Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
Li‐ion‐conducting solid electrolytes can simultaneously overcome two grand challenges for Li‐ion batteries: the severe safety concerns that limit the large‐scale application and the poor electrolyte stability that forbids the use of high‐voltage cathodes. Nevertheless, the ionic conductivity of soli...
Saved in:
Published in | Advanced energy materials Vol. 6; no. 11; pp. np - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
08.06.2016
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.201600053 |
Cover
Loading…
Abstract | Li‐ion‐conducting solid electrolytes can simultaneously overcome two grand challenges for Li‐ion batteries: the severe safety concerns that limit the large‐scale application and the poor electrolyte stability that forbids the use of high‐voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. Here, it is shown that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state‐of‐the‐art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. This discovery reconciles the long‐standing structure–property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.
The importance of the previously overlooked mesoscopic ordering to the design of future superionic conductors for Li batteries is demonstrated through a combination of atomic‐resolution scanning transmission electron microscopy and molecular dynamics simulations. By maximizing the number of Li transport pathways in three dimensions, such a unique atomic framework effectively facilitates the ionic conduction within the material. |
---|---|
AbstractList | Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. Here, it is shown that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. This discovery reconciles the long-standing structure-property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction. Li‐ion‐conducting solid electrolytes can simultaneously overcome two grand challenges for Li‐ion batteries: the severe safety concerns that limit the large‐scale application and the poor electrolyte stability that forbids the use of high‐voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. Here, it is shown that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state‐of‐the‐art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. This discovery reconciles the long‐standing structure–property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction. The importance of the previously overlooked mesoscopic ordering to the design of future superionic conductors for Li batteries is demonstrated through a combination of atomic‐resolution scanning transmission electron microscopy and molecular dynamics simulations. By maximizing the number of Li transport pathways in three dimensions, such a unique atomic framework effectively facilitates the ionic conduction within the material. Li‐ion‐conducting solid electrolytes can simultaneously overcome two grand challenges for Li‐ion batteries: the severe safety concerns that limit the large‐scale application and the poor electrolyte stability that forbids the use of high‐voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. Here, it is shown that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li 0.33 La 0.56 )TiO 3 , a mesoscopic framework is revealed for the first time by state‐of‐the‐art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. This discovery reconciles the long‐standing structure–property inconsistency in (Li 0.33 La 0.56 )TiO 3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li + conduction. In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction. Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. Here, it is shown that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li sub(0.33)La sub(0.56))TiO sub(3), a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. This discovery reconciles the long-standing structure-property inconsistency in (Li sub(0.33)La sub(0.56))TiO sub(3) and also identifies mesoscopic ordering as a promising general strategy for optimizing Li super(+) conduction. The importance of the previously overlooked mesoscopic ordering to the design of future superionic conductors for Li batteries is demonstrated through a combination of atomic-resolution scanning transmission electron microscopy and molecular dynamics simulations. By maximizing the number of Li transport pathways in three dimensions, such a unique atomic framework effectively facilitates the ionic conduction within the material. |
Author | Ma, Cheng Li, Juchuan Chen, Kai Nan, Ce-Wen Cheng, Yongqiang Chi, Miaofang More, Karren L. Sumpter, Bobby G. Dudney, Nancy J. |
Author_xml | – sequence: 1 givenname: Cheng surname: Ma fullname: Ma, Cheng organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA – sequence: 2 givenname: Yongqiang surname: Cheng fullname: Cheng, Yongqiang organization: Chemical and Engineering Materials Division, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA – sequence: 3 givenname: Kai surname: Chen fullname: Chen, Kai organization: School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, P. R. China – sequence: 4 givenname: Juchuan surname: Li fullname: Li, Juchuan organization: Materials Science and Technology Division, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA – sequence: 5 givenname: Bobby G. surname: Sumpter fullname: Sumpter, Bobby G. organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA – sequence: 6 givenname: Ce-Wen surname: Nan fullname: Nan, Ce-Wen organization: School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, P. R. China – sequence: 7 givenname: Karren L. surname: More fullname: More, Karren L. organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA – sequence: 8 givenname: Nancy J. surname: Dudney fullname: Dudney, Nancy J. organization: Materials Science and Technology Division, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA – sequence: 9 givenname: Miaofang surname: Chi fullname: Chi, Miaofang email: chim@ornl.gov organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN, 37831, Oak Ridge, USA |
BackLink | https://www.osti.gov/servlets/purl/1326475$$D View this record in Osti.gov |
BookMark | eNqFkc9LHDEUx0OxUGu9eg7tpZfZ5sdMkjm6uqvCri2oCF5CJvuGRmeTNcli979vZMpShNJTHuTzSd5734_owAcPCJ1QMqGEsG8G_HrCCBWEkIa_Q4dU0LoSqiYH-5qzD-g4pceCkLqlhPND9LCEFJING2fxPJo1vIT4hGfedAMkPDfWDYCvgi_Xt9H4tAkxY-fxTRjcCs8GsDmGYZcL3IeIFw5PTc4QHaRP6H1vhgTHf84jdDef3Z5dVovvF1dnp4vKCs541ZJOUiWs6uXKdoqDorBSrbFSsLYXXHZGFlIp2UnSd1JRQjn0wETXyl5IfoQ-j--GlJ1O1mWwP23wvvSmKWeilk2Bvo7QJobnLaSs1y5ZGAbjIWyTpoo1tRJtywr65Q36GLbRlxE0lW3dsJo1vFCTkbIxpBSh15vo1ibuNCX6NRL9GoneR1KE-o1QOjXZBZ-jccO_tXbUXkoSu_98ok9n18u_3Wp0Xcrwa--a-KTL3mSj768v9HR-_uNhOT3Xl_w3MLOwXw |
CitedBy_id | crossref_primary_10_1016_j_actamat_2017_01_028 crossref_primary_10_1038_s41467_020_15544_x crossref_primary_10_3389_fenrg_2016_00023 crossref_primary_10_1039_D2MA00194B crossref_primary_10_1038_s41467_023_37313_2 crossref_primary_10_1021_acsnano_4c15481 crossref_primary_10_1080_10408436_2016_1244657 crossref_primary_10_1007_s40843_020_1320_1 crossref_primary_10_1016_j_mtphys_2021_100463 crossref_primary_10_1021_acsenergylett_5c00117 crossref_primary_10_1002_adma_201803075 crossref_primary_10_1002_adma_202206402 crossref_primary_10_1002_aenm_201702348 crossref_primary_10_1021_acsami_4c10641 crossref_primary_10_1021_acsnano_2c02250 crossref_primary_10_1002_smtd_202000111 crossref_primary_10_1088_1361_6528_ab57f6 crossref_primary_10_1080_10408436_2018_1485551 crossref_primary_10_1360_TB_2024_0508 crossref_primary_10_1002_adma_201903747 crossref_primary_10_1007_s10853_020_04790_5 crossref_primary_10_1039_D1QM00951F crossref_primary_10_1016_j_matt_2019_05_004 crossref_primary_10_1017_S1431927618007961 crossref_primary_10_1016_j_cej_2021_131901 crossref_primary_10_1002_aenm_202201939 crossref_primary_10_1149_2_06011701jes crossref_primary_10_1016_j_jmrt_2023_03_024 crossref_primary_10_1002_smll_201804413 crossref_primary_10_1016_j_cossms_2020_100875 crossref_primary_10_1002_smll_202203011 crossref_primary_10_1021_acsami_9b19851 crossref_primary_10_3390_molecules26123559 crossref_primary_10_1021_acs_chemmater_2c03340 crossref_primary_10_1021_acs_nanolett_8b01111 crossref_primary_10_1016_j_ceramint_2020_04_160 crossref_primary_10_1021_acsnano_1c09374 crossref_primary_10_1007_s11581_024_05487_4 crossref_primary_10_1038_s41467_023_37115_6 crossref_primary_10_1021_acsenergylett_4c02078 crossref_primary_10_1021_acs_nanolett_3c03852 crossref_primary_10_1016_j_jpowsour_2018_04_018 crossref_primary_10_1039_D3CP00742A crossref_primary_10_1021_acsami_7b11292 crossref_primary_10_1021_acs_inorgchem_7b00816 crossref_primary_10_1016_j_jcis_2021_02_128 crossref_primary_10_1021_acs_cgd_9b00825 crossref_primary_10_1002_aenm_201600917 |
Cites_doi | 10.1016/S0167-2738(98)00070-8 10.1016/j.jpowsour.2012.11.098 10.1149/2.008306eel 10.1021/cm0300516 10.1039/c4ee00382a 10.1021/cm3041357 10.1088/0034-4885/67/7/R05 10.1002/chem.200700235 10.1016/j.ssi.2006.08.012 10.1039/c3ta14433j 10.1038/am.2015.50 10.1021/ja038410l 10.1039/c0cs00081g 10.4028/www.scientific.net/KEM.181-182.179 10.1039/C4CP04834B 10.1002/zaac.200900124 10.1021/cm020172q 10.1038/nmat3191 10.1016/j.ssi.2008.10.023 10.1006/jssc.2002.9722 10.1039/C4TA02923B 10.1016/S0167-2738(99)00043-0 10.1021/cm060120r 10.1038/nmat4369 10.1016/j.ssi.2007.12.022 10.1039/b309577k 10.1146/annurev.ms.22.080192.001131 10.1006/jssc.1996.0385 10.1039/c0jm04372a 10.1126/science.1135080 10.1002/anie.201408124 10.1038/nature04556 10.1088/0034-4885/72/1/016502 10.1016/j.actamat.2012.10.034 10.1039/b614345h |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) |
DBID | BSCLL AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M OIOZB OTOTI |
DOI | 10.1002/aenm.201600053 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 1326475 4081319501 10_1002_aenm_201600053 AENM201600053 ark_67375_WNG_BFDPZMBD_H |
Genre | article |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL D-A DCZOG EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AANHP AAYXX ACRPL ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M AAPBV AEUQT OIOZB OTOTI |
ID | FETCH-LOGICAL-c6323-90b7186c8f7dcb83e81ed89ac7629f637ba7c63887b70fb781013efe26b97f673 |
ISSN | 1614-6832 |
IngestDate | Mon Jul 03 03:58:58 EDT 2023 Fri Jul 11 09:25:40 EDT 2025 Fri Jul 25 12:19:01 EDT 2025 Tue Jul 01 01:43:15 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Wed Jan 22 16:32:48 EST 2025 Wed Oct 30 09:51:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c6323-90b7186c8f7dcb83e81ed89ac7629f637ba7c63887b70fb781013efe26b97f673 |
Notes | istex:7AAF15CC4BE8C2C9CB805DD9D24AA5BB27168908 ark:/67375/WNG-BFDPZMBD-H ArticleID:AENM201600053 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC) AC05-00OR22725 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1326475 |
PQID | 1794524253 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1326475 proquest_miscellaneous_1825486992 proquest_journals_1794524253 crossref_primary_10_1002_aenm_201600053 crossref_citationtrail_10_1002_aenm_201600053 wiley_primary_10_1002_aenm_201600053_AENM201600053 istex_primary_ark_67375_WNG_BFDPZMBD_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 8, 2016 |
PublicationDateYYYYMMDD | 2016-06-08 |
PublicationDate_xml | – month: 06 year: 2016 text: June 8, 2016 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: United States |
PublicationTitle | Advanced energy materials |
PublicationTitleAlternate | Adv. Energy Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | J. L. Fourquet, H. Duroy, M. P. Crosnier-Lopez, J. Solid State Chem. 1996, 127, 283. Y. Inaguma, T. Katsumata, M. Itoh, Y. Morii, T. Tsurui, Solid State Ionics 2006, 177, 3037. S. Hull, Rep. Prog. Phys. 2004, 67, 1233. Y. Harada, T. Ishigaki, H. Kawai, J. Kuwano, Solid State Ionics 1998, 108, 407. Y. Harada, Y. Hirakoso, H. Kawai, J. Kuwano, Solid State Ionics 1999, 121, 245. S. Garcia-Martin, A. Morata-Orrantia, M. A. Alario-Franco, J. Rodriguez-Carvajal, U. Amador, Chem.-Eur. J. 2007, 13, 5607. S. J. L. Billinge, M. G. Kanatzidis, Chem. Commun. 2004, 749. S. Garcia-Martin, U. Amador, A. Morata-Orrantia, J. Rodriguez-Carvajal, M. A. Alario-Franco, Z. Anorg. Allg. Chem. 2009, 635, 2363. Y. Tanaka, T. Ohno, ECS Electrochem. Lett. 2013, 2, A53. M. Catti, M. Sommariva, R. M. Ibberson, J. Mater. Chem. 2007, 17, 1300. A. Varez, J. Ibarra, A. Rivera, C. Leon, J. Santamaria, M. A. Laguna, M. L. Sanjuan, J. Sanz, Chem. Mater. 2003, 15, 225. C. Ma, K. Chen, C. D. Liang, C. W. Nan, R. Ishikawa, K. More, M. F. Chi, Energy Environ. Sci. 2014, 7, 1638. S. Stramare, V. Thangadurai, W. Weppner, Chem. Mater. 2003, 15, 3974. S. J. Pennycook, Annu. Rev. Mater. Sci. 1992, 22, 171. S. J. L. Billinge, I. Levin, Science 2007, 316, 561. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19. R. F. Egerton, Rep. Prog. Phys. 2009, 72, 016502. Y. Hirakoso, Y. Harada, Y. Saito, Y. Yoshida, J. Kuwano, Key Eng. Mater. 2000, 181-182, 179. T. Okumura, T. Ina, Y. Orikasa, H. Arai, Y. Uchimoto, Z. Ogumi, J. Mater. Chem. 2011, 21, 10195. Y. A. Shilova, M. V. Patrakeev, E. B. Mitberg, I. A. Leonidov, V. L. Kozhevnikov, K. R. Poeppelmeier, J. Solid State Chem. 2002, 168, 275. O. Bohnke, Solid State Ionics 2008, 179, 9. S. Garcia-Martin, M. A. Alario-Franco, H. Ehrenberg, J. Rodriguez-Carvajal, U. Amador, J. Am. Chem. Soc. 2004, 126, 3587. P. Juhas, D. M. Cherba, P. M. Duxbury, W. F. Punch, S. J. L. Billinge, Nature 2006, 440, 655. K. Takada, Acta Mater. 2013, 61, 759. T. Tsurui, T. Katsumata, Y. Inaguma, Solid State Ionics 2009, 180, 607. M. Sommariva, M. Catti, Chem. Mater. 2006, 18, 2411. D. Wohlmuth, V. Epp, P. Bottke, I. Hanzu, B. Bitschnau, I. Letofsky-Papst, M. Kriechbaum, H. Amenitsch, F. Hofer, M. Wilkening, J. Mater. Chem. A 2014, 2, 20295. C. Ma, E. Rangasamy, C. D. Liang, J. Sakamoto, K. L. More, M. F. Chi, Angew. Chem. Int. Ed. 2015, 54, 129. E. E. Jay, M. J. D. Rushton, A. Chroneos, R. W. Grimes, J. A. Kilner, Phys. Chem. Chem. Phys. 2015, 17, 178. D. Qian, C. Ma, K. L. More, Y. S. Meng, M. Chi, NPG Asia Mater. 2015, 7, e193. E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 2011, 40, 2525. Y. Q. Cheng, Z. H. Bi, A. Huq, M. Feygenson, C. A. Bridges, M. P. Paranthaman, B. G. Sumpter, J. Mater. Chem. A 2014, 2, 2418. Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Nat. Mater. 2015, 14, 1026. Y. Inaguma, M. Nakashima, J. Power Sources 2013, 228, 250. X. Gao, C. A. J. Fisher, T. Kimura, Y. H. Ikuhara, H. Moriwake, A. Kuwabara, H. Oki, T. Tojigamori, R. Huang, Y. Ikuhara, Chem. Mater. 2013, 25, 1607. 2007; 17 2015; 14 2015; 17 2004; 126 2013; 25 2013; 2 2009; 180 2013; 61 2011; 40 2004; 67 2013; 228 2015; 54 1999; 121 2003; 15 2006; 18 2004 2009; 635 2012; 11 2015; 7 2007; 13 2006; 177 2000; 181–182 1996; 127 2007; 316 2014; 2 2009; 72 2002; 168 1998; 108 2006; 440 2011; 21 2008; 179 2014; 7 1992; 22 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – reference: Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Nat. Mater. 2015, 14, 1026. – reference: S. J. L. Billinge, M. G. Kanatzidis, Chem. Commun. 2004, 749. – reference: Y. Inaguma, M. Nakashima, J. Power Sources 2013, 228, 250. – reference: E. E. Jay, M. J. D. Rushton, A. Chroneos, R. W. Grimes, J. A. Kilner, Phys. Chem. Chem. Phys. 2015, 17, 178. – reference: M. Catti, M. Sommariva, R. M. Ibberson, J. Mater. Chem. 2007, 17, 1300. – reference: S. Hull, Rep. Prog. Phys. 2004, 67, 1233. – reference: S. J. L. Billinge, I. Levin, Science 2007, 316, 561. – reference: C. Ma, E. Rangasamy, C. D. Liang, J. Sakamoto, K. L. More, M. F. Chi, Angew. Chem. Int. Ed. 2015, 54, 129. – reference: Y. Inaguma, T. Katsumata, M. Itoh, Y. Morii, T. Tsurui, Solid State Ionics 2006, 177, 3037. – reference: D. Wohlmuth, V. Epp, P. Bottke, I. Hanzu, B. Bitschnau, I. Letofsky-Papst, M. Kriechbaum, H. Amenitsch, F. Hofer, M. Wilkening, J. Mater. Chem. A 2014, 2, 20295. – reference: E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 2011, 40, 2525. – reference: S. J. Pennycook, Annu. Rev. Mater. Sci. 1992, 22, 171. – reference: T. Tsurui, T. Katsumata, Y. Inaguma, Solid State Ionics 2009, 180, 607. – reference: Y. Hirakoso, Y. Harada, Y. Saito, Y. Yoshida, J. Kuwano, Key Eng. Mater. 2000, 181-182, 179. – reference: R. F. Egerton, Rep. Prog. Phys. 2009, 72, 016502. – reference: T. Okumura, T. Ina, Y. Orikasa, H. Arai, Y. Uchimoto, Z. Ogumi, J. Mater. Chem. 2011, 21, 10195. – reference: A. Varez, J. Ibarra, A. Rivera, C. Leon, J. Santamaria, M. A. Laguna, M. L. Sanjuan, J. Sanz, Chem. Mater. 2003, 15, 225. – reference: D. Qian, C. Ma, K. L. More, Y. S. Meng, M. Chi, NPG Asia Mater. 2015, 7, e193. – reference: Y. Q. Cheng, Z. H. Bi, A. Huq, M. Feygenson, C. A. Bridges, M. P. Paranthaman, B. G. Sumpter, J. Mater. Chem. A 2014, 2, 2418. – reference: O. Bohnke, Solid State Ionics 2008, 179, 9. – reference: P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19. – reference: S. Stramare, V. Thangadurai, W. Weppner, Chem. Mater. 2003, 15, 3974. – reference: Y. Harada, T. Ishigaki, H. Kawai, J. Kuwano, Solid State Ionics 1998, 108, 407. – reference: Y. A. Shilova, M. V. Patrakeev, E. B. Mitberg, I. A. Leonidov, V. L. Kozhevnikov, K. R. Poeppelmeier, J. Solid State Chem. 2002, 168, 275. – reference: S. Garcia-Martin, M. A. Alario-Franco, H. Ehrenberg, J. Rodriguez-Carvajal, U. Amador, J. Am. Chem. Soc. 2004, 126, 3587. – reference: J. L. Fourquet, H. Duroy, M. P. Crosnier-Lopez, J. Solid State Chem. 1996, 127, 283. – reference: S. Garcia-Martin, A. Morata-Orrantia, M. A. Alario-Franco, J. Rodriguez-Carvajal, U. Amador, Chem.-Eur. J. 2007, 13, 5607. – reference: K. Takada, Acta Mater. 2013, 61, 759. – reference: Y. Harada, Y. Hirakoso, H. Kawai, J. Kuwano, Solid State Ionics 1999, 121, 245. – reference: M. Sommariva, M. Catti, Chem. Mater. 2006, 18, 2411. – reference: S. Garcia-Martin, U. Amador, A. Morata-Orrantia, J. Rodriguez-Carvajal, M. A. Alario-Franco, Z. Anorg. Allg. Chem. 2009, 635, 2363. – reference: C. Ma, K. Chen, C. D. Liang, C. W. Nan, R. Ishikawa, K. More, M. F. Chi, Energy Environ. Sci. 2014, 7, 1638. – reference: X. Gao, C. A. J. Fisher, T. Kimura, Y. H. Ikuhara, H. Moriwake, A. Kuwabara, H. Oki, T. Tojigamori, R. Huang, Y. Ikuhara, Chem. Mater. 2013, 25, 1607. – reference: Y. Tanaka, T. Ohno, ECS Electrochem. Lett. 2013, 2, A53. – reference: P. Juhas, D. M. Cherba, P. M. Duxbury, W. F. Punch, S. J. L. Billinge, Nature 2006, 440, 655. – volume: 126 start-page: 3587 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 67 start-page: 1233 year: 2004 publication-title: Rep. Prog. Phys. – volume: 2 start-page: 2418 year: 2014 publication-title: J. Mater. Chem. A – volume: 168 start-page: 275 year: 2002 publication-title: J. Solid State Chem. – volume: 127 start-page: 283 year: 1996 publication-title: J. Solid State Chem. – volume: 15 start-page: 225 year: 2003 publication-title: Chem. Mater. – volume: 61 start-page: 759 year: 2013 publication-title: Acta Mater. – volume: 179 start-page: 9 year: 2008 publication-title: Solid State Ionics – volume: 180 start-page: 607 year: 2009 publication-title: Solid State Ionics – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 2 start-page: 20295 year: 2014 publication-title: J. Mater. Chem. A – volume: 40 start-page: 2525 year: 2011 publication-title: Chem. Soc. Rev. – volume: 108 start-page: 407 year: 1998 publication-title: Solid State Ionics – start-page: 749 year: 2004 publication-title: Chem. Commun. – volume: 17 start-page: 1300 year: 2007 publication-title: J. Mater. Chem. – volume: 228 start-page: 250 year: 2013 publication-title: J. Power Sources – volume: 7 start-page: 1638 year: 2014 publication-title: Energy Environ. Sci. – volume: 13 start-page: 5607 year: 2007 publication-title: Chem.‐Eur. J. – volume: 181–182 start-page: 179 year: 2000 publication-title: Key Eng. Mater. – volume: 635 start-page: 2363 year: 2009 publication-title: Z. Anorg. Allg. Chem. – volume: 54 start-page: 129 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 177 start-page: 3037 year: 2006 publication-title: Solid State Ionics – volume: 72 start-page: 016502 year: 2009 publication-title: Rep. Prog. Phys. – volume: 21 start-page: 10195 year: 2011 publication-title: J. Mater. Chem. – volume: 17 start-page: 178 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 25 start-page: 1607 year: 2013 publication-title: Chem. Mater. – volume: 121 start-page: 245 year: 1999 publication-title: Solid State Ionics – volume: 22 start-page: 171 year: 1992 publication-title: Annu. Rev. Mater. Sci. – volume: 7 start-page: e193 year: 2015 publication-title: NPG Asia Mater. – volume: 316 start-page: 561 year: 2007 publication-title: Science – volume: 18 start-page: 2411 year: 2006 publication-title: Chem. Mater. – volume: 440 start-page: 655 year: 2006 publication-title: Nature – volume: 14 start-page: 1026 year: 2015 publication-title: Nat. Mater. – volume: 15 start-page: 3974 year: 2003 publication-title: Chem. Mater. – volume: 2 start-page: A53 year: 2013 publication-title: ECS Electrochem. Lett. – ident: e_1_2_5_15_1 doi: 10.1016/S0167-2738(98)00070-8 – ident: e_1_2_5_18_1 doi: 10.1016/j.jpowsour.2012.11.098 – ident: e_1_2_5_28_1 doi: 10.1149/2.008306eel – ident: e_1_2_5_11_1 doi: 10.1021/cm0300516 – ident: e_1_2_5_9_1 doi: 10.1039/c4ee00382a – ident: e_1_2_5_30_1 doi: 10.1021/cm3041357 – ident: e_1_2_5_5_1 doi: 10.1088/0034-4885/67/7/R05 – ident: e_1_2_5_24_1 doi: 10.1002/chem.200700235 – ident: e_1_2_5_25_1 doi: 10.1016/j.ssi.2006.08.012 – ident: e_1_2_5_23_1 doi: 10.1039/c3ta14433j – ident: e_1_2_5_35_1 doi: 10.1038/am.2015.50 – ident: e_1_2_5_19_1 doi: 10.1021/ja038410l – ident: e_1_2_5_3_1 doi: 10.1039/c0cs00081g – ident: e_1_2_5_14_1 doi: 10.4028/www.scientific.net/KEM.181-182.179 – ident: e_1_2_5_32_1 doi: 10.1039/C4CP04834B – ident: e_1_2_5_13_1 doi: 10.1002/zaac.200900124 – ident: e_1_2_5_20_1 doi: 10.1021/cm020172q – ident: e_1_2_5_1_1 doi: 10.1038/nmat3191 – ident: e_1_2_5_27_1 doi: 10.1016/j.ssi.2008.10.023 – ident: e_1_2_5_33_1 doi: 10.1006/jssc.2002.9722 – ident: e_1_2_5_34_1 doi: 10.1039/C4TA02923B – ident: e_1_2_5_17_1 doi: 10.1016/S0167-2738(99)00043-0 – ident: e_1_2_5_26_1 doi: 10.1021/cm060120r – ident: e_1_2_5_2_1 doi: 10.1038/nmat4369 – ident: e_1_2_5_12_1 doi: 10.1016/j.ssi.2007.12.022 – ident: e_1_2_5_6_1 doi: 10.1039/b309577k – ident: e_1_2_5_29_1 doi: 10.1146/annurev.ms.22.080192.001131 – ident: e_1_2_5_21_1 doi: 10.1006/jssc.1996.0385 – ident: e_1_2_5_16_1 doi: 10.1039/c0jm04372a – ident: e_1_2_5_7_1 doi: 10.1126/science.1135080 – ident: e_1_2_5_10_1 doi: 10.1002/anie.201408124 – ident: e_1_2_5_8_1 doi: 10.1038/nature04556 – ident: e_1_2_5_31_1 doi: 10.1088/0034-4885/72/1/016502 – ident: e_1_2_5_4_1 doi: 10.1016/j.actamat.2012.10.034 – ident: e_1_2_5_22_1 doi: 10.1039/b614345h |
SSID | ssj0000491033 |
Score | 2.4068906 |
Snippet | Li‐ion‐conducting solid electrolytes can simultaneously overcome two grand challenges for Li‐ion batteries: the severe safety concerns that limit the... Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the... In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the... |
SourceID | osti proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | coherence length Design engineering Electric batteries Electrolytes ENERGY STORAGE Ionic conductivity ionic transport Ions Li batteries Order disorder Scanning transmission electron microscopy Solid electrolytes Three dimensional Transport |
Title | Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries |
URI | https://api.istex.fr/ark:/67375/WNG-BFDPZMBD-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201600053 https://www.proquest.com/docview/1794524253 https://www.proquest.com/docview/1825486992 https://www.osti.gov/servlets/purl/1326475 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagfYEHNG4ibCAjIXioArnayWNHWwpqK6RtYuzFchwHIqqEra0E_HqO7cRNURGDPkSN46RJz2efS875jNBz0KE5FySH8U0iN6JF6nKehm7M4UM5KCnNrj9fkOlZ9P48Pt-m2-rqknX2SvzcW1fyP1KFNpCrqpL9B8nai0IDfAf5whYkDNtryXguV7UqKymFMkBNktVgrKuhVoMJFzDiB-_0EjeWw1zFN07qZZkPxmYBnOUPFXlVyYazcmDYNtu8wpactk0TkKZOEGxc83DbaLZ5cS8bLaizBaSZRD7V1edLgODOEZPGUbZNs9LUh4gvmwarTRjCJzpdqjtzgp53SdIEK2W3zfAxtdMt6aLK3zuLG1ZYLitFFeATXTC81VftO_rf1JhNLjREzAFT5zN7_k3UD8CTCHqoPxzNZyc2EAcuku-FuhCjfYSW3NMLXu_exI7x0lfj8Duo8hom4x0HpevmaDvl9ADdaRwMPDRouYtuyOoeut2hnbyPLra4wRY3uMENNrjBGjfY4gaXFda4wV3cYMANnpXY4uYBOpuMT99M3WaNDVeQMAjd1MvAOiEiKWgusiSUiS_zJOUClGRakJBmnEJPUEUZ9YqMKj64UBYyIFlKC0LDh6hX1ZV8hDDYfjlJ_MiPiiiK8yL1CrgsKPaESuEFuYPc9s9joiGgV-ugLNl-iTnope3_zVCv_LHnCy0L241ffVUJizRmHxdv2fFk9OFifjxiUwcdKmExsC4VRbJQuWRizXzwYSIaO-iolSFrRvmKKYUVK78cfuWZPQxzsHqxxitZb6CPCrMkJE0DBwVa9n-5YTYcL-Z27_G1H_QQ3dqOvSPUW19t5BMwitfZ0wbWvwBewLJo |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoscopic+Framework+Enables+Facile+Ionic+Transport+in+Solid+Electrolytes+for+Li+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Ma%2C+Cheng&rft.au=Cheng%2C+Yongqiang&rft.au=Chen%2C+Kai&rft.au=Li%2C+Juchuan&rft.date=2016-06-08&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=6&rft.issue=11&rft_id=info:doi/10.1002%2Faenm.201600053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201600053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |