.1016/j.molcel.2014.07.012_bib29 article-title: Long non-coding RNAs: insights into functions publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2521 – volume: 14 start-page: 452 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib45 article-title: Characterizing the RNA targets and position-dependent splicing regulation by TDP-43 publication-title: Nat. Neurosci. doi: 10.1038/nn.2778 – volume: 12 start-page: 641 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib49 article-title: Understanding the transcriptome through RNA structure publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3049 – volume: 3 start-page: a000646 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib42 article-title: Nuclear speckles publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a000646 – volume: 504 start-page: 465 year: 2013 ident: 10.1016/j.molcel.2014.07.012_bib40 article-title: High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation publication-title: Nature doi: 10.1038/nature12719 – volume: 12 start-page: 13 year: 2002 ident: 10.1016/j.molcel.2014.07.012_bib14 article-title: Paraspeckles: a novel nuclear domain publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00632-7 – volume: 322 start-page: 750 year: 2008 ident: 10.1016/j.molcel.2014.07.012_bib56 article-title: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome publication-title: Science doi: 10.1126/science.1163045 – volume: 53 start-page: 393 year: 2014 ident: 10.1016/j.molcel.2014.07.012_bib21 article-title: Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.01.009 – volume: 72 start-page: 191 year: 2010 ident: 10.1016/j.molcel.2014.07.012_bib4 article-title: Genomic analyses of hormone signaling and gene regulation publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021909-135840 – volume: 8 start-page: 39 year: 2007 ident: 10.1016/j.molcel.2014.07.012_bib20 article-title: A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains publication-title: BMC Genomics doi: 10.1186/1471-2164-8-39 – volume: 31 start-page: 4020 year: 2012 ident: 10.1016/j.molcel.2014.07.012_bib31 article-title: Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles publication-title: EMBO J. doi: 10.1038/emboj.2012.251 – volume: 49 start-page: 783 year: 2013 ident: 10.1016/j.molcel.2014.07.012_bib34 article-title: Dogma derailed: the many influences of RNA on the genome publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.02.010 – volume: 106 start-page: 2525 year: 2009 ident: 10.1016/j.molcel.2014.07.012_bib36 article-title: MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0807899106 – volume: 15 start-page: 3876 year: 2004 ident: 10.1016/j.molcel.2014.07.012_bib35 article-title: Proteomic analysis of interchromatin granule clusters publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E04-03-0253 – volume: 7 start-page: 632 year: 2001 ident: 10.1016/j.molcel.2014.07.012_bib43 article-title: Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins publication-title: RNA doi: 10.1017/S135583820100245X – volume: 25 start-page: 169 year: 2014 ident: 10.1016/j.molcel.2014.07.012_bib18 article-title: NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E13-09-0558 – volume: 306 start-page: 636 year: 2004 ident: 10.1016/j.molcel.2014.07.012_bib11 article-title: The ENCODE (ENCyclopedia Of DNA Elements) Project publication-title: Science doi: 10.1126/science.1105136 – volume: 503 start-page: 290 year: 2013 ident: 10.1016/j.molcel.2014.07.012_bib23 article-title: A high-resolution map of the three-dimensional chromatin interactome in human cells publication-title: Nature doi: 10.1038/nature12644 – volume: 14 start-page: 457 year: 2004 ident: 10.1016/j.molcel.2014.07.012_bib16 article-title: Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation publication-title: Mol. Cell doi: 10.1016/S1097-2765(04)00239-4 – volume: 120 start-page: 309 year: 2007 ident: 10.1016/j.molcel.2014.07.012_bib38 article-title: Alternative RNA splicing complexes containing the scaffold attachment factor SAFB2 publication-title: J. Cell Sci. doi: 10.1242/jcs.03344 – volume: 210 start-page: 1526 year: 2007 ident: 10.1016/j.molcel.2014.07.012_bib28 article-title: A new paradigm for developmental biology publication-title: J. Exp. Biol. doi: 10.1242/jeb.005017 – volume: 27 start-page: 295 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib27 article-title: Biogenesis and function of nuclear bodies publication-title: Trends Genet. doi: 10.1016/j.tig.2011.05.006 – volume: 387 start-page: 523 year: 1997 ident: 10.1016/j.molcel.2014.07.012_bib30 article-title: The dynamics of a pre-mRNA splicing factor in living cells publication-title: Nature doi: 10.1038/387523a0 – volume: 60 start-page: 6367 year: 2000 ident: 10.1016/j.molcel.2014.07.012_bib15 article-title: PDZK1 and GREB1 are estrogen-regulated genes expressed in hormone-responsive breast cancer publication-title: Cancer Res. – volume: 26 start-page: 1351 year: 2008 ident: 10.1016/j.molcel.2014.07.012_bib25 article-title: Design and analysis of ChIP-seq experiments for DNA-binding proteins publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1508 – volume: 9 start-page: 1076 year: 2012 ident: 10.1016/j.molcel.2014.07.012_bib10 article-title: Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development publication-title: RNA Biol. doi: 10.4161/rna.21089 – volume: 27 start-page: 1179 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib24 article-title: Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr095 – volume: 33 start-page: 591 year: 2009 ident: 10.1016/j.molcel.2014.07.012_bib50 article-title: ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.025 – volume: 19 start-page: 429 year: 2013 ident: 10.1016/j.molcel.2014.07.012_bib1 article-title: Noncoding RNA and Polycomb recruitment publication-title: RNA doi: 10.1261/rna.037598.112 – volume: 276 start-page: 31793 year: 2001 ident: 10.1016/j.molcel.2014.07.012_bib2 article-title: Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M102306200 – volume: 33 start-page: 717 year: 2009 ident: 10.1016/j.molcel.2014.07.012_bib7 article-title: An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.026 – volume: 19 start-page: 347 year: 2009 ident: 10.1016/j.molcel.2014.07.012_bib44 article-title: MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles publication-title: Genome Res. doi: 10.1101/gr.087775.108 – volume: 2 start-page: 111 year: 2012 ident: 10.1016/j.molcel.2014.07.012_bib55 article-title: The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.06.003 – volume: 8 start-page: 1 year: 2009 ident: 10.1016/j.molcel.2014.07.012_bib51 article-title: Multiple roles for Puralpha in cellular and viral regulation publication-title: Cell Cycle doi: 10.4161/cc.8.3.7585 – volume: 22 start-page: 885 year: 2012 ident: 10.1016/j.molcel.2014.07.012_bib6 article-title: Genome-wide analysis of long noncoding RNA stability publication-title: Genome Res. doi: 10.1101/gr.131037.111 – volume: 108 start-page: 20497 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib39 article-title: The genomic binding sites of a noncoding RNA publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1113536108 – volume: 147 start-page: 773 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib52 article-title: ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs publication-title: Cell doi: 10.1016/j.cell.2011.08.054 – volume: 5 start-page: R66 year: 2004 ident: 10.1016/j.molcel.2014.07.012_bib26 article-title: Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells publication-title: Genome Biol. doi: 10.1186/gb-2004-5-9-r66 – volume: 21 start-page: 343 year: 2001 ident: 10.1016/j.molcel.2014.07.012_bib37 article-title: CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.1.343-353.2001 – volume: 329 start-page: 689 year: 2010 ident: 10.1016/j.molcel.2014.07.012_bib46 article-title: Long noncoding RNA as modular scaffold of histone modification complexes publication-title: Science doi: 10.1126/science.1192002 – volume: 44 start-page: 667 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib5 article-title: Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.08.027 – volume: 22 start-page: 1775 year: 2012 ident: 10.1016/j.molcel.2014.07.012_bib9 article-title: The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression publication-title: Genome Res. doi: 10.1101/gr.132159.111 – volume: 147 start-page: 1537 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib48 article-title: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution publication-title: Cell doi: 10.1016/j.cell.2011.11.055 – volume: 302 start-page: 1212 year: 2003 ident: 10.1016/j.molcel.2014.07.012_bib47 article-title: CLIP identifies Nova-regulated RNA networks in the brain publication-title: Science doi: 10.1126/science.1090095 – volume: 145 start-page: 622 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib17 article-title: A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells publication-title: Cell doi: 10.1016/j.cell.2011.03.042 – volume: 275 start-page: 28345 year: 2000 ident: 10.1016/j.molcel.2014.07.012_bib3 article-title: Flavopiridol inhibits P-TEFb and blocks HIV-1 replication publication-title: J. Biol. Chem. doi: 10.1074/jbc.C000446200 – volume: 22 start-page: 8031 year: 2003 ident: 10.1016/j.molcel.2014.07.012_bib22 article-title: MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer publication-title: Oncogene doi: 10.1038/sj.onc.1206928 – volume: 99 start-page: 12203 year: 2002 ident: 10.1016/j.molcel.2014.07.012_bib57 article-title: Purification and electron microscopic visualization of functional human spliceosomes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.182427099 – volume: 18 start-page: 1487 year: 2012 ident: 10.1016/j.molcel.2014.07.012_bib33 article-title: Malat1 is not an essential component of nuclear speckles in mice publication-title: RNA doi: 10.1261/rna.033217.112 – volume: 193 start-page: 31 year: 2011 ident: 10.1016/j.molcel.2014.07.012_bib32 article-title: Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice publication-title: J. Cell Biol. doi: 10.1083/jcb.201011110 – volume: 16 start-page: 1401 year: 1997 ident: 10.1016/j.molcel.2014.07.012_bib53 article-title: Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity publication-title: EMBO J. doi: 10.1093/emboj/16.6.1401 – volume: 136 start-page: 175 year: 2009 ident: 10.1016/j.molcel.2014.07.012_bib8 article-title: Purification of proteins associated with specific genomic loci publication-title: Cell doi: 10.1016/j.cell.2008.11.045 – volume: 2 start-page: e47 year: 2006 ident: 10.1016/j.molcel.2014.07.012_bib13 article-title: Complex loci in human and mouse genomes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020047 – reference: 21349861 - Bioinformatics. 2011 Apr 15;27(8):1179-80 – reference: 21526222 - PLoS Biol. 2011 Apr;9(4):e1001046 – reference: 19029915 - Nat Biotechnol. 2008 Dec;26(12):1351-9 – reference: 22858678 - RNA Biol. 2012 Aug;9(8):1076-87 – reference: 18974356 - Science. 2008 Oct 31;322(5902):750-6 – reference: 11103799 - Cancer Res. 2000 Nov 15;60(22):6367-75 – reference: 17270048 - BMC Genomics. 2007;8:39 – reference: 22955988 - Genome Res. 2012 Sep;22(9):1775-89 – reference: 19106332 - Genome Res. 2009 Mar;19(3):347-59 – reference: 15499007 - Science. 2004 Oct 22;306(5696):636-40 – reference: 18798982 - Genome Biol. 2008;9(9):R137 – reference: 11790299 - Curr Biol. 2002 Jan 8;12(1):13-25 – reference: 19182532 - Cell Cycle. 2009 Feb 1;8(3):1-7 – reference: 22196729 - Cell. 2011 Dec 23;147(7):1537-50 – reference: 15149595 - Mol Cell. 2004 May 21;14(4):457-64 – reference: 20148673 - Annu Rev Physiol. 2010;72:191-218 – reference: 22406755 - Genome Res. 2012 May;22(5):885-98 – reference: 17200140 - J Cell Sci. 2007 Jan 15;120(Pt 2):309-19 – reference: 22960638 - EMBO J. 2012 Oct 17;31(20):4020-34 – reference: 17449818 - J Exp Biol. 2007 May;210(Pt 9):1526-47 – reference: 11431468 - J Biol Chem. 2001 Aug 24;276(34):31793-9 – reference: 12215496 - Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12203-7 – reference: 15169873 - Mol Biol Cell. 2004 Aug;15(8):3876-90 – reference: 15345050 - Genome Biol. 2004;5(9):R66 – reference: 22718948 - RNA. 2012 Aug;18(8):1487-99 – reference: 9135155 - EMBO J. 1997 Mar 17;16(6):1401-12 – reference: 19217333 - Mol Cell. 2009 Mar 27;33(6):717-26 – reference: 24173718 - Mol Biol Cell. 2014 Jan;25(1):169-83 – reference: 12970751 - Oncogene. 2003 Sep 11;22(39):8031-41 – reference: 11113208 - Mol Cell Biol. 2001 Jan;21(1):343-53 – reference: 9168118 - Nature. 1997 May 29;387(6632):523-7 – reference: 19285943 - Mol Cell. 2009 Mar 13;33(5):591-601 – reference: 8666659 - J Cell Biol. 1996 May;133(4):719-32 – reference: 14615540 - Science. 2003 Nov 14;302(5648):1212-5 – reference: 21850044 - Nat Rev Genet. 2011 Sep;12(9):641-55 – reference: 21963238 - Mol Cell. 2011 Nov 18;44(4):667-78 – reference: 22143764 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20497-502 – reference: 19135898 - Cell. 2009 Jan 9;136(1):175-86 – reference: 21680045 - Trends Genet. 2011 Aug;27(8):295-306 – reference: 23828888 - Science. 2013 Aug 16;341(6147):1237973 – reference: 20926517 - Cold Spring Harb Perspect Biol. 2011 Feb;3(2). pii: a000646. doi: 10.1101/cshperspect.a000646 – reference: 20616235 - Science. 2010 Aug 6;329(5992):689-93 – reference: 24507715 - Mol Cell. 2014 Feb 6;53(3):393-406 – reference: 23473599 - Mol Cell. 2013 Mar 7;49(5):783-94 – reference: 10037785 - J Cell Biol. 1999 Feb 22;144(4):617-29 – reference: 22078878 - Cell. 2011 Nov 11;147(4):773-88 – reference: 24141950 - Nature. 2013 Nov 14;503(7475):290-4 – reference: 19188922 - Nat Rev Genet. 2009 Mar;10(3):155-9 – reference: 10906320 - J Biol Chem. 2000 Sep 15;275(37):28345-8 – reference: 22840402 - Cell Rep. 2012 Jul 26;2(1):111-23 – reference: 21444682 - J Cell Biol. 2011 Apr 4;193(1):31-9 – reference: 21358640 - Nat Neurosci. 2011 Apr;14(4):452-8 – reference: 23431328 - RNA. 2013 Apr;19(4):429-42 – reference: 16683030 - PLoS Genet. 2006 Apr;2(4):e47 – reference: 19188602 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2525-30 – reference: 21549415 - Cell. 2011 May 13;145(4):622-34 – reference: 24162848 - Nature. 2013 Dec 19;504(7480):465-9 – reference: 11345441 - RNA. 2001 Apr;7(4):632-41 |
SSID | ssj0014589 |
Score | 2.620816 |
Snippet | Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess.... Mechanistic roles for many lncRNAs are poorly understood in part because their direct interactions with genomic loci and proteins are difficult to assess.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 791 |
SubjectTerms | Binding Sites chromatin Chromatin - metabolism DNA genes Humans loci Models, Genetic non-coding RNA Nucleic Acid Hybridization nucleotide sequences RNA, Long Noncoding - analysis RNA, Long Noncoding - chemistry RNA, Long Noncoding - metabolism transcription (genetics) Transcription, Genetic |
Title | The Long Noncoding RNAs NEAT1 and MALAT1 Bind Active Chromatin Sites |
URI | https://dx.doi.org/10.1016/j.molcel.2014.07.012 https://www.ncbi.nlm.nih.gov/pubmed/25155612 https://www.proquest.com/docview/1560584784 https://www.proquest.com/docview/2000208463 https://pubmed.ncbi.nlm.nih.gov/PMC4428586 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QEBIXxJvxmILEtVrTpE13LC8hHjvwELtFSZrCEKSIjQP_njhtJwaaJnHrw6lSx3Yc2f6M0BFxUpQWBBAAEhU4_5YFMpVQscwTwySNQgMR3Zt-cvHALgfxYAGdNLUwkFZZ2_7KpntrXT_p1tzsvg-H3TuInbovuh0fQEViwASlLPVFfIPjSSSBxb4NHhAHQN2Uz_kcr7fyVRsIQBDmITxJNGt7-ut-_s6i_LEtna-ildqfxFk15TW0YOw6Wqo6TH5toFMnBvi6tE-4X1pdwkaFb_vZCPfPsnuCpc3xTXYNl8fucI4zb_0wIOaCJ2vxnfNIR5vo4fzs_uQiqBsnBDqh0Thg3NAe0WmeF1GhdKEheqhVIWWYOzUrVOH8tlBzbgiVpGfCPOlFmusw58od9xTdQi1bWrODsGKAF08U5XGPGWZkRFSuIRksVMaQsI1owy-ha1RxaG7xKpr0sRdRcVkAl0XIheNyGwWTUe8VqsYcet4shZiSDuEM_5yRh83KCac4EA2R1pSfIwEl5BAjTtlsmshHap2LRttou1rtyXwjaI6T-LlNycGEAIC7p9_Y4bMH8GZOJ-I02f33X-2hZbjzuW5sH7XGH5_mwDlHY9VBi9nV7eNVx2vBN45pDIs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxDfl00jwGDV2nDh94CFjm1rW5oF1Ut-M7ThQNJyJdkL7u_gHuXOSioKmSUh7i2LHcs7nu591598R8paBFuU1QwaAzESAb0Wkc403lmXmhE547DCiOyuz8Yn4uEgXO-RXfxcG0yo729_a9GCtuzfDTprDs-VyeIyxUxgRPD6SiqSiy6w8chc_4dy2ej_Zh0V-x_nhwfzDOOpKC0Q2S_g6EtIlI2bzqqp5bWxtMb5mTa11XIEi1qYGZBNbKR1LNBu5uMpG3EobV9LAgcgkMO4NchPQh0RrMFnsbUIXIg1193B2EU6vv68Xksq-N6fWYcSDicAZyvhl_vBfvPt32uYffvDwHrnbAVhatDK6T3acf0ButSUtLx6SfdA7Om38F1o23jboGemnsljR8qCYM6p9RWfFFB_3lvBcBHNLkaIXobOnxwCBV4_IybWI8zHZ9Y13Twk1AgnqmUlkOhJOOM2ZqSxmn8XGORYPSNLLS9mOxhyraZyqPl_tm2qlrFDKKpYKpDwg0ears5bG44r-sl8KtaWOCjzNFV--6VdOwU7F8Iv2rjlfKbyzjkHpXFzeh4fQMGDCZECetKu9mS_HajxZmNuWHmw6IFP4dotffg2M4QI2YZpnz_77r16T2-P5bKqmk_LoObmDLSHRTrwgu-sf5-4lILO1eRV2AiWfr3vr_QYWhknu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+long+noncoding+RNAs+NEAT1+and+MALAT1+bind+active+chromatin+sites&rft.jtitle=Molecular+cell&rft.au=West%2C+Jason+A.&rft.au=Davis%2C+Christopher+P.&rft.au=Sunwoo%2C+Hongjae&rft.au=Simon%2C+Matthew+D.&rft.date=2014-09-04&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=55&rft.issue=5&rft.spage=791&rft.epage=802&rft_id=info:doi/10.1016%2Fj.molcel.2014.07.012&rft_id=info%3Apmid%2F25155612&rft.externalDocID=PMC4428586 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |