Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries

Li‐ion‐conducting solid electrolytes can simultaneously overcome two grand challenges for Li‐ion batteries: the severe safety concerns that limit the large‐scale application and the poor electrolyte stability that forbids the use of high‐voltage cathodes. Nevertheless, the ionic conductivity of soli...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 6; no. 11; pp. np - n/a
Main Authors Ma, Cheng, Cheng, Yongqiang, Chen, Kai, Li, Juchuan, Sumpter, Bobby G., Nan, Ce-Wen, More, Karren L., Dudney, Nancy J., Chi, Miaofang
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 08.06.2016
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.201600053

Cover

Loading…
Abstract Li‐ion‐conducting solid electrolytes can simultaneously overcome two grand challenges for Li‐ion batteries: the severe safety concerns that limit the large‐scale application and the poor electrolyte stability that forbids the use of high‐voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. Here, it is shown that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state‐of‐the‐art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. This discovery reconciles the long‐standing structure–property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction. The importance of the previously overlooked mesoscopic ordering to the design of future superionic conductors for Li batteries is demonstrated through a combination of atomic‐resolution scanning transmission electron microscopy and molecular dynamics simulations. By maximizing the number of Li transport pathways in three dimensions, such a unique atomic framework effectively facilitates the ionic conduction within the material.
AbstractList Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. Here, it is shown that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. This discovery reconciles the long-standing structure-property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.
Li‐ion‐conducting solid electrolytes can simultaneously overcome two grand challenges for Li‐ion batteries: the severe safety concerns that limit the large‐scale application and the poor electrolyte stability that forbids the use of high‐voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. Here, it is shown that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state‐of‐the‐art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. This discovery reconciles the long‐standing structure–property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction. The importance of the previously overlooked mesoscopic ordering to the design of future superionic conductors for Li batteries is demonstrated through a combination of atomic‐resolution scanning transmission electron microscopy and molecular dynamics simulations. By maximizing the number of Li transport pathways in three dimensions, such a unique atomic framework effectively facilitates the ionic conduction within the material.
Li‐ion‐conducting solid electrolytes can simultaneously overcome two grand challenges for Li‐ion batteries: the severe safety concerns that limit the large‐scale application and the poor electrolyte stability that forbids the use of high‐voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. Here, it is shown that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li 0.33 La 0.56 )TiO 3 , a mesoscopic framework is revealed for the first time by state‐of‐the‐art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. This discovery reconciles the long‐standing structure–property inconsistency in (Li 0.33 La 0.56 )TiO 3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li + conduction.
In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.
Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. Here, it is shown that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li sub(0.33)La sub(0.56))TiO sub(3), a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. This discovery reconciles the long-standing structure-property inconsistency in (Li sub(0.33)La sub(0.56))TiO sub(3) and also identifies mesoscopic ordering as a promising general strategy for optimizing Li super(+) conduction. The importance of the previously overlooked mesoscopic ordering to the design of future superionic conductors for Li batteries is demonstrated through a combination of atomic-resolution scanning transmission electron microscopy and molecular dynamics simulations. By maximizing the number of Li transport pathways in three dimensions, such a unique atomic framework effectively facilitates the ionic conduction within the material.
Author Ma, Cheng
Li, Juchuan
Chen, Kai
Nan, Ce-Wen
Cheng, Yongqiang
Chi, Miaofang
More, Karren L.
Sumpter, Bobby G.
Dudney, Nancy J.
Author_xml – sequence: 1
  givenname: Cheng
  surname: Ma
  fullname: Ma, Cheng
  organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA
– sequence: 2
  givenname: Yongqiang
  surname: Cheng
  fullname: Cheng, Yongqiang
  organization: Chemical and Engineering Materials Division, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA
– sequence: 3
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  organization: School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, P. R. China
– sequence: 4
  givenname: Juchuan
  surname: Li
  fullname: Li, Juchuan
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA
– sequence: 5
  givenname: Bobby G.
  surname: Sumpter
  fullname: Sumpter, Bobby G.
  organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
– sequence: 6
  givenname: Ce-Wen
  surname: Nan
  fullname: Nan, Ce-Wen
  organization: School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, P. R. China
– sequence: 7
  givenname: Karren L.
  surname: More
  fullname: More, Karren L.
  organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA
– sequence: 8
  givenname: Nancy J.
  surname: Dudney
  fullname: Dudney, Nancy J.
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA
– sequence: 9
  givenname: Miaofang
  surname: Chi
  fullname: Chi, Miaofang
  email: chim@ornl.gov
  organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA
BackLink https://www.osti.gov/servlets/purl/1326475$$D View this record in Osti.gov
BookMark eNqFkc9LHDEUx0OxUGu9eg7tpZfZ5sdMkjm6uqvCri2oCF5CJvuGRmeTNcli979vZMpShNJTHuTzSd5734_owAcPCJ1QMqGEsG8G_HrCCBWEkIa_Q4dU0LoSqiYH-5qzD-g4pceCkLqlhPND9LCEFJING2fxPJo1vIT4hGfedAMkPDfWDYCvgi_Xt9H4tAkxY-fxTRjcCs8GsDmGYZcL3IeIFw5PTc4QHaRP6H1vhgTHf84jdDef3Z5dVovvF1dnp4vKCs541ZJOUiWs6uXKdoqDorBSrbFSsLYXXHZGFlIp2UnSd1JRQjn0wETXyl5IfoQ-j--GlJ1O1mWwP23wvvSmKWeilk2Bvo7QJobnLaSs1y5ZGAbjIWyTpoo1tRJtywr65Q36GLbRlxE0lW3dsJo1vFCTkbIxpBSh15vo1ibuNCX6NRL9GoneR1KE-o1QOjXZBZ-jccO_tXbUXkoSu_98ok9n18u_3Wp0Xcrwa--a-KTL3mSj768v9HR-_uNhOT3Xl_w3MLOwXw
CitedBy_id crossref_primary_10_1016_j_actamat_2017_01_028
crossref_primary_10_1038_s41467_020_15544_x
crossref_primary_10_3389_fenrg_2016_00023
crossref_primary_10_1039_D2MA00194B
crossref_primary_10_1038_s41467_023_37313_2
crossref_primary_10_1021_acsnano_4c15481
crossref_primary_10_1080_10408436_2016_1244657
crossref_primary_10_1007_s40843_020_1320_1
crossref_primary_10_1016_j_mtphys_2021_100463
crossref_primary_10_1021_acsenergylett_5c00117
crossref_primary_10_1002_adma_201803075
crossref_primary_10_1002_adma_202206402
crossref_primary_10_1002_aenm_201702348
crossref_primary_10_1021_acsami_4c10641
crossref_primary_10_1021_acsnano_2c02250
crossref_primary_10_1002_smtd_202000111
crossref_primary_10_1088_1361_6528_ab57f6
crossref_primary_10_1080_10408436_2018_1485551
crossref_primary_10_1360_TB_2024_0508
crossref_primary_10_1002_adma_201903747
crossref_primary_10_1007_s10853_020_04790_5
crossref_primary_10_1039_D1QM00951F
crossref_primary_10_1016_j_matt_2019_05_004
crossref_primary_10_1017_S1431927618007961
crossref_primary_10_1016_j_cej_2021_131901
crossref_primary_10_1002_aenm_202201939
crossref_primary_10_1149_2_06011701jes
crossref_primary_10_1016_j_jmrt_2023_03_024
crossref_primary_10_1002_smll_201804413
crossref_primary_10_1016_j_cossms_2020_100875
crossref_primary_10_1002_smll_202203011
crossref_primary_10_1021_acsami_9b19851
crossref_primary_10_3390_molecules26123559
crossref_primary_10_1021_acs_chemmater_2c03340
crossref_primary_10_1021_acs_nanolett_8b01111
crossref_primary_10_1016_j_ceramint_2020_04_160
crossref_primary_10_1021_acsnano_1c09374
crossref_primary_10_1007_s11581_024_05487_4
crossref_primary_10_1038_s41467_023_37115_6
crossref_primary_10_1021_acsenergylett_4c02078
crossref_primary_10_1021_acs_nanolett_3c03852
crossref_primary_10_1016_j_jpowsour_2018_04_018
crossref_primary_10_1039_D3CP00742A
crossref_primary_10_1021_acsami_7b11292
crossref_primary_10_1021_acs_inorgchem_7b00816
crossref_primary_10_1016_j_jcis_2021_02_128
crossref_primary_10_1021_acs_cgd_9b00825
crossref_primary_10_1002_aenm_201600917
Cites_doi 10.1016/S0167-2738(98)00070-8
10.1016/j.jpowsour.2012.11.098
10.1149/2.008306eel
10.1021/cm0300516
10.1039/c4ee00382a
10.1021/cm3041357
10.1088/0034-4885/67/7/R05
10.1002/chem.200700235
10.1016/j.ssi.2006.08.012
10.1039/c3ta14433j
10.1038/am.2015.50
10.1021/ja038410l
10.1039/c0cs00081g
10.4028/www.scientific.net/KEM.181-182.179
10.1039/C4CP04834B
10.1002/zaac.200900124
10.1021/cm020172q
10.1038/nmat3191
10.1016/j.ssi.2008.10.023
10.1006/jssc.2002.9722
10.1039/C4TA02923B
10.1016/S0167-2738(99)00043-0
10.1021/cm060120r
10.1038/nmat4369
10.1016/j.ssi.2007.12.022
10.1039/b309577k
10.1146/annurev.ms.22.080192.001131
10.1006/jssc.1996.0385
10.1039/c0jm04372a
10.1126/science.1135080
10.1002/anie.201408124
10.1038/nature04556
10.1088/0034-4885/72/1/016502
10.1016/j.actamat.2012.10.034
10.1039/b614345h
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
DBID BSCLL
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
OIOZB
OTOTI
DOI 10.1002/aenm.201600053
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 1326475
4081319501
10_1002_aenm_201600053
AENM201600053
ark_67375_WNG_BFDPZMBD_H
Genre article
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AANHP
AAYXX
ACRPL
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
AAPBV
AEUQT
OIOZB
OTOTI
ID FETCH-LOGICAL-c6323-90b7186c8f7dcb83e81ed89ac7629f637ba7c63887b70fb781013efe26b97f673
ISSN 1614-6832
IngestDate Mon Jul 03 03:58:58 EDT 2023
Fri Jul 11 09:25:40 EDT 2025
Fri Jul 25 12:19:01 EDT 2025
Tue Jul 01 01:43:15 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Wed Jan 22 16:32:48 EST 2025
Wed Oct 30 09:51:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c6323-90b7186c8f7dcb83e81ed89ac7629f637ba7c63887b70fb781013efe26b97f673
Notes istex:7AAF15CC4BE8C2C9CB805DD9D24AA5BB27168908
ark:/67375/WNG-BFDPZMBD-H
ArticleID:AENM201600053
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC)
AC05-00OR22725
OpenAccessLink https://www.osti.gov/servlets/purl/1326475
PQID 1794524253
PQPubID 886389
PageCount 7
ParticipantIDs osti_scitechconnect_1326475
proquest_miscellaneous_1825486992
proquest_journals_1794524253
crossref_primary_10_1002_aenm_201600053
crossref_citationtrail_10_1002_aenm_201600053
wiley_primary_10_1002_aenm_201600053_AENM201600053
istex_primary_ark_67375_WNG_BFDPZMBD_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 8, 2016
PublicationDateYYYYMMDD 2016-06-08
PublicationDate_xml – month: 06
  year: 2016
  text: June 8, 2016
  day: 08
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Advanced energy materials
PublicationTitleAlternate Adv. Energy Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References J. L. Fourquet, H. Duroy, M. P. Crosnier-Lopez, J. Solid State Chem. 1996, 127, 283.
Y. Inaguma, T. Katsumata, M. Itoh, Y. Morii, T. Tsurui, Solid State Ionics 2006, 177, 3037.
S. Hull, Rep. Prog. Phys. 2004, 67, 1233.
Y. Harada, T. Ishigaki, H. Kawai, J. Kuwano, Solid State Ionics 1998, 108, 407.
Y. Harada, Y. Hirakoso, H. Kawai, J. Kuwano, Solid State Ionics 1999, 121, 245.
S. Garcia-Martin, A. Morata-Orrantia, M. A. Alario-Franco, J. Rodriguez-Carvajal, U. Amador, Chem.-Eur. J. 2007, 13, 5607.
S. J. L. Billinge, M. G. Kanatzidis, Chem. Commun. 2004, 749.
S. Garcia-Martin, U. Amador, A. Morata-Orrantia, J. Rodriguez-Carvajal, M. A. Alario-Franco, Z. Anorg. Allg. Chem. 2009, 635, 2363.
Y. Tanaka, T. Ohno, ECS Electrochem. Lett. 2013, 2, A53.
M. Catti, M. Sommariva, R. M. Ibberson, J. Mater. Chem. 2007, 17, 1300.
A. Varez, J. Ibarra, A. Rivera, C. Leon, J. Santamaria, M. A. Laguna, M. L. Sanjuan, J. Sanz, Chem. Mater. 2003, 15, 225.
C. Ma, K. Chen, C. D. Liang, C. W. Nan, R. Ishikawa, K. More, M. F. Chi, Energy Environ. Sci. 2014, 7, 1638.
S. Stramare, V. Thangadurai, W. Weppner, Chem. Mater. 2003, 15, 3974.
S. J. Pennycook, Annu. Rev. Mater. Sci. 1992, 22, 171.
S. J. L. Billinge, I. Levin, Science 2007, 316, 561.
P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19.
R. F. Egerton, Rep. Prog. Phys. 2009, 72, 016502.
Y. Hirakoso, Y. Harada, Y. Saito, Y. Yoshida, J. Kuwano, Key Eng. Mater. 2000, 181-182, 179.
T. Okumura, T. Ina, Y. Orikasa, H. Arai, Y. Uchimoto, Z. Ogumi, J. Mater. Chem. 2011, 21, 10195.
Y. A. Shilova, M. V. Patrakeev, E. B. Mitberg, I. A. Leonidov, V. L. Kozhevnikov, K. R. Poeppelmeier, J. Solid State Chem. 2002, 168, 275.
O. Bohnke, Solid State Ionics 2008, 179, 9.
S. Garcia-Martin, M. A. Alario-Franco, H. Ehrenberg, J. Rodriguez-Carvajal, U. Amador, J. Am. Chem. Soc. 2004, 126, 3587.
P. Juhas, D. M. Cherba, P. M. Duxbury, W. F. Punch, S. J. L. Billinge, Nature 2006, 440, 655.
K. Takada, Acta Mater. 2013, 61, 759.
T. Tsurui, T. Katsumata, Y. Inaguma, Solid State Ionics 2009, 180, 607.
M. Sommariva, M. Catti, Chem. Mater. 2006, 18, 2411.
D. Wohlmuth, V. Epp, P. Bottke, I. Hanzu, B. Bitschnau, I. Letofsky-Papst, M. Kriechbaum, H. Amenitsch, F. Hofer, M. Wilkening, J. Mater. Chem. A 2014, 2, 20295.
C. Ma, E. Rangasamy, C. D. Liang, J. Sakamoto, K. L. More, M. F. Chi, Angew. Chem. Int. Ed. 2015, 54, 129.
E. E. Jay, M. J. D. Rushton, A. Chroneos, R. W. Grimes, J. A. Kilner, Phys. Chem. Chem. Phys. 2015, 17, 178.
D. Qian, C. Ma, K. L. More, Y. S. Meng, M. Chi, NPG Asia Mater. 2015, 7, e193.
E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 2011, 40, 2525.
Y. Q. Cheng, Z. H. Bi, A. Huq, M. Feygenson, C. A. Bridges, M. P. Paranthaman, B. G. Sumpter, J. Mater. Chem. A 2014, 2, 2418.
Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Nat. Mater. 2015, 14, 1026.
Y. Inaguma, M. Nakashima, J. Power Sources 2013, 228, 250.
X. Gao, C. A. J. Fisher, T. Kimura, Y. H. Ikuhara, H. Moriwake, A. Kuwabara, H. Oki, T. Tojigamori, R. Huang, Y. Ikuhara, Chem. Mater. 2013, 25, 1607.
2007; 17
2015; 14
2015; 17
2004; 126
2013; 25
2013; 2
2009; 180
2013; 61
2011; 40
2004; 67
2013; 228
2015; 54
1999; 121
2003; 15
2006; 18
2004
2009; 635
2012; 11
2015; 7
2007; 13
2006; 177
2000; 181–182
1996; 127
2007; 316
2014; 2
2009; 72
2002; 168
1998; 108
2006; 440
2011; 21
2008; 179
2014; 7
1992; 22
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – reference: Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Nat. Mater. 2015, 14, 1026.
– reference: S. J. L. Billinge, M. G. Kanatzidis, Chem. Commun. 2004, 749.
– reference: Y. Inaguma, M. Nakashima, J. Power Sources 2013, 228, 250.
– reference: E. E. Jay, M. J. D. Rushton, A. Chroneos, R. W. Grimes, J. A. Kilner, Phys. Chem. Chem. Phys. 2015, 17, 178.
– reference: M. Catti, M. Sommariva, R. M. Ibberson, J. Mater. Chem. 2007, 17, 1300.
– reference: S. Hull, Rep. Prog. Phys. 2004, 67, 1233.
– reference: S. J. L. Billinge, I. Levin, Science 2007, 316, 561.
– reference: C. Ma, E. Rangasamy, C. D. Liang, J. Sakamoto, K. L. More, M. F. Chi, Angew. Chem. Int. Ed. 2015, 54, 129.
– reference: Y. Inaguma, T. Katsumata, M. Itoh, Y. Morii, T. Tsurui, Solid State Ionics 2006, 177, 3037.
– reference: D. Wohlmuth, V. Epp, P. Bottke, I. Hanzu, B. Bitschnau, I. Letofsky-Papst, M. Kriechbaum, H. Amenitsch, F. Hofer, M. Wilkening, J. Mater. Chem. A 2014, 2, 20295.
– reference: E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 2011, 40, 2525.
– reference: S. J. Pennycook, Annu. Rev. Mater. Sci. 1992, 22, 171.
– reference: T. Tsurui, T. Katsumata, Y. Inaguma, Solid State Ionics 2009, 180, 607.
– reference: Y. Hirakoso, Y. Harada, Y. Saito, Y. Yoshida, J. Kuwano, Key Eng. Mater. 2000, 181-182, 179.
– reference: R. F. Egerton, Rep. Prog. Phys. 2009, 72, 016502.
– reference: T. Okumura, T. Ina, Y. Orikasa, H. Arai, Y. Uchimoto, Z. Ogumi, J. Mater. Chem. 2011, 21, 10195.
– reference: A. Varez, J. Ibarra, A. Rivera, C. Leon, J. Santamaria, M. A. Laguna, M. L. Sanjuan, J. Sanz, Chem. Mater. 2003, 15, 225.
– reference: D. Qian, C. Ma, K. L. More, Y. S. Meng, M. Chi, NPG Asia Mater. 2015, 7, e193.
– reference: Y. Q. Cheng, Z. H. Bi, A. Huq, M. Feygenson, C. A. Bridges, M. P. Paranthaman, B. G. Sumpter, J. Mater. Chem. A 2014, 2, 2418.
– reference: O. Bohnke, Solid State Ionics 2008, 179, 9.
– reference: P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19.
– reference: S. Stramare, V. Thangadurai, W. Weppner, Chem. Mater. 2003, 15, 3974.
– reference: Y. Harada, T. Ishigaki, H. Kawai, J. Kuwano, Solid State Ionics 1998, 108, 407.
– reference: Y. A. Shilova, M. V. Patrakeev, E. B. Mitberg, I. A. Leonidov, V. L. Kozhevnikov, K. R. Poeppelmeier, J. Solid State Chem. 2002, 168, 275.
– reference: S. Garcia-Martin, M. A. Alario-Franco, H. Ehrenberg, J. Rodriguez-Carvajal, U. Amador, J. Am. Chem. Soc. 2004, 126, 3587.
– reference: J. L. Fourquet, H. Duroy, M. P. Crosnier-Lopez, J. Solid State Chem. 1996, 127, 283.
– reference: S. Garcia-Martin, A. Morata-Orrantia, M. A. Alario-Franco, J. Rodriguez-Carvajal, U. Amador, Chem.-Eur. J. 2007, 13, 5607.
– reference: K. Takada, Acta Mater. 2013, 61, 759.
– reference: Y. Harada, Y. Hirakoso, H. Kawai, J. Kuwano, Solid State Ionics 1999, 121, 245.
– reference: M. Sommariva, M. Catti, Chem. Mater. 2006, 18, 2411.
– reference: S. Garcia-Martin, U. Amador, A. Morata-Orrantia, J. Rodriguez-Carvajal, M. A. Alario-Franco, Z. Anorg. Allg. Chem. 2009, 635, 2363.
– reference: C. Ma, K. Chen, C. D. Liang, C. W. Nan, R. Ishikawa, K. More, M. F. Chi, Energy Environ. Sci. 2014, 7, 1638.
– reference: X. Gao, C. A. J. Fisher, T. Kimura, Y. H. Ikuhara, H. Moriwake, A. Kuwabara, H. Oki, T. Tojigamori, R. Huang, Y. Ikuhara, Chem. Mater. 2013, 25, 1607.
– reference: Y. Tanaka, T. Ohno, ECS Electrochem. Lett. 2013, 2, A53.
– reference: P. Juhas, D. M. Cherba, P. M. Duxbury, W. F. Punch, S. J. L. Billinge, Nature 2006, 440, 655.
– volume: 126
  start-page: 3587
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 67
  start-page: 1233
  year: 2004
  publication-title: Rep. Prog. Phys.
– volume: 2
  start-page: 2418
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 168
  start-page: 275
  year: 2002
  publication-title: J. Solid State Chem.
– volume: 127
  start-page: 283
  year: 1996
  publication-title: J. Solid State Chem.
– volume: 15
  start-page: 225
  year: 2003
  publication-title: Chem. Mater.
– volume: 61
  start-page: 759
  year: 2013
  publication-title: Acta Mater.
– volume: 179
  start-page: 9
  year: 2008
  publication-title: Solid State Ionics
– volume: 180
  start-page: 607
  year: 2009
  publication-title: Solid State Ionics
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 2
  start-page: 20295
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 40
  start-page: 2525
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 108
  start-page: 407
  year: 1998
  publication-title: Solid State Ionics
– start-page: 749
  year: 2004
  publication-title: Chem. Commun.
– volume: 17
  start-page: 1300
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 228
  start-page: 250
  year: 2013
  publication-title: J. Power Sources
– volume: 7
  start-page: 1638
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 5607
  year: 2007
  publication-title: Chem.‐Eur. J.
– volume: 181–182
  start-page: 179
  year: 2000
  publication-title: Key Eng. Mater.
– volume: 635
  start-page: 2363
  year: 2009
  publication-title: Z. Anorg. Allg. Chem.
– volume: 54
  start-page: 129
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 177
  start-page: 3037
  year: 2006
  publication-title: Solid State Ionics
– volume: 72
  start-page: 016502
  year: 2009
  publication-title: Rep. Prog. Phys.
– volume: 21
  start-page: 10195
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 17
  start-page: 178
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 25
  start-page: 1607
  year: 2013
  publication-title: Chem. Mater.
– volume: 121
  start-page: 245
  year: 1999
  publication-title: Solid State Ionics
– volume: 22
  start-page: 171
  year: 1992
  publication-title: Annu. Rev. Mater. Sci.
– volume: 7
  start-page: e193
  year: 2015
  publication-title: NPG Asia Mater.
– volume: 316
  start-page: 561
  year: 2007
  publication-title: Science
– volume: 18
  start-page: 2411
  year: 2006
  publication-title: Chem. Mater.
– volume: 440
  start-page: 655
  year: 2006
  publication-title: Nature
– volume: 14
  start-page: 1026
  year: 2015
  publication-title: Nat. Mater.
– volume: 15
  start-page: 3974
  year: 2003
  publication-title: Chem. Mater.
– volume: 2
  start-page: A53
  year: 2013
  publication-title: ECS Electrochem. Lett.
– ident: e_1_2_5_15_1
  doi: 10.1016/S0167-2738(98)00070-8
– ident: e_1_2_5_18_1
  doi: 10.1016/j.jpowsour.2012.11.098
– ident: e_1_2_5_28_1
  doi: 10.1149/2.008306eel
– ident: e_1_2_5_11_1
  doi: 10.1021/cm0300516
– ident: e_1_2_5_9_1
  doi: 10.1039/c4ee00382a
– ident: e_1_2_5_30_1
  doi: 10.1021/cm3041357
– ident: e_1_2_5_5_1
  doi: 10.1088/0034-4885/67/7/R05
– ident: e_1_2_5_24_1
  doi: 10.1002/chem.200700235
– ident: e_1_2_5_25_1
  doi: 10.1016/j.ssi.2006.08.012
– ident: e_1_2_5_23_1
  doi: 10.1039/c3ta14433j
– ident: e_1_2_5_35_1
  doi: 10.1038/am.2015.50
– ident: e_1_2_5_19_1
  doi: 10.1021/ja038410l
– ident: e_1_2_5_3_1
  doi: 10.1039/c0cs00081g
– ident: e_1_2_5_14_1
  doi: 10.4028/www.scientific.net/KEM.181-182.179
– ident: e_1_2_5_32_1
  doi: 10.1039/C4CP04834B
– ident: e_1_2_5_13_1
  doi: 10.1002/zaac.200900124
– ident: e_1_2_5_20_1
  doi: 10.1021/cm020172q
– ident: e_1_2_5_1_1
  doi: 10.1038/nmat3191
– ident: e_1_2_5_27_1
  doi: 10.1016/j.ssi.2008.10.023
– ident: e_1_2_5_33_1
  doi: 10.1006/jssc.2002.9722
– ident: e_1_2_5_34_1
  doi: 10.1039/C4TA02923B
– ident: e_1_2_5_17_1
  doi: 10.1016/S0167-2738(99)00043-0
– ident: e_1_2_5_26_1
  doi: 10.1021/cm060120r
– ident: e_1_2_5_2_1
  doi: 10.1038/nmat4369
– ident: e_1_2_5_12_1
  doi: 10.1016/j.ssi.2007.12.022
– ident: e_1_2_5_6_1
  doi: 10.1039/b309577k
– ident: e_1_2_5_29_1
  doi: 10.1146/annurev.ms.22.080192.001131
– ident: e_1_2_5_21_1
  doi: 10.1006/jssc.1996.0385
– ident: e_1_2_5_16_1
  doi: 10.1039/c0jm04372a
– ident: e_1_2_5_7_1
  doi: 10.1126/science.1135080
– ident: e_1_2_5_10_1
  doi: 10.1002/anie.201408124
– ident: e_1_2_5_8_1
  doi: 10.1038/nature04556
– ident: e_1_2_5_31_1
  doi: 10.1088/0034-4885/72/1/016502
– ident: e_1_2_5_4_1
  doi: 10.1016/j.actamat.2012.10.034
– ident: e_1_2_5_22_1
  doi: 10.1039/b614345h
SSID ssj0000491033
Score 2.4068906
Snippet Li‐ion‐conducting solid electrolytes can simultaneously overcome two grand challenges for Li‐ion batteries: the severe safety concerns that limit the...
Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the...
In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the...
SourceID osti
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms coherence length
Design engineering
Electric batteries
Electrolytes
ENERGY STORAGE
Ionic conductivity
ionic transport
Ions
Li batteries
Order disorder
Scanning transmission electron microscopy
Solid electrolytes
Three dimensional
Transport
Title Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
URI https://api.istex.fr/ark:/67375/WNG-BFDPZMBD-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201600053
https://www.proquest.com/docview/1794524253
https://www.proquest.com/docview/1825486992
https://www.osti.gov/servlets/purl/1326475
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagfYEHNG4ibCAjIXioArnayWNHWwpqK6RtYuzFchwHIqqEra0E_HqO7cRNURGDPkSN46RJz2efS875jNBz0KE5FySH8U0iN6JF6nKehm7M4UM5KCnNrj9fkOlZ9P48Pt-m2-rqknX2SvzcW1fyP1KFNpCrqpL9B8nai0IDfAf5whYkDNtryXguV7UqKymFMkBNktVgrKuhVoMJFzDiB-_0EjeWw1zFN07qZZkPxmYBnOUPFXlVyYazcmDYNtu8wpactk0TkKZOEGxc83DbaLZ5cS8bLaizBaSZRD7V1edLgODOEZPGUbZNs9LUh4gvmwarTRjCJzpdqjtzgp53SdIEK2W3zfAxtdMt6aLK3zuLG1ZYLitFFeATXTC81VftO_rf1JhNLjREzAFT5zN7_k3UD8CTCHqoPxzNZyc2EAcuku-FuhCjfYSW3NMLXu_exI7x0lfj8Duo8hom4x0HpevmaDvl9ADdaRwMPDRouYtuyOoeut2hnbyPLra4wRY3uMENNrjBGjfY4gaXFda4wV3cYMANnpXY4uYBOpuMT99M3WaNDVeQMAjd1MvAOiEiKWgusiSUiS_zJOUClGRakJBmnEJPUEUZ9YqMKj64UBYyIFlKC0LDh6hX1ZV8hDDYfjlJ_MiPiiiK8yL1CrgsKPaESuEFuYPc9s9joiGgV-ugLNl-iTnope3_zVCv_LHnCy0L241ffVUJizRmHxdv2fFk9OFifjxiUwcdKmExsC4VRbJQuWRizXzwYSIaO-iolSFrRvmKKYUVK78cfuWZPQxzsHqxxitZb6CPCrMkJE0DBwVa9n-5YTYcL-Z27_G1H_QQ3dqOvSPUW19t5BMwitfZ0wbWvwBewLJo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoscopic+Framework+Enables+Facile+Ionic+Transport+in+Solid+Electrolytes+for+Li+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Ma%2C+Cheng&rft.au=Cheng%2C+Yongqiang&rft.au=Chen%2C+Kai&rft.au=Li%2C+Juchuan&rft.date=2016-06-08&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=6&rft.issue=11&rft_id=info:doi/10.1002%2Faenm.201600053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201600053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon