Metabolomic Profiling Reveals Cellular Reprogramming of B-Cell Lymphoma by a Lysine Deacetylase Inhibitor through the Choline Pathway
Despite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected in B-cell lymphomas. Traditionally considered as “epigenetic drugs”, HDACI modify the acetylation status of an extensive proteome, acting as general...
Saved in:
Published in | EBioMedicine Vol. 28; no. C; pp. 80 - 89 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected in B-cell lymphomas. Traditionally considered as “epigenetic drugs”, HDACI modify the acetylation status of an extensive proteome, acting as general lysine deacetylase inhibitors (KDACI), and thus potentially impacting various branches of cellular metabolism. Here, we demonstrate through metabolomic profiling of patient plasma and cell lines that the KDACI panobinostat alters lipid metabolism and downstream survival signaling in diffuse large B-cell lymphomas (DLBCL). Specifically, panobinostat induces metabolic adaptations resulting in newly acquired dependency on the choline pathway and activation of PI3K signaling. This metabolic reprogramming decreased the antineoplastic effect of panobinostat. Conversely, inhibition of these metabolic adaptations resulted in superior anti-lymphoma effect as demonstrated by the combination of panobinostat with a choline pathway inhibitor. In conclusion, our study demonstrates the power of metabolomics in identifying unknown effects of KDACI, and emphasizes the need for a better understanding of these drugs in order to achieve successful clinical implementation.
•Lysine deacetylase inhibitor (KDACI) treatment alters choline metabolism in B-cell lymphoma patients.•KDACI-treated lymphoma cells acquire PI3K pathway dependency via increased choline kinase A (CHKA) activity.•Targeting the acquired choline dependency improves the anti-lymphoma effect of KDACI.
Pera et al. explored the effects of the lysine deacetylase inhibitor panobinostat in the metabolism of patients with lymphoma. They demonstrated that panobinostat alters choline metabolism leading to PI3K pathway activation. Their findings revealed the mechanism behind the anti-lymphoma activity of dual lysine deacetylase/PI3K inhibitors, and uncovered a novel therapeutic strategy based on targeting choline pathway following panobinostat treatment. |
---|---|
AbstractList | Despite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected in B-cell lymphomas. Traditionally considered as "epigenetic drugs", HDACI modify the acetylation status of an extensive proteome, acting as general lysine deacetylase inhibitors (KDACI), and thus potentially impacting various branches of cellular metabolism. Here, we demonstrate through metabolomic profiling of patient plasma and cell lines that the KDACI panobinostat alters lipid metabolism and downstream survival signaling in diffuse large B-cell lymphomas (DLBCL). Specifically, panobinostat induces metabolic adaptations resulting in newly acquired dependency on the choline pathway and activation of PI3K signaling. This metabolic reprogramming decreased the antineoplastic effect of panobinostat. Conversely, inhibition of these metabolic adaptations resulted in superior anti-lymphoma effect as demonstrated by the combination of panobinostat with a choline pathway inhibitor. In conclusion, our study demonstrates the power of metabolomics in identifying unknown effects of KDACI, and emphasizes the need for a better understanding of these drugs in order to achieve successful clinical implementation. Despite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected in B-cell lymphomas. Traditionally considered as "epigenetic drugs", HDACI modify the acetylation status of an extensive proteome, acting as general lysine deacetylase inhibitors (KDACI), and thus potentially impacting various branches of cellular metabolism. Here, we demonstrate through metabolomic profiling of patient plasma and cell lines that the KDACI panobinostat alters lipid metabolism and downstream survival signaling in diffuse large B-cell lymphomas (DLBCL). Specifically, panobinostat induces metabolic adaptations resulting in newly acquired dependency on the choline pathway and activation of PI3K signaling. This metabolic reprogramming decreased the antineoplastic effect of panobinostat. Conversely, inhibition of these metabolic adaptations resulted in superior anti-lymphoma effect as demonstrated by the combination of panobinostat with a choline pathway inhibitor. In conclusion, our study demonstrates the power of metabolomics in identifying unknown effects of KDACI, and emphasizes the need for a better understanding of these drugs in order to achieve successful clinical implementation.Despite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected in B-cell lymphomas. Traditionally considered as "epigenetic drugs", HDACI modify the acetylation status of an extensive proteome, acting as general lysine deacetylase inhibitors (KDACI), and thus potentially impacting various branches of cellular metabolism. Here, we demonstrate through metabolomic profiling of patient plasma and cell lines that the KDACI panobinostat alters lipid metabolism and downstream survival signaling in diffuse large B-cell lymphomas (DLBCL). Specifically, panobinostat induces metabolic adaptations resulting in newly acquired dependency on the choline pathway and activation of PI3K signaling. This metabolic reprogramming decreased the antineoplastic effect of panobinostat. Conversely, inhibition of these metabolic adaptations resulted in superior anti-lymphoma effect as demonstrated by the combination of panobinostat with a choline pathway inhibitor. In conclusion, our study demonstrates the power of metabolomics in identifying unknown effects of KDACI, and emphasizes the need for a better understanding of these drugs in order to achieve successful clinical implementation. Despite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected in B-cell lymphomas. Traditionally considered as “epigenetic drugs”, HDACI modify the acetylation status of an extensive proteome, acting as general lysine deacetylase inhibitors (KDACI), and thus potentially impacting various branches of cellular metabolism. Here, we demonstrate through metabolomic profiling of patient plasma and cell lines that the KDACI panobinostat alters lipid metabolism and downstream survival signaling in diffuse large B-cell lymphomas (DLBCL). Specifically, panobinostat induces metabolic adaptations resulting in newly acquired dependency on the choline pathway and activation of PI3K signaling. This metabolic reprogramming decreased the antineoplastic effect of panobinostat. Conversely, inhibition of these metabolic adaptations resulted in superior anti-lymphoma effect as demonstrated by the combination of panobinostat with a choline pathway inhibitor. In conclusion, our study demonstrates the power of metabolomics in identifying unknown effects of KDACI, and emphasizes the need for a better understanding of these drugs in order to achieve successful clinical implementation. • Lysine deacetylase inhibitor (KDACI) treatment alters choline metabolism in B-cell lymphoma patients. • KDACI-treated lymphoma cells acquire PI3K pathway dependency via increased choline kinase A (CHKA) activity. • Targeting the acquired choline dependency improves the anti-lymphoma effect of KDACI. Pera et al. explored the effects of the lysine deacetylase inhibitor panobinostat in the metabolism of patients with lymphoma. They demonstrated that panobinostat alters choline metabolism leading to PI3K pathway activation. Their findings revealed the mechanism behind the anti-lymphoma activity of dual lysine deacetylase/PI3K inhibitors, and uncovered a novel therapeutic strategy based on targeting choline pathway following panobinostat treatment. Despite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected in B-cell lymphomas. Traditionally considered as “epigenetic drugs”, HDACI modify the acetylation status of an extensive proteome, acting as general lysine deacetylase inhibitors (KDACI), and thus potentially impacting various branches of cellular metabolism. Here, we demonstrate through metabolomic profiling of patient plasma and cell lines that the KDACI panobinostat alters lipid metabolism and downstream survival signaling in diffuse large B-cell lymphomas (DLBCL). Specifically, panobinostat induces metabolic adaptations resulting in newly acquired dependency on the choline pathway and activation of PI3K signaling. This metabolic reprogramming decreased the antineoplastic effect of panobinostat. Conversely, inhibition of these metabolic adaptations resulted in superior anti-lymphoma effect as demonstrated by the combination of panobinostat with a choline pathway inhibitor. In conclusion, our study demonstrates the power of metabolomics in identifying unknown effects of KDACI, and emphasizes the need for a better understanding of these drugs in order to achieve successful clinical implementation. •Lysine deacetylase inhibitor (KDACI) treatment alters choline metabolism in B-cell lymphoma patients.•KDACI-treated lymphoma cells acquire PI3K pathway dependency via increased choline kinase A (CHKA) activity.•Targeting the acquired choline dependency improves the anti-lymphoma effect of KDACI. Pera et al. explored the effects of the lysine deacetylase inhibitor panobinostat in the metabolism of patients with lymphoma. They demonstrated that panobinostat alters choline metabolism leading to PI3K pathway activation. Their findings revealed the mechanism behind the anti-lymphoma activity of dual lysine deacetylase/PI3K inhibitors, and uncovered a novel therapeutic strategy based on targeting choline pathway following panobinostat treatment. AbstractDespite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected in B-cell lymphomas. Traditionally considered as “epigenetic drugs”, HDACI modify the acetylation status of an extensive proteome, acting as general lysine deacetylase inhibitors (KDACI), and thus potentially impacting various branches of cellular metabolism. Here, we demonstrate through metabolomic profiling of patient plasma and cell lines that the KDACI panobinostat alters lipid metabolism and downstream survival signaling in diffuse large B-cell lymphomas (DLBCL). Specifically, panobinostat induces metabolic adaptations resulting in newly acquired dependency on the choline pathway and activation of PI3K signaling. This metabolic reprogramming decreased the antineoplastic effect of panobinostat. Conversely, inhibition of these metabolic adaptations resulted in superior anti-lymphoma effect as demonstrated by the combination of panobinostat with a choline pathway inhibitor. In conclusion, our study demonstrates the power of metabolomics in identifying unknown effects of KDACI, and emphasizes the need for a better understanding of these drugs in order to achieve successful clinical implementation. |
Author | Marullo, Rossella Krumsiek, Jan Assouline, Sarit E. Román, Lidia Patel, Jayeshkumar Pera, Benet Phillip, Jude M. Cerchietti, Leandro Mann, Koren K. |
AuthorAffiliation | c Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada a Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA b Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany |
AuthorAffiliation_xml | – name: c Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada – name: a Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA – name: b Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany |
Author_xml | – sequence: 1 givenname: Benet surname: Pera fullname: Pera, Benet organization: Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA – sequence: 2 givenname: Jan surname: Krumsiek fullname: Krumsiek, Jan organization: Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA – sequence: 3 givenname: Sarit E. surname: Assouline fullname: Assouline, Sarit E. organization: Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada – sequence: 4 givenname: Rossella surname: Marullo fullname: Marullo, Rossella organization: Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA – sequence: 5 givenname: Jayeshkumar orcidid: 0000-0001-7507-8054 surname: Patel fullname: Patel, Jayeshkumar organization: Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA – sequence: 6 givenname: Jude M. surname: Phillip fullname: Phillip, Jude M. organization: Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA – sequence: 7 givenname: Lidia surname: Román fullname: Román, Lidia organization: Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA – sequence: 8 givenname: Koren K. surname: Mann fullname: Mann, Koren K. organization: Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada – sequence: 9 givenname: Leandro surname: Cerchietti fullname: Cerchietti, Leandro email: lec2010@med.cornell.edu organization: Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29396295$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUttq3DAQNSWlSdN8QaH4sS-71dWWKA2k29vCloZenoUsj9faytZW8m7xB_S_K2fTkARKQCBp5pwz0sx5mh31vocse47RHCNcvNrMobK-mxOExRzhtNij7IRQTmZUFuzo1vk4O4txgxDCnKWgeJIdE5kSRPKT7M9nGHTlne-syS-Db6yz_Tr_CnvQLuYLcG7ndEiBbfDroLtuSvsmfzubcvlq7Lat73RejblOt2h7yN-BNjCMTkfIl31rKzv4kA9t8Lt1m3bIF613E_JSD-1vPT7LHjepHJxd76fZjw_vvy8-zVZfPi4XF6uZKSgZZqRklFS84LysGeYNpSQdOWMlMmVtRMMAcCkBaySq9ATJNROM6hSoMVSInmbLg27t9UZtg-10GJXXVl0FfFgrHQZrHKgkSYrCSFprwmpCJcGopBWTkHpYC5m0zg9a213VQW2gH4J2d0TvZnrbqrXfKy4o53wSeHktEPyvHcRBdTaa1FTdg99FhWWakiyEEAn64natmyL_5pgA9AAwwccYoLmBYKQmw6iNujKMmgyjEE6LJZa8xzJ20IP104Ote4D75sCFNK-9haCisdAbqG0AM6SG2gf45_f4JjnCGu1-wghx43ehT1ZQWEWikPo22XlyMxY0OVlMX379f4EHy_8FfegGmg |
CitedBy_id | crossref_primary_10_1007_s11306_019_1541_2 crossref_primary_10_1016_j_ebiom_2018_01_036 crossref_primary_10_3390_ijms20071616 crossref_primary_10_3390_molecules24132367 crossref_primary_10_3390_pharmaceutics13060911 crossref_primary_10_1007_s10585_021_10140_9 crossref_primary_10_1098_rsob_220038 crossref_primary_10_3390_pharmaceutics13060788 crossref_primary_10_1007_s00726_020_02853_0 crossref_primary_10_3390_ijms252111384 crossref_primary_10_3390_molecules25112702 crossref_primary_10_1097_MD_0000000000039782 crossref_primary_10_3390_cancers17030394 crossref_primary_10_3390_diagnostics13050861 crossref_primary_10_3390_cancers12061603 crossref_primary_10_3390_cancers17030532 crossref_primary_10_1016_j_leukres_2021_106693 crossref_primary_10_1016_j_medntd_2024_100295 crossref_primary_10_1016_j_plipres_2024_101288 crossref_primary_10_1038_s41467_022_33138_7 crossref_primary_10_1016_j_drup_2022_100822 crossref_primary_10_3390_ijms23031378 crossref_primary_10_3390_metabo13090987 |
Cites_doi | 10.1038/nrc3162 10.1007/s10545-010-9088-4 10.1038/onc.2011.51 10.1093/annonc/mdn031 10.1158/1078-0432.CCR-08-2048 10.1158/1535-7163.MCT-05-0494 10.1038/ng1018 10.1214/aos/1013699998 10.1007/s00280-012-1940-9 10.1158/1078-0432.CCR-12-0055 10.1593/neo.07834 10.4161/cbt.8.13.8726 10.1172/JCI42869 10.1126/science.1228792 10.1146/annurev.pharmtox.48.113006.094715 10.1158/0008-5472.CAN-11-2688 10.1002/j.1460-2075.1988.tb02956.x 10.1038/sj.onc.1206646 10.1194/jlr.R700019-JLR200 10.1182/blood-2016-02-699520 10.1517/13543784.2016.1164140 10.1158/0008-5472.CAN-04-2440 10.1016/j.bbrc.2009.12.086 10.1007/978-3-319-42118-6_3 10.1126/science.1073560 10.1038/nrm3841 10.1073/pnas.94.9.4330 10.1126/science.1175371 10.1158/1078-0432.CCR-14-0034 10.1073/pnas.79.20.6246 10.1038/onc.2009.317 10.4103/0976-0105.177703 10.1371/journal.pone.0062610 10.3324/haematol.2009.013870 10.1038/bcj.2015.10 10.1371/journal.pone.0021666 10.1073/pnas.0406698102 10.1073/pnas.1014890108 10.1023/A:1013713905833 |
ContentType | Journal Article |
Copyright | 2018 The Authors The Authors Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. 2018 The Authors 2018 |
Copyright_xml | – notice: 2018 The Authors – notice: The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2018 The Authors 2018 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.ebiom.2018.01.014 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2352-3964 |
EndPage | 89 |
ExternalDocumentID | oai_doaj_org_article_70c266c93da24d23921073b49e235d89 PMC5835559 29396295 10_1016_j_ebiom_2018_01_014 S2352396418300185 1_s2_0_S2352396418300185 |
Genre | Journal Article |
GroupedDBID | .1- .FO 0R~ 4.4 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAMRU AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M48 O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c632t-27432b56557d415f33255754470c7dc8f4ee179e1a08bace95a4843ae1ad1eb03 |
IEDL.DBID | M48 |
ISSN | 2352-3964 |
IngestDate | Wed Aug 27 00:31:27 EDT 2025 Thu Aug 21 18:26:36 EDT 2025 Fri Jul 11 15:43:57 EDT 2025 Thu Apr 03 07:01:50 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Tue Jul 01 00:38:45 EDT 2025 Wed May 17 01:14:36 EDT 2023 Sun Feb 23 10:19:24 EST 2025 Tue Aug 26 16:43:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Panobinostat Metabolomics DLBCL PI3K Choline pathway |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c632t-27432b56557d415f33255754470c7dc8f4ee179e1a08bace95a4843ae1ad1eb03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally. |
ORCID | 0000-0001-7507-8054 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.ebiom.2018.01.014 |
PMID | 29396295 |
PQID | 1993996888 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_70c266c93da24d23921073b49e235d89 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5835559 proquest_miscellaneous_1993996888 pubmed_primary_29396295 crossref_primary_10_1016_j_ebiom_2018_01_014 crossref_citationtrail_10_1016_j_ebiom_2018_01_014 elsevier_sciencedirect_doi_10_1016_j_ebiom_2018_01_014 elsevier_clinicalkeyesjournals_1_s2_0_S2352396418300185 elsevier_clinicalkey_doi_10_1016_j_ebiom_2018_01_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | EBioMedicine |
PublicationTitleAlternate | EBioMedicine |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Rahmani, Aust, Benson, Wallace, Friedberg, Grant (bb0150) 2014; 20 Hauswald, Duque-Afonso, Wagner, Schertl, Lubbert, Peschel, Keller, Licht (bb0085) 2009; 15 Sankaranarayanapillai, Tong, Maxwell, Pal, Pang, Bornmann, Gelovani, Ronen (bb0160) 2006; 5 Ben-Sahra, Howell, Asara, Manning (bb0025) 2013; 339 Glunde, Bhujwalla, Ronen (bb0080) 2011; 11 Fiehn (bb0075) 2002; 48 Xiong, Bian, Wang, Zhou, Wang, Zhao, Wu, Hu, Li, Chen, Yan, Zhao (bb0190) 2015; 5 Hebbes, Thorne, Crane-Robinson (bb0090) 1988; 7 Kaddurah-Daouk, Kristal, Weinshilboum (bb0095) 2008; 48 Rao, Lee, Fiskus, Yang, Joshi, Wang, Buckley, Balusu, Chen, Koul, Joshi, Upadhyay, Tao, Sotomayor, Bhalla (bb0155) 2009; 8 Rahmani, Yu, Reese, Ahmed, Hirsch, Dent, Grant (bb0140) 2003; 22 Buchanan, Mcreynolds, Couvillon, Kam, Holla, Dubois, Exton (bb0035) 2005; 102 Chung, Troy, Kristeleit, Aherne, Jackson, Atadja, Griffiths, Judson, Workman, Leach, Beloueche-Babari (bb0055) 2008; 10 Williamson, Boettcher, Meister (bb0180) 1982; 79 Clem, Clem, Yalcin, Goswami, Arumugam, Telang, Trent, Chesney (bb0060) 2011; 30 Ward, Eriksson, Izquierdo-Garcia, Brandes, Ronen (bb0175) 2013; 8 Crump, Coiffier, Jacobsen, Sun, Ricker, Xie, Frankel, Randolph, Cheson (bb0070) 2008; 19 Beloueche-Babari, Arunan, Troy, TE Poele, TE Fong, Jackson, Payne, Griffiths, Judson, Workman, Leach, Chung (bb0015) 2012; 72 Lever, George, Atkinson, Molyneux, Elmslie, Slow, Richards, Chambers (bb0100) 2011; 6 Bereshchenko, Gu, Dalla-Favera (bb0030) 2002; 32 Choudhary, Weinert, Nishida, Verdin, Mann (bb0050) 2014; 15 Li, Vance (bb0105) 2008; 49 Benjamini, Yekutieli (bb0020) 2001; 29 Clive, Woo, Nydam, Kelly, Squier, Kagan (bb0065) 2012; 70 Pipalia, Cosner, Huang, Chatterjee, Bourbon, Farley, Helquist, Wiest, Maxfield (bb0130) 2011; 108 Nair, Jacob (bb0115) 2016; 7 Yalcin, Clem, Makoni, Clem, Nelson, Thornburg, Siow, Lane, Brock, Goswami, Eaton, Telang, Chesney (bb0195) 2010; 29 Vanhaesebroeck, Welham, Kotani, Stein, Warne, Zvelebil, Higashi, Volinia, Downward, Waterfield (bb0170) 1997; 94 Lien, Lyssiotis, Cantley (bb0110) 2016; 207 Ozaki, Kosugi, Baba, Fujio, Sakamoto, Kimura, Tanimura, Kohno (bb0125) 2010; 391 Ueland (bb0165) 2011; 34 Choudhary, Kumar, Gnad, Nielsen, Rehman, Walther, Olsen, Mann (bb0045) 2009; 325 Qian, Lai, Bao, Wang, Wang, Xu, Atoyan, Qu, Yin, Samson, Zifcak, Ma, Dellarocca, Borek, Zhai, Cai, Voi (bb0135) 2012; 18 Assouline, Nielsen, Yu, Alcaide, Chong, Macdonald, Tosikyan, Kukreti, Kezouh, Petrogiannis-Haliotis, Albuquerque, Fornika, Alamouti, Froment, Greenwood, Oros, Camglioglu, Sharma, Christodoulopoulos, Rousseau, Johnson, Crump, Morin, Mann (bb0010) 2016; 128 Apuri, Sokol (bb0005) 2016; 25 Cerchietti, Hatzi, Caldas-Lopes, Yang, Figueroa, Morin, Hirst, Mendez, Shaknovich, Cole, Bhalla, Gascoyne, Marra, Chiosis, Melnick (bb0040) 2010 Okkenhaug, Bilancio, Farjot, Priddle, Sancho, Peskett, Pearce, Meek, Salpekar, Waterfield, Smith, Vanhaesebroeck (bb0120) 2002; 297 Rahmani, Reese, Dai, Bauer, Payne, Dent, Spiegel, Grant (bb0145) 2005; 65 Wozniak, Villuendas, Bischoff, Aparicio, Martinez Leal, De La Cueva, Rodriguez, Herreros, Martin-Perez, Longo, Herrera, Piris, Ortiz-Romero (bb0185) 2010; 95 Kaddurah-Daouk (10.1016/j.ebiom.2018.01.014_bb0095) 2008; 48 Bereshchenko (10.1016/j.ebiom.2018.01.014_bb0030) 2002; 32 Benjamini (10.1016/j.ebiom.2018.01.014_bb0020) 2001; 29 Chung (10.1016/j.ebiom.2018.01.014_bb0055) 2008; 10 Hebbes (10.1016/j.ebiom.2018.01.014_bb0090) 1988; 7 Glunde (10.1016/j.ebiom.2018.01.014_bb0080) 2011; 11 Hauswald (10.1016/j.ebiom.2018.01.014_bb0085) 2009; 15 Li (10.1016/j.ebiom.2018.01.014_bb0105) 2008; 49 Okkenhaug (10.1016/j.ebiom.2018.01.014_bb0120) 2002; 297 Vanhaesebroeck (10.1016/j.ebiom.2018.01.014_bb0170) 1997; 94 Lever (10.1016/j.ebiom.2018.01.014_bb0100) 2011; 6 Nair (10.1016/j.ebiom.2018.01.014_bb0115) 2016; 7 Wozniak (10.1016/j.ebiom.2018.01.014_bb0185) 2010; 95 Assouline (10.1016/j.ebiom.2018.01.014_bb0010) 2016; 128 Clem (10.1016/j.ebiom.2018.01.014_bb0060) 2011; 30 Cerchietti (10.1016/j.ebiom.2018.01.014_bb0040) 2010 Choudhary (10.1016/j.ebiom.2018.01.014_bb0050) 2014; 15 Apuri (10.1016/j.ebiom.2018.01.014_bb0005) 2016; 25 Fiehn (10.1016/j.ebiom.2018.01.014_bb0075) 2002; 48 Lien (10.1016/j.ebiom.2018.01.014_bb0110) 2016; 207 Ward (10.1016/j.ebiom.2018.01.014_bb0175) 2013; 8 Williamson (10.1016/j.ebiom.2018.01.014_bb0180) 1982; 79 Buchanan (10.1016/j.ebiom.2018.01.014_bb0035) 2005; 102 Ben-Sahra (10.1016/j.ebiom.2018.01.014_bb0025) 2013; 339 Pipalia (10.1016/j.ebiom.2018.01.014_bb0130) 2011; 108 Xiong (10.1016/j.ebiom.2018.01.014_bb0190) 2015; 5 Crump (10.1016/j.ebiom.2018.01.014_bb0070) 2008; 19 Beloueche-Babari (10.1016/j.ebiom.2018.01.014_bb0015) 2012; 72 Rahmani (10.1016/j.ebiom.2018.01.014_bb0140) 2003; 22 Rahmani (10.1016/j.ebiom.2018.01.014_bb0145) 2005; 65 Ozaki (10.1016/j.ebiom.2018.01.014_bb0125) 2010; 391 Sankaranarayanapillai (10.1016/j.ebiom.2018.01.014_bb0160) 2006; 5 Choudhary (10.1016/j.ebiom.2018.01.014_bb0045) 2009; 325 Rahmani (10.1016/j.ebiom.2018.01.014_bb0150) 2014; 20 Qian (10.1016/j.ebiom.2018.01.014_bb0135) 2012; 18 Ueland (10.1016/j.ebiom.2018.01.014_bb0165) 2011; 34 Rao (10.1016/j.ebiom.2018.01.014_bb0155) 2009; 8 Clive (10.1016/j.ebiom.2018.01.014_bb0065) 2012; 70 Yalcin (10.1016/j.ebiom.2018.01.014_bb0195) 2010; 29 29397369 - EBioMedicine. 2018 Feb;28:5-6 |
References_xml | – volume: 207 start-page: 39 year: 2016 end-page: 72 ident: bb0110 article-title: Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer publication-title: Recent Results Cancer Res. – volume: 7 start-page: 27 year: 2016 end-page: 31 ident: bb0115 article-title: A simple practice guide for dose conversion between animals and human publication-title: J. Basic Clin. Pharm. – volume: 34 start-page: 3 year: 2011 end-page: 15 ident: bb0165 article-title: Choline and betaine in health and disease publication-title: J. Inherit. Metab. Dis. – volume: 95 start-page: 613 year: 2010 end-page: 621 ident: bb0185 article-title: Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma publication-title: Haematologica – volume: 20 start-page: 4849 year: 2014 end-page: 4860 ident: bb0150 article-title: PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo publication-title: Clin. Cancer Res. – volume: 5 start-page: 1325 year: 2006 end-page: 1334 ident: bb0160 article-title: Detection of histone deacetylase inhibition by noninvasive magnetic resonance spectroscopy publication-title: Mol. Cancer Ther. – volume: 65 start-page: 2422 year: 2005 end-page: 2432 ident: bb0145 article-title: Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species publication-title: Cancer Res. – volume: 19 start-page: 964 year: 2008 end-page: 969 ident: bb0070 article-title: Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B-cell lymphoma publication-title: Ann. Oncol. – volume: 108 start-page: 5620 year: 2011 end-page: 5625 ident: bb0130 article-title: Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-pick type C1 mutant human fibroblasts publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 70 start-page: 513 year: 2012 end-page: 522 ident: bb0065 article-title: Characterizing the disposition, metabolism, and excretion of an orally active pan-deacetylase inhibitor, panobinostat, via trace radiolabeled 14C material in advanced cancer patients publication-title: Cancer Chemother. Pharmacol. – volume: 6 year: 2011 ident: bb0100 article-title: Plasma lipids and betaine are related in an acute coronary syndrome cohort publication-title: PLoS One – volume: 15 start-page: 3705 year: 2009 end-page: 3715 ident: bb0085 article-title: Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes publication-title: Clin. Cancer Res. – volume: 8 start-page: 1273 year: 2009 end-page: 1280 ident: bb0155 article-title: Co-treatment with heat shock protein 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG) and vorinostat: a highly active combination against human mantle cell lymphoma (MCL) cells publication-title: Cancer Biol Ther – volume: 5 start-page: 287 year: 2015 ident: bb0190 article-title: Dysregulated choline metabolism in T-cell lymphoma: role of choline kinase-alpha and therapeutic targeting publication-title: Blood Cancer J – volume: 29 start-page: 1165 year: 2001 end-page: 1188 ident: bb0020 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: Ann. Stat. – volume: 297 start-page: 1031 year: 2002 end-page: 1034 ident: bb0120 article-title: Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice publication-title: Science – volume: 94 start-page: 4330 year: 1997 end-page: 4335 ident: bb0170 article-title: P110delta, a novel phosphoinositide 3-kinase in leukocytes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 391 start-page: 1610 year: 2010 end-page: 1615 ident: bb0125 article-title: Blockade of the ERK or PI3K-Akt signaling pathway enhances the cytotoxicity of histone deacetylase inhibitors in tumor cells resistant to gefitinib or imatinib publication-title: Biochem. Biophys. Res. Commun. – volume: 72 start-page: 990 year: 2012 end-page: 1000 ident: bb0015 article-title: Histone deacetylase inhibition increases levels of choline kinase alpha and phosphocholine facilitating noninvasive imaging in human cancers publication-title: Cancer Res. – volume: 30 start-page: 3370 year: 2011 end-page: 3380 ident: bb0060 article-title: A novel small molecule antagonist of choline kinase-alpha that simultaneously suppresses MAPK and PI3K/AKT signaling publication-title: Oncogene – year: 2010 ident: bb0040 article-title: BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy publication-title: J. Clin. Invest. – volume: 339 start-page: 1323 year: 2013 end-page: 1328 ident: bb0025 article-title: Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1 publication-title: Science – volume: 29 start-page: 139 year: 2010 end-page: 149 ident: bb0195 article-title: Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling publication-title: Oncogene – volume: 48 start-page: 155 year: 2002 end-page: 171 ident: bb0075 article-title: Metabolomics—the link between genotypes and phenotypes publication-title: Plant Mol. Biol. – volume: 79 start-page: 6246 year: 1982 end-page: 6249 ident: bb0180 article-title: Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 102 start-page: 1638 year: 2005 end-page: 1642 ident: bb0035 article-title: Requirement of phospholipase D1 activity in H-RasV12-induced transformation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 128 start-page: 185 year: 2016 end-page: 194 ident: bb0010 article-title: Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma publication-title: Blood – volume: 18 start-page: 4104 year: 2012 end-page: 4113 ident: bb0135 article-title: Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling publication-title: Clin. Cancer Res. – volume: 325 start-page: 834 year: 2009 end-page: 840 ident: bb0045 article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions publication-title: Science – volume: 22 start-page: 6231 year: 2003 end-page: 6242 ident: bb0140 article-title: Inhibition of PI-3 kinase sensitizes human leukemic cells to histone deacetylase inhibitor-mediated apoptosis through p44/42 MAP kinase inactivation and abrogation of p21(CIP1/WAF1) induction rather than AKT inhibition publication-title: Oncogene – volume: 7 start-page: 1395 year: 1988 end-page: 1402 ident: bb0090 article-title: A direct link between core histone acetylation and transcriptionally active chromatin publication-title: EMBO J. – volume: 32 start-page: 606 year: 2002 end-page: 613 ident: bb0030 article-title: Acetylation inactivates the transcriptional repressor BCL6 publication-title: Nat. Genet. – volume: 10 start-page: 303 year: 2008 end-page: 313 ident: bb0055 article-title: Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of a novel histone deacetylase inhibitor, LAQ824, in human colon carcinoma cells and xenografts publication-title: Neoplasia – volume: 48 start-page: 653 year: 2008 end-page: 683 ident: bb0095 article-title: Metabolomics: a global biochemical approach to drug response and disease publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 49 start-page: 1187 year: 2008 end-page: 1194 ident: bb0105 article-title: Phosphatidylcholine and choline homeostasis publication-title: J. Lipid Res. – volume: 8 start-page: e62610 year: 2013 ident: bb0175 article-title: HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells publication-title: PLoS One – volume: 11 start-page: 835 year: 2011 end-page: 848 ident: bb0080 article-title: Choline metabolism in malignant transformation publication-title: Nat. Rev. Cancer – volume: 25 start-page: 687 year: 2016 end-page: 696 ident: bb0005 article-title: An overview of investigational Histone deacetylase inhibitors (HDACis) for the treatment of non-Hodgkin's lymphoma publication-title: Expert Opin. Investig. Drugs – volume: 15 start-page: 536 year: 2014 end-page: 550 ident: bb0050 article-title: The growing landscape of lysine acetylation links metabolism and cell signalling publication-title: Nat. Rev. Mol. Cell Biol. – volume: 11 start-page: 835 year: 2011 ident: 10.1016/j.ebiom.2018.01.014_bb0080 article-title: Choline metabolism in malignant transformation publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3162 – volume: 34 start-page: 3 year: 2011 ident: 10.1016/j.ebiom.2018.01.014_bb0165 article-title: Choline and betaine in health and disease publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-010-9088-4 – volume: 30 start-page: 3370 year: 2011 ident: 10.1016/j.ebiom.2018.01.014_bb0060 article-title: A novel small molecule antagonist of choline kinase-alpha that simultaneously suppresses MAPK and PI3K/AKT signaling publication-title: Oncogene doi: 10.1038/onc.2011.51 – volume: 19 start-page: 964 year: 2008 ident: 10.1016/j.ebiom.2018.01.014_bb0070 article-title: Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B-cell lymphoma publication-title: Ann. Oncol. doi: 10.1093/annonc/mdn031 – volume: 15 start-page: 3705 year: 2009 ident: 10.1016/j.ebiom.2018.01.014_bb0085 article-title: Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-2048 – volume: 5 start-page: 1325 year: 2006 ident: 10.1016/j.ebiom.2018.01.014_bb0160 article-title: Detection of histone deacetylase inhibition by noninvasive magnetic resonance spectroscopy publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-05-0494 – volume: 32 start-page: 606 year: 2002 ident: 10.1016/j.ebiom.2018.01.014_bb0030 article-title: Acetylation inactivates the transcriptional repressor BCL6 publication-title: Nat. Genet. doi: 10.1038/ng1018 – volume: 29 start-page: 1165 year: 2001 ident: 10.1016/j.ebiom.2018.01.014_bb0020 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: Ann. Stat. doi: 10.1214/aos/1013699998 – volume: 70 start-page: 513 year: 2012 ident: 10.1016/j.ebiom.2018.01.014_bb0065 article-title: Characterizing the disposition, metabolism, and excretion of an orally active pan-deacetylase inhibitor, panobinostat, via trace radiolabeled 14C material in advanced cancer patients publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-012-1940-9 – volume: 18 start-page: 4104 year: 2012 ident: 10.1016/j.ebiom.2018.01.014_bb0135 article-title: Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-0055 – volume: 10 start-page: 303 year: 2008 ident: 10.1016/j.ebiom.2018.01.014_bb0055 article-title: Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of a novel histone deacetylase inhibitor, LAQ824, in human colon carcinoma cells and xenografts publication-title: Neoplasia doi: 10.1593/neo.07834 – volume: 8 start-page: 1273 year: 2009 ident: 10.1016/j.ebiom.2018.01.014_bb0155 article-title: Co-treatment with heat shock protein 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG) and vorinostat: a highly active combination against human mantle cell lymphoma (MCL) cells publication-title: Cancer Biol Ther doi: 10.4161/cbt.8.13.8726 – year: 2010 ident: 10.1016/j.ebiom.2018.01.014_bb0040 article-title: BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy publication-title: J. Clin. Invest. doi: 10.1172/JCI42869 – volume: 339 start-page: 1323 year: 2013 ident: 10.1016/j.ebiom.2018.01.014_bb0025 article-title: Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1 publication-title: Science doi: 10.1126/science.1228792 – volume: 48 start-page: 653 year: 2008 ident: 10.1016/j.ebiom.2018.01.014_bb0095 article-title: Metabolomics: a global biochemical approach to drug response and disease publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.48.113006.094715 – volume: 72 start-page: 990 year: 2012 ident: 10.1016/j.ebiom.2018.01.014_bb0015 article-title: Histone deacetylase inhibition increases levels of choline kinase alpha and phosphocholine facilitating noninvasive imaging in human cancers publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-2688 – volume: 7 start-page: 1395 year: 1988 ident: 10.1016/j.ebiom.2018.01.014_bb0090 article-title: A direct link between core histone acetylation and transcriptionally active chromatin publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb02956.x – volume: 22 start-page: 6231 year: 2003 ident: 10.1016/j.ebiom.2018.01.014_bb0140 article-title: Inhibition of PI-3 kinase sensitizes human leukemic cells to histone deacetylase inhibitor-mediated apoptosis through p44/42 MAP kinase inactivation and abrogation of p21(CIP1/WAF1) induction rather than AKT inhibition publication-title: Oncogene doi: 10.1038/sj.onc.1206646 – volume: 49 start-page: 1187 year: 2008 ident: 10.1016/j.ebiom.2018.01.014_bb0105 article-title: Phosphatidylcholine and choline homeostasis publication-title: J. Lipid Res. doi: 10.1194/jlr.R700019-JLR200 – volume: 128 start-page: 185 year: 2016 ident: 10.1016/j.ebiom.2018.01.014_bb0010 article-title: Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma publication-title: Blood doi: 10.1182/blood-2016-02-699520 – volume: 25 start-page: 687 year: 2016 ident: 10.1016/j.ebiom.2018.01.014_bb0005 article-title: An overview of investigational Histone deacetylase inhibitors (HDACis) for the treatment of non-Hodgkin's lymphoma publication-title: Expert Opin. Investig. Drugs doi: 10.1517/13543784.2016.1164140 – volume: 65 start-page: 2422 year: 2005 ident: 10.1016/j.ebiom.2018.01.014_bb0145 article-title: Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-2440 – volume: 391 start-page: 1610 year: 2010 ident: 10.1016/j.ebiom.2018.01.014_bb0125 article-title: Blockade of the ERK or PI3K-Akt signaling pathway enhances the cytotoxicity of histone deacetylase inhibitors in tumor cells resistant to gefitinib or imatinib publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.12.086 – volume: 207 start-page: 39 year: 2016 ident: 10.1016/j.ebiom.2018.01.014_bb0110 article-title: Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer publication-title: Recent Results Cancer Res. doi: 10.1007/978-3-319-42118-6_3 – volume: 297 start-page: 1031 year: 2002 ident: 10.1016/j.ebiom.2018.01.014_bb0120 article-title: Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice publication-title: Science doi: 10.1126/science.1073560 – volume: 15 start-page: 536 year: 2014 ident: 10.1016/j.ebiom.2018.01.014_bb0050 article-title: The growing landscape of lysine acetylation links metabolism and cell signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3841 – volume: 94 start-page: 4330 year: 1997 ident: 10.1016/j.ebiom.2018.01.014_bb0170 article-title: P110delta, a novel phosphoinositide 3-kinase in leukocytes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.9.4330 – volume: 325 start-page: 834 year: 2009 ident: 10.1016/j.ebiom.2018.01.014_bb0045 article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions publication-title: Science doi: 10.1126/science.1175371 – volume: 20 start-page: 4849 year: 2014 ident: 10.1016/j.ebiom.2018.01.014_bb0150 article-title: PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-0034 – volume: 79 start-page: 6246 year: 1982 ident: 10.1016/j.ebiom.2018.01.014_bb0180 article-title: Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.79.20.6246 – volume: 29 start-page: 139 year: 2010 ident: 10.1016/j.ebiom.2018.01.014_bb0195 article-title: Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling publication-title: Oncogene doi: 10.1038/onc.2009.317 – volume: 7 start-page: 27 year: 2016 ident: 10.1016/j.ebiom.2018.01.014_bb0115 article-title: A simple practice guide for dose conversion between animals and human publication-title: J. Basic Clin. Pharm. doi: 10.4103/0976-0105.177703 – volume: 8 start-page: e62610 year: 2013 ident: 10.1016/j.ebiom.2018.01.014_bb0175 article-title: HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells publication-title: PLoS One doi: 10.1371/journal.pone.0062610 – volume: 95 start-page: 613 year: 2010 ident: 10.1016/j.ebiom.2018.01.014_bb0185 article-title: Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma publication-title: Haematologica doi: 10.3324/haematol.2009.013870 – volume: 5 start-page: 287 year: 2015 ident: 10.1016/j.ebiom.2018.01.014_bb0190 article-title: Dysregulated choline metabolism in T-cell lymphoma: role of choline kinase-alpha and therapeutic targeting publication-title: Blood Cancer J doi: 10.1038/bcj.2015.10 – volume: 6 year: 2011 ident: 10.1016/j.ebiom.2018.01.014_bb0100 article-title: Plasma lipids and betaine are related in an acute coronary syndrome cohort publication-title: PLoS One doi: 10.1371/journal.pone.0021666 – volume: 102 start-page: 1638 year: 2005 ident: 10.1016/j.ebiom.2018.01.014_bb0035 article-title: Requirement of phospholipase D1 activity in H-RasV12-induced transformation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0406698102 – volume: 108 start-page: 5620 year: 2011 ident: 10.1016/j.ebiom.2018.01.014_bb0130 article-title: Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-pick type C1 mutant human fibroblasts publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1014890108 – volume: 48 start-page: 155 year: 2002 ident: 10.1016/j.ebiom.2018.01.014_bb0075 article-title: Metabolomics—the link between genotypes and phenotypes publication-title: Plant Mol. Biol. doi: 10.1023/A:1013713905833 – reference: 29397369 - EBioMedicine. 2018 Feb;28:5-6 |
SSID | ssj0001542358 |
Score | 2.2230637 |
Snippet | Despite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected in... AbstractDespite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 80 |
SubjectTerms | Advanced Basic Science Animals Cell Line, Tumor Cellular Reprogramming - drug effects Choline - metabolism Choline Kinase - metabolism Choline pathway DLBCL Histone Deacetylase Inhibitors - pharmacology Humans Hydroxamic Acids - pharmacology Indoles - pharmacology Internal Medicine Lymphoma, Large B-Cell, Diffuse - metabolism Lymphoma, Large B-Cell, Diffuse - pathology Lysine - metabolism Male Metabolome - drug effects Metabolomics Metabolomics - methods Mice Morpholines - pharmacology Panobinostat PI3K Pyrimidines - pharmacology Research Paper Signal Transduction - drug effects Xenograft Model Antitumor Assays |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kUPBFtH5Frazgo8Fkd5NsHu3VUsVKUQt9WzbJhrtyzUkvVfIH-H_7m01yXFTaF-HguN3sDZmZzPyGzAdjr3Xp396osE61RYBSVaFOqzqEM4HDz7XIEipwPvmcHp-pj-fJ-daoL8oJ69sD94x7m0UlfEiZy8oKVQm4cwQsslC5EzKptC_dg8_bCqb6-mBFNaB-slwiQpmnamw55JO7HBW3U2KX9k07YzVxS757_8Q7_Y0-_0yi3PJKR_fZvQFO8nf9bTxgd1yzx3b7AZPdQ_brxLWQ8pJKj_mpH88NV8W_uB_Ah2s-c8slpaFiYcjTuqTtVc0PQtrjnzoIe3VpedFxi1-UJM8PYUVd2wF2O_6hmS8KGIUrPgz8wbfjszmNAnL8FPDyp-0esbOj999mx-EweCEsUynaEJGqFAWgXpJVcPC1lAg8qFMehJFVpa6Vc3iQXWwjXYBknlillbRYqGJXRPIx22lWjXvKuMCiyBBTlaQRlNWSJyK3gG2gUdRFwMTId1MOXclpOMbSjOlnF8YLy5CwTBTjowL2ZnPoe9-U4-bLD0igm0upo7ZfgJ6ZQc_MbXoWMDWqgxmLVmFm8UeLm2ln_zrm1oOpWJvYrIWJzFdSVNJT2FialJgELN2cHNBQj3JuJ_lq1FYDW0EvgGzjVtcgBTCK-FZrHbAnvfZumALYl6ciB9lsotcTrk13msXc9yNPgOIRmD77H2x-zu7SrfR58S_YTnt17fYB-9ripX_CfwNKtFFU priority: 102 providerName: Directory of Open Access Journals |
Title | Metabolomic Profiling Reveals Cellular Reprogramming of B-Cell Lymphoma by a Lysine Deacetylase Inhibitor through the Choline Pathway |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2352396418300185 https://www.clinicalkey.es/playcontent/1-s2.0-S2352396418300185 https://dx.doi.org/10.1016/j.ebiom.2018.01.014 https://www.ncbi.nlm.nih.gov/pubmed/29396295 https://www.proquest.com/docview/1993996888 https://pubmed.ncbi.nlm.nih.gov/PMC5835559 https://doaj.org/article/70c266c93da24d23921073b49e235d89 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ti9NAEF6OE8Ev4rvx9FjBj0bSzSbZfBDxqscpVg61cN-WvGyulVzitTk1P8D_7TObpBotJ0KhZDeboTszO88088LYE5XZtzfSLUKVwEHJc1eFeeHCmMDgx0pEASU4z96HR3P59iQ42WFDV9R-A9dbXTvqJzVflc--n7cvoPDPf8VqGcpVpzgtZWtwUmPrKzBNEWnqrMf7XdqwpNRQ23AuEK4fh3KoRLT9OSNrZYv6j4zW36D0z9jK34zV4Q12vUeZ_GUnFjfZjqlusatd38n2NvsxMw2YX1JGMj-2XbthwfgH8xWwcc2npiwpOhUDffjWGU3XBT9waY6_ayED9VnC05YnuKLYef4Kh6tpWqBxw99Ui2WKs2LF-z5A-DZ8uqAOQYYfA3V-S9o7bH74-tP0yO37MbhZ6IvGhQPrixQIMIhy2P3C9-GPUAG9yMuiPFOFNAb6bSaJp1KQjINEKuknGMgnJvX8u2y3qitzn3GBQRHB1cpIUCjYJQ5EnADNgUZapA4Tw77rrC9WTj0zSj1EpX3WllmamKW9CT7SYU83i750tTouv_2AGLq5lQpt24F6dap7vdX4aYAwWezniZC5AJqEv-ynMjaQoFzFDpODOOghlxWnLx60vJx2tG2ZWQ8KoCd6LbSnP5Kgkpzi6KUGioHDws3KHiR14OffJB8P0qpxhNB7oaQy9QVIAaPC7VVKOexeJ72bTQEajEMRg2w0kuvRro1nquXClikPAO7hrz74P67ssWt01QXGP2S7zerCPALua9J9-3_JvtXon5xNVJI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolomic+Profiling+Reveals+Cellular+Reprogramming+of+B-Cell+Lymphoma+by+a+Lysine+Deacetylase+Inhibitor+through+the+Choline+Pathway&rft.jtitle=EBioMedicine&rft.au=Pera%2C+Benet&rft.au=Krumsiek%2C+Jan&rft.au=Assouline%2C+Sarit+E.&rft.au=Marullo%2C+Rossella&rft.date=2018-02-01&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=28&rft.spage=80&rft.epage=89&rft_id=info:doi/10.1016%2Fj.ebiom.2018.01.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ebiom_2018_01_014 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2FS2352396418X00036%2Fcov150h.gif |