Repression of hypoxia-inducible factor-1 contributes to increased mitochondrial reactive oxygen species production in diabetes
Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to t...
Saved in:
Published in | eLife Vol. 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
15.02.2022
eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to the impaired responses to hypoxia due to the inhibition of hypoxia-inducible factor-1 (HIF-1) by hyperglycemia.
The ROS levels were analyzed in the blood of healthy subjects and individuals with type 1 diabetes after exposure to hypoxia. The relation between HIF-1, glucose levels, ROS production and its functional consequences were analyzed in renal mIMCD-3 cells and in kidneys of mouse models of diabetes.
Exposure to hypoxia increased circulating ROS in subjects with diabetes, but not in subjects without diabetes. High glucose concentrations repressed HIF-1 both in hypoxic cells and in kidneys of animals with diabetes, through a HIF prolyl-hydroxylase (PHD)-dependent mechanism. The impaired HIF-1 signaling contributed to excess production of mitochondrial ROS through increased mitochondrial respiration that was mediated by Pyruvate dehydrogenase kinase 1 (PDK1). The restoration of HIF-1 function attenuated ROS overproduction despite persistent hyperglycemia, and conferred protection against apoptosis and renal injury in diabetes.
We conclude that the repression of HIF-1 plays a central role in mitochondrial ROS overproduction in diabetes and is a potential therapeutic target for diabetic complications. These findings are timely since the first PHD inhibitor that can activate HIF-1 has been newly approved for clinical use.
This work was supported by grants from the Swedish Research Council, Stockholm County Research Council, Stockholm Regional Research Foundation, Bert von Kantzows Foundation, Swedish Society of Medicine, Kung Gustaf V:s och Drottning Victorias Frimurarestifelse, Karolinska Institute's Research Foundations, Strategic Research Programme in Diabetes, and Erling-Persson Family Foundation for S-B.C.; grants from the Swedish Research Council and Swedish Heart and Lung Foundation for T.A.S.; and ERC consolidator grant for M.M. |
---|---|
AbstractList | Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to the impaired responses to hypoxia due to the inhibition of hypoxia-inducible factor-1 (HIF-1) by hyperglycemia.
The ROS levels were analyzed in the blood of healthy subjects and individuals with type 1 diabetes after exposure to hypoxia. The relation between HIF-1, glucose levels, ROS production and its functional consequences were analyzed in renal mIMCD-3 cells and in kidneys of mouse models of diabetes.
Exposure to hypoxia increased circulating ROS in subjects with diabetes, but not in subjects without diabetes. High glucose concentrations repressed HIF-1 both in hypoxic cells and in kidneys of animals with diabetes, through a HIF prolyl-hydroxylase (PHD)-dependent mechanism. The impaired HIF-1 signaling contributed to excess production of mitochondrial ROS through increased mitochondrial respiration that was mediated by Pyruvate dehydrogenase kinase 1 (PDK1). The restoration of HIF-1 function attenuated ROS overproduction despite persistent hyperglycemia, and conferred protection against apoptosis and renal injury in diabetes.
We conclude that the repression of HIF-1 plays a central role in mitochondrial ROS overproduction in diabetes and is a potential therapeutic target for diabetic complications. These findings are timely since the first PHD inhibitor that can activate HIF-1 has been newly approved for clinical use.
This work was supported by grants from the Swedish Research Council, Stockholm County Research Council, Stockholm Regional Research Foundation, Bert von Kantzows Foundation, Swedish Society of Medicine, Kung Gustaf V:s och Drottning Victorias Frimurarestifelse, Karolinska Institute's Research Foundations, Strategic Research Programme in Diabetes, and Erling-Persson Family Foundation for S-B.C.; grants from the Swedish Research Council and Swedish Heart and Lung Foundation for T.A.S.; and ERC consolidator grant for M.M. Background: Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to the impaired responses to hypoxia due to the inhibition of hypoxia-inducible factor-1 (HIF-1) by hyperglycemia. Methods: The ROS levels were analyzed in the blood of healthy subjects and individuals with type 1 diabetes after exposure to hypoxia. The relation between HIF-1, glucose levels, ROS production and its functional consequences were analyzed in renal mIMCD-3 cells and in kidneys of mouse models of diabetes. Results: Exposure to hypoxia increased circulating ROS in subjects with diabetes, but not in subjects without diabetes. High glucose concentrations repressed HIF-1 both in hypoxic cells and in kidneys of animals with diabetes, through a HIF prolyl-hydroxylase (PHD)-dependent mechanism. The impaired HIF-1 signaling contributed to excess production of mitochondrial ROS through increased mitochondrial respiration that was mediated by Pyruvate dehydrogenase kinase 1 (PDK1). The restoration of HIF-1 function attenuated ROS overproduction despite persistent hyperglycemia, and conferred protection against apoptosis and renal injury in diabetes. Conclusions: We conclude that the repression of HIF-1 plays a central role in mitochondrial ROS overproduction in diabetes and is a potential therapeutic target for diabetic complications. These findings are timely since the first PHD inhibitor that can activate HIF-1 has been newly approved for clinical use. Funding: This work was supported by grants from the Swedish Research Council, Stockholm County Research Council, Stockholm Regional Research Foundation, Bert von Kantzows Foundation, Swedish Society of Medicine, Kung Gustaf V:s och Drottning Victorias Frimurarestifelse, Karolinska Institute's Research Foundations, Strategic Research Programme in Diabetes, and Erling-Persson Family Foundation for S-B.C.; grants from the Swedish Research Council and Swedish Heart and Lung Foundation for T.A.S.; and ERC consolidator grant for M.M. Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to the impaired responses to hypoxia due to the inhibition of hypoxia-inducible factor-1 (HIF-1) by hyperglycemia.BackgroundExcessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to the impaired responses to hypoxia due to the inhibition of hypoxia-inducible factor-1 (HIF-1) by hyperglycemia.The ROS levels were analyzed in the blood of healthy subjects and individuals with type 1 diabetes after exposure to hypoxia. The relation between HIF-1, glucose levels, ROS production and its functional consequences were analyzed in renal mIMCD-3 cells and in kidneys of mouse models of diabetes.MethodsThe ROS levels were analyzed in the blood of healthy subjects and individuals with type 1 diabetes after exposure to hypoxia. The relation between HIF-1, glucose levels, ROS production and its functional consequences were analyzed in renal mIMCD-3 cells and in kidneys of mouse models of diabetes.Exposure to hypoxia increased circulating ROS in subjects with diabetes, but not in subjects without diabetes. High glucose concentrations repressed HIF-1 both in hypoxic cells and in kidneys of animals with diabetes, through a HIF prolyl-hydroxylase (PHD)-dependent mechanism. The impaired HIF-1 signaling contributed to excess production of mitochondrial ROS through increased mitochondrial respiration that was mediated by Pyruvate dehydrogenase kinase 1 (PDK1). The restoration of HIF-1 function attenuated ROS overproduction despite persistent hyperglycemia, and conferred protection against apoptosis and renal injury in diabetes.ResultsExposure to hypoxia increased circulating ROS in subjects with diabetes, but not in subjects without diabetes. High glucose concentrations repressed HIF-1 both in hypoxic cells and in kidneys of animals with diabetes, through a HIF prolyl-hydroxylase (PHD)-dependent mechanism. The impaired HIF-1 signaling contributed to excess production of mitochondrial ROS through increased mitochondrial respiration that was mediated by Pyruvate dehydrogenase kinase 1 (PDK1). The restoration of HIF-1 function attenuated ROS overproduction despite persistent hyperglycemia, and conferred protection against apoptosis and renal injury in diabetes.We conclude that the repression of HIF-1 plays a central role in mitochondrial ROS overproduction in diabetes and is a potential therapeutic target for diabetic complications. These findings are timely since the first PHD inhibitor that can activate HIF-1 has been newly approved for clinical use.ConclusionsWe conclude that the repression of HIF-1 plays a central role in mitochondrial ROS overproduction in diabetes and is a potential therapeutic target for diabetic complications. These findings are timely since the first PHD inhibitor that can activate HIF-1 has been newly approved for clinical use.This work was supported by grants from the Swedish Research Council, Stockholm County Research Council, Stockholm Regional Research Foundation, Bert von Kantzows Foundation, Swedish Society of Medicine, Kung Gustaf V:s och Drottning Victorias Frimurarestifelse, Karolinska Institute's Research Foundations, Strategic Research Programme in Diabetes, and Erling-Persson Family Foundation for S-B.C.; grants from the Swedish Research Council and Swedish Heart and Lung Foundation for T.A.S.; and ERC consolidator grant for M.M.FundingThis work was supported by grants from the Swedish Research Council, Stockholm County Research Council, Stockholm Regional Research Foundation, Bert von Kantzows Foundation, Swedish Society of Medicine, Kung Gustaf V:s och Drottning Victorias Frimurarestifelse, Karolinska Institute's Research Foundations, Strategic Research Programme in Diabetes, and Erling-Persson Family Foundation for S-B.C.; grants from the Swedish Research Council and Swedish Heart and Lung Foundation for T.A.S.; and ERC consolidator grant for M.M. Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to the impaired responses to hypoxia due to the inhibition of hypoxia-inducible factor-1 (HIF-1) by hyperglycemia. The ROS levels were analyzed in the blood of healthy subjects and individuals with type 1 diabetes after exposure to hypoxia. The relation between HIF-1, glucose levels, ROS production and its functional consequences were analyzed in renal mIMCD-3 cells and in kidneys of mouse models of diabetes. Exposure to hypoxia increased circulating ROS in subjects with diabetes, but not in subjects without diabetes. High glucose concentrations repressed HIF-1 both in hypoxic cells and in kidneys of animals with diabetes, through a HIF prolyl-hydroxylase (PHD)-dependent mechanism. The impaired HIF-1 signaling contributed to excess production of mitochondrial ROS through increased mitochondrial respiration that was mediated by Pyruvate dehydrogenase kinase 1 (PDK1). The restoration of HIF-1 function attenuated ROS overproduction despite persistent hyperglycemia, and conferred protection against apoptosis and renal injury in diabetes. We conclude that the repression of HIF-1 plays a central role in mitochondrial ROS overproduction in diabetes and is a potential therapeutic target for diabetic complications. These findings are timely since the first PHD inhibitor that can activate HIF-1 has been newly approved for clinical use. |
Audience | Academic |
Author | Grünler, Jacob Eliasson Angelstig, Sofie Botusan, Ileana Ruxandra Palm, Fredrik Solaini, Giancarlo Narayanan, Sampath Del Sole, Marianna Mazzone, Massimiliano Brismar, Kerstin Di Toro, Alessandro Forsberg, Elisabete A Zhang, Ao Rajamand Ekberg, Neda Xu, Cheng Bernardi, Luciano Zheng, Xiaowei Carmeliet, Peter Catrina, Sergiu-Bogdan Schiffer, Tomas A Zhao, Allan |
Author_xml | – sequence: 1 givenname: Xiaowei orcidid: 0000-0002-2648-1119 surname: Zheng fullname: Zheng, Xiaowei – sequence: 2 givenname: Sampath surname: Narayanan fullname: Narayanan, Sampath – sequence: 3 givenname: Cheng surname: Xu fullname: Xu, Cheng – sequence: 4 givenname: Sofie surname: Eliasson Angelstig fullname: Eliasson Angelstig, Sofie – sequence: 5 givenname: Jacob surname: Grünler fullname: Grünler, Jacob – sequence: 6 givenname: Allan orcidid: 0000-0002-2492-0923 surname: Zhao fullname: Zhao, Allan – sequence: 7 givenname: Alessandro orcidid: 0000-0001-7625-1103 surname: Di Toro fullname: Di Toro, Alessandro – sequence: 8 givenname: Luciano surname: Bernardi fullname: Bernardi, Luciano – sequence: 9 givenname: Massimiliano surname: Mazzone fullname: Mazzone, Massimiliano – sequence: 10 givenname: Peter orcidid: 0000-0001-7961-1821 surname: Carmeliet fullname: Carmeliet, Peter – sequence: 11 givenname: Marianna surname: Del Sole fullname: Del Sole, Marianna – sequence: 12 givenname: Giancarlo surname: Solaini fullname: Solaini, Giancarlo – sequence: 13 givenname: Elisabete A surname: Forsberg fullname: Forsberg, Elisabete A – sequence: 14 givenname: Ao surname: Zhang fullname: Zhang, Ao – sequence: 15 givenname: Kerstin surname: Brismar fullname: Brismar, Kerstin – sequence: 16 givenname: Tomas A surname: Schiffer fullname: Schiffer, Tomas A – sequence: 17 givenname: Neda orcidid: 0000-0001-5597-2593 surname: Rajamand Ekberg fullname: Rajamand Ekberg, Neda – sequence: 18 givenname: Ileana Ruxandra surname: Botusan fullname: Botusan, Ileana Ruxandra – sequence: 19 givenname: Fredrik surname: Palm fullname: Palm, Fredrik – sequence: 20 givenname: Sergiu-Bogdan orcidid: 0000-0002-6914-3902 surname: Catrina fullname: Catrina, Sergiu-Bogdan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35164902$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-469764$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:148918489$$DView record from Swedish Publication Index |
BookMark | eNp1k8tv1DAQxiNUREvpiTuKxAUEKXbi-HFBqsqrUiWk8hA3y3HGW5esvbWT0l7425ndLaVbleQQa_z7vonHM4-LrRADFMVTSvZF27I3cOwd7AsiKHtQ7NSkJRWR7MfWrfV2sZfzGcFHMCmpelRsNy3lTJF6p_h9AosEOfsYyujK06tFvPSm8qGfrO8GKJ2xY0wVLW0MY_LdNEIux1j6YBOYDH0592O0pzH0yZuhxKAd_QWU8fJqBqHMC7AeJYsU0XJc5vGh7L3pAJ2eFA-dGTLsXX93i28f3n89_FQdf_54dHhwXFne1KxqQAlWG0GJUj1x3IBSolO8FW0jOGXUGGo42IZwyQU3UkrVN7QlTnauJ02zWxytfftozvQi-blJVzoar1eBmGbapNHbAXSP3qZXPVNCMOOskk7JRqjadXXTEYNe1dor_4LF1G24XYd-4go0wwuSBPnX_-Xf-e8Hq-zTpBlXgjPE365xZOfQW8Cym2FDtbkT_KmexQstJeOtWp71xbVBiucT5FHPfbYwDCZAnLKuea1Iy1ldI_r8DnoWpxTwJpBqGKMU0X_UzGB9fHAR89qlqT7gquGqpUwhtX8PhW8Pc4_NA85jfEPwckOwbDC4HGdmylkffTnZZJ_dLspNNf42MgKv1oBNMecE7gahRC8nRa8mRa8mBWl6h7Z-NMvmxH_2w72aP0c0Fwc |
CitedBy_id | crossref_primary_10_1186_s13020_024_00901_5 crossref_primary_10_1128_mbio_01086_22 crossref_primary_10_1186_s12951_023_02185_7 crossref_primary_10_1007_s00239_024_10155_2 crossref_primary_10_1093_burnst_tkae052 crossref_primary_10_1038_s41598_023_39442_6 crossref_primary_10_3390_biomedicines11092421 crossref_primary_10_1016_j_heliyon_2024_e24776 crossref_primary_10_1186_s43141_022_00401_9 crossref_primary_10_3390_ijms25084186 crossref_primary_10_1016_j_heliyon_2024_e24656 crossref_primary_10_3390_antiox11112183 crossref_primary_10_1038_s12276_023_01113_x crossref_primary_10_1038_s44321_024_00035_z crossref_primary_10_1002_ccd_30630 crossref_primary_10_3389_fendo_2023_1196293 crossref_primary_10_3390_ijms26010117 crossref_primary_10_1002_nbm_5207 crossref_primary_10_1016_j_arr_2024_102551 crossref_primary_10_1016_j_jbc_2023_105103 crossref_primary_10_3389_fphys_2023_1239643 crossref_primary_10_3390_biology12030385 crossref_primary_10_1371_journal_pone_0300045 crossref_primary_10_1016_j_ajoms_2024_07_009 crossref_primary_10_1038_s41419_023_06249_2 crossref_primary_10_3390_polym16192818 crossref_primary_10_1016_j_ceca_2025_103014 crossref_primary_10_1038_s44319_024_00097_7 crossref_primary_10_3390_ijms24087035 crossref_primary_10_3892_ijmm_2022_5197 crossref_primary_10_3390_ijms25020737 crossref_primary_10_1016_j_freeradbiomed_2024_08_007 crossref_primary_10_1016_j_celrep_2025_115403 crossref_primary_10_3389_fcvm_2022_916841 crossref_primary_10_3389_fphar_2023_1088288 crossref_primary_10_1016_j_metabol_2022_155195 crossref_primary_10_1016_j_tips_2024_07_001 crossref_primary_10_3389_fimmu_2023_1207631 |
Cites_doi | 10.2337/db13-0167 10.1007/s00109-014-1166-x 10.1038/415096a 10.1042/bst0311300 10.1007/s00125-021-05380-z 10.1016/j.cell.2009.01.020 10.1016/j.nephro.2017.01.015 10.1152/ajprenal.00207.2018 10.1056/NEJMoa1813599 10.1111/apha.13058 10.1038/sj.ki.5002567 10.4049/jimmunol.0902352 10.2337/db09-1342 10.1089/ars.2017.7396 10.3390/biology10010018 10.1073/pnas.95.20.11715 10.1038/35008121 10.1007/s00125-011-2195-4 10.1038/s41598-017-04947-4 10.2337/diabetes.53.12.3226 10.1111/j.1582-4934.2011.01258.x 10.1007/s00125-003-1155-z 10.1111/j.1440-1681.2006.04473.x 10.1164/rccm.201207-1294OC 10.1016/j.cmet.2005.05.002 10.15252/embj.201695204 10.23876/j.krcp.19.063 10.1152/ajplung.2000.279.4.L683 10.1007/s00125-011-2191-8 10.1038/s41581-019-0182-z 10.1016/j.cell.2007.01.047 10.1161/CIRCRESAHA.110.223545 10.1152/physiol.00022.2015 10.1128/MCB.02236-05 10.1681/ASN.2013090990 10.1016/j.cmet.2006.02.002 10.2337/dc10-1545 10.1096/fj.02-0130fje 10.1038/s41586-020-2551-y 10.1016/j.cmet.2005.05.001 10.1093/ndt/gfm715 |
ContentType | Journal Article |
Copyright | 2022, Zheng et al. COPYRIGHT 2022 eLife Science Publications, Ltd. 2022, Zheng et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022, Zheng et al 2022 Zheng et al |
Copyright_xml | – notice: 2022, Zheng et al. – notice: COPYRIGHT 2022 eLife Science Publications, Ltd. – notice: 2022, Zheng et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022, Zheng et al 2022 Zheng et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC DOA |
DOI | 10.7554/eLife.70714 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Medicine |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_de99ad9d49774afc98f983792fb23b0a oai_swepub_ki_se_455480 oai_DiVA_org_uu_469764 PMC8846593 A693695149 35164902 10_7554_eLife_70714 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Canada United States--US |
GeographicLocations_xml | – name: Canada – name: United States--US |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 2020-01645 – fundername: ; grantid: 773208 – fundername: ; grantid: 20210431 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP 3V. CGR CUY CVF ECM EIF FRP NPM RHF PMFND 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 H13 ZZAVC PUEGO |
ID | FETCH-LOGICAL-c6324-3e9742a71099d0f6ae997b96575376141aa1a6ec3068676a8889d3150f8bfd033 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:27:49 EDT 2025 Mon Aug 25 03:33:09 EDT 2025 Thu Aug 21 06:50:32 EDT 2025 Thu Aug 21 18:11:18 EDT 2025 Fri Jul 11 01:45:18 EDT 2025 Fri Jul 25 11:56:30 EDT 2025 Tue Jun 17 21:39:46 EDT 2025 Tue Jun 10 20:22:59 EDT 2025 Fri Jun 27 04:19:56 EDT 2025 Thu Jan 02 22:56:32 EST 2025 Thu Apr 24 23:11:16 EDT 2025 Tue Jul 01 01:58:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | diabetic complications hypoxia mouse cell biology mitochondria hypoxia-inducible factor-1 reactive oxygen species medicine diabetes human |
Language | English |
License | 2022, Zheng et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6324-3e9742a71099d0f6ae997b96575376141aa1a6ec3068676a8889d3150f8bfd033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Department of Nephrology, GuangDong Second Traditional Chinese Medicine Hospital, GuangZhou, China. These authors contributed equally to this work. These authors also contributed equally to this work. |
ORCID | 0000-0002-2648-1119 0000-0001-7625-1103 0000-0001-7961-1821 0000-0002-2492-0923 0000-0001-5597-2593 0000-0002-6914-3902 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.70714 |
PMID | 35164902 |
PQID | 2634411290 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_de99ad9d49774afc98f983792fb23b0a swepub_primary_oai_swepub_ki_se_455480 swepub_primary_oai_DiVA_org_uu_469764 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8846593 proquest_miscellaneous_2629056422 proquest_journals_2634411290 gale_infotracmisc_A693695149 gale_infotracacademiconefile_A693695149 gale_incontextgauss_ISR_A693695149 pubmed_primary_35164902 crossref_primary_10_7554_eLife_70714 crossref_citationtrail_10_7554_eLife_70714 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220215 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220215 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2022 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Bernardi (bib4) 2017; 7 Chandel (bib10) 1998; 95 Chen (bib12) 2019; 381 Nauta (bib27) 2011; 34 Palm (bib32) 2006; 33 Allen (bib1) 2003; 17 Jiang (bib23) 2010; 59 Semenza (bib37) 2017; 36 Guzy (bib19) 2005; 1 Brunelle (bib5) 2005; 1 Honda (bib22) 2019; 38 Schiffer (bib35) 2018; 315 Miwa (bib26) 2003; 31 Zheng (bib41) 2006; 26 Catrina (bib7) 2004; 53 Mazzone (bib25) 2009; 136 Schödel (bib36) 2019; 15 Waypa (bib39) 2013; 187 Carreau (bib6) 2011; 15 Dikalov (bib13) 2018; 28 Echtay (bib15) 2002; 415 Kim (bib24) 2006; 3 Giacco (bib18) 2010; 107 Nordquist (bib29) 2015; 26 Rosenberger (bib34) 2008; 73 Bento (bib2) 2011; 54 Catrina (bib8) 2014; 92 Palm (bib31) 2003; 46 Prabhakar (bib33) 2015; 30 Duennwald (bib14) 2013; 62 Weissmann (bib40) 2000; 279 Friederich-Persson (bib16) 2018; 223 Charlton (bib11) 2020; 10 Fukuda (bib17) 2007; 129 Hernansanz-Agustín (bib21) 2020; 586 Ohtomo (bib30) 2008; 23 Wang (bib38) 2010; 184 Nishikawa (bib28) 2000; 404 Bernardi (bib3) 2011; 54 Haase (bib20) 2017; 13 Suppl 1 Catrina (bib9) 2021; 64 |
References_xml | – volume: 62 start-page: 4220 year: 2013 ident: bib14 article-title: Effects of a single bout of interval hypoxia on cardiorespiratory control in patients with type 1 diabetes publication-title: Diabetes doi: 10.2337/db13-0167 – volume: 92 start-page: 1025 year: 2014 ident: bib8 article-title: Impaired hypoxia-inducible factor (HIF) regulation by hyperglycemia publication-title: Journal of Molecular Medicine (Berlin, Germany) doi: 10.1007/s00109-014-1166-x – volume: 415 start-page: 96 year: 2002 ident: bib15 article-title: Superoxide activates mitochondrial uncoupling proteins publication-title: Nature doi: 10.1038/415096a – volume: 31 start-page: 1300 year: 2003 ident: bib26 article-title: Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling publication-title: Biochemical Society Transactions doi: 10.1042/bst0311300 – volume: 64 start-page: 709 year: 2021 ident: bib9 article-title: Hypoxia and hypoxia-inducible factors in diabetes and its complications publication-title: Diabetologia doi: 10.1007/s00125-021-05380-z – volume: 136 start-page: 839 year: 2009 ident: bib25 article-title: Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization publication-title: Cell doi: 10.1016/j.cell.2009.01.020 – volume: 13 Suppl 1 start-page: S29 year: 2017 ident: bib20 article-title: Oxygen sensors as therapeutic targets in kidney disease publication-title: Nephrologie & Therapeutique doi: 10.1016/j.nephro.2017.01.015 – volume: 315 start-page: F677 year: 2018 ident: bib35 article-title: Kidney outer medulla mitochondria are more efficient compared with cortex mitochondria as a strategy to sustain ATP production in a suboptimal environment publication-title: American Journal of Physiology. Renal Physiology doi: 10.1152/ajprenal.00207.2018 – volume: 381 start-page: 1001 year: 2019 ident: bib12 article-title: Roxadustat for Anemia in Patients with Kidney Disease Not Receiving Dialysis publication-title: The New England Journal of Medicine doi: 10.1056/NEJMoa1813599 – volume: 223 year: 2018 ident: bib16 article-title: Deletion of Uncoupling Protein-2 reduces renal mitochondrial leak respiration, intrarenal hypoxia and proteinuria in a mouse model of type 1 diabetes publication-title: Acta Physiologica (Oxford, England) doi: 10.1111/apha.13058 – volume: 73 start-page: 34 year: 2008 ident: bib34 article-title: Adaptation to hypoxia in the diabetic rat kidney publication-title: Kidney International doi: 10.1038/sj.ki.5002567 – volume: 184 start-page: 582 year: 2010 ident: bib38 article-title: Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1alpha in long-lived Mclk1+/- mouse mutants publication-title: Journal of Immunology (Baltimore, Md doi: 10.4049/jimmunol.0902352 – volume: 59 start-page: 850 year: 2010 ident: bib23 article-title: The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy publication-title: Diabetes doi: 10.2337/db09-1342 – volume: 28 start-page: 1433 year: 2018 ident: bib13 article-title: Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes publication-title: Antioxidants & Redox Signaling doi: 10.1089/ars.2017.7396 – volume: 10 year: 2020 ident: bib11 article-title: Oxidative Stress and Inflammation in Renal and Cardiovascular Complications of Diabetes publication-title: Biology doi: 10.3390/biology10010018 – volume: 95 start-page: 11715 year: 1998 ident: bib10 article-title: Mitochondrial reactive oxygen species trigger hypoxia-induced transcription publication-title: PNAS doi: 10.1073/pnas.95.20.11715 – volume: 404 start-page: 787 year: 2000 ident: bib28 article-title: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage publication-title: Nature doi: 10.1038/35008121 – volume: 54 start-page: 2164 year: 2011 ident: bib3 article-title: Short-term oxygen administration restores blunted baroreflex sensitivity in patients with type 1 diabetes publication-title: Diabetologia doi: 10.1007/s00125-011-2195-4 – volume: 7 year: 2017 ident: bib4 article-title: Oxygen-induced impairment in arterial function is corrected by slow breathing in patients with type 1 diabetes publication-title: Scientific Reports doi: 10.1038/s41598-017-04947-4 – volume: 53 start-page: 3226 year: 2004 ident: bib7 article-title: Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function publication-title: Diabetes doi: 10.2337/diabetes.53.12.3226 – volume: 15 start-page: 1239 year: 2011 ident: bib6 article-title: Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia publication-title: Journal of Cellular and Molecular Medicine doi: 10.1111/j.1582-4934.2011.01258.x – volume: 46 start-page: 1153 year: 2003 ident: bib31 article-title: Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension publication-title: Diabetologia doi: 10.1007/s00125-003-1155-z – volume: 33 start-page: 997 year: 2006 ident: bib32 article-title: Intrarenal oxygen in diabetes and a possible link to diabetic nephropathy publication-title: Clinical and Experimental Pharmacology & Physiology doi: 10.1111/j.1440-1681.2006.04473.x – volume: 187 start-page: 424 year: 2013 ident: bib39 article-title: Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation publication-title: American Journal of Respiratory and Critical Care Medicine doi: 10.1164/rccm.201207-1294OC – volume: 1 start-page: 409 year: 2005 ident: bib5 article-title: Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation publication-title: Cell Metabolism doi: 10.1016/j.cmet.2005.05.002 – volume: 36 start-page: 252 year: 2017 ident: bib37 article-title: Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype publication-title: The EMBO Journal doi: 10.15252/embj.201695204 – volume: 38 start-page: 414 year: 2019 ident: bib22 article-title: The role of oxidative stress and hypoxia in renal disease publication-title: Kidney Research and Clinical Practice doi: 10.23876/j.krcp.19.063 – volume: 279 start-page: L683 year: 2000 ident: bib40 article-title: Hypoxic vasoconstriction in intact lungs: a role for NADPH oxidase-derived H(2)O(2)? publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.2000.279.4.L683 – volume: 54 start-page: 1946 year: 2011 ident: bib2 article-title: Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes publication-title: Diabetologia doi: 10.1007/s00125-011-2191-8 – volume: 15 start-page: 641 year: 2019 ident: bib36 article-title: Mechanisms of hypoxia signalling: new implications for nephrology publication-title: Nature Reviews. Nephrology doi: 10.1038/s41581-019-0182-z – volume: 129 start-page: 111 year: 2007 ident: bib17 article-title: HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells publication-title: Cell doi: 10.1016/j.cell.2007.01.047 – volume: 107 start-page: 1058 year: 2010 ident: bib18 article-title: Oxidative stress and diabetic complications publication-title: Circulation Research doi: 10.1161/CIRCRESAHA.110.223545 – volume: 30 start-page: 340 year: 2015 ident: bib33 article-title: Oxygen Sensing and Homeostasis publication-title: Physiology (Bethesda, Md.) doi: 10.1152/physiol.00022.2015 – volume: 26 start-page: 4628 year: 2006 ident: bib41 article-title: Cell-type-specific regulation of degradation of hypoxia-inducible factor 1 alpha: role of subcellular compartmentalization publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.02236-05 – volume: 26 start-page: 328 year: 2015 ident: bib29 article-title: Activation of hypoxia-inducible factors prevents diabetic nephropathy publication-title: Journal of the American Society of Nephrology doi: 10.1681/ASN.2013090990 – volume: 3 start-page: 177 year: 2006 ident: bib24 article-title: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia publication-title: Cell Metabolism doi: 10.1016/j.cmet.2006.02.002 – volume: 34 start-page: 975 year: 2011 ident: bib27 article-title: Glomerular and tubular damage markers are elevated in patients with diabetes publication-title: Diabetes Care doi: 10.2337/dc10-1545 – volume: 17 start-page: 908 year: 2003 ident: bib1 article-title: High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases publication-title: FASEB Journal doi: 10.1096/fj.02-0130fje – volume: 586 start-page: 287 year: 2020 ident: bib21 article-title: Na+ controls hypoxic signalling by the mitochondrial respiratory chain publication-title: Nature doi: 10.1038/s41586-020-2551-y – volume: 1 start-page: 401 year: 2005 ident: bib19 article-title: Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing publication-title: Cell Metabolism doi: 10.1016/j.cmet.2005.05.001 – volume: 23 start-page: 1166 year: 2008 ident: bib30 article-title: Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model publication-title: Nephrology, Dialysis, Transplantation doi: 10.1093/ndt/gfm715 |
SSID | ssj0000748819 |
Score | 2.4752126 |
Snippet | Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has... Background: Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently,... Background:Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently,... |
SourceID | doaj swepub pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Adult Analysis Animal models Animals Apoptosis Cell Biology Cell culture Cell Line Dextrose Diabetes Diabetes Complications Diabetes mellitus (insulin dependent) Diabetes Mellitus - blood Diabetes Mellitus - genetics diabetic complications Female Glucose Glycerol Health aspects Human Humans Hydroxylase Hyperglycemia Hyperglycemia - genetics Hypoxia Hypoxia-inducible factor 1 Hypoxia-Inducible Factor 1 - antagonists & inhibitors Hypoxia-Inducible Factor 1 - genetics Kidney - pathology Kidneys Male Medicine Mice Mitochondria Mitochondria - metabolism Mouse Plasmids Pyruvic acid Reactive oxygen species Reactive Oxygen Species - blood Reactive Oxygen Species - metabolism Signal Transduction Spectrum analysis Therapeutic targets Transcription factors Type 1 diabetes Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggwqICGFJnFix8flURUEHApFvVm2Y7cRJVmxG6l74bczY2dXG6jEhdvKnuwmM-N5ZGe-IWTPQNKQeVOltmImLXntUlkVMs3rTIi8sZlssN_502d-eFx-OKlOtkZ9YU1YhAeOjNtvnJS6kU2JgYr2VtZeQlIlC28KZrIQGoHP20qmgg0WoJi5jA15AlzmvvvYevdKxH6dLRcUkPr_tsdbDunPYskJpGhwQwc3yPUxfqSzeN83yRXX3SJX40TJ1W3y62hd2drR3tOz1by_aHUKifdgW3PuaJyvk-Y01KjjsCu3oMueth2GjwvX0B9wxsEmdg2qJoXFYBFpf7ECXaPYmQnJNZ1HpFj8nbaj6ze4d8jxwbuvbw7TccRCahGnPWUO8olCY0GmbDLPNXBbGIn_xoDlyctc61xzZxl2kgiuIV-WDYMg0tfGNxljd8lO13fuPqHWWMaZzzkIqaxya-pCcOHgm0sUVZ2Ql2uuKzvij-MYjHMFeQiKSAURqSCihOxtiOcRduNystcovg0JYmWHBdAgNWqQ-pcGJeQpCl8hGkaH5Tanelgs1PsvR2rGcd4hxJQyIS9GIt_DXVs9di_AsyOA1oRyd0IJx9VOt9c6pkZzsVAFZxCW4ivBhDzZbOOVWALXuX5AGtiuIF0sEnIvquTmuVkFWa_MYEdMlHXCmOlO154FMPEaAtBKsoQ8i2o9ueRt-20WeDkMquQQuQLHn19CNy59h09OlRViCD74H6J5SK4V2G6CA3iqXbKz_Dm4RxAELs3jcN5_A8AqXqc priority: 102 providerName: Directory of Open Access Journals – databaseName: Proquest Health and Medical Complete dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gIIMKSEhpkzix4xNaHlVBwKFQ1JvlV9qIkizNRupe-O3MONmlgYrbyp5k_RjPw5n5hpAtA05DUpkitgUzcc5LH8sik3FaJkKkzibSYb7zp8987yD_cFgcjhdu3RhWuZKJQVC71uId-U7GGWhuvDV5Nf8ZY9Uo_Lo6ltC4TK4gdBlytTgU6zsWUI8laLwhLU-A4tzxH-vKb4sha-ecIgp4_f9K5XNq6e-QyQmwaFBGuzfI9dGKpLNh22-SS765Ra4OdSWXt8mv_VV8a0Pbih4v5-1ZrWNwv3tbmxNPhyo7cUpDpDqWvPIdXbS0btCI7LyjP-Ckg2RsHDIohcYgF2l7tgSOo5ifCS42nQ94sfg_dUNX97h3yMHuu69v9uKx0EJsEa09Zh68ikxjWKZ0ScW1l1IYid9kQP6keap1qrm3DPNJBNfgNUvHwJSsSlO5hLG7ZKNpG3-fUGss46xKua5sXqTWlJngwsOb88qAeRCRl6tVV3ZEIcdiGCcKvBHcIhW2SIUtisjWmng-gG9cTPYat29NgojZoaE9PVLjAVQO5qSddDkavDA4WVYSnHOZ4bBMoiPyFDdfISZGg0E3R7rvOvX-y76acax6CJaljMiLkahqYdRWjzkMMHeE0ZpQbk4o4dDaafeKx9QoNDr1h8Uj8mTdjU9iIFzj2x5poLsApzGLyL2BJdfzZgX4vjKBHjFh1snCTHua-jhAipdghhaSReTZwNaTR97W32ZhLfte5RzsV1jx5xfQjU3f4ZdXeYFIgg_-P8-H5FqG6SRYYKfYJBuL094_AiNvYR6Hk_wbpm1VXQ priority: 102 providerName: ProQuest |
Title | Repression of hypoxia-inducible factor-1 contributes to increased mitochondrial reactive oxygen species production in diabetes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35164902 https://www.proquest.com/docview/2634411290 https://www.proquest.com/docview/2629056422 https://pubmed.ncbi.nlm.nih.gov/PMC8846593 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-469764 http://kipublications.ki.se/Default.aspx?queryparsed=id:148918489 https://doaj.org/article/de99ad9d49774afc98f983792fb23b0a |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB71IapeEBQohhItqICE5OD3ek8ohVYFkQoFgnJbre11axHskMRScuG3M-NHhEtO3KzdWXsfs7PfrOcBcBqh0mClkW_GvhuZXhBqU_iOMO3Q4txOYksk5O88vAoux96niT_ZgTYZZzOBi62qHeWTGs-n_dWv9Tvc8Ihf-xxPw7f6c5bqPidXnF3YxyOJUyqDYYPzK5HMkU9tUfvn3W5zCAeuj1qDaK5W2sOpiuH_r6T-66i6bUbZCTZaHVAX9-BugyzZoGaF-7Cj8yO4U-eaXB_BwbD5i_4Afo9a89ecFSm7Wc-KVaZM1M7LOIummtVJeEybVYbslBFLL9iyYFlOGHOhE_YTBQHOXZ4Q_zIsrMQmK1ZrZEhG7puogbNZHU6WvpPlrL3mfQjji_Nv7y_NJg-DGVMwd9PVqHQ4iqw2RWKlgdJC8EjQLxsUT7ZnK2WrQMcuuZvwQKFSLRIXkWYaRmliue4j2MuLXD8GFkexG7ipHag09nw7jkKHB1zjm700QvRgwJt2AWTcBCmnXBlTicoKLZysFk5WC2fA6YZ4Vsfm2E52Riu5IaGA2lVBMb-Wzf6UCY5JJSLxCA9j50SYCtTdhUPdiixlwAviA0khM3KyyblW5WIhP34dyUFASREReAoDXjdEaYG9jlXj4oBjpyhbHcqTDiXu6bhb3bKbbLeEdAIXsSvdGxrwfFNNLclOLtdFSTRY7aNO6RhwXHPnZtwtkxvAO3zbmZhuTZ7dVBHHQ0SpvnANeFlzeKfJh-z7oJrLspRegPAWZ_zVFrqm6Ac-aen5FGjwyX935SkcOuSIQql5_BPYW85L_Qzh4TLqwS6f8B7sn51ffRn1qkuWXiUO_gCf-2vv |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KqKEFwQbwIFDGpBQgrN2_EBoYVS7dJtD6VFezO247QRJVmajehe-CS-kZm8aKDi1tvKnmRtz3hemQch6wqMBidVoa1DX9lBFBubhx633dhhzE20wxPMd97di8aHwcdZOFshv7pcGAyr7HhizaiTQqOPfNOLfJDc6DV5O_9uY9co_LratdBoyGLHLH-AyVa-mWwBfjc8b_vDwfux3XYVsDWWJrd9Ayq0JzEGkSdOGknDOVMcP0DAZXMDV0pXRkb7mDzBIgkmIk980JvSWKWJgw5QYPlXQPA6aOyxGet9OiCOY5CwTRogA0G9aaZZal6zJkvonOCr-wP8KwXOicG_QzQHhUxr4bd9k9xotVY6asjsFlkx-W1yteljubxDfu538bQ5LVJ6vJwXZ5m0wdyvdKZODG26-tgurSPjscWWKemioFmOSmtpEvoNOAtw4jzBC0FhsObDtDhbAoVTzAcFk57Om_q0-D9ZTju_8V1yeCkouEdW8yI3DwjVSvuRn7qRTHUQulrFHouYgTcHqQJ1xCKvulMXuq16js03TgRYP4giUaNI1CiyyHoPPG-KfVwM9g7R14Nghe56oDg9Eu2FFwnsSSY8CVDBhsXxOOWxz7iHy1KOtMhzRL7AGhw5BvkcyaosxeTTvhhF2GURNFlukZctUFrAqrVscyZg71i2awC5NoAEJqGH0x2NiZZJleLPlbLIs34an8TAu9wUFcLAdAhGqmeR-w1J9vv2Q7C1uQMzbECsg4MZzuTZcV3CPAa1N-S-RTYash48spV9HtVnWVUiiEBfhhN_cQFcO_QVfhkRhFi58OH_9_mUXBsf7E7FdLK384hc9zCVBZv7hGtkdXFamcegYC7Uk_pWU_LlstnIbyx7j3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1Jo6gXhB3MkYYNAGElJo7okfEOroqpWNaips2ptxHHuLNpKyNGJ94cP4Os7JpSww8ba3yj5JbZ_jc8u5ELIRg9Fg6dg3pe_GphdEymS-w0w7ssLQTqTFEsx3_jQJdg68j0f-0Qr51ebCYFhlyxMrRp3kEn3kfSdwQXKj16Svm7CI_eHo_ey7iR2k8Etr206jJpFdtfgB5lvxbjwEXG86zmj7y4cds-kwYEosU266CtRpR2A8IkssHQjFWBgz_BgBF8_2bCFsESjpYiJFGAgwF1nigg6lo1gnFjpDgf2vhmgV9cjq1vZkf7r08IBwjkDe1kmBIYjtvtpLtXob1jlDl8Rg1S3gX5lwSSj-HbDZKWtaicLRHXK70WHpoCa6u2RFZffIjbqr5eI--Tlto2szmmt6spjlF6kwwfgvZRqfKVr3-DFtWsXJY8MtVdB5TtMMVdhCJfQb8Bngy1mC14PCYMWVaX6xAHqnmB0KBj6d1dVq8X_SjLZe5Afk4FqQ8JD0sjxTjwmVsXQDV9uB0NLzbRlHThiECt7s6RiUE4O8aU-dy6YGOrbiOONgCyGKeIUiXqHIIBtL4Fld-uNqsC1E3xIE63VXA_n5MW-uP09gTyJhiYfqNiyORZpFbsgcXFZsCYO8RORzrMiRIW0fi7Io-PjzlA8C7LkIei0zyOsGSOewaimaDArYOxbx6kCudyCBZcjudEtjvGFZBf9zwQzyYjmNT2IYXqbyEmFg2geT1THIo5okl_t2fbC8mQUzYYdYOwfTncnSk6qgeQRKsM9cg2zWZN15ZJgeDqqzLEvuBaA9w4m_ugKuGTqFX4p7PtYxXPv_Pp-Tm8BC-N54svuE3HIwrwU7_fjrpDc_L9VT0Dbn8bPmWlPy9bo5yW-QtJUP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repression+of+hypoxia-inducible+factor-1+contributes+to+increased+mitochondrial+reactive+oxygen+species+production+in+diabetes&rft.jtitle=eLife&rft.au=Zheng%2C+Xiaowei&rft.au=Narayanan%2C+Sampath&rft.au=Xu%2C+Cheng&rft.au=Eliasson+Angelstig%2C+Sofie&rft.date=2022-02-15&rft.pub=eLife+Sciences+Publications%2C+Ltd&rft.eissn=2050-084X&rft.volume=11&rft_id=info:doi/10.7554%2FeLife.70714&rft_id=info%3Apmid%2F35164902&rft.externalDocID=PMC8846593 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |