miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease
Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms. Both in vitro and in...
Saved in:
Published in | Molecular medicine (Cambridge, Mass.) Vol. 25; no. 1; pp. 26 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
13.06.2019
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms.
Both in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP).
NAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3'-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway.
The inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD. |
---|---|
AbstractList | Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms.BACKGROUNDNon-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms.Both in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP).METHODSBoth in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP).NAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3'-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway.RESULTSNAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3'-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway.The inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD.CONCLUSIONThe inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD. Background Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms. Methods Both in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP). Results NAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3′-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway. Conclusion The inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD. Abstract Background Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms. Methods Both in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP). Results NAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3′-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway. Conclusion The inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD. Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms. Both in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP). NAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3'-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway. The inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD. |
ArticleNumber | 26 |
Author | Zhao, Shui-Ping Zheng, Ya-Wen Dai, Wen Long, Jun-Ke |
Author_xml | – sequence: 1 givenname: Jun-Ke surname: Long fullname: Long, Jun-Ke – sequence: 2 givenname: Wen surname: Dai fullname: Dai, Wen – sequence: 3 givenname: Ya-Wen surname: Zheng fullname: Zheng, Ya-Wen – sequence: 4 givenname: Shui-Ping orcidid: 0000-0002-5561-5868 surname: Zhao fullname: Zhao, Shui-Ping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31195981$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAURiNURB_wA9ggS2zYhPr6lWSDVCoeVQeBeKwt23ESj5I42J5Bs-Sf4-mUinbBypZ97tG99ndaHM1-tkXxHPBrgFqcR8CY4BJDU2Jc85I8Kk6Ak7qkgtdHeY8rUQLncFycxrjOMHDGnxTHFKDhTQ0nxe_JfS2BELQEP_lkIxrsopIzaHSL7-1so4to6xRy8-C0S27uURosWl2_hfOLT1-uUcaHX2qH9A4lFXp7g3xzIUGuQbnlUo3GD37M0k6ltMvqrQ2oddGqaJ8Wjzs1Rvvsdj0rfrx_9_3yY7n6_OHq8mJVGkFJKhmtWtWBAs0rykmjiWWGKiGoNrrqQFuoLKtVxwlrBG553dKaY51J0-ZKelZcHbytV2u5BDepsJNeOXlz4EMvVciDj1YaJoihLVGctoxxqiuoFNWC8AZY25nsenNwLRs92dbYOQU13pPev5ndIHu_lYKLqoE6C17dCoL_ubExyclFY8dRzdZvoiSEccHzKDSjLx-ga78Jc34qSTgTecaKkky9-Leju1b-_nQG4ACY4GMMtrtDAMt9muQhTTKnSe7TJPfS6kGNcSmHw--HcuN_Kv8ATsjOYg |
CitedBy_id | crossref_primary_10_3389_fimmu_2022_812431 crossref_primary_10_3390_ijms242216453 crossref_primary_10_1038_s41598_021_91187_2 crossref_primary_10_1186_s13020_024_00886_1 crossref_primary_10_1007_s10142_025_01544_x crossref_primary_10_3390_cells12030359 crossref_primary_10_3389_fgene_2021_649015 crossref_primary_10_1016_j_metabol_2023_155657 crossref_primary_10_3390_ijms241612864 crossref_primary_10_1016_j_biopha_2023_115113 crossref_primary_10_1021_acsinfecdis_1c00470 crossref_primary_10_4103_bbrj_bbrj_319_22 crossref_primary_10_1016_j_freeradbiomed_2022_05_006 crossref_primary_10_3389_fnut_2022_1022784 crossref_primary_10_3390_jcm11133649 crossref_primary_10_1016_j_bbamcr_2023_119537 crossref_primary_10_1007_s00441_023_03835_w crossref_primary_10_1186_s40543_023_00410_4 crossref_primary_10_61186_jhgg_7_1_2 crossref_primary_10_1186_s12964_023_01292_0 crossref_primary_10_3748_wjg_v30_i4_332 crossref_primary_10_1016_j_lfs_2020_118816 crossref_primary_10_1007_s11626_022_00651_4 crossref_primary_10_1016_j_hnm_2025_200305 crossref_primary_10_3390_nu12103166 crossref_primary_10_1016_j_prp_2025_155867 crossref_primary_10_1021_acs_jafc_9b07126 crossref_primary_10_3390_nu15092068 crossref_primary_10_1016_j_intimp_2024_111785 crossref_primary_10_1016_j_jep_2022_115862 crossref_primary_10_1016_j_bcp_2024_116250 crossref_primary_10_1007_s13205_024_04204_2 crossref_primary_10_1089_ars_2021_0076 crossref_primary_10_1007_s10895_020_02636_6 crossref_primary_10_1016_j_ijcard_2023_131419 crossref_primary_10_1016_j_jep_2024_118054 crossref_primary_10_3390_nu16172956 crossref_primary_10_1016_j_bcp_2024_116411 crossref_primary_10_1016_j_jep_2020_112866 crossref_primary_10_1002_acm4_1 crossref_primary_10_1007_s11154_023_09866_6 crossref_primary_10_3390_ijms252312899 crossref_primary_10_1016_j_gastrohep_2022_12_003 crossref_primary_10_1152_ajpregu_00238_2021 crossref_primary_10_1016_j_jep_2024_118648 crossref_primary_10_3390_biomedicines13010230 crossref_primary_10_1016_j_watres_2024_122008 crossref_primary_10_1186_s12906_022_03697_9 crossref_primary_10_2147_HMER_S481687 crossref_primary_10_1038_s41392_024_01931_z crossref_primary_10_2174_1573399819666230216112032 crossref_primary_10_3390_ijms21228761 crossref_primary_10_1002_cbf_3763 crossref_primary_10_1186_s13071_023_05665_9 crossref_primary_10_1186_s12944_022_01740_9 crossref_primary_10_3389_fmed_2021_770504 crossref_primary_10_1007_s12094_022_02863_2 crossref_primary_10_2147_JIR_S491484 crossref_primary_10_3390_diagnostics12020407 crossref_primary_10_1016_j_phymed_2025_156563 crossref_primary_10_1016_j_placenta_2024_11_010 crossref_primary_10_1080_21655979_2022_2026858 crossref_primary_10_1152_ajpgi_00179_2022 crossref_primary_10_1016_j_gendis_2021_12_013 crossref_primary_10_1210_clinem_dgac023 crossref_primary_10_1016_j_cca_2025_120178 crossref_primary_10_18087_cardio_2019_10_n558 crossref_primary_10_2174_1389203723666220721122240 crossref_primary_10_3390_antiox12040870 crossref_primary_10_1038_s41598_024_52855_1 crossref_primary_10_3892_mmr_2023_13141 crossref_primary_10_1038_s12276_023_01072_3 crossref_primary_10_3390_life12111814 crossref_primary_10_1016_j_apsb_2024_05_014 crossref_primary_10_1016_j_clinre_2023_102264 crossref_primary_10_1016_j_aohep_2022_100756 crossref_primary_10_5713_ab_22_0165 crossref_primary_10_3390_life14060729 crossref_primary_10_3390_v16111734 crossref_primary_10_1016_j_ncrna_2023_04_002 crossref_primary_10_1155_2021_6621644 crossref_primary_10_3390_nu13051679 crossref_primary_10_1016_j_bbadis_2024_167327 crossref_primary_10_3390_genes15101313 crossref_primary_10_3390_cells12151955 crossref_primary_10_3390_nu14163338 crossref_primary_10_1002_ame2_12309 crossref_primary_10_1039_D0FO02286A crossref_primary_10_3390_biom14040450 crossref_primary_10_5650_jos_ess23167 crossref_primary_10_1002_hep4_1532 crossref_primary_10_3389_fvets_2022_938311 crossref_primary_10_1128_MCB_00327_21 crossref_primary_10_1186_s12944_024_02347_y crossref_primary_10_1186_s12985_023_02277_8 crossref_primary_10_1016_j_ijbiomac_2025_142275 crossref_primary_10_1093_jmcb_mjab043 crossref_primary_10_3390_pharmaceutics14071380 crossref_primary_10_1080_17474124_2023_2242245 crossref_primary_10_31883_pjfns_182927 crossref_primary_10_1016_j_molmet_2023_101856 crossref_primary_10_3390_antiox10020270 crossref_primary_10_1016_j_intimp_2024_113014 crossref_primary_10_3390_ijms241411606 crossref_primary_10_3390_ijms242417514 crossref_primary_10_1007_s10863_022_09953_4 crossref_primary_10_3390_cells11243959 crossref_primary_10_1016_j_biopha_2023_114987 crossref_primary_10_1016_j_biopha_2024_116917 crossref_primary_10_1016_j_biocel_2022_106361 crossref_primary_10_1016_j_exger_2023_112250 crossref_primary_10_1080_10408398_2023_2202762 crossref_primary_10_3390_biom12081079 crossref_primary_10_1038_s41392_023_01333_7 crossref_primary_10_3389_fvets_2022_913841 crossref_primary_10_3390_ani14233491 crossref_primary_10_1139_cjpp_2022_0549 crossref_primary_10_3390_ijms232314920 crossref_primary_10_1371_journal_pone_0264804 crossref_primary_10_1002_ardp_202300631 crossref_primary_10_3389_fnut_2024_1290540 crossref_primary_10_1177_17562848241276334 crossref_primary_10_1016_j_acthis_2022_151989 crossref_primary_10_1007_s40200_025_01589_6 crossref_primary_10_1016_j_lfs_2023_121400 crossref_primary_10_3389_fnagi_2021_738686 crossref_primary_10_1080_02648725_2023_2202531 crossref_primary_10_1155_2021_8386848 crossref_primary_10_1021_acs_analchem_4c03298 crossref_primary_10_3390_toxics12070475 crossref_primary_10_1113_JP280910 crossref_primary_10_1016_j_psj_2024_103734 crossref_primary_10_3390_cancers15205048 crossref_primary_10_1002_mnfr_202100732 crossref_primary_10_1007_s11010_020_04032_x crossref_primary_10_3390_cells10123316 crossref_primary_10_1016_j_molmet_2022_101581 crossref_primary_10_1016_j_envpol_2023_122416 crossref_primary_10_3389_fvets_2023_1272238 crossref_primary_10_1016_j_prp_2023_154725 crossref_primary_10_1016_j_gastre_2022_12_002 crossref_primary_10_1080_09168451_2020_1793293 crossref_primary_10_1016_j_livres_2023_11_003 crossref_primary_10_1007_s11130_024_01262_y crossref_primary_10_3390_biology11050637 crossref_primary_10_1155_2021_3654660 crossref_primary_10_3390_antiox12030759 crossref_primary_10_3389_fgene_2021_671523 crossref_primary_10_3389_fphar_2022_823140 crossref_primary_10_3390_biology13080597 crossref_primary_10_1096_fj_202401464R crossref_primary_10_3390_genes13112142 crossref_primary_10_1007_s12672_023_00738_8 crossref_primary_10_3389_fphys_2022_970292 crossref_primary_10_3390_antiox12122100 crossref_primary_10_3390_nu16183061 crossref_primary_10_3390_ijms24119168 crossref_primary_10_3389_fmed_2024_1420281 crossref_primary_10_3390_ijms22147571 crossref_primary_10_1016_j_biopha_2023_114319 crossref_primary_10_1016_j_phrs_2021_105846 crossref_primary_10_1016_j_bioorg_2023_106530 crossref_primary_10_1016_j_clinre_2025_102547 crossref_primary_10_3390_ijms21082986 crossref_primary_10_1080_10495398_2024_2396414 crossref_primary_10_3389_fcvm_2023_1119005 crossref_primary_10_1177_20587392211000896 crossref_primary_10_1186_s12935_023_02868_z crossref_primary_10_3390_cancers15010023 crossref_primary_10_3839_jabc_2024_062 crossref_primary_10_1038_s41419_023_06054_x crossref_primary_10_1016_j_lfs_2023_121943 crossref_primary_10_1016_j_mce_2020_110804 crossref_primary_10_3390_jcm14062054 crossref_primary_10_3389_fcimb_2022_1011386 crossref_primary_10_1016_j_freeradbiomed_2023_04_001 crossref_primary_10_1016_j_phymed_2023_154836 crossref_primary_10_3390_biom12060824 |
Cites_doi | 10.1097/MD.0000000000008179 10.2174/2211536607666180531093302 10.1016/j.bbrc.2015.01.072 10.1111/ijpo.12261 10.1093/abbs/gms108 10.1111/j.1478-3231.2007.01497.x 10.1186/s12944-017-0464-z 10.3390/ijms14048437 10.3390/nu8110682 10.18632/oncotarget.22163 10.1111/liv.12429 10.1136/gutjnl-2014-306996 10.1016/j.lfs.2018.07.029 10.1002/jcb.24748 10.1038/35001622 10.1016/j.cca.2015.05.002 10.1530/JME-13-0296 10.1371/journal.pone.0141227 10.15403/jgld.2014.1121.233.yck 10.1038/srep36209 10.1038/ijo.2017.21 10.1016/j.cmet.2009.02.006 10.1016/j.jhep.2012.08.008 10.1016/j.mayocp.2015.06.013 10.1038/nrm3313 10.1002/jcb.26739 10.1371/journal.pone.0123787 10.1038/srep16774 10.3748/wjg.v22.i46.10084 10.12659/MSM.897207 10.1016/j.bbadis.2015.04.017 10.1038/nature07813 10.1074/jbc.M805711200 10.1002/hep.27153 10.3748/wjg.v21.i13.3777 10.1038/ncomms1001 10.1111/liv.13097 10.1038/ncomms11012 10.1371/journal.pone.0100609 10.1371/journal.pone.0200847 10.1016/j.tiv.2014.07.004 10.1186/s12876-016-0557-6 10.1186/s12986-017-0206-2 10.1111/cbdd.12398 10.1038/ncb3255 10.3748/wjg.v20.i41.15079 10.1159/000485765 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The Author(s) 2019 |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. – notice: The Author(s) 2019 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s10020-019-0085-2 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1528-3658 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_c462c3d2a53d4453b717a3b625914dfc PMC6567918 31195981 10_1186_s10020_019_0085_2 |
Genre | Journal Article |
GeographicLocations | United States--US China Germany |
GeographicLocations_xml | – name: China – name: United States--US – name: Germany |
GroupedDBID | --- -ET 0R~ 123 29M 2WC 36B 5RE 5VS 7X7 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABUWG ACGFO ACMJI ADBBV ADUKV AEGXH AENEX AFKRA AFPKN AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD EMB EMOBN F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO IH2 IHR ISR ITC KQ8 OK1 OVT P2P PHGZM PHGZT PIMPY RBZ RNS ROL RPM RSV SDH SJN SOJ SV3 TR2 UKHRP WOQ ACRMQ C24 M~E NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c632t-437daf1a1b573529b2e4c3a663bcb7f1be17e48af524960d58d3850b29bcddaf3 |
IEDL.DBID | DOA |
ISSN | 1076-1551 1528-3658 |
IngestDate | Wed Aug 27 01:09:10 EDT 2025 Thu Aug 21 13:53:13 EDT 2025 Fri Jul 11 15:31:22 EDT 2025 Mon Jun 30 11:59:42 EDT 2025 Thu Jan 02 23:00:09 EST 2025 Tue Jul 01 01:25:20 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Sirt1 AMPK pathway Lipogenesis Non-alcoholic fatty liver disease miR-122 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c632t-437daf1a1b573529b2e4c3a663bcb7f1be17e48af524960d58d3850b29bcddaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5561-5868 |
OpenAccessLink | https://doaj.org/article/c462c3d2a53d4453b717a3b625914dfc |
PMID | 31195981 |
PQID | 2546850732 |
PQPubID | 5066171 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c462c3d2a53d4453b717a3b625914dfc pubmedcentral_primary_oai_pubmedcentral_nih_gov_6567918 proquest_miscellaneous_2245655243 proquest_journals_2546850732 pubmed_primary_31195981 crossref_primary_10_1186_s10020_019_0085_2 crossref_citationtrail_10_1186_s10020_019_0085_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-13 |
PublicationDateYYYYMMDD | 2019-06-13 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York – name: London |
PublicationTitle | Molecular medicine (Cambridge, Mass.) |
PublicationTitleAlternate | Mol Med |
PublicationYear | 2019 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | AK Soares e Silva (85_CR39) 2015; 10 XQ Deng (85_CR15) 2007; 27 W Dai (85_CR14) 2017; 96 S Imai (85_CR20) 2000; 403 Y Takahashi (85_CR42) 2015; 21 R Ao (85_CR3) 2016; 22 V Rottiers (85_CR36) 2012; 13 GY Wu (85_CR44) 2017; 44 HJ Kim (85_CR23) 2015; 1852 X Hu (85_CR18) 2014; 28 S Brandt (85_CR4) 2018; 13 E Alizadeh (85_CR2) 2015; 85 H Sendi (85_CR38) 2018; 13 H Yamada (85_CR45) 2015; 446 S Ceccarelli (85_CR8) 2013; 14 X Chen (85_CR9) 2018; 119 F Nassir (85_CR31) 2016; 22 D Herranz (85_CR17) 2010; 1 Y Colak (85_CR11) 2014; 23 R Lin (85_CR29) 2015; 17 L Sun (85_CR41) 2015; 458 K Jampoka (85_CR21) 2018; 7 AB Santamarina (85_CR37) 2015; 10 EK Spengler (85_CR40) 2015; 90 L Jia (85_CR22) 2016; 6 R Ng (85_CR32) 2014; 60 N Panera (85_CR33) 2014; 20 CJ Pirola (85_CR34) 2015; 64 LF Wang (85_CR43) 2017; 16 RE Castro (85_CR7) 2013; 58 N Akuta (85_CR1) 2016; 16 LG da Silva-Santi (85_CR12) 2016; 8 H Miyaaki (85_CR30) 2014; 34 MJ Lin (85_CR28) 2017; 8 S Yin (85_CR47) 2016; 7 H Dai (85_CR13) 2017; 14 A Gormand (85_CR16) 2014; 53 D Ye (85_CR46) 2018; 208 J Latorre (85_CR25) 2017; 41 A Braza-Boils (85_CR5) 2016; 36 C Canto (85_CR6) 2009; 458 X Li (85_CR27) 2015; 5 MJ Chu (85_CR10) 2014; 9 X-Z Huang (85_CR19) 2014; 115 F Lan (85_CR24) 2008; 283 A Purushotham (85_CR35) 2009; 9 X Li (85_CR26) 2013; 45 |
References_xml | – volume: 96 start-page: e8179 year: 2017 ident: 85_CR14 publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000008179 – volume: 7 start-page: 215 year: 2018 ident: 85_CR21 publication-title: Microrna doi: 10.2174/2211536607666180531093302 – volume: 458 start-page: 86 year: 2015 ident: 85_CR41 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2015.01.072 – volume: 13 start-page: 175 year: 2018 ident: 85_CR4 publication-title: Pediatr Obes doi: 10.1111/ijpo.12261 – volume: 45 start-page: 51 year: 2013 ident: 85_CR26 publication-title: Acta Biochim Biophys Sin Shanghai doi: 10.1093/abbs/gms108 – volume: 27 start-page: 708 year: 2007 ident: 85_CR15 publication-title: Liver Int doi: 10.1111/j.1478-3231.2007.01497.x – volume: 16 start-page: 82 year: 2017 ident: 85_CR43 publication-title: Lipids Health Dis doi: 10.1186/s12944-017-0464-z – volume: 14 start-page: 8437 year: 2013 ident: 85_CR8 publication-title: Int J Mol Sci doi: 10.3390/ijms14048437 – volume: 8 start-page: 682 year: 2016 ident: 85_CR12 publication-title: Nutrients doi: 10.3390/nu8110682 – volume: 8 start-page: 108802 year: 2017 ident: 85_CR28 publication-title: Oncotarget doi: 10.18632/oncotarget.22163 – volume: 34 start-page: e302 year: 2014 ident: 85_CR30 publication-title: Liver Int doi: 10.1111/liv.12429 – volume: 64 start-page: 800 year: 2015 ident: 85_CR34 publication-title: Gut doi: 10.1136/gutjnl-2014-306996 – volume: 208 start-page: 201 year: 2018 ident: 85_CR46 publication-title: Life Sci doi: 10.1016/j.lfs.2018.07.029 – volume: 115 start-page: 996 year: 2014 ident: 85_CR19 publication-title: J Cell Biochem doi: 10.1002/jcb.24748 – volume: 403 start-page: 795 year: 2000 ident: 85_CR20 publication-title: Nature doi: 10.1038/35001622 – volume: 446 start-page: 267 year: 2015 ident: 85_CR45 publication-title: Clin Chim Acta doi: 10.1016/j.cca.2015.05.002 – volume: 53 start-page: 117 year: 2014 ident: 85_CR16 publication-title: J Mol Endocrinol doi: 10.1530/JME-13-0296 – volume: 10 start-page: e0141227 year: 2015 ident: 85_CR37 publication-title: PLoS One doi: 10.1371/journal.pone.0141227 – volume: 23 start-page: 311 year: 2014 ident: 85_CR11 publication-title: J Gastrointestin Liver Dis doi: 10.15403/jgld.2014.1121.233.yck – volume: 6 start-page: 36209 year: 2016 ident: 85_CR22 publication-title: Sci Rep doi: 10.1038/srep36209 – volume: 41 start-page: 620 year: 2017 ident: 85_CR25 publication-title: Int J Obes doi: 10.1038/ijo.2017.21 – volume: 9 start-page: 327 year: 2009 ident: 85_CR35 publication-title: Cell Metab doi: 10.1016/j.cmet.2009.02.006 – volume: 58 start-page: 119 year: 2013 ident: 85_CR7 publication-title: J Hepatol doi: 10.1016/j.jhep.2012.08.008 – volume: 90 start-page: 1233 year: 2015 ident: 85_CR40 publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2015.06.013 – volume: 13 start-page: 239 year: 2012 ident: 85_CR36 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3313 – volume: 119 start-page: 4945 year: 2018 ident: 85_CR9 publication-title: J Cell Biochem doi: 10.1002/jcb.26739 – volume: 10 start-page: e0123787 year: 2015 ident: 85_CR39 publication-title: PLoS One doi: 10.1371/journal.pone.0123787 – volume: 5 start-page: 16774 year: 2015 ident: 85_CR27 publication-title: Sci Rep doi: 10.1038/srep16774 – volume: 22 start-page: 10084 year: 2016 ident: 85_CR31 publication-title: World J Gastroenterol doi: 10.3748/wjg.v22.i46.10084 – volume: 22 start-page: 3804 year: 2016 ident: 85_CR3 publication-title: Med Sci Monit doi: 10.12659/MSM.897207 – volume: 1852 start-page: 1550 year: 2015 ident: 85_CR23 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2015.04.017 – volume: 458 start-page: 1056 year: 2009 ident: 85_CR6 publication-title: Nature doi: 10.1038/nature07813 – volume: 283 start-page: 27628 year: 2008 ident: 85_CR24 publication-title: J Biol Chem doi: 10.1074/jbc.M805711200 – volume: 60 start-page: 554 year: 2014 ident: 85_CR32 publication-title: Hepatology doi: 10.1002/hep.27153 – volume: 21 start-page: 3777 year: 2015 ident: 85_CR42 publication-title: World J Gastroenterol doi: 10.3748/wjg.v21.i13.3777 – volume: 1 start-page: 3 year: 2010 ident: 85_CR17 publication-title: Nat Commun doi: 10.1038/ncomms1001 – volume: 36 start-page: 1221 year: 2016 ident: 85_CR5 publication-title: Liver Int doi: 10.1111/liv.13097 – volume: 7 start-page: 11012 year: 2016 ident: 85_CR47 publication-title: Nat Commun doi: 10.1038/ncomms11012 – volume: 9 start-page: e100609 year: 2014 ident: 85_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0100609 – volume: 13 start-page: e0200847 year: 2018 ident: 85_CR38 publication-title: PLoS One doi: 10.1371/journal.pone.0200847 – volume: 28 start-page: 1377 year: 2014 ident: 85_CR18 publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2014.07.004 – volume: 16 start-page: 141 year: 2016 ident: 85_CR1 publication-title: BMC Gastroenterol doi: 10.1186/s12876-016-0557-6 – volume: 14 start-page: 49 year: 2017 ident: 85_CR13 publication-title: Nutr Metab (Lond) doi: 10.1186/s12986-017-0206-2 – volume: 85 start-page: 268 year: 2015 ident: 85_CR2 publication-title: Chem Biol Drug Des doi: 10.1111/cbdd.12398 – volume: 17 start-page: 1484 year: 2015 ident: 85_CR29 publication-title: Nat Cell Biol doi: 10.1038/ncb3255 – volume: 20 start-page: 15079 year: 2014 ident: 85_CR33 publication-title: World J Gastroenterol doi: 10.3748/wjg.v20.i41.15079 – volume: 44 start-page: 1651 year: 2017 ident: 85_CR44 publication-title: Cell Physiol Biochem doi: 10.1159/000485765 |
SSID | ssj0021545 |
Score | 2.630362 |
Snippet | Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate... Background Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to... Abstract Background Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 26 |
SubjectTerms | AMPK pathway Binding sites Biomarkers Fatty acids Fatty liver Homeostasis Laboratory animals Lipids Lipogenesis Liver diseases Metabolism MicroRNAs miR-122 Non-alcoholic fatty liver disease Pathogenesis Plasmids Proteins Sirt1 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxQrK6fiROTqhFVBWlCAGV9mbZjt2NVJJlNwXtsf-8M4l3yyLUazJOHM-M_U38eYaQt5NoY9ADzy86pkLOWQkBHMtLV3utAyyzeDj55EtxdKo-TfNp-uG2TLTK9Zw4TNR15_Ef-R7mbS8BvEjxfv6LYdUo3F1NJTRukzuYugwpXXp6HXAhPBg5hwVDaJB2NXlZ4NE5DJwmeIQH-fdia10a0vf_D3P-S538ay06fEDuJxBJ90etPyS3QvuI3B3LSq4ek8ufzTfGhaDzgWsXlnQWkDjt6Xkz785wdmuW9HdjadPOGtcg85kCEKSfjw_43v7J12OKhYr_2BV1KzpyxVHke7PoObShbdcyO9bWhYdG2_creDQ4BU37PU_I6eHHHx-OWCq1wHwhRc-U1LWN3HKXa4BklRNBeWkBjjjvdOQucB1UaWMO4VoxqfOylqANB5K-hpbyKdmBd4fnhPrC2Vy5KsoKc9fklZURQnAltNMVjzIjk_VAG5_ykGM5jHMzxCNlYUbdGNCNQd0YkZF3mybzMQnHTcIHqL2NIObPHi50izOT3NF4VQgva2FzWSuVSwdRrZUOg0Gu6ugzsrvWvUlOvTTXJpiRN5vb4I64x2Lb0F2AzLCRDKME3_lsNJVNTyTaaFXyjOgtI9rq6vadtpkNKb8BdcPglS9u7tZLck8MFo2pJXfJTr-4CK8AM_Xu9eAYV3uUE6I priority: 102 providerName: ProQuest |
Title | miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31195981 https://www.proquest.com/docview/2546850732 https://www.proquest.com/docview/2245655243 https://pubmed.ncbi.nlm.nih.gov/PMC6567918 https://doaj.org/article/c462c3d2a53d4453b717a3b625914dfc |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0ne3TRcVeiqYrF6WfcyWhNA0IWwbWHoRkixlDal3yToJe-w_74zlXbKltJdefLBG1mNG1jdo9A0hH0bRxqC7OL_oMhkUywpw4DJVuMprHWCbxcvJJ6f50bn8PFXTO6m-MCYs0QOnidvzMudeVNwqUUmphAP_wwqHsJ3JKnr8-8Ket3amelcLgUGKNswzBAX9eSYrcrw0hy7TCC_vYOQ939qROuL-P6HN34Mm7-xCh0_I4x4-0v3U7afkXmiekYcpoeTqOfn5o55kjHO66KLswpLOAoZMe3pZL-YX-F-rl_SmtrRuZrWrMeaZAgSkX47HbG__5OyYYoriW7uibkVTlDiKfK2vWgZ1aDNvMpuy6sJHo23bFXwalgPtT3pekPPDg2-fjrI-yULmc8HbTApd2cgsc0oDGCsdD9ILC0DEeacjc4HpIAsbFThq-ahSRSUKNXIg6SuoKV6SHWg7vCbU584q6cooSmStUaUVEZxvybXTJYtiQEbriTa-ZyDHRBiXpvNEitwk3RjQjUHdGD4gHzdVFol-42_CY9TeRhCZs7sXYE-mtyfzL3sakN217k2_nJcGkwbAoLWANt5vimEh4umKbcL8GmS6I2SYJRjnq2Qqm54IJNYrCzYgesuItrq6XdLUs47sG_A2TF7x5n-M7S15xDu7R-rJXbLTXl2Hd4CpWjck9_VUD8mD8cHp2WTYLSZ4TsbffwHgZx9R |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxJuUAkaCC9Kq8WNfB4QaaJWSh6rSSr25ttduViqbNNlS5cgf4jcys7sJBKHeel2PvV7PeDzfzniGkHcdr72Lqzg_bwLpQhYkAOCCMDGZjWMHxyxeTh6Oot6J_Hoanm6QX8u7MBhWudSJlaLOJhb_ke9g3vYEjBfBP00vA6wahd7VZQmNWiz6bnENkG3-8eAL8Pc95_t7x597QVNVILCR4GUgRZxpzzQzYQzWR2q4k1ZoOHmNNbFnxrHYyUT7EJBJ1MnCJBPwYgOUNoOeAsa9QzalACjTIpvdvdHh0QrioUFSRzlGARojjR-VJRFe1kOo1sFLQxjxz9dOwqpgwP-s3H-DNf86_fYfkgeN2Up3azl7RDZc8ZjcrQtZLp6Qn9_zo4BxTqdVdJ-b07HDUG1LL_Lp5Bz1aT6nP3JN82KcmxxjrSmYnnTQ77Kd3eFhn2Jp5Gu9oGZB6-h0JPmWz0oGfWgxKQJdV_OFQb0uywUMDduQNh6mp-TkVtjwjLTg3e4FoTYyOpQm9SLFbDlhqoUH0C95bOKUedEmneVCK9tkPscCHBeqQkBJpGreKOCNQt4o3iYfVl2mddqPm4i7yL0VIWbsrh5MZueqUQDKyohbkXEdikzKUBjA0VoYhJ9MZt62yfaS96pRI3P1R-jb5O2qGRQAenV04SZXQFO5rmGV4Duf16KymonAhH5pwtokXhOitamutxT5uEoyDnY-LF6ydfO03pB7vePhQA0ORv2X5D6vpBsTW26TVjm7cq_AYivN62abUHJ22zvzN1QrUrM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxDcdA4wEL0hR64_EyQNCG6Pa6DZNwKS-ebZjr5FG2rUZUx_5t_jruEvSjiK0t70mZ8f1ffiu9_MdIW97wQSvapxfsJH0MYtSCOCiOLW5U8rDMYuXkw8Ok91j-WUYD9fI78VdGIRVLmxibajzscP_yLtYtz0F50XwbmhhEUc7_Y-T8wg7SGGmddFOoxGRgZ9fQvg2-7C3A7x-x3n_8_dPu1HbYSByieBVJIXKTWCG2ViBJ5JZ7qUTBk5h66wKzHqmvExNiCFKSXp5nOYCFmGB0uUwUsC8t8htGMtQx9TwKthD16TBOyYRuiVtRpWlCV7bw6Cth9eHEPvPV87EunXA__zdf2Gbf52D_QfkfuvA0q1G4h6SNV8-Inealpbzx-TXj-JrxDinkxrn52d05BG07ehZMRmfomUtZvRnYWhRjgpbIOqaghNK9wfbrLt1cDSg2CT50sypndMGp44k34ppxWAMLcdlZJq-vjBpMFU1h6lBIWmba3pCjm-ECU_JOnzbPyfUJdbE0mZBZFg3J86MCBD-S66sylgQHdJbbLR2bQ10bMVxputYKE10wxsNvNHIG8075P1yyKQpAHId8TZyb0mItbvrB-PpqW5NgXYy4U7k3MQilzIWFiJqIywGokzmwXXI5oL3ujUoM30l_h3yZvkaTAHmd0zpxxdAUyexYZfgdz5rRGW5EoGl_bKUdYhaEaKVpa6-KYtRXW4cPH7YvHTj-mW9JndBH_X-3uHgBbnHa-HGCpebZL2aXviX4LpV9lWtI5Sc3LRS_gFgnFWD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-122+promotes+hepatic+lipogenesis+via+inhibiting+the+LKB1%2FAMPK+pathway+by+targeting+Sirt1+in+non-alcoholic+fatty+liver+disease&rft.jtitle=Molecular+medicine+%28Cambridge%2C+Mass.%29&rft.au=Jun-Ke+Long&rft.au=Wen+Dai&rft.au=Ya-Wen+Zheng&rft.au=Shui-Ping+Zhao&rft.date=2019-06-13&rft.pub=BMC&rft.issn=1076-1551&rft.eissn=1528-3658&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs10020-019-0085-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c462c3d2a53d4453b717a3b625914dfc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-1551&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-1551&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-1551&client=summon |