miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms. Both in vitro and in...

Full description

Saved in:
Bibliographic Details
Published inMolecular medicine (Cambridge, Mass.) Vol. 25; no. 1; pp. 26 - 13
Main Authors Long, Jun-Ke, Dai, Wen, Zheng, Ya-Wen, Zhao, Shui-Ping
Format Journal Article
LanguageEnglish
Published England BioMed Central 13.06.2019
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms. Both in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP). NAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3'-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway. The inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD.
AbstractList Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms.BACKGROUNDNon-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms.Both in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP).METHODSBoth in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP).NAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3'-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway.RESULTSNAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3'-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway.The inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD.CONCLUSIONThe inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD.
Background Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms. Methods Both in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP). Results NAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3′-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway. Conclusion The inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD.
Abstract Background Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms. Methods Both in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP). Results NAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3′-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway. Conclusion The inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD.
Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate the functional implications of microRNA-122 (miR-122) in the pathogenesis of NAFLD and the possible molecular mechanisms. Both in vitro and in vivo models of NAFLD were generated by treating HepG2 and Huh-7 cells with free fatty acids (FFA) and by feeding mice a high-fat diet (HFD), respectively. HE and Oil Red O staining were used to examine liver tissue morphology and lipid deposition, respectively. Immunohistochemical (IHC) staining was used to examine Sirt1 expression in liver tissues. qRT-PCR and Western blotting were employed to measure the expression of miR-122, Sirt1, and proteins involved in lipogenesis and the AMPK pathway. Enzyme-linked immunosorbent assay (ELISA) was used to quantify triglyceride (TG) levels in HepG2 and Huh-7 cells and in liver tissues. The interaction between miR-122 and the Sirt1 gene was further examined by a dual luciferase reporter assay and RNA-immunoprecipitation (RIP). NAFLD hepatic tissues and FFA-treated HepG2 and Huh-7 cells presented excess lipid production and TG secretion, accompanied by miR-122 upregulation, Sirt1 downregulation, and potentiated lipogenesis-related genes. miR-122 suppressed Sirt1 expression via binding to its 3'-untranslated region (UTR). Knockdown of miR-122 effectively mitigated excessive lipid production and suppressed the expression of lipogenic genes in FFA-treated HepG2 and Huh-7 cells via upregulating Sirt1. Furthermore, miR-122 knockdown activated the LKB1/AMPK signalling pathway. The inhibition of miR-122 protects hepatocytes from lipid metabolic disorders such as NAFLD and suppresses lipogenesis via elevating Sirt1 and activating the AMPK pathway. These data support miR-122 as a promising biomarker and drug target for NAFLD.
ArticleNumber 26
Author Zhao, Shui-Ping
Zheng, Ya-Wen
Dai, Wen
Long, Jun-Ke
Author_xml – sequence: 1
  givenname: Jun-Ke
  surname: Long
  fullname: Long, Jun-Ke
– sequence: 2
  givenname: Wen
  surname: Dai
  fullname: Dai, Wen
– sequence: 3
  givenname: Ya-Wen
  surname: Zheng
  fullname: Zheng, Ya-Wen
– sequence: 4
  givenname: Shui-Ping
  orcidid: 0000-0002-5561-5868
  surname: Zhao
  fullname: Zhao, Shui-Ping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31195981$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAURiNURB_wA9ggS2zYhPr6lWSDVCoeVQeBeKwt23ESj5I42J5Bs-Sf4-mUinbBypZ97tG99ndaHM1-tkXxHPBrgFqcR8CY4BJDU2Jc85I8Kk6Ak7qkgtdHeY8rUQLncFycxrjOMHDGnxTHFKDhTQ0nxe_JfS2BELQEP_lkIxrsopIzaHSL7-1so4to6xRy8-C0S27uURosWl2_hfOLT1-uUcaHX2qH9A4lFXp7g3xzIUGuQbnlUo3GD37M0k6ltMvqrQ2oddGqaJ8Wjzs1Rvvsdj0rfrx_9_3yY7n6_OHq8mJVGkFJKhmtWtWBAs0rykmjiWWGKiGoNrrqQFuoLKtVxwlrBG553dKaY51J0-ZKelZcHbytV2u5BDepsJNeOXlz4EMvVciDj1YaJoihLVGctoxxqiuoFNWC8AZY25nsenNwLRs92dbYOQU13pPev5ndIHu_lYKLqoE6C17dCoL_ubExyclFY8dRzdZvoiSEccHzKDSjLx-ga78Jc34qSTgTecaKkky9-Leju1b-_nQG4ACY4GMMtrtDAMt9muQhTTKnSe7TJPfS6kGNcSmHw--HcuN_Kv8ATsjOYg
CitedBy_id crossref_primary_10_3389_fimmu_2022_812431
crossref_primary_10_3390_ijms242216453
crossref_primary_10_1038_s41598_021_91187_2
crossref_primary_10_1186_s13020_024_00886_1
crossref_primary_10_1007_s10142_025_01544_x
crossref_primary_10_3390_cells12030359
crossref_primary_10_3389_fgene_2021_649015
crossref_primary_10_1016_j_metabol_2023_155657
crossref_primary_10_3390_ijms241612864
crossref_primary_10_1016_j_biopha_2023_115113
crossref_primary_10_1021_acsinfecdis_1c00470
crossref_primary_10_4103_bbrj_bbrj_319_22
crossref_primary_10_1016_j_freeradbiomed_2022_05_006
crossref_primary_10_3389_fnut_2022_1022784
crossref_primary_10_3390_jcm11133649
crossref_primary_10_1016_j_bbamcr_2023_119537
crossref_primary_10_1007_s00441_023_03835_w
crossref_primary_10_1186_s40543_023_00410_4
crossref_primary_10_61186_jhgg_7_1_2
crossref_primary_10_1186_s12964_023_01292_0
crossref_primary_10_3748_wjg_v30_i4_332
crossref_primary_10_1016_j_lfs_2020_118816
crossref_primary_10_1007_s11626_022_00651_4
crossref_primary_10_1016_j_hnm_2025_200305
crossref_primary_10_3390_nu12103166
crossref_primary_10_1016_j_prp_2025_155867
crossref_primary_10_1021_acs_jafc_9b07126
crossref_primary_10_3390_nu15092068
crossref_primary_10_1016_j_intimp_2024_111785
crossref_primary_10_1016_j_jep_2022_115862
crossref_primary_10_1016_j_bcp_2024_116250
crossref_primary_10_1007_s13205_024_04204_2
crossref_primary_10_1089_ars_2021_0076
crossref_primary_10_1007_s10895_020_02636_6
crossref_primary_10_1016_j_ijcard_2023_131419
crossref_primary_10_1016_j_jep_2024_118054
crossref_primary_10_3390_nu16172956
crossref_primary_10_1016_j_bcp_2024_116411
crossref_primary_10_1016_j_jep_2020_112866
crossref_primary_10_1002_acm4_1
crossref_primary_10_1007_s11154_023_09866_6
crossref_primary_10_3390_ijms252312899
crossref_primary_10_1016_j_gastrohep_2022_12_003
crossref_primary_10_1152_ajpregu_00238_2021
crossref_primary_10_1016_j_jep_2024_118648
crossref_primary_10_3390_biomedicines13010230
crossref_primary_10_1016_j_watres_2024_122008
crossref_primary_10_1186_s12906_022_03697_9
crossref_primary_10_2147_HMER_S481687
crossref_primary_10_1038_s41392_024_01931_z
crossref_primary_10_2174_1573399819666230216112032
crossref_primary_10_3390_ijms21228761
crossref_primary_10_1002_cbf_3763
crossref_primary_10_1186_s13071_023_05665_9
crossref_primary_10_1186_s12944_022_01740_9
crossref_primary_10_3389_fmed_2021_770504
crossref_primary_10_1007_s12094_022_02863_2
crossref_primary_10_2147_JIR_S491484
crossref_primary_10_3390_diagnostics12020407
crossref_primary_10_1016_j_phymed_2025_156563
crossref_primary_10_1016_j_placenta_2024_11_010
crossref_primary_10_1080_21655979_2022_2026858
crossref_primary_10_1152_ajpgi_00179_2022
crossref_primary_10_1016_j_gendis_2021_12_013
crossref_primary_10_1210_clinem_dgac023
crossref_primary_10_1016_j_cca_2025_120178
crossref_primary_10_18087_cardio_2019_10_n558
crossref_primary_10_2174_1389203723666220721122240
crossref_primary_10_3390_antiox12040870
crossref_primary_10_1038_s41598_024_52855_1
crossref_primary_10_3892_mmr_2023_13141
crossref_primary_10_1038_s12276_023_01072_3
crossref_primary_10_3390_life12111814
crossref_primary_10_1016_j_apsb_2024_05_014
crossref_primary_10_1016_j_clinre_2023_102264
crossref_primary_10_1016_j_aohep_2022_100756
crossref_primary_10_5713_ab_22_0165
crossref_primary_10_3390_life14060729
crossref_primary_10_3390_v16111734
crossref_primary_10_1016_j_ncrna_2023_04_002
crossref_primary_10_1155_2021_6621644
crossref_primary_10_3390_nu13051679
crossref_primary_10_1016_j_bbadis_2024_167327
crossref_primary_10_3390_genes15101313
crossref_primary_10_3390_cells12151955
crossref_primary_10_3390_nu14163338
crossref_primary_10_1002_ame2_12309
crossref_primary_10_1039_D0FO02286A
crossref_primary_10_3390_biom14040450
crossref_primary_10_5650_jos_ess23167
crossref_primary_10_1002_hep4_1532
crossref_primary_10_3389_fvets_2022_938311
crossref_primary_10_1128_MCB_00327_21
crossref_primary_10_1186_s12944_024_02347_y
crossref_primary_10_1186_s12985_023_02277_8
crossref_primary_10_1016_j_ijbiomac_2025_142275
crossref_primary_10_1093_jmcb_mjab043
crossref_primary_10_3390_pharmaceutics14071380
crossref_primary_10_1080_17474124_2023_2242245
crossref_primary_10_31883_pjfns_182927
crossref_primary_10_1016_j_molmet_2023_101856
crossref_primary_10_3390_antiox10020270
crossref_primary_10_1016_j_intimp_2024_113014
crossref_primary_10_3390_ijms241411606
crossref_primary_10_3390_ijms242417514
crossref_primary_10_1007_s10863_022_09953_4
crossref_primary_10_3390_cells11243959
crossref_primary_10_1016_j_biopha_2023_114987
crossref_primary_10_1016_j_biopha_2024_116917
crossref_primary_10_1016_j_biocel_2022_106361
crossref_primary_10_1016_j_exger_2023_112250
crossref_primary_10_1080_10408398_2023_2202762
crossref_primary_10_3390_biom12081079
crossref_primary_10_1038_s41392_023_01333_7
crossref_primary_10_3389_fvets_2022_913841
crossref_primary_10_3390_ani14233491
crossref_primary_10_1139_cjpp_2022_0549
crossref_primary_10_3390_ijms232314920
crossref_primary_10_1371_journal_pone_0264804
crossref_primary_10_1002_ardp_202300631
crossref_primary_10_3389_fnut_2024_1290540
crossref_primary_10_1177_17562848241276334
crossref_primary_10_1016_j_acthis_2022_151989
crossref_primary_10_1007_s40200_025_01589_6
crossref_primary_10_1016_j_lfs_2023_121400
crossref_primary_10_3389_fnagi_2021_738686
crossref_primary_10_1080_02648725_2023_2202531
crossref_primary_10_1155_2021_8386848
crossref_primary_10_1021_acs_analchem_4c03298
crossref_primary_10_3390_toxics12070475
crossref_primary_10_1113_JP280910
crossref_primary_10_1016_j_psj_2024_103734
crossref_primary_10_3390_cancers15205048
crossref_primary_10_1002_mnfr_202100732
crossref_primary_10_1007_s11010_020_04032_x
crossref_primary_10_3390_cells10123316
crossref_primary_10_1016_j_molmet_2022_101581
crossref_primary_10_1016_j_envpol_2023_122416
crossref_primary_10_3389_fvets_2023_1272238
crossref_primary_10_1016_j_prp_2023_154725
crossref_primary_10_1016_j_gastre_2022_12_002
crossref_primary_10_1080_09168451_2020_1793293
crossref_primary_10_1016_j_livres_2023_11_003
crossref_primary_10_1007_s11130_024_01262_y
crossref_primary_10_3390_biology11050637
crossref_primary_10_1155_2021_3654660
crossref_primary_10_3390_antiox12030759
crossref_primary_10_3389_fgene_2021_671523
crossref_primary_10_3389_fphar_2022_823140
crossref_primary_10_3390_biology13080597
crossref_primary_10_1096_fj_202401464R
crossref_primary_10_3390_genes13112142
crossref_primary_10_1007_s12672_023_00738_8
crossref_primary_10_3389_fphys_2022_970292
crossref_primary_10_3390_antiox12122100
crossref_primary_10_3390_nu16183061
crossref_primary_10_3390_ijms24119168
crossref_primary_10_3389_fmed_2024_1420281
crossref_primary_10_3390_ijms22147571
crossref_primary_10_1016_j_biopha_2023_114319
crossref_primary_10_1016_j_phrs_2021_105846
crossref_primary_10_1016_j_bioorg_2023_106530
crossref_primary_10_1016_j_clinre_2025_102547
crossref_primary_10_3390_ijms21082986
crossref_primary_10_1080_10495398_2024_2396414
crossref_primary_10_3389_fcvm_2023_1119005
crossref_primary_10_1177_20587392211000896
crossref_primary_10_1186_s12935_023_02868_z
crossref_primary_10_3390_cancers15010023
crossref_primary_10_3839_jabc_2024_062
crossref_primary_10_1038_s41419_023_06054_x
crossref_primary_10_1016_j_lfs_2023_121943
crossref_primary_10_1016_j_mce_2020_110804
crossref_primary_10_3390_jcm14062054
crossref_primary_10_3389_fcimb_2022_1011386
crossref_primary_10_1016_j_freeradbiomed_2023_04_001
crossref_primary_10_1016_j_phymed_2023_154836
crossref_primary_10_3390_biom12060824
Cites_doi 10.1097/MD.0000000000008179
10.2174/2211536607666180531093302
10.1016/j.bbrc.2015.01.072
10.1111/ijpo.12261
10.1093/abbs/gms108
10.1111/j.1478-3231.2007.01497.x
10.1186/s12944-017-0464-z
10.3390/ijms14048437
10.3390/nu8110682
10.18632/oncotarget.22163
10.1111/liv.12429
10.1136/gutjnl-2014-306996
10.1016/j.lfs.2018.07.029
10.1002/jcb.24748
10.1038/35001622
10.1016/j.cca.2015.05.002
10.1530/JME-13-0296
10.1371/journal.pone.0141227
10.15403/jgld.2014.1121.233.yck
10.1038/srep36209
10.1038/ijo.2017.21
10.1016/j.cmet.2009.02.006
10.1016/j.jhep.2012.08.008
10.1016/j.mayocp.2015.06.013
10.1038/nrm3313
10.1002/jcb.26739
10.1371/journal.pone.0123787
10.1038/srep16774
10.3748/wjg.v22.i46.10084
10.12659/MSM.897207
10.1016/j.bbadis.2015.04.017
10.1038/nature07813
10.1074/jbc.M805711200
10.1002/hep.27153
10.3748/wjg.v21.i13.3777
10.1038/ncomms1001
10.1111/liv.13097
10.1038/ncomms11012
10.1371/journal.pone.0100609
10.1371/journal.pone.0200847
10.1016/j.tiv.2014.07.004
10.1186/s12876-016-0557-6
10.1186/s12986-017-0206-2
10.1111/cbdd.12398
10.1038/ncb3255
10.3748/wjg.v20.i41.15079
10.1159/000485765
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The Author(s) 2019
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
– notice: The Author(s) 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s10020-019-0085-2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1528-3658
EndPage 13
ExternalDocumentID oai_doaj_org_article_c462c3d2a53d4453b717a3b625914dfc
PMC6567918
31195981
10_1186_s10020_019_0085_2
Genre Journal Article
GeographicLocations United States--US
China
Germany
GeographicLocations_xml – name: China
– name: United States--US
– name: Germany
GroupedDBID ---
-ET
0R~
123
29M
2WC
36B
5RE
5VS
7X7
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABUWG
ACGFO
ACMJI
ADBBV
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
IH2
IHR
ISR
ITC
KQ8
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
RBZ
RNS
ROL
RPM
RSV
SDH
SJN
SOJ
SV3
TR2
UKHRP
WOQ
ACRMQ
C24
M~E
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c632t-437daf1a1b573529b2e4c3a663bcb7f1be17e48af524960d58d3850b29bcddaf3
IEDL.DBID DOA
ISSN 1076-1551
1528-3658
IngestDate Wed Aug 27 01:09:10 EDT 2025
Thu Aug 21 13:53:13 EDT 2025
Fri Jul 11 15:31:22 EDT 2025
Mon Jun 30 11:59:42 EDT 2025
Thu Jan 02 23:00:09 EST 2025
Tue Jul 01 01:25:20 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Sirt1
AMPK pathway
Lipogenesis
Non-alcoholic fatty liver disease
miR-122
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c632t-437daf1a1b573529b2e4c3a663bcb7f1be17e48af524960d58d3850b29bcddaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5561-5868
OpenAccessLink https://doaj.org/article/c462c3d2a53d4453b717a3b625914dfc
PMID 31195981
PQID 2546850732
PQPubID 5066171
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c462c3d2a53d4453b717a3b625914dfc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6567918
proquest_miscellaneous_2245655243
proquest_journals_2546850732
pubmed_primary_31195981
crossref_primary_10_1186_s10020_019_0085_2
crossref_citationtrail_10_1186_s10020_019_0085_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-13
PublicationDateYYYYMMDD 2019-06-13
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-13
  day: 13
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
– name: London
PublicationTitle Molecular medicine (Cambridge, Mass.)
PublicationTitleAlternate Mol Med
PublicationYear 2019
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References AK Soares e Silva (85_CR39) 2015; 10
XQ Deng (85_CR15) 2007; 27
W Dai (85_CR14) 2017; 96
S Imai (85_CR20) 2000; 403
Y Takahashi (85_CR42) 2015; 21
R Ao (85_CR3) 2016; 22
V Rottiers (85_CR36) 2012; 13
GY Wu (85_CR44) 2017; 44
HJ Kim (85_CR23) 2015; 1852
X Hu (85_CR18) 2014; 28
S Brandt (85_CR4) 2018; 13
E Alizadeh (85_CR2) 2015; 85
H Sendi (85_CR38) 2018; 13
H Yamada (85_CR45) 2015; 446
S Ceccarelli (85_CR8) 2013; 14
X Chen (85_CR9) 2018; 119
F Nassir (85_CR31) 2016; 22
D Herranz (85_CR17) 2010; 1
Y Colak (85_CR11) 2014; 23
R Lin (85_CR29) 2015; 17
L Sun (85_CR41) 2015; 458
K Jampoka (85_CR21) 2018; 7
AB Santamarina (85_CR37) 2015; 10
EK Spengler (85_CR40) 2015; 90
L Jia (85_CR22) 2016; 6
R Ng (85_CR32) 2014; 60
N Panera (85_CR33) 2014; 20
CJ Pirola (85_CR34) 2015; 64
LF Wang (85_CR43) 2017; 16
RE Castro (85_CR7) 2013; 58
N Akuta (85_CR1) 2016; 16
LG da Silva-Santi (85_CR12) 2016; 8
H Miyaaki (85_CR30) 2014; 34
MJ Lin (85_CR28) 2017; 8
S Yin (85_CR47) 2016; 7
H Dai (85_CR13) 2017; 14
A Gormand (85_CR16) 2014; 53
D Ye (85_CR46) 2018; 208
J Latorre (85_CR25) 2017; 41
A Braza-Boils (85_CR5) 2016; 36
C Canto (85_CR6) 2009; 458
X Li (85_CR27) 2015; 5
MJ Chu (85_CR10) 2014; 9
X-Z Huang (85_CR19) 2014; 115
F Lan (85_CR24) 2008; 283
A Purushotham (85_CR35) 2009; 9
X Li (85_CR26) 2013; 45
References_xml – volume: 96
  start-page: e8179
  year: 2017
  ident: 85_CR14
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000008179
– volume: 7
  start-page: 215
  year: 2018
  ident: 85_CR21
  publication-title: Microrna
  doi: 10.2174/2211536607666180531093302
– volume: 458
  start-page: 86
  year: 2015
  ident: 85_CR41
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.01.072
– volume: 13
  start-page: 175
  year: 2018
  ident: 85_CR4
  publication-title: Pediatr Obes
  doi: 10.1111/ijpo.12261
– volume: 45
  start-page: 51
  year: 2013
  ident: 85_CR26
  publication-title: Acta Biochim Biophys Sin Shanghai
  doi: 10.1093/abbs/gms108
– volume: 27
  start-page: 708
  year: 2007
  ident: 85_CR15
  publication-title: Liver Int
  doi: 10.1111/j.1478-3231.2007.01497.x
– volume: 16
  start-page: 82
  year: 2017
  ident: 85_CR43
  publication-title: Lipids Health Dis
  doi: 10.1186/s12944-017-0464-z
– volume: 14
  start-page: 8437
  year: 2013
  ident: 85_CR8
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms14048437
– volume: 8
  start-page: 682
  year: 2016
  ident: 85_CR12
  publication-title: Nutrients
  doi: 10.3390/nu8110682
– volume: 8
  start-page: 108802
  year: 2017
  ident: 85_CR28
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22163
– volume: 34
  start-page: e302
  year: 2014
  ident: 85_CR30
  publication-title: Liver Int
  doi: 10.1111/liv.12429
– volume: 64
  start-page: 800
  year: 2015
  ident: 85_CR34
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-306996
– volume: 208
  start-page: 201
  year: 2018
  ident: 85_CR46
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2018.07.029
– volume: 115
  start-page: 996
  year: 2014
  ident: 85_CR19
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.24748
– volume: 403
  start-page: 795
  year: 2000
  ident: 85_CR20
  publication-title: Nature
  doi: 10.1038/35001622
– volume: 446
  start-page: 267
  year: 2015
  ident: 85_CR45
  publication-title: Clin Chim Acta
  doi: 10.1016/j.cca.2015.05.002
– volume: 53
  start-page: 117
  year: 2014
  ident: 85_CR16
  publication-title: J Mol Endocrinol
  doi: 10.1530/JME-13-0296
– volume: 10
  start-page: e0141227
  year: 2015
  ident: 85_CR37
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0141227
– volume: 23
  start-page: 311
  year: 2014
  ident: 85_CR11
  publication-title: J Gastrointestin Liver Dis
  doi: 10.15403/jgld.2014.1121.233.yck
– volume: 6
  start-page: 36209
  year: 2016
  ident: 85_CR22
  publication-title: Sci Rep
  doi: 10.1038/srep36209
– volume: 41
  start-page: 620
  year: 2017
  ident: 85_CR25
  publication-title: Int J Obes
  doi: 10.1038/ijo.2017.21
– volume: 9
  start-page: 327
  year: 2009
  ident: 85_CR35
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2009.02.006
– volume: 58
  start-page: 119
  year: 2013
  ident: 85_CR7
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2012.08.008
– volume: 90
  start-page: 1233
  year: 2015
  ident: 85_CR40
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2015.06.013
– volume: 13
  start-page: 239
  year: 2012
  ident: 85_CR36
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3313
– volume: 119
  start-page: 4945
  year: 2018
  ident: 85_CR9
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.26739
– volume: 10
  start-page: e0123787
  year: 2015
  ident: 85_CR39
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0123787
– volume: 5
  start-page: 16774
  year: 2015
  ident: 85_CR27
  publication-title: Sci Rep
  doi: 10.1038/srep16774
– volume: 22
  start-page: 10084
  year: 2016
  ident: 85_CR31
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v22.i46.10084
– volume: 22
  start-page: 3804
  year: 2016
  ident: 85_CR3
  publication-title: Med Sci Monit
  doi: 10.12659/MSM.897207
– volume: 1852
  start-page: 1550
  year: 2015
  ident: 85_CR23
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2015.04.017
– volume: 458
  start-page: 1056
  year: 2009
  ident: 85_CR6
  publication-title: Nature
  doi: 10.1038/nature07813
– volume: 283
  start-page: 27628
  year: 2008
  ident: 85_CR24
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M805711200
– volume: 60
  start-page: 554
  year: 2014
  ident: 85_CR32
  publication-title: Hepatology
  doi: 10.1002/hep.27153
– volume: 21
  start-page: 3777
  year: 2015
  ident: 85_CR42
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v21.i13.3777
– volume: 1
  start-page: 3
  year: 2010
  ident: 85_CR17
  publication-title: Nat Commun
  doi: 10.1038/ncomms1001
– volume: 36
  start-page: 1221
  year: 2016
  ident: 85_CR5
  publication-title: Liver Int
  doi: 10.1111/liv.13097
– volume: 7
  start-page: 11012
  year: 2016
  ident: 85_CR47
  publication-title: Nat Commun
  doi: 10.1038/ncomms11012
– volume: 9
  start-page: e100609
  year: 2014
  ident: 85_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0100609
– volume: 13
  start-page: e0200847
  year: 2018
  ident: 85_CR38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0200847
– volume: 28
  start-page: 1377
  year: 2014
  ident: 85_CR18
  publication-title: Toxicol in Vitro
  doi: 10.1016/j.tiv.2014.07.004
– volume: 16
  start-page: 141
  year: 2016
  ident: 85_CR1
  publication-title: BMC Gastroenterol
  doi: 10.1186/s12876-016-0557-6
– volume: 14
  start-page: 49
  year: 2017
  ident: 85_CR13
  publication-title: Nutr Metab (Lond)
  doi: 10.1186/s12986-017-0206-2
– volume: 85
  start-page: 268
  year: 2015
  ident: 85_CR2
  publication-title: Chem Biol Drug Des
  doi: 10.1111/cbdd.12398
– volume: 17
  start-page: 1484
  year: 2015
  ident: 85_CR29
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3255
– volume: 20
  start-page: 15079
  year: 2014
  ident: 85_CR33
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v20.i41.15079
– volume: 44
  start-page: 1651
  year: 2017
  ident: 85_CR44
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000485765
SSID ssj0021545
Score 2.630362
Snippet Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to investigate...
Background Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study aimed to...
Abstract Background Non-alcoholic fatty liver disease (NAFLD) is a common hepatic disease with an increasing prevalence but an unclear aetiology. This study...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 26
SubjectTerms AMPK pathway
Binding sites
Biomarkers
Fatty acids
Fatty liver
Homeostasis
Laboratory animals
Lipids
Lipogenesis
Liver diseases
Metabolism
MicroRNAs
miR-122
Non-alcoholic fatty liver disease
Pathogenesis
Plasmids
Proteins
Sirt1
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxQrK6fiROTqhFVBWlCAGV9mbZjt2NVJJlNwXtsf-8M4l3yyLUazJOHM-M_U38eYaQt5NoY9ADzy86pkLOWQkBHMtLV3utAyyzeDj55EtxdKo-TfNp-uG2TLTK9Zw4TNR15_Ef-R7mbS8BvEjxfv6LYdUo3F1NJTRukzuYugwpXXp6HXAhPBg5hwVDaJB2NXlZ4NE5DJwmeIQH-fdia10a0vf_D3P-S538ay06fEDuJxBJ90etPyS3QvuI3B3LSq4ek8ufzTfGhaDzgWsXlnQWkDjt6Xkz785wdmuW9HdjadPOGtcg85kCEKSfjw_43v7J12OKhYr_2BV1KzpyxVHke7PoObShbdcyO9bWhYdG2_creDQ4BU37PU_I6eHHHx-OWCq1wHwhRc-U1LWN3HKXa4BklRNBeWkBjjjvdOQucB1UaWMO4VoxqfOylqANB5K-hpbyKdmBd4fnhPrC2Vy5KsoKc9fklZURQnAltNMVjzIjk_VAG5_ykGM5jHMzxCNlYUbdGNCNQd0YkZF3mybzMQnHTcIHqL2NIObPHi50izOT3NF4VQgva2FzWSuVSwdRrZUOg0Gu6ugzsrvWvUlOvTTXJpiRN5vb4I64x2Lb0F2AzLCRDKME3_lsNJVNTyTaaFXyjOgtI9rq6vadtpkNKb8BdcPglS9u7tZLck8MFo2pJXfJTr-4CK8AM_Xu9eAYV3uUE6I
  priority: 102
  providerName: ProQuest
Title miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease
URI https://www.ncbi.nlm.nih.gov/pubmed/31195981
https://www.proquest.com/docview/2546850732
https://www.proquest.com/docview/2245655243
https://pubmed.ncbi.nlm.nih.gov/PMC6567918
https://doaj.org/article/c462c3d2a53d4453b717a3b625914dfc
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0ne3TRcVeiqYrF6WfcyWhNA0IWwbWHoRkixlDal3yToJe-w_74zlXbKltJdefLBG1mNG1jdo9A0hH0bRxqC7OL_oMhkUywpw4DJVuMprHWCbxcvJJ6f50bn8PFXTO6m-MCYs0QOnidvzMudeVNwqUUmphAP_wwqHsJ3JKnr8-8Ket3amelcLgUGKNswzBAX9eSYrcrw0hy7TCC_vYOQ939qROuL-P6HN34Mm7-xCh0_I4x4-0v3U7afkXmiekYcpoeTqOfn5o55kjHO66KLswpLOAoZMe3pZL-YX-F-rl_SmtrRuZrWrMeaZAgSkX47HbG__5OyYYoriW7uibkVTlDiKfK2vWgZ1aDNvMpuy6sJHo23bFXwalgPtT3pekPPDg2-fjrI-yULmc8HbTApd2cgsc0oDGCsdD9ILC0DEeacjc4HpIAsbFThq-ahSRSUKNXIg6SuoKV6SHWg7vCbU584q6cooSmStUaUVEZxvybXTJYtiQEbriTa-ZyDHRBiXpvNEitwk3RjQjUHdGD4gHzdVFol-42_CY9TeRhCZs7sXYE-mtyfzL3sakN217k2_nJcGkwbAoLWANt5vimEh4umKbcL8GmS6I2SYJRjnq2Qqm54IJNYrCzYgesuItrq6XdLUs47sG_A2TF7x5n-M7S15xDu7R-rJXbLTXl2Hd4CpWjck9_VUD8mD8cHp2WTYLSZ4TsbffwHgZx9R
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxJuUAkaCC9Kq8WNfB4QaaJWSh6rSSr25ttduViqbNNlS5cgf4jcys7sJBKHeel2PvV7PeDzfzniGkHcdr72Lqzg_bwLpQhYkAOCCMDGZjWMHxyxeTh6Oot6J_Hoanm6QX8u7MBhWudSJlaLOJhb_ke9g3vYEjBfBP00vA6wahd7VZQmNWiz6bnENkG3-8eAL8Pc95_t7x597QVNVILCR4GUgRZxpzzQzYQzWR2q4k1ZoOHmNNbFnxrHYyUT7EJBJ1MnCJBPwYgOUNoOeAsa9QzalACjTIpvdvdHh0QrioUFSRzlGARojjR-VJRFe1kOo1sFLQxjxz9dOwqpgwP-s3H-DNf86_fYfkgeN2Up3azl7RDZc8ZjcrQtZLp6Qn9_zo4BxTqdVdJ-b07HDUG1LL_Lp5Bz1aT6nP3JN82KcmxxjrSmYnnTQ77Kd3eFhn2Jp5Gu9oGZB6-h0JPmWz0oGfWgxKQJdV_OFQb0uywUMDduQNh6mp-TkVtjwjLTg3e4FoTYyOpQm9SLFbDlhqoUH0C95bOKUedEmneVCK9tkPscCHBeqQkBJpGreKOCNQt4o3iYfVl2mddqPm4i7yL0VIWbsrh5MZueqUQDKyohbkXEdikzKUBjA0VoYhJ9MZt62yfaS96pRI3P1R-jb5O2qGRQAenV04SZXQFO5rmGV4Duf16KymonAhH5pwtokXhOitamutxT5uEoyDnY-LF6ydfO03pB7vePhQA0ORv2X5D6vpBsTW26TVjm7cq_AYivN62abUHJ22zvzN1QrUrM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxDcdA4wEL0hR64_EyQNCG6Pa6DZNwKS-ebZjr5FG2rUZUx_5t_jruEvSjiK0t70mZ8f1ffiu9_MdIW97wQSvapxfsJH0MYtSCOCiOLW5U8rDMYuXkw8Ok91j-WUYD9fI78VdGIRVLmxibajzscP_yLtYtz0F50XwbmhhEUc7_Y-T8wg7SGGmddFOoxGRgZ9fQvg2-7C3A7x-x3n_8_dPu1HbYSByieBVJIXKTWCG2ViBJ5JZ7qUTBk5h66wKzHqmvExNiCFKSXp5nOYCFmGB0uUwUsC8t8htGMtQx9TwKthD16TBOyYRuiVtRpWlCV7bw6Cth9eHEPvPV87EunXA__zdf2Gbf52D_QfkfuvA0q1G4h6SNV8-Inealpbzx-TXj-JrxDinkxrn52d05BG07ehZMRmfomUtZvRnYWhRjgpbIOqaghNK9wfbrLt1cDSg2CT50sypndMGp44k34ppxWAMLcdlZJq-vjBpMFU1h6lBIWmba3pCjm-ECU_JOnzbPyfUJdbE0mZBZFg3J86MCBD-S66sylgQHdJbbLR2bQ10bMVxputYKE10wxsNvNHIG8075P1yyKQpAHId8TZyb0mItbvrB-PpqW5NgXYy4U7k3MQilzIWFiJqIywGokzmwXXI5oL3ujUoM30l_h3yZvkaTAHmd0zpxxdAUyexYZfgdz5rRGW5EoGl_bKUdYhaEaKVpa6-KYtRXW4cPH7YvHTj-mW9JndBH_X-3uHgBbnHa-HGCpebZL2aXviX4LpV9lWtI5Sc3LRS_gFgnFWD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-122+promotes+hepatic+lipogenesis+via+inhibiting+the+LKB1%2FAMPK+pathway+by+targeting+Sirt1+in+non-alcoholic+fatty+liver+disease&rft.jtitle=Molecular+medicine+%28Cambridge%2C+Mass.%29&rft.au=Jun-Ke+Long&rft.au=Wen+Dai&rft.au=Ya-Wen+Zheng&rft.au=Shui-Ping+Zhao&rft.date=2019-06-13&rft.pub=BMC&rft.issn=1076-1551&rft.eissn=1528-3658&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs10020-019-0085-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c462c3d2a53d4453b717a3b625914dfc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-1551&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-1551&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-1551&client=summon