Optical magnetic multimodality imaging of plectin-1-targeted imaging agent for the precise detection of orthotopic pancreatic ductal adenocarcinoma in mice

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI) is suitable for imaging deep and internal PDAC tumours because of its high sensitivity and unlimited imaging depth. The purpose of this study...

Full description

Saved in:
Bibliographic Details
Published inEBioMedicine Vol. 80; p. 104040
Main Authors Zhang, Wenjia, Liang, Xiaolong, Zhu, Liang, Zhang, Xinyu, Jin, Zhengyu, Du, Yang, Tian, Jie, Xue, Huadan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI) is suitable for imaging deep and internal PDAC tumours because of its high sensitivity and unlimited imaging depth. The purpose of this study was to utilize the MPI, in combination with fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI), to advance the in vivo precise detection of PDAC xenografts. The PDAC targeted plectin-1 peptide and IRDye800CW were conjugated to the superparamagnetic iron oxide nanoparticles (PTP-Fe3O4-IRDye800CW) for the PDAC-targeting triple-modality imaging. Subcutaneous and orthotopic PDAC mouse models were established. FMI, MPI, and MRI were performed for dynamic and quantitative observation of PDAC tumours. Histological staining analyses were used for ex vivo validation. PTP-Fe3O4-IRDye800CW nanoparticles possessed great triple-modality imaging performance and specific targeting to plectin-1 expressed on PDAC cells. For in vivo multi-modality imaging of orthotopic PDAC models, the PTP-Fe3O4-IRDye800CW nanoparticles demonstrated higher specificity, even distribution, and longer retention effects in tumours for over 7 d compared with Con-Fe3O4-IRDye800CW nanoparticles. (MPI, 2d post-injection: PTP-Fe3O4-IRDye800CW: 85.72% ± 1.53% vs. Con-Fe3O4-IRDye800CW: 74.41% ± 1.91%, **P < 0.01 (Student's t test)). Ex vivo histological and Prussian blue stainings were performed to validate the distribution of probes. These data demonstrate the feasibility of utilizing MPI for in vivo PDAC imaging and complement with FMI/MRI for a precise and comprehensive in vivo characterization of PDAC. This may benefit PDAC patients for precise diagnosis and guidance of therapy. This study was funded by the National Natural Science Foundation of China (Grant No. 62027901, 82071896, 81871422, 81871514, 81227901), Ministry of Science and Technology of China under Grant No. 2017YFA0205200, 2017YFA0700401, Beijing Natural Science Foundation (Grant No. 7212207), Elite Program of Dong Cheng District of Beijing (2020-dchrcpyzz-28), and Peking University Third Hospital (BYSYZD2019018, and jyzc2018-02).
AbstractList Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI) is suitable for imaging deep and internal PDAC tumours because of its high sensitivity and unlimited imaging depth. The purpose of this study was to utilize the MPI, in combination with fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI), to advance the in vivo precise detection of PDAC xenografts. The PDAC targeted plectin-1 peptide and IRDye800CW were conjugated to the superparamagnetic iron oxide nanoparticles (PTP-Fe O -IRDye800CW) for the PDAC-targeting triple-modality imaging. Subcutaneous and orthotopic PDAC mouse models were established. FMI, MPI, and MRI were performed for dynamic and quantitative observation of PDAC tumours. Histological staining analyses were used for ex vivo validation. PTP-Fe O -IRDye800CW nanoparticles possessed great triple-modality imaging performance and specific targeting to plectin-1 expressed on PDAC cells. For in vivo multi-modality imaging of orthotopic PDAC models, the PTP-Fe O -IRDye800CW nanoparticles demonstrated higher specificity, even distribution, and longer retention effects in tumours for over 7 d compared with Con-Fe O -IRDye800CW nanoparticles. (MPI, 2d post-injection: PTP-Fe O -IRDye800CW: 85.72% ± 1.53% vs. Con-Fe O -IRDye800CW: 74.41% ± 1.91%, **P < 0.01 (Student's t test)). Ex vivo histological and Prussian blue stainings were performed to validate the distribution of probes. These data demonstrate the feasibility of utilizing MPI for in vivo PDAC imaging and complement with FMI/MRI for a precise and comprehensive in vivo characterization of PDAC. This may benefit PDAC patients for precise diagnosis and guidance of therapy. This study was funded by the National Natural Science Foundation of China (Grant No. 62027901, 82071896, 81871422, 81871514, 81227901), Ministry of Science and Technology of China under Grant No. 2017YFA0205200, 2017YFA0700401, Beijing Natural Science Foundation (Grant No. 7212207), Elite Program of Dong Cheng District of Beijing (2020-dchrcpyzz-28), and Peking University Third Hospital (BYSYZD2019018, and jyzc2018-02).
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI) is suitable for imaging deep and internal PDAC tumours because of its high sensitivity and unlimited imaging depth. The purpose of this study was to utilize the MPI, in combination with fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI), to advance the in vivo precise detection of PDAC xenografts.BACKGROUNDPancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI) is suitable for imaging deep and internal PDAC tumours because of its high sensitivity and unlimited imaging depth. The purpose of this study was to utilize the MPI, in combination with fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI), to advance the in vivo precise detection of PDAC xenografts.The PDAC targeted plectin-1 peptide and IRDye800CW were conjugated to the superparamagnetic iron oxide nanoparticles (PTP-Fe3O4-IRDye800CW) for the PDAC-targeting triple-modality imaging. Subcutaneous and orthotopic PDAC mouse models were established. FMI, MPI, and MRI were performed for dynamic and quantitative observation of PDAC tumours. Histological staining analyses were used for ex vivo validation.METHODSThe PDAC targeted plectin-1 peptide and IRDye800CW were conjugated to the superparamagnetic iron oxide nanoparticles (PTP-Fe3O4-IRDye800CW) for the PDAC-targeting triple-modality imaging. Subcutaneous and orthotopic PDAC mouse models were established. FMI, MPI, and MRI were performed for dynamic and quantitative observation of PDAC tumours. Histological staining analyses were used for ex vivo validation.PTP-Fe3O4-IRDye800CW nanoparticles possessed great triple-modality imaging performance and specific targeting to plectin-1 expressed on PDAC cells. For in vivo multi-modality imaging of orthotopic PDAC models, the PTP-Fe3O4-IRDye800CW nanoparticles demonstrated higher specificity, even distribution, and longer retention effects in tumours for over 7 d compared with Con-Fe3O4-IRDye800CW nanoparticles. (MPI, 2d post-injection: PTP-Fe3O4-IRDye800CW: 85.72% ± 1.53% vs. Con-Fe3O4-IRDye800CW: 74.41% ± 1.91%, **P < 0.01 (Student's t test)). Ex vivo histological and Prussian blue stainings were performed to validate the distribution of probes.FINDINGSPTP-Fe3O4-IRDye800CW nanoparticles possessed great triple-modality imaging performance and specific targeting to plectin-1 expressed on PDAC cells. For in vivo multi-modality imaging of orthotopic PDAC models, the PTP-Fe3O4-IRDye800CW nanoparticles demonstrated higher specificity, even distribution, and longer retention effects in tumours for over 7 d compared with Con-Fe3O4-IRDye800CW nanoparticles. (MPI, 2d post-injection: PTP-Fe3O4-IRDye800CW: 85.72% ± 1.53% vs. Con-Fe3O4-IRDye800CW: 74.41% ± 1.91%, **P < 0.01 (Student's t test)). Ex vivo histological and Prussian blue stainings were performed to validate the distribution of probes.These data demonstrate the feasibility of utilizing MPI for in vivo PDAC imaging and complement with FMI/MRI for a precise and comprehensive in vivo characterization of PDAC. This may benefit PDAC patients for precise diagnosis and guidance of therapy.INTERPRETATIONThese data demonstrate the feasibility of utilizing MPI for in vivo PDAC imaging and complement with FMI/MRI for a precise and comprehensive in vivo characterization of PDAC. This may benefit PDAC patients for precise diagnosis and guidance of therapy.This study was funded by the National Natural Science Foundation of China (Grant No. 62027901, 82071896, 81871422, 81871514, 81227901), Ministry of Science and Technology of China under Grant No. 2017YFA0205200, 2017YFA0700401, Beijing Natural Science Foundation (Grant No. 7212207), Elite Program of Dong Cheng District of Beijing (2020-dchrcpyzz-28), and Peking University Third Hospital (BYSYZD2019018, and jyzc2018-02).FUNDINGThis study was funded by the National Natural Science Foundation of China (Grant No. 62027901, 82071896, 81871422, 81871514, 81227901), Ministry of Science and Technology of China under Grant No. 2017YFA0205200, 2017YFA0700401, Beijing Natural Science Foundation (Grant No. 7212207), Elite Program of Dong Cheng District of Beijing (2020-dchrcpyzz-28), and Peking University Third Hospital (BYSYZD2019018, and jyzc2018-02).
Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI) is suitable for imaging deep and internal PDAC tumours because of its high sensitivity and unlimited imaging depth. The purpose of this study was to utilize the MPI, in combination with fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI), to advance the in vivo precise detection of PDAC xenografts. Methods: The PDAC targeted plectin-1 peptide and IRDye800CW were conjugated to the superparamagnetic iron oxide nanoparticles (PTP-Fe3O4-IRDye800CW) for the PDAC-targeting triple-modality imaging. Subcutaneous and orthotopic PDAC mouse models were established. FMI, MPI, and MRI were performed for dynamic and quantitative observation of PDAC tumours. Histological staining analyses were used for ex vivo validation. Findings: PTP-Fe3O4-IRDye800CW nanoparticles possessed great triple-modality imaging performance and specific targeting to plectin-1 expressed on PDAC cells. For in vivo multi-modality imaging of orthotopic PDAC models, the PTP-Fe3O4-IRDye800CW nanoparticles demonstrated higher specificity, even distribution, and longer retention effects in tumours for over 7 d compared with Con-Fe3O4-IRDye800CW nanoparticles. (MPI, 2d post-injection: PTP-Fe3O4-IRDye800CW: 85.72% ± 1.53% vs. Con-Fe3O4-IRDye800CW: 74.41% ± 1.91%, **P < 0.01 (Student's t test)). Ex vivo histological and Prussian blue stainings were performed to validate the distribution of probes. Interpretation: These data demonstrate the feasibility of utilizing MPI for in vivo PDAC imaging and complement with FMI/MRI for a precise and comprehensive in vivo characterization of PDAC. This may benefit PDAC patients for precise diagnosis and guidance of therapy. Funding: This study was funded by the National Natural Science Foundation of China (Grant No. 62027901, 82071896, 81871422, 81871514, 81227901), Ministry of Science and Technology of China under Grant No. 2017YFA0205200, 2017YFA0700401, Beijing Natural Science Foundation (Grant No. 7212207), Elite Program of Dong Cheng District of Beijing (2020-dchrcpyzz-28), and Peking University Third Hospital (BYSYZD2019018, and jyzc2018-02).
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI) is suitable for imaging deep and internal PDAC tumours because of its high sensitivity and unlimited imaging depth. The purpose of this study was to utilize the MPI, in combination with fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI), to advance the in vivo precise detection of PDAC xenografts. The PDAC targeted plectin-1 peptide and IRDye800CW were conjugated to the superparamagnetic iron oxide nanoparticles (PTP-Fe3O4-IRDye800CW) for the PDAC-targeting triple-modality imaging. Subcutaneous and orthotopic PDAC mouse models were established. FMI, MPI, and MRI were performed for dynamic and quantitative observation of PDAC tumours. Histological staining analyses were used for ex vivo validation. PTP-Fe3O4-IRDye800CW nanoparticles possessed great triple-modality imaging performance and specific targeting to plectin-1 expressed on PDAC cells. For in vivo multi-modality imaging of orthotopic PDAC models, the PTP-Fe3O4-IRDye800CW nanoparticles demonstrated higher specificity, even distribution, and longer retention effects in tumours for over 7 d compared with Con-Fe3O4-IRDye800CW nanoparticles. (MPI, 2d post-injection: PTP-Fe3O4-IRDye800CW: 85.72% ± 1.53% vs. Con-Fe3O4-IRDye800CW: 74.41% ± 1.91%, **P < 0.01 (Student's t test)). Ex vivo histological and Prussian blue stainings were performed to validate the distribution of probes. These data demonstrate the feasibility of utilizing MPI for in vivo PDAC imaging and complement with FMI/MRI for a precise and comprehensive in vivo characterization of PDAC. This may benefit PDAC patients for precise diagnosis and guidance of therapy. This study was funded by the National Natural Science Foundation of China (Grant No. 62027901, 82071896, 81871422, 81871514, 81227901), Ministry of Science and Technology of China under Grant No. 2017YFA0205200, 2017YFA0700401, Beijing Natural Science Foundation (Grant No. 7212207), Elite Program of Dong Cheng District of Beijing (2020-dchrcpyzz-28), and Peking University Third Hospital (BYSYZD2019018, and jyzc2018-02).
SummaryBackgroundPancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI) is suitable for imaging deep and internal PDAC tumours because of its high sensitivity and unlimited imaging depth. The purpose of this study was to utilize the MPI, in combination with fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI), to advance the in vivo precise detection of PDAC xenografts. MethodsThe PDAC targeted plectin-1 peptide and IRDye800CW were conjugated to the superparamagnetic iron oxide nanoparticles (PTP-Fe 3O 4-IRDye800CW) for the PDAC-targeting triple-modality imaging. Subcutaneous and orthotopic PDAC mouse models were established. FMI, MPI, and MRI were performed for dynamic and quantitative observation of PDAC tumours. Histological staining analyses were used for ex vivo validation. FindingsPTP-Fe 3O 4-IRDye800CW nanoparticles possessed great triple-modality imaging performance and specific targeting to plectin-1 expressed on PDAC cells. For in vivo multi-modality imaging of orthotopic PDAC models, the PTP-Fe 3O 4-IRDye800CW nanoparticles demonstrated higher specificity, even distribution, and longer retention effects in tumours for over 7 d compared with Con-Fe 3O 4-IRDye800CW nanoparticles. (MPI, 2d post-injection: PTP-Fe 3O 4-IRDye800CW: 85.72% ± 1.53% vs. Con-Fe 3O 4-IRDye800CW: 74.41% ± 1.91%, ** P < 0.01 (Student's t test)). Ex vivo histological and Prussian blue stainings were performed to validate the distribution of probes. InterpretationThese data demonstrate the feasibility of utilizing MPI for in vivo PDAC imaging and complement with FMI/MRI for a precise and comprehensive in vivo characterization of PDAC. This may benefit PDAC patients for precise diagnosis and guidance of therapy. FundingThis study was funded by the National Natural Science Foundation of China (Grant No. 62027901, 82071896, 81871422, 81871514, 81227901), Ministry of Science and Technology of China under Grant No. 2017YFA0205200, 2017YFA0700401, Beijing Natural Science Foundation (Grant No. 7212207), Elite Program of Dong Cheng District of Beijing (2020-dchrcpyzz-28), and Peking University Third Hospital (BYSYZD2019018, and jyzc2018-02).
ArticleNumber 104040
Author Zhang, Xinyu
Jin, Zhengyu
Zhu, Liang
Zhang, Wenjia
Liang, Xiaolong
Du, Yang
Tian, Jie
Xue, Huadan
Author_xml – sequence: 1
  givenname: Wenjia
  surname: Zhang
  fullname: Zhang, Wenjia
  organization: Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
– sequence: 2
  givenname: Xiaolong
  surname: Liang
  fullname: Liang, Xiaolong
  organization: Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
– sequence: 3
  givenname: Liang
  surname: Zhu
  fullname: Zhu, Liang
  organization: Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
– sequence: 4
  givenname: Xinyu
  surname: Zhang
  fullname: Zhang, Xinyu
  organization: Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
– sequence: 5
  givenname: Zhengyu
  surname: Jin
  fullname: Jin, Zhengyu
  email: jinzy@pumch.cn
  organization: Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
– sequence: 6
  givenname: Yang
  surname: Du
  fullname: Du, Yang
  email: yang.du@ia.ac.cn
  organization: CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing 100190, China
– sequence: 7
  givenname: Jie
  orcidid: 0000-0003-0498-0432
  surname: Tian
  fullname: Tian, Jie
  email: jie.tian@ia.ac.cn, tian@ieee.org
  organization: CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing 100190, China
– sequence: 8
  givenname: Huadan
  surname: Xue
  fullname: Xue, Huadan
  email: bjdanna95@hotmail.com
  organization: Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35525203$$D View this record in MEDLINE/PubMed
BookMark eNqFUstq3TAQNSWlSdN8QaF42Y1v9fCT0kAIfQQCWbRdC1ka-8q1JVeSA_db-rMd5yYhCbRBC4mZOedoZs7r5MA6C0nylpINJbT8MGygNW7aMMIYRnI8L5IjxguW8abMDx68D5OTEAZCCC1yDNavkkNeFKxghB8lf67maJQc00n2FvCZTssYzeS0HE3cpQbjxvap69J5BBWNzWgWpe8hgr7Pyh5sTDvn07iFdPagTIBUYw0inF3Rzseti25GhVla5UGuYnpREcWlBuuU9MpYN8nU2HQyCt4kLzs5Bji5vY-Tn18-_zj_ll1efb04P7vMVMlZzKjmZdMB7SrsEepcsbaEoqYlaVjVkKataklUVZW85W3dNEByDh2nLFctpYzy4-Riz6udHMTssSu_E04acRNwvhfS429HEC2rCeSs1p0u8pzINidc56zVugBWVgq5Tvdc89JOoBXOxcvxEenjjDVb0btr0ZCqqaoaCd7fEnj3e4EQxWSCgnGUFtwSBCtLSuqGFRWWvnuodS9yt10saPYFyrsQPHRCmSjXjaC0GQUlYjWTGMSNmcRqJrE3E2L5E-wd_f9Rn_YowH1dG_AiKANWgTZoiogDNc_gT5_g1WjsatBfsIMwuMVbtIKgIjBBxPfV5KvHGSPIQteWP_6b4Fn5vyo6DwQ
CitedBy_id crossref_primary_10_1007_s00259_023_06202_7
crossref_primary_10_1109_TIM_2023_3328682
crossref_primary_10_1016_j_compbiomed_2024_108783
crossref_primary_10_1002_wnan_1983
crossref_primary_10_1021_acsnano_4c12263
crossref_primary_10_1088_1361_6560_ad19f0
crossref_primary_10_1007_s11307_023_01856_z
crossref_primary_10_1021_acsami_3c00865
crossref_primary_10_1016_j_ejphar_2023_175729
crossref_primary_10_1016_j_ebiom_2023_104509
crossref_primary_10_1021_acs_analchem_4c04575
crossref_primary_10_1007_s11307_023_01812_x
crossref_primary_10_1016_j_bspc_2023_104863
crossref_primary_10_1002_adfm_202214598
crossref_primary_10_1016_j_nantod_2025_102709
crossref_primary_10_4329_wjr_v15_i1_10
crossref_primary_10_1021_acs_bioconjchem_4c00266
crossref_primary_10_1002_adma_202311548
crossref_primary_10_1016_j_actbio_2022_12_062
crossref_primary_10_1186_s12951_024_02704_0
crossref_primary_10_5604_01_3001_0054_9363
crossref_primary_10_1007_s00259_024_06617_w
Cites_doi 10.1200/JCO.2005.23.911
10.1021/nn3043463
10.1007/s10534-015-9845-9
10.1021/acs.nanolett.9b00630
10.2967/jnumed.119.233122
10.7150/thno.67375
10.1038/381290a0
10.3390/ijms20184504
10.1136/jitc-2021-003254
10.1002/adma.201700448
10.1021/acs.chemrev.5b00687
10.1007/s00259-021-05580-0
10.1001/jamasurg.2019.6033
10.3322/caac.21590
10.1016/j.nano.2011.08.017
10.1073/pnas.1100890108
10.1148/radiol.14132958
10.1007/s11307-018-1276-x
10.1021/acs.accounts.0c00518
10.1371/journal.pmed.0050085
10.1126/scitranslmed.aac6522
10.1038/nature03808
10.1186/s13045-021-01128-9
10.1016/j.msec.2019.110262
10.1158/1078-0432.CCR-16-1990
10.1007/s00441-004-0884-8
10.1002/adma.202107444
10.1038/s41571-021-00507-y
10.1002/adma.201200221
10.1021/acs.nanolett.0c04455
10.1021/acs.bioconjchem.5b00318
10.1039/D1NR08394E
10.1146/annurev.bioeng.9.060906.151929
10.1186/s12951-021-00963-9
10.2214/AJR.09.3107
10.1021/acsnano.9b01436
10.1002/jmri.26875
10.1158/1078-0432.CCR-10-0999
10.1007/s00259-020-04970-0
10.1155/2017/7659242
10.1021/acs.nanolett.6b04865
ContentType Journal Article
Copyright 2022 The Authors
The Authors
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.ebiom.2022.104040
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2352-3964
EndPage 104040
ExternalDocumentID oai_doaj_org_article_b280e428dfd5440ab403d42bdd5e267c
PMC9079778
35525203
10_1016_j_ebiom_2022_104040
S2352396422002213
1_s2_0_S2352396422002213
Genre Journal Article
GrantInformation This study was funded by the National Natural Science Foundation of China (Grant No. 62027901, 82071896, 81871422, 81871514, 81227901), Ministry of Science and Technology of China under Grant No. 2017YFA0205200, 2017YFA0700401, Beijing Natural Science Foundation (Grant No. 7212207), Elite Program of Dong Cheng District of Beijing (2020-dchrcpyzz-28), and Peking University Third Hospital (BYSYZD2019018, and jyzc2018-02).
GroupedDBID .1-
.FO
0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M48
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c632t-1d369fe1f7000e84c2b6e58160927909b78a0c7763b3b899e043ef3124cb11213
IEDL.DBID M48
ISSN 2352-3964
IngestDate Wed Aug 27 01:31:37 EDT 2025
Thu Aug 21 18:20:08 EDT 2025
Sun Aug 24 03:14:54 EDT 2025
Mon Jul 21 06:04:41 EDT 2025
Tue Jul 01 00:39:02 EDT 2025
Thu Apr 24 22:51:48 EDT 2025
Tue Jul 25 20:57:17 EDT 2023
Mon Feb 24 20:09:13 EST 2025
Tue Aug 26 16:33:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Magnetic particle imaging (MPI)
Superparamagnetic iron oxide nanoparticles (SPIONs)
Magnetic resonance imaging (MRI)
Fluorescence molecular imaging (FMI)
Pancreatic ductal adenocarcinoma (PDAC)
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c632t-1d369fe1f7000e84c2b6e58160927909b78a0c7763b3b899e043ef3124cb11213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-0498-0432
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.ebiom.2022.104040
PMID 35525203
PQID 2661089257
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_b280e428dfd5440ab403d42bdd5e267c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9079778
proquest_miscellaneous_2661089257
pubmed_primary_35525203
crossref_citationtrail_10_1016_j_ebiom_2022_104040
crossref_primary_10_1016_j_ebiom_2022_104040
elsevier_sciencedirect_doi_10_1016_j_ebiom_2022_104040
elsevier_clinicalkeyesjournals_1_s2_0_S2352396422002213
elsevier_clinicalkey_doi_10_1016_j_ebiom_2022_104040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle EBioMedicine
PublicationTitleAlternate EBioMedicine
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Yu, Bishop, Zheng (bib0012) 2017; 17
Neiser, Rentsch, Dippon (bib0043) 2015; 28
Rosen, Chan, Shieh, Gu (bib0020) 2012; 8
Talebloo, Gudi, Robertson, Wang (bib0013) 2020; 51
Kelly, Bardeesy, Anbazhagan (bib0025) 2008; 5
Bazan-Peregrino, Garcia-Carbonero, Laquente (bib0034) 2021; 9
Achterberg, Deken, Meijer (bib0037) 2021; 48
Briley-Saebo, Bjornerud, Grant, Ahlstrom, Berg, Kindberg (bib0021) 2004; 316
Zeng, Pottler, Lan, Grutzmann, Pilarsky, Yang (bib0003) 2019; 20
Pang, Shi, Qin (bib0035) 2021; 14
Nejadnik, Pandit, Lenkov, Lahiji, Yerneni, Daldrup-Link (bib0044) 2019; 21
Kwon, Sevick-Muraca (bib0029) 2017; 2017
Wu, Mendoza-Garcia, Li, Sun (bib0014) 2016; 116
Siegel, Miller, Jemal (bib0001) 2020; 70
Eser, Messer, Eser (bib0004) 2011; 108
Natarajan, Mayer, Xu, Reeves, Gano, Gambhir (bib0028) 2015; 26
Miller, Gadde, Pfirschke (bib0041) 2015; 7
Sherry, Woods (bib0009) 2008; 10
Goodwill, Saritas, Croft (bib0015) 2012; 24
Hu, Chi, Wang (bib0005) 2017; 29
Zhang, Zeng, Liu (bib0016) 2022; 14
Lazaro-Carrillo, Filice, Guillen (bib0010) 2020; 107
Zhu, Wang, Chen (bib0030) 2022; 34
Willett, Czito, Bendell, Ryan (bib0002) 2005; 23
Du, Liu, Liang, Liang, Tian (bib0018) 2019; 19
Jie, Cai, Wang (bib0023) 2012; 7
Jiang, Han, Du (bib0017) 2021; 21
Kumar, Singh, Arora (bib0024) 2012; 7
Glazer (bib0027) 1996; 381
Ahmed, Solbiati, Brace (bib0031) 2014; 273
Melero, Castanon, Alvarez, Champiat, Marabelle (bib0039) 2021; 18
Bulte (bib0019) 2009; 193
Lee, Qian, Wang (bib0006) 2013; 7
Bausch, Thomas, Mino-Kenudson (bib0026) 2011; 17
Hsieh, Liang, Chieh (bib0022) 2012; 7
Cabral, Kinoh, Kataoka (bib0033) 2020; 53
Song, Zheng, Wang, Xia, Chu, Rao (bib0008) 2019; 13
Chen, Xie, Zhong (bib0038) 2020; 155
Gleich, Weizenecker (bib0011) 2005; 435
Wit, van Beurden, Kleinjan (bib0036) 2022; 49
Kato, Huang, Kadonaga (bib0032) 2021; 19
Watabe, Liu, Kaneda-Nakashima (bib0007) 2020; 61
Huang, Hsu, Koo, Cormode (bib0040) 2022; 12
Ramanathan, Korn, Raghunand (bib0042) 2017; 23
Rosen (10.1016/j.ebiom.2022.104040_bib0020) 2012; 8
Hu (10.1016/j.ebiom.2022.104040_bib0005) 2017; 29
Glazer (10.1016/j.ebiom.2022.104040_bib0027) 1996; 381
Gleich (10.1016/j.ebiom.2022.104040_bib0011) 2005; 435
Natarajan (10.1016/j.ebiom.2022.104040_bib0028) 2015; 26
Bazan-Peregrino (10.1016/j.ebiom.2022.104040_bib0034) 2021; 9
Zhang (10.1016/j.ebiom.2022.104040_bib0016) 2022; 14
Song (10.1016/j.ebiom.2022.104040_bib0008) 2019; 13
Bulte (10.1016/j.ebiom.2022.104040_bib0019) 2009; 193
Pang (10.1016/j.ebiom.2022.104040_bib0035) 2021; 14
Zeng (10.1016/j.ebiom.2022.104040_bib0003) 2019; 20
Watabe (10.1016/j.ebiom.2022.104040_bib0007) 2020; 61
Wit (10.1016/j.ebiom.2022.104040_bib0036) 2022; 49
Nejadnik (10.1016/j.ebiom.2022.104040_bib0044) 2019; 21
Zhu (10.1016/j.ebiom.2022.104040_bib0030) 2022; 34
Cabral (10.1016/j.ebiom.2022.104040_bib0033) 2020; 53
Huang (10.1016/j.ebiom.2022.104040_bib0040) 2022; 12
Talebloo (10.1016/j.ebiom.2022.104040_bib0013) 2020; 51
Ramanathan (10.1016/j.ebiom.2022.104040_bib0042) 2017; 23
Kwon (10.1016/j.ebiom.2022.104040_bib0029) 2017; 2017
Bausch (10.1016/j.ebiom.2022.104040_bib0026) 2011; 17
Yu (10.1016/j.ebiom.2022.104040_bib0012) 2017; 17
Chen (10.1016/j.ebiom.2022.104040_bib0038) 2020; 155
Melero (10.1016/j.ebiom.2022.104040_bib0039) 2021; 18
Eser (10.1016/j.ebiom.2022.104040_bib0004) 2011; 108
Jiang (10.1016/j.ebiom.2022.104040_bib0017) 2021; 21
Miller (10.1016/j.ebiom.2022.104040_bib0041) 2015; 7
Wu (10.1016/j.ebiom.2022.104040_bib0014) 2016; 116
Neiser (10.1016/j.ebiom.2022.104040_bib0043) 2015; 28
Kato (10.1016/j.ebiom.2022.104040_bib0032) 2021; 19
Briley-Saebo (10.1016/j.ebiom.2022.104040_bib0021) 2004; 316
Kumar (10.1016/j.ebiom.2022.104040_bib0024) 2012; 7
Ahmed (10.1016/j.ebiom.2022.104040_bib0031) 2014; 273
Sherry (10.1016/j.ebiom.2022.104040_bib0009) 2008; 10
Jie (10.1016/j.ebiom.2022.104040_bib0023) 2012; 7
Lazaro-Carrillo (10.1016/j.ebiom.2022.104040_bib0010) 2020; 107
Goodwill (10.1016/j.ebiom.2022.104040_bib0015) 2012; 24
Hsieh (10.1016/j.ebiom.2022.104040_bib0022) 2012; 7
Achterberg (10.1016/j.ebiom.2022.104040_bib0037) 2021; 48
Willett (10.1016/j.ebiom.2022.104040_bib0002) 2005; 23
Siegel (10.1016/j.ebiom.2022.104040_bib0001) 2020; 70
Du (10.1016/j.ebiom.2022.104040_bib0018) 2019; 19
Kelly (10.1016/j.ebiom.2022.104040_bib0025) 2008; 5
Lee (10.1016/j.ebiom.2022.104040_bib0006) 2013; 7
References_xml – volume: 49
  start-page: 1743
  year: 2022
  end-page: 1753
  ident: bib0036
  article-title: The impact of drainage pathways on the detection of nodal metastases in prostate cancer: a phase II randomized comparison of intratumoral vs intraprostatic tracer injection for sentinel node detection
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 53
  start-page: 2765
  year: 2020
  end-page: 2776
  ident: bib0033
  article-title: Tumor-targeted nanomedicine for immunotherapy
  publication-title: Acc Chem Res
– volume: 316
  start-page: 315
  year: 2004
  end-page: 323
  ident: bib0021
  article-title: Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging
  publication-title: Cell Tissue Res
– volume: 7
  start-page: 3503
  year: 2012
  end-page: 3516
  ident: bib0024
  article-title: Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells
  publication-title: Int J Nanomedicine
– volume: 18
  start-page: 558
  year: 2021
  end-page: 576
  ident: bib0039
  article-title: Intratumoural administration and tumour tissue targeting of cancer immunotherapies
  publication-title: Nat Rev Clin Oncol
– volume: 21
  start-page: 465
  year: 2019
  end-page: 472
  ident: bib0044
  article-title: Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells
  publication-title: Mol Imaging Biol
– volume: 23
  start-page: 4538
  year: 2005
  end-page: 4544
  ident: bib0002
  article-title: Locally advanced pancreatic cancer
  publication-title: J Clin Oncol
– volume: 13
  start-page: 7750
  year: 2019
  end-page: 7758
  ident: bib0008
  article-title: A magneto-optical nanoplatform for multimodality imaging of tumors in mice
  publication-title: ACS Nano
– volume: 14
  start-page: 118
  year: 2021
  ident: bib0035
  article-title: IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin
  publication-title: J Hematol Oncol
– volume: 7
  start-page: 2078
  year: 2013
  end-page: 2089
  ident: bib0006
  article-title: Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer
  publication-title: ACS Nano
– volume: 23
  start-page: 3638
  year: 2017
  end-page: 3648
  ident: bib0042
  article-title: Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study
  publication-title: Clin Cancer Res
– volume: 107
  year: 2020
  ident: bib0010
  article-title: Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 21
  start-page: 2730
  year: 2021
  end-page: 2737
  ident: bib0017
  article-title: Mixed metal metal-organic frameworks derived carbon supporting ZnFe
  publication-title: Nano Lett
– volume: 10
  start-page: 391
  year: 2008
  end-page: 411
  ident: bib0009
  article-title: Chemical exchange saturation transfer contrast agents for magnetic resonance imaging
  publication-title: Annu Rev Biomed Eng
– volume: 17
  start-page: 302
  year: 2011
  end-page: 309
  ident: bib0026
  article-title: Plectin-1 as a novel biomarker for pancreatic cancer
  publication-title: Clin Cancer Res
– volume: 61
  start-page: 563
  year: 2020
  end-page: 569
  ident: bib0007
  article-title: Theranostics targeting fibroblast activation protein in the tumor stroma: (64)Cu- and (225)Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models
  publication-title: J Nucl Med
– volume: 14
  start-page: 3306
  year: 2022
  end-page: 3323
  ident: bib0016
  article-title: Recent development of a magneto-optical nanoplatform for multimodality imaging of pancreatic ductal adenocarcinoma
  publication-title: Nanoscale
– volume: 19
  start-page: 3618
  year: 2019
  end-page: 3626
  ident: bib0018
  article-title: Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy
  publication-title: Nano Lett
– volume: 155
  start-page: 300
  year: 2020
  end-page: 311
  ident: bib0038
  article-title: Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial
  publication-title: JAMA Surg
– volume: 273
  start-page: 241
  year: 2014
  end-page: 260
  ident: bib0031
  article-title: Image-guided tumor ablation: standardization of terminology and reporting criteria–a 10-year update
  publication-title: Radiology
– volume: 9
  start-page: e003254
  year: 2021
  ident: bib0034
  article-title: VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects
  publication-title: J Immunother Cancer
– volume: 24
  start-page: 3870
  year: 2012
  end-page: 3877
  ident: bib0015
  article-title: X-space MPI: magnetic nanoparticles for safe medical imaging
  publication-title: Adv Mater
– volume: 17
  start-page: 1648
  year: 2017
  end-page: 1654
  ident: bib0012
  article-title: Magnetic particle imaging: a novel
  publication-title: Nano Lett
– volume: 34
  year: 2022
  ident: bib0030
  article-title: An enzyme-activatable aggregation-induced-emission probe: intraoperative pathological fluorescent diagnosis of pancreatic cancer via specific cathepsin E
  publication-title: Adv Mater
– volume: 8
  start-page: 275
  year: 2012
  end-page: 290
  ident: bib0020
  article-title: Iron oxide nanoparticles for targeted cancer imaging and diagnostics
  publication-title: Nanomedicine
– volume: 435
  start-page: 1214
  year: 2005
  end-page: 1217
  ident: bib0011
  article-title: Tomographic imaging using the nonlinear response of magnetic particles
  publication-title: Nature
– volume: 381
  start-page: 290
  year: 1996
  ident: bib0027
  article-title: Bioconjugate techniques - Hermanson, GT
  publication-title: Nature
– volume: 7
  start-page: 3981
  year: 2012
  end-page: 3989
  ident: bib0023
  article-title: Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging
  publication-title: Int J Nanomedicine
– volume: 12
  start-page: 796
  year: 2022
  end-page: 816
  ident: bib0040
  article-title: Repurposing ferumoxytol: diagnostic and therapeutic applications of an FDA-approved nanoparticle
  publication-title: Theranostics
– volume: 7
  start-page: 314ra183
  year: 2015
  ident: bib0041
  article-title: Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle
  publication-title: Sci Transl Med
– volume: 108
  start-page: 9945
  year: 2011
  end-page: 9950
  ident: bib0004
  article-title: diagnosis of murine pancreatic intraepithelial neoplasia and early-stage pancreatic cancer by molecular imaging
  publication-title: Proc Natl Acad Sci U S A
– volume: 19
  start-page: 223
  year: 2021
  ident: bib0032
  article-title: Intratumoral administration of astatine-211-labeled gold nanoparticle for alpha therapy
  publication-title: J Nanobiotechnol
– volume: 20
  start-page: 4504
  year: 2019
  ident: bib0003
  article-title: Chemoresistance in pancreatic cancer
  publication-title: Int J Mol Sci
– volume: 7
  start-page: 2833
  year: 2012
  end-page: 2842
  ident: bib0022
  article-title: tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles
  publication-title: Int J Nanomedicine
– volume: 48
  start-page: 332
  year: 2021
  end-page: 339
  ident: bib0037
  article-title: Clinical translation and implementation of optical imaging agents for precision image-guided cancer surgery
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 116
  start-page: 10473
  year: 2016
  end-page: 10512
  ident: bib0014
  article-title: Organic phase syntheses of magnetic nanoparticles and their applications
  publication-title: Chem Rev
– volume: 2017
  year: 2017
  ident: bib0029
  article-title: Effects of depilation-induced skin pigmentation and diet-induced fluorescence on
  publication-title: Contrast Media Mol Imaging
– volume: 29
  start-page: 1700448
  year: 2017
  ident: bib0005
  article-title: A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer
  publication-title: Adv Mater
– volume: 26
  start-page: 2062
  year: 2015
  end-page: 2069
  ident: bib0028
  article-title: Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes
  publication-title: Bioconjug Chem
– volume: 28
  start-page: 615
  year: 2015
  end-page: 635
  ident: bib0043
  article-title: Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose
  publication-title: Biometals
– volume: 70
  start-page: 7
  year: 2020
  end-page: 30
  ident: bib0001
  article-title: Cancer statistics, 2020
  publication-title: CA Cancer J Clin
– volume: 51
  start-page: 1659
  year: 2020
  end-page: 1668
  ident: bib0013
  article-title: Magnetic particle imaging: current applications in biomedical research
  publication-title: J Magn Reson Imaging
– volume: 193
  start-page: 314
  year: 2009
  end-page: 325
  ident: bib0019
  article-title: MRI cell tracking: clinical studies
  publication-title: AJR Am J Roentgenol
– volume: 5
  start-page: e85
  year: 2008
  ident: bib0025
  article-title: Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma
  publication-title: PLoS Med
– volume: 23
  start-page: 4538
  issue: 20
  year: 2005
  ident: 10.1016/j.ebiom.2022.104040_bib0002
  article-title: Locally advanced pancreatic cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.23.911
– volume: 7
  start-page: 2078
  issue: 3
  year: 2013
  ident: 10.1016/j.ebiom.2022.104040_bib0006
  article-title: Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer
  publication-title: ACS Nano
  doi: 10.1021/nn3043463
– volume: 28
  start-page: 615
  issue: 4
  year: 2015
  ident: 10.1016/j.ebiom.2022.104040_bib0043
  article-title: Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose
  publication-title: Biometals
  doi: 10.1007/s10534-015-9845-9
– volume: 19
  start-page: 3618
  issue: 6
  year: 2019
  ident: 10.1016/j.ebiom.2022.104040_bib0018
  article-title: Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b00630
– volume: 61
  start-page: 563
  issue: 4
  year: 2020
  ident: 10.1016/j.ebiom.2022.104040_bib0007
  article-title: Theranostics targeting fibroblast activation protein in the tumor stroma: (64)Cu- and (225)Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.119.233122
– volume: 12
  start-page: 796
  issue: 2
  year: 2022
  ident: 10.1016/j.ebiom.2022.104040_bib0040
  article-title: Repurposing ferumoxytol: diagnostic and therapeutic applications of an FDA-approved nanoparticle
  publication-title: Theranostics
  doi: 10.7150/thno.67375
– volume: 381
  start-page: 290
  issue: 6580
  year: 1996
  ident: 10.1016/j.ebiom.2022.104040_bib0027
  article-title: Bioconjugate techniques - Hermanson, GT
  publication-title: Nature
  doi: 10.1038/381290a0
– volume: 20
  start-page: 4504
  issue: 18
  year: 2019
  ident: 10.1016/j.ebiom.2022.104040_bib0003
  article-title: Chemoresistance in pancreatic cancer
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20184504
– volume: 9
  start-page: e003254
  issue: 11
  year: 2021
  ident: 10.1016/j.ebiom.2022.104040_bib0034
  article-title: VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2021-003254
– volume: 29
  start-page: 1700448
  issue: 33
  year: 2017
  ident: 10.1016/j.ebiom.2022.104040_bib0005
  article-title: A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer
  publication-title: Adv Mater
  doi: 10.1002/adma.201700448
– volume: 116
  start-page: 10473
  issue: 18
  year: 2016
  ident: 10.1016/j.ebiom.2022.104040_bib0014
  article-title: Organic phase syntheses of magnetic nanoparticles and their applications
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00687
– volume: 49
  start-page: 1743
  issue: 5
  year: 2022
  ident: 10.1016/j.ebiom.2022.104040_bib0036
  article-title: The impact of drainage pathways on the detection of nodal metastases in prostate cancer: a phase II randomized comparison of intratumoral vs intraprostatic tracer injection for sentinel node detection
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05580-0
– volume: 155
  start-page: 300
  issue: 4
  year: 2020
  ident: 10.1016/j.ebiom.2022.104040_bib0038
  article-title: Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2019.6033
– volume: 70
  start-page: 7
  issue: 1
  year: 2020
  ident: 10.1016/j.ebiom.2022.104040_bib0001
  article-title: Cancer statistics, 2020
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21590
– volume: 8
  start-page: 275
  issue: 3
  year: 2012
  ident: 10.1016/j.ebiom.2022.104040_bib0020
  article-title: Iron oxide nanoparticles for targeted cancer imaging and diagnostics
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2011.08.017
– volume: 108
  start-page: 9945
  issue: 24
  year: 2011
  ident: 10.1016/j.ebiom.2022.104040_bib0004
  article-title: In vivo diagnosis of murine pancreatic intraepithelial neoplasia and early-stage pancreatic cancer by molecular imaging
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1100890108
– volume: 273
  start-page: 241
  issue: 1
  year: 2014
  ident: 10.1016/j.ebiom.2022.104040_bib0031
  article-title: Image-guided tumor ablation: standardization of terminology and reporting criteria–a 10-year update
  publication-title: Radiology
  doi: 10.1148/radiol.14132958
– volume: 21
  start-page: 465
  issue: 3
  year: 2019
  ident: 10.1016/j.ebiom.2022.104040_bib0044
  article-title: Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-018-1276-x
– volume: 53
  start-page: 2765
  issue: 12
  year: 2020
  ident: 10.1016/j.ebiom.2022.104040_bib0033
  article-title: Tumor-targeted nanomedicine for immunotherapy
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.0c00518
– volume: 5
  start-page: e85
  issue: 4
  year: 2008
  ident: 10.1016/j.ebiom.2022.104040_bib0025
  article-title: Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0050085
– volume: 7
  start-page: 314ra183
  issue: 314
  year: 2015
  ident: 10.1016/j.ebiom.2022.104040_bib0041
  article-title: Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aac6522
– volume: 435
  start-page: 1214
  issue: 7046
  year: 2005
  ident: 10.1016/j.ebiom.2022.104040_bib0011
  article-title: Tomographic imaging using the nonlinear response of magnetic particles
  publication-title: Nature
  doi: 10.1038/nature03808
– volume: 14
  start-page: 118
  issue: 1
  year: 2021
  ident: 10.1016/j.ebiom.2022.104040_bib0035
  article-title: IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-021-01128-9
– volume: 7
  start-page: 3981
  year: 2012
  ident: 10.1016/j.ebiom.2022.104040_bib0023
  article-title: Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging
  publication-title: Int J Nanomedicine
– volume: 107
  year: 2020
  ident: 10.1016/j.ebiom.2022.104040_bib0010
  article-title: Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers
  publication-title: Mater Sci Eng C Mater Biol Appl
  doi: 10.1016/j.msec.2019.110262
– volume: 23
  start-page: 3638
  issue: 14
  year: 2017
  ident: 10.1016/j.ebiom.2022.104040_bib0042
  article-title: Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-16-1990
– volume: 316
  start-page: 315
  issue: 3
  year: 2004
  ident: 10.1016/j.ebiom.2022.104040_bib0021
  article-title: Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-004-0884-8
– volume: 7
  start-page: 3503
  year: 2012
  ident: 10.1016/j.ebiom.2022.104040_bib0024
  article-title: Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells
  publication-title: Int J Nanomedicine
– volume: 34
  issue: 3
  year: 2022
  ident: 10.1016/j.ebiom.2022.104040_bib0030
  article-title: An enzyme-activatable aggregation-induced-emission probe: intraoperative pathological fluorescent diagnosis of pancreatic cancer via specific cathepsin E
  publication-title: Adv Mater
  doi: 10.1002/adma.202107444
– volume: 18
  start-page: 558
  issue: 9
  year: 2021
  ident: 10.1016/j.ebiom.2022.104040_bib0039
  article-title: Intratumoural administration and tumour tissue targeting of cancer immunotherapies
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-021-00507-y
– volume: 24
  start-page: 3870
  issue: 28
  year: 2012
  ident: 10.1016/j.ebiom.2022.104040_bib0015
  article-title: X-space MPI: magnetic nanoparticles for safe medical imaging
  publication-title: Adv Mater
  doi: 10.1002/adma.201200221
– volume: 21
  start-page: 2730
  issue: 7
  year: 2021
  ident: 10.1016/j.ebiom.2022.104040_bib0017
  article-title: Mixed metal metal-organic frameworks derived carbon supporting ZnFe2O4/C for high-performance magnetic particle imaging
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.0c04455
– volume: 26
  start-page: 2062
  issue: 10
  year: 2015
  ident: 10.1016/j.ebiom.2022.104040_bib0028
  article-title: Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.5b00318
– volume: 7
  start-page: 2833
  year: 2012
  ident: 10.1016/j.ebiom.2022.104040_bib0022
  article-title: In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles
  publication-title: Int J Nanomedicine
– volume: 14
  start-page: 3306
  issue: 9
  year: 2022
  ident: 10.1016/j.ebiom.2022.104040_bib0016
  article-title: Recent development of a magneto-optical nanoplatform for multimodality imaging of pancreatic ductal adenocarcinoma
  publication-title: Nanoscale
  doi: 10.1039/D1NR08394E
– volume: 10
  start-page: 391
  year: 2008
  ident: 10.1016/j.ebiom.2022.104040_bib0009
  article-title: Chemical exchange saturation transfer contrast agents for magnetic resonance imaging
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.9.060906.151929
– volume: 19
  start-page: 223
  issue: 1
  year: 2021
  ident: 10.1016/j.ebiom.2022.104040_bib0032
  article-title: Intratumoral administration of astatine-211-labeled gold nanoparticle for alpha therapy
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-021-00963-9
– volume: 193
  start-page: 314
  issue: 2
  year: 2009
  ident: 10.1016/j.ebiom.2022.104040_bib0019
  article-title: In vivo MRI cell tracking: clinical studies
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.09.3107
– volume: 13
  start-page: 7750
  issue: 7
  year: 2019
  ident: 10.1016/j.ebiom.2022.104040_bib0008
  article-title: A magneto-optical nanoplatform for multimodality imaging of tumors in mice
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01436
– volume: 51
  start-page: 1659
  issue: 6
  year: 2020
  ident: 10.1016/j.ebiom.2022.104040_bib0013
  article-title: Magnetic particle imaging: current applications in biomedical research
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26875
– volume: 17
  start-page: 302
  issue: 2
  year: 2011
  ident: 10.1016/j.ebiom.2022.104040_bib0026
  article-title: Plectin-1 as a novel biomarker for pancreatic cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-0999
– volume: 48
  start-page: 332
  issue: 2
  year: 2021
  ident: 10.1016/j.ebiom.2022.104040_bib0037
  article-title: Clinical translation and implementation of optical imaging agents for precision image-guided cancer surgery
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-04970-0
– volume: 2017
  year: 2017
  ident: 10.1016/j.ebiom.2022.104040_bib0029
  article-title: Effects of depilation-induced skin pigmentation and diet-induced fluorescence on in vivo fluorescence imaging
  publication-title: Contrast Media Mol Imaging
  doi: 10.1155/2017/7659242
– volume: 17
  start-page: 1648
  issue: 3
  year: 2017
  ident: 10.1016/j.ebiom.2022.104040_bib0012
  article-title: Magnetic particle imaging: a novel in vivo imaging platform for cancer detection
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b04865
SSID ssj0001542358
Score 2.390784
Snippet Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI)...
SummaryBackgroundPancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic...
Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104040
SubjectTerms Advanced Basic Science
Animals
Antineoplastic Agents - therapeutic use
Carcinoma, Pancreatic Ductal - diagnostic imaging
Carcinoma, Pancreatic Ductal - pathology
Cell Line, Tumor
Fluorescence molecular imaging (FMI)
Humans
Internal Medicine
Magnetic particle imaging (MPI)
Magnetic resonance imaging (MRI)
Magnetic Resonance Imaging - methods
Mice
Multimodal Imaging
Pancreatic ductal adenocarcinoma (PDAC)
Pancreatic Neoplasms
Pancreatic Neoplasms - drug therapy
Plectin
Superparamagnetic iron oxide nanoparticles (SPIONs)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9UwFA4yILgR39bHEMGlxTRNm3bpDA6DoC50YHYhaVKt2LRMOwt_i3_Wc5K23DvKzMbVhbZp6Ml3z_lOch6EvAabC05Cy1LwZ3UqTM1SYyVPtWa2KrQUOkQTfvxUnp6JD-fF-U6rL4wJi-WBo-DeGl4xBxzZtrYQgmkjWG4FN9YWjpeyQe0LNm_HmYr5wQJzQENnuYKneV2KteRQCO5ymNwO3iHneMjJcOtjxyyF6v171ulv9nk1iHLHKp3cI3cXOknfxc-4T245_4Dcjg0mfz0kvz-PYa-a9vqbx3RFGgII-8EG-k27PjQpokNLR9y_7zz4ejE43Nntrsb0KwrslgJbpCPWw5gctW4OYVweR-PpzzAPI8wA6iUy0YZiLVmYXINuA5N50XR-6DXtPO1BPT0iZyfvvx6fpks7hrQpcz6nmc3LunVZK0HArhINN6UrqqxkNZc1q42sNGskKCyTG3DjHBO5a3MgEI3JsHLcY3LgB--eEmqBhrAW3mbaCtFQ4S-AJpOmaAzjCeHraqhmqVWOLTN-qjUo7YcKS6hwCVVcwoS82QaNsVTH9Y8f4TJvj2Kd7XAB0KcW9Kmb0JcQsYJEramsoHzhRd31c8t_DXPTokAmlamJK6a-IHwRvRyDaUCGCSm3kQtHitzn5ilfrRhWoEHwWEh7N1xOCikaq2rQ3Ql5EjG9CQXYKC84g2nlHtr3pLZ_x3ffQ5XymknwLapn_0PMz8kd_JQYoveCHMwXl-4lkMHZHIb__R_hDFyb
  priority: 102
  providerName: Directory of Open Access Journals
Title Optical magnetic multimodality imaging of plectin-1-targeted imaging agent for the precise detection of orthotopic pancreatic ductal adenocarcinoma in mice
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2352396422002213
https://www.clinicalkey.es/playcontent/1-s2.0-S2352396422002213
https://dx.doi.org/10.1016/j.ebiom.2022.104040
https://www.ncbi.nlm.nih.gov/pubmed/35525203
https://www.proquest.com/docview/2661089257
https://pubmed.ncbi.nlm.nih.gov/PMC9079778
https://doaj.org/article/b280e428dfd5440ab403d42bdd5e267c
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA7riuCLeLdelgg-WknTtGkfRFRcFmH1QQ_sW0iadK1sL552wf0t_lln0otWD-uLnIcDp02GM5nMfJPMhZBnYHPBSShZCP6sDoXJWWis5KHWzGaJlkL7aMLjD-nRRrw_SU72yNwVdWJgv9O1w35Sm-3Zi-_fLl7Bhn_5K1bLYa46OHuc450lfK6Qq2CaJLY0OJ7w_pg2LDA11DecS3gY56mYKxHtnmdlrXxR_5XR-huU_hlb-ZuxOrxJbkwok74exeIW2XPNbXJt7Dt5cYf8-Nj5I2xa69MGsxipjyusW-tROa1q37uItiXt8Fi_asAFHGPGnV2easzKogB6KYBI2mGZjN5R6wYf3dXgaLwUaoe2AwqgdUaAWlAsMQvENag8sKTbomraWtOqoTVorbtkc_ju89ujcOrSEBZpzIcwsnGaly4qJTDYZaLgJnVJFqUs5zJnuZGZZoUEPWZiA96dYyJ2ZQy4ojARFpS7R_abtnEPCLWATlgJs5kyQyHJ8BtkKZImKQzjAeHzaqhiKmGOnTTO1Byr9lX5JVS4hGpcwoA8XwZ1YwWPy19_g8u8vIrlt_0P7fZUTbtZGZ4xB46bLW0iBNNGsNgKbqxNHE9lERAxC4maM1xBJ8NE1eW05a5hrp-3hYpUzxVTn1B8UXo5xtgADwOSLiMn6DRCon-TfDrLsALFgrdFunHtea8QubEsB5UekPujTC9MAZDKE86ArFxJ-4pr6ydN9cUXL8-ZBJcje_g_2PyIXMe_MkbuPSb7w_bcPQGMOJgDf7Zy4Hf_TwBsZjA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+magnetic+multimodality+imaging+of+plectin-1-targeted+imaging+agent+for+the+precise+detection+of+orthotopic+pancreatic+ductal+adenocarcinoma+in+mice&rft.jtitle=EBioMedicine&rft.au=Wenjia+Zhang&rft.au=Xiaolong+Liang&rft.au=Liang+Zhu&rft.au=Xinyu+Zhang&rft.date=2022-06-01&rft.pub=Elsevier&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=80&rft.spage=104040&rft_id=info:doi/10.1016%2Fj.ebiom.2022.104040&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b280e428dfd5440ab403d42bdd5e267c
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2FS2352396422X00066%2Fcov150h.gif