Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints

We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 19; no. 9; pp. 1009 - 1022
Main Authors Colwell, Robert K., Gotelli, Nicholas J., Ashton, Louise A., Beck, Jan, Brehm, Gunnar, Fayle, Tom M., Fiedler, Konrad, Forister, Matthew L., Kessler, Michael, Kitching, Roger L., Klimes, Petr, Kluge, Jürgen, Longino, John T., Maunsell, Sarah C., McCain, Christy M., Moses, Jimmy, Noben, Sarah, Sam, Katerina, Sam, Legi, Shapiro, Arthur M., Wang, Xiangping, Novotny, Vojtech
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor – a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon‐specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness.
AbstractList We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor – a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon‐specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness.
We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor – a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon‐specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness.
Author McCain, Christy M.
Colwell, Robert K.
Gotelli, Nicholas J.
Sam, Katerina
Moses, Jimmy
Kluge, Jürgen
Sam, Legi
Fayle, Tom M.
Beck, Jan
Kessler, Michael
Klimes, Petr
Forister, Matthew L.
Kitching, Roger L.
Brehm, Gunnar
Wang, Xiangping
Shapiro, Arthur M.
Fiedler, Konrad
Longino, John T.
Maunsell, Sarah C.
Noben, Sarah
Ashton, Louise A.
Novotny, Vojtech
Author_xml – sequence: 1
  givenname: Robert K.
  surname: Colwell
  fullname: Colwell, Robert K.
  email: robertkcolwell@gmail.com
  organization: Department of Ecology and Evolutionary Biology, University of Connecticut, 06269, Storrs, CT, USA
– sequence: 2
  givenname: Nicholas J.
  surname: Gotelli
  fullname: Gotelli, Nicholas J.
  organization: Department of Biology, University of Vermont, VT, 05405, Burlington, USA
– sequence: 3
  givenname: Louise A.
  surname: Ashton
  fullname: Ashton, Louise A.
  organization: Environmental Futures Research Institute, Griffith University, 4111, Nathan, Qld, Australia
– sequence: 4
  givenname: Jan
  surname: Beck
  fullname: Beck, Jan
  organization: University of Colorado Museum of Natural History, 80309, Boulder, CO, USA
– sequence: 5
  givenname: Gunnar
  surname: Brehm
  fullname: Brehm, Gunnar
  organization: Phyletisches Museum, Friedrich-Schiller Universität, 07743, Jena, Germany
– sequence: 6
  givenname: Tom M.
  surname: Fayle
  fullname: Fayle, Tom M.
  organization: Institute of Entomology, Biology Centre of the Czech Academy of Sciences and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
– sequence: 7
  givenname: Konrad
  surname: Fiedler
  fullname: Fiedler, Konrad
  organization: Department of Botany & Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
– sequence: 8
  givenname: Matthew L.
  surname: Forister
  fullname: Forister, Matthew L.
  organization: Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of Nevada, NV89557, Reno, USA
– sequence: 9
  givenname: Michael
  surname: Kessler
  fullname: Kessler, Michael
  organization: Institute of Systematic Botany, University of Zurich, Switzerland, 8008, Zurich
– sequence: 10
  givenname: Roger L.
  surname: Kitching
  fullname: Kitching, Roger L.
  organization: Environmental Futures Research Institute, Griffith University, Qld, 4111, Nathan, Australia
– sequence: 11
  givenname: Petr
  surname: Klimes
  fullname: Klimes, Petr
  organization: Institute of Entomology, Biology Centre of the Czech Academy of Sciences and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
– sequence: 12
  givenname: Jürgen
  surname: Kluge
  fullname: Kluge, Jürgen
  organization: Department of Geography, University of Marburg, 35032, Marburg, Germany
– sequence: 13
  givenname: John T.
  surname: Longino
  fullname: Longino, John T.
  organization: Department of Biology, University of Utah, UT, 84112, Salt Lake City, USA
– sequence: 14
  givenname: Sarah C.
  surname: Maunsell
  fullname: Maunsell, Sarah C.
  organization: Environmental Futures Research Institute, Griffith University, Qld, 4111, Nathan, Australia
– sequence: 15
  givenname: Christy M.
  surname: McCain
  fullname: McCain, Christy M.
  organization: University of Colorado Museum of Natural History, 80309, Boulder, CO, USA
– sequence: 16
  givenname: Jimmy
  surname: Moses
  fullname: Moses, Jimmy
  organization: New Guinea Binatang Research Center, P.O. Box 604, Madang, Papua New Guinea
– sequence: 17
  givenname: Sarah
  surname: Noben
  fullname: Noben, Sarah
  organization: Institute of Systematic Botany, University of Zurich, Switzerland, 8008, Zurich
– sequence: 18
  givenname: Katerina
  surname: Sam
  fullname: Sam, Katerina
  organization: Institute of Entomology, Biology Centre of the Czech Academy of Sciences and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
– sequence: 19
  givenname: Legi
  surname: Sam
  fullname: Sam, Legi
  organization: Environmental Futures Research Institute, Griffith University, 4111, Nathan, Qld, Australia
– sequence: 20
  givenname: Arthur M.
  surname: Shapiro
  fullname: Shapiro, Arthur M.
  organization: Center for Population Biology, University of California, CA, 95616, Davis, USA
– sequence: 21
  givenname: Xiangping
  surname: Wang
  fullname: Wang, Xiangping
  organization: College of Forestry, Beijing Forestry University, 100083, Beijing, China
– sequence: 22
  givenname: Vojtech
  surname: Novotny
  fullname: Novotny, Vojtech
  organization: Institute of Entomology, Biology Centre of the Czech Academy of Sciences and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27358193$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB-w4A8gS2xgkdaP2E7YoWo6IE2LVECwsxznpnVJ7MH29KH-eRxmOotKPLy5XnznXN1z736x47yDonhJ8CHJ7wgGOCRUVPhJsUcqQUpMq3pn-2ffd4v9GK8wJrSR5FmxSyXjNWnYXnF_arulty4hnVLQJvkQkXYdikswFiIK1lw6iPEdOvUdDIN1FyhdAsoSmHjrHWoh3QA4BO7aBu9GcEkPqAv2GjZuF-BHSNkLGe9ibpTl8XnxtNdDhBebelB8PZl9Of5QLj7NPx6_X5RGMIrLWrCeVJyD1MAxbmgLmhqsWSOMMKRvJeambWspZMV7DYYyRjssNWddAy2wg-LN2ncZ_M8VxKRGG02eRTvwq6gozskIUhP5TzRDPLerKf4fNMedQxYZff0IvfKr4PLME4U5qRs89X61oVbtCJ1aBjvqcKcelpWBt2vABB9jgH6LEKymQ1D5ENTvQ8js0SPW2KSnbU3hD39T3NgB7v5srWaL2YOiXCtsTHC7VejwQwnJJFffzuZKfj6fn_HzWp2wXxTL07I
CitedBy_id crossref_primary_10_1007_s00442_020_04615_x
crossref_primary_10_1016_j_ecolind_2021_108393
crossref_primary_10_1111_geb_13757
crossref_primary_10_1111_geb_12548
crossref_primary_10_1371_journal_pone_0227628
crossref_primary_10_1111_1365_2656_14193
crossref_primary_10_1002_ece3_6097
crossref_primary_10_1007_s11829_020_09741_0
crossref_primary_10_1038_s41598_019_43025_9
crossref_primary_10_1007_s00442_018_4108_4
crossref_primary_10_1111_nph_70012
crossref_primary_10_1007_s11160_019_09548_0
crossref_primary_10_1111_btp_13189
crossref_primary_10_1111_geb_12903
crossref_primary_10_1086_725017
crossref_primary_10_1002_ecy_3521
crossref_primary_10_1016_j_gecco_2024_e03026
crossref_primary_10_1080_26895293_2022_2066195
crossref_primary_10_1002_ece3_8958
crossref_primary_10_1111_ecog_03871
crossref_primary_10_1111_ecog_07277
crossref_primary_10_1111_jbi_13740
crossref_primary_10_1111_btp_12539
crossref_primary_10_3389_fpls_2020_00765
crossref_primary_10_3390_insects13030293
crossref_primary_10_1016_j_pld_2021_11_004
crossref_primary_10_1017_S0266467419000117
crossref_primary_10_1111_ecog_04115
crossref_primary_10_1111_ele_14497
crossref_primary_10_1111_ecog_03067
crossref_primary_10_1111_1365_2745_13772
crossref_primary_10_3390_d17030215
crossref_primary_10_1002_ecy_4421
crossref_primary_10_1111_jbi_15037
crossref_primary_10_1098_rspb_2022_1102
crossref_primary_10_1007_s10531_019_01745_4
crossref_primary_10_1002_ece3_9862
crossref_primary_10_18473_lepi_77i1_a3
crossref_primary_10_1093_biolinnean_blz081
crossref_primary_10_1111_btp_12878
crossref_primary_10_1371_journal_pone_0308698
crossref_primary_10_1111_btp_13283
crossref_primary_10_3390_insects12020168
crossref_primary_10_1038_ncomms13736
crossref_primary_10_1111_icad_12663
crossref_primary_10_1093_cz_zoad032
crossref_primary_10_1111_jbi_14059
crossref_primary_10_1111_jbi_14499
crossref_primary_10_1111_jbi_13482
crossref_primary_10_1111_btp_12914
crossref_primary_10_1002_ecs2_2798
crossref_primary_10_1016_j_gecco_2024_e02997
crossref_primary_10_1111_btp_13316
crossref_primary_10_1016_j_actao_2020_103533
crossref_primary_10_1111_aec_12586
crossref_primary_10_1002_ecy_2548
crossref_primary_10_1016_j_jenvman_2021_114332
crossref_primary_10_1016_j_scitotenv_2020_140548
crossref_primary_10_1038_s41598_017_03655_3
crossref_primary_10_1111_ecog_05901
crossref_primary_10_1139_cjz_2019_0002
crossref_primary_10_1016_j_jaridenv_2019_03_005
crossref_primary_10_1093_jmammal_gyae087
crossref_primary_10_1111_ecog_04730
crossref_primary_10_1007_s00027_024_01118_2
crossref_primary_10_1007_s11258_022_01251_8
crossref_primary_10_1111_ecog_03086
crossref_primary_10_1111_icad_12456
crossref_primary_10_1111_jbi_13432
crossref_primary_10_1111_jbi_14686
crossref_primary_10_3390_insects13010035
crossref_primary_10_3389_fpls_2020_00258
crossref_primary_10_1098_rspb_2016_2564
Cites_doi 10.1111/jbi.12196
10.1111/geb.12197
10.1111/j.1461-0248.2004.00701.x
10.1371/journal.pone.0104030
10.1111/j.1600-0587.2009.06299.x
10.1111/j.1600-0587.2012.07820.x
10.1111/j.1466-8238.2006.00263.x
10.1111/j.1744-7429.2010.00727.x
10.1111/ecog.00578
10.1111/j.1365-2745.2010.01651.x
10.1111/j.1461-0248.2009.01353.x
10.1111/j.1600-0587.1995.tb00341.x
10.1111/j.1461-0248.2004.00671.x
10.1098/rspb.2006.3700
10.1111/j.1600-0587.2012.07384.x
10.1126/science.aab4119
10.1111/j.1466-8238.2006.00284.x
10.1111/j.1523-1739.2009.01337.x
10.1073/pnas.0306899100
10.1111/j.0906-7590.2005.04038.x
10.1086/285695
10.1086/382056
10.1111/j.1365-2699.2008.01952.x
10.1046/j.1472-4642.2002.00160.x
10.1046/j.1461-0248.2003.00511.x
10.1111/j.1461-0248.2011.01640.x
10.1046/j.1466-822x.2001.00229.x
10.1016/S0169-5347(99)01767-X
10.1098/rstb.2010.0293
10.1890/ES10‐00200.1
10.1201/b16018
10.1073/pnas.091100998
10.1017/CBO9780511814938.016
10.1890/06-1302.1
10.1111/j.1461-0248.2005.00793.x
10.1029/2007JD008470
10.1111/j.2006.0906-7590.04259.x
10.1111/j.1461-0248.2006.00984.x
10.1086/430638
10.1002/9780470015902.a0022548
10.1111/j.1365-2486.2009.02085.x
10.1890/03-8006
10.1086/491689
10.1073/pnas.0901650106
10.1111/j.1600-0706.2010.18811.x
ContentType Journal Article
Copyright 2016 John Wiley & Sons Ltd/CNRS
2016 John Wiley & Sons Ltd/CNRS.
Copyright © 2016 John Wiley & Sons Ltd/CNRS
Copyright_xml – notice: 2016 John Wiley & Sons Ltd/CNRS
– notice: 2016 John Wiley & Sons Ltd/CNRS.
– notice: Copyright © 2016 John Wiley & Sons Ltd/CNRS
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7S9
L.6
DOI 10.1111/ele.12640
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
Ecology Abstracts
MEDLINE - Academic
Entomology Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
Editor Swenson, Nathan
Editor_xml – sequence: 23
  givenname: Nathan
  surname: Swenson
  fullname: Swenson, Nathan
EndPage 1022
ExternalDocumentID 4143453261
27358193
10_1111_ele_12640
ELE12640
ark_67375_WNG_7SRGN5R8_F
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP140101541
– fundername: German Academic Exchange Service DAAD
– fundername: Australian Postgraduate Research Awards
– fundername: U. S. NSF
  funderid: DEB 1257625; DEB 1144055; DEB 1136644; DEB 1354739; DEB 841885
– fundername: IBISCA
– fundername: European Social Fund
  funderid: CZ.1.07/2.3.00/20.0064
– fundername: Griffith University
– fundername: CAPES Ciência sem Fronteiras (Brazil)
– fundername: UK Darwin Initiative
  funderid: 19‐008
– fundername: Swiss National Fund
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7S9
L.6
ID FETCH-LOGICAL-c6320-863f1455e7ae50092bea2c0a396c6c1fb705cbb876745faec2332d07a53d9ebe3
IEDL.DBID DR2
ISSN 1461-023X
IngestDate Fri Jul 11 18:25:26 EDT 2025
Fri Jul 11 11:06:19 EDT 2025
Fri Jul 11 04:47:36 EDT 2025
Fri Jul 25 11:04:44 EDT 2025
Mon Jul 21 06:02:55 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Tue Jul 01 02:29:42 EDT 2025
Wed Aug 20 07:24:12 EDT 2025
Wed Oct 30 09:53:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords geometric constraints
Bayesian model
Biogeography
elevational gradients
mid-domain effect
stochastic model
truncated niche
midpoint predictor model
Language English
License 2016 John Wiley & Sons Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6320-863f1455e7ae50092bea2c0a396c6c1fb705cbb876745faec2332d07a53d9ebe3
Notes  
Australian Postgraduate Research Awards
Australian Research Council - No. DP140101541
European Social Fund - No. CZ.1.07/2.3.00/20.0064
ark:/67375/WNG-7SRGN5R8-F
ArticleID:ELE12640
Griffith University
UK Darwin Initiative - No. 19-008
Yayasan Sime Darby
Czech Science Foundation - No. 14-36098G; No. 14-32302S; No. 14-32024P; No. 13-10486S
National Natural Science Foundation of China - No. 31370620
Czech Ministry of Education
U. S. NSF - No. DEB 1257625; No. DEB 1144055; No. DEB 1136644; No. DEB 1354739; No. DEB 841885
Claraz Schenkung
German DFG - No. Br 2280/1-1; No. Fi547/5-1; No. FOR 402/1-1
IBISCA
Swiss National Fund
German Academic Exchange Service DAAD
istex:891568505BAFAEDBD81AE779D8F3D692A1A11807
CAPES Ciência sem Fronteiras (Brazil)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/10072/123799
PMID 27358193
PQID 1810518907
PQPubID 32390
PageCount 14
ParticipantIDs proquest_miscellaneous_2000161817
proquest_miscellaneous_1815705820
proquest_miscellaneous_1811291936
proquest_journals_1810518907
pubmed_primary_27358193
crossref_primary_10_1111_ele_12640
crossref_citationtrail_10_1111_ele_12640
wiley_primary_10_1111_ele_12640_ELE12640
istex_primary_ark_67375_WNG_7SRGN5R8_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Connolly, S.R. (2005). Process-based models of species distributions and the middomain effect. Am. Nat., 166, 1-11.
Colwell, R.K. & Rangel, T.F. (2009). Hutchinson's duality: the once and future niche. PNAS, 106, 19651-19658.
Colwell, R.K. & Lees, D.C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol., 15, 70-76.
Lomolino, M.V. (2001). Elevational gradients of species density: historical and prospective views. Global Ecol. Biogeogr., 10, 3-13.
Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P. et al. (2010). Intraspecific functional variability: extent, structure and sources of variation. J. Ecol., 98, 604-613.
Grytnes, J. (2003). Ecological interpretations of the mid-domain effect. Ecol. Lett., 6, 883-888.
Laurie, H. & Silander Jr., J.A. (2002). Geometric constraints and spatial pattern of species richness: critique of range-based null models. Divers. Distrib., 8, 351-364.
Colwell, R.K. & Rangel, T.F. (2010). A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles. Philos. Trans. R. Soc. Lond. B Biol. Sci., 365, 3695-3707.
Marjoram, P., Molitor, J., Plagnol, V. & Tavaré, S. (2003). Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. U. S. A., 100, 15324.
Gotelli, N., Anderson, M.J., Arita, H.T., Chao, A., Colwell, R.K., Connolly, S.R. et al. (2009). Patterns and causes of species richness: a general simulation model for macroecology. Ecol. Lett., 12, 873-886.
Storch, D., Davies, R.G., Zajicek, S., Orme, C.D.L., Olson, V., Thomas, G.H. et al. (2006). Energy, range dynamics and global species richness patterns: reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett., 9, 1308-1320.
McCain, C.M. (2007). Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob. Ecol. Biogeogr., 16, 1-13.
Colwell, R.K., Rahbek, C. & Gotelli, N. (2004). The mid-domain effect and species richness patterns: what have we learned so far? Am. Nat., 163, E1-E23.
Hartig, F., Calabrese, J.M., Reineking, B., Wiegand, T. & Huth, A. (2011). Statistical inference for stochastic simulation models - theory and application. Ecol. Lett., 14, 816-827.
Tiwari, M., Bjorndal, K.A., Bolten, A.B. & Bolker, B.M. (2005). Intraspecific application of the mid-domain effect model: spatial and temporal nest distributions of green turtles, Chelonia mydas, at Tortuguero, Costa Rica. Ecol. Lett., 8, 918-924.
Currie, D.J. & Kerr, J.T. (2008). Tests of the mid-domain hypothesis: a review of the evidence. Ecol. Monogr., 78, 3-18.
Rahbek, C., Gotelli, N., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R. (2007). Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc. Biol. Sci., 274, 165-174.
Rahbek, C. (1995). The elevational gradient of species richness: a uniform pattern? Ecography, 19, 200-205.
Currie, D., Mittelbach, G., Cornell, H., Field, R., Guegan, J., Hawkins, B. et al. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett., 7, 1121-1134.
Longino, J.T. & Colwell, R.K. (2011). Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere, 2(3), art. 29. doi:10.1890/ES10-00200.1.
Rangel, T.F., Diniz Filho, J.A.F. & Bini, L.M. (2010). SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 33, 46-50.
Fan, Y. & van den Dool, H. (2008). A global monthly land surface air temperature analysis for 1948-present. J. Geophys. Res., 113, D01103.
Longino, J.T., Branstetter, M.G. & Colwell, R.K. (2014). How ants drop out: ant abundance on tropical mountains. PLoS ONE, 9, e104030.
Colwell, R.K., Rahbek, C. & Gotelli, N. (2005). The mid-domain effect: there's a baby in the bathwater. Am. Nat., 166, E149-E154.
Sundqvist, M.K., Giesler, R., Graae, B.J., Wallander, H., Fogelberg, E. & Wardle, D.A. (2011). Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra. Oikos, 120, 128-142.
Ahrens, C.D. (2013). Meteorology today, (11th edn.). Brooks/Cole Publishing, Belmont CA, USA.
Wright, S.J., Muller-Landau, H. & Schipper, J. (2009). The future of tropical species on a warmer planet. Conserv. Biol., 23, 1418-1426.
Dunn, R.R., McCain, C.M. & Sanders, N. (2007). When does diversity fit null model predictions? Scale and range size mediate the mid-domain effect. Glob. Ecol. Biogeogr., 3, 305-312.
Presley, S.J., Willig, M.R., Bloch, C.P., Castro-Arellano, I., Higgins, C.L. & Klingbeil, B.T. (2011). A complex metacommunity structure for gastropods along an elevational gradient. Biotropica, 43, 480-488.
Rangel, T.F.L.V.B. & Diniz-Filho, J.A.F. (2005). An evolutionary tolerance model explaining spatial patterns in species richness under environmental gradients and geometric constraints. Ecography, 28, 253-263.
Jetz, W. & Rahbek, C. (2001). Geometric constraints explain much of the species richness pattern in African birds. PNAS, 98, 5661-5666.
Grytnes, J.A., Beaman, J.H., Romdal, T.S. & Rahbek, C. (2008). The mid-domain effect matters: simulation analyses of range-size distribution data from Mount Kinabalu. Borneo. J. Biogeogr., 35, 2138-2147.
Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.-F., Kaufmann, D.M. et al. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
Feeley, K.J. & Silman, M.R. (2010). Biotic attrition from tropical forests correcting for truncated temperature niches. Global Change Biol., 16, 1830-1836.
Wang, X. & Fang, J. (2012). Constraining null models with environmental gradients: a new method for evaluating the effects of environmental factors and geometric constraints on geographic diversity patterns. Ecography, 35, 1147-1159.
Letten, A.D., Kathleen Lyons, S. & Moles, A.T. (2013). The mid-domain effect: it's not just about space. J. Biogeogr., 40, 2017-2019.
Colwell, R.K. & Hurtt, G.C. (1994). Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat., 144, 570-595.
Graham, C.H., Carnaval, A.C., Cadena, C.D., Zamudio, K.R., Roberts, T.E., Parra, J.L. et al. (2014). The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 37, 711-719.
Wu, Y., Colwell, R.K., Han, N., Zhang, R., Wang, W., Quan, Q. et al. (2014). Understanding historical and current patterns of species richness of babblers along a 5000-m subtropical elevational gradient. Global Ecol. Biogeogr., 23, 1167-1176.
Prevedello, J.A., Figueiredo, M.S., Grelle, C.E. & Vieira, M.V. (2013). Rethinking edge effects: the unaccounted role of geometric constraints. Ecography, 36, 287-299.
Chan, W.-P., Chen, I.-C., Colwell, R.K., Liu, W.-C., Huang, C.-Y. & Shen, S.-F. (2016). Seasonal and daily climate variation have opposite effects on species elevational range size. Science, 351, 1437-1439.
Rahbek, C. (2005). The role of spatial scale in the perception of large-scale species-richness patterns. Ecol. Lett., 8, 224-239.
Dunn, R.R., Colwell, R.K. & Nilsson, C. (2006). The river domain: why are there more species halfway up the river? Ecography, 29, 251-259.
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. & Rubin, D.B. (2013). Bayesian Data Analysis. CRC Press, Boca Raton, FL, USA.
2009; 23
2010; 33
2010; 98
2010; 16
2011; 2
2010
2004; 163
2013; 40
2004; 7
2010; 365
2006; 9
2002; 8
2007
2008; 78
2008; 35
1995; 19
2011; 14
2012; 35
2005; 28
2014; 23
2007; 16
2009; 12
1994; 144
2013; 36
2000; 15
2005; 166
2003; 6
2005; 8
2007; 274
2014; 37
2006; 29
2009; 201
2011; 43
2013
2007; 3
2008; 113
2014; 9
2003; 84
2016; 351
2003; 100
2009; 106
2001; 98
2001; 10
2011; 120
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
Newbery D. (e_1_2_7_35_1) 2009
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Ahrens C.D. (e_1_2_7_2_1) 2013
References_xml – reference: Grytnes, J.A., Beaman, J.H., Romdal, T.S. & Rahbek, C. (2008). The mid-domain effect matters: simulation analyses of range-size distribution data from Mount Kinabalu. Borneo. J. Biogeogr., 35, 2138-2147.
– reference: Fan, Y. & van den Dool, H. (2008). A global monthly land surface air temperature analysis for 1948-present. J. Geophys. Res., 113, D01103.
– reference: Hartig, F., Calabrese, J.M., Reineking, B., Wiegand, T. & Huth, A. (2011). Statistical inference for stochastic simulation models - theory and application. Ecol. Lett., 14, 816-827.
– reference: Rahbek, C. (1995). The elevational gradient of species richness: a uniform pattern? Ecography, 19, 200-205.
– reference: Wang, X. & Fang, J. (2012). Constraining null models with environmental gradients: a new method for evaluating the effects of environmental factors and geometric constraints on geographic diversity patterns. Ecography, 35, 1147-1159.
– reference: Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P. et al. (2010). Intraspecific functional variability: extent, structure and sources of variation. J. Ecol., 98, 604-613.
– reference: Longino, J.T., Branstetter, M.G. & Colwell, R.K. (2014). How ants drop out: ant abundance on tropical mountains. PLoS ONE, 9, e104030.
– reference: Currie, D.J. & Kerr, J.T. (2008). Tests of the mid-domain hypothesis: a review of the evidence. Ecol. Monogr., 78, 3-18.
– reference: Rangel, T.F.L.V.B. & Diniz-Filho, J.A.F. (2005). An evolutionary tolerance model explaining spatial patterns in species richness under environmental gradients and geometric constraints. Ecography, 28, 253-263.
– reference: Tiwari, M., Bjorndal, K.A., Bolten, A.B. & Bolker, B.M. (2005). Intraspecific application of the mid-domain effect model: spatial and temporal nest distributions of green turtles, Chelonia mydas, at Tortuguero, Costa Rica. Ecol. Lett., 8, 918-924.
– reference: Wright, S.J., Muller-Landau, H. & Schipper, J. (2009). The future of tropical species on a warmer planet. Conserv. Biol., 23, 1418-1426.
– reference: Laurie, H. & Silander Jr., J.A. (2002). Geometric constraints and spatial pattern of species richness: critique of range-based null models. Divers. Distrib., 8, 351-364.
– reference: Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.-F., Kaufmann, D.M. et al. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
– reference: Rahbek, C., Gotelli, N., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R. (2007). Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc. Biol. Sci., 274, 165-174.
– reference: Sundqvist, M.K., Giesler, R., Graae, B.J., Wallander, H., Fogelberg, E. & Wardle, D.A. (2011). Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra. Oikos, 120, 128-142.
– reference: Feeley, K.J. & Silman, M.R. (2010). Biotic attrition from tropical forests correcting for truncated temperature niches. Global Change Biol., 16, 1830-1836.
– reference: Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. & Rubin, D.B. (2013). Bayesian Data Analysis. CRC Press, Boca Raton, FL, USA.
– reference: Marjoram, P., Molitor, J., Plagnol, V. & Tavaré, S. (2003). Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. U. S. A., 100, 15324.
– reference: Graham, C.H., Carnaval, A.C., Cadena, C.D., Zamudio, K.R., Roberts, T.E., Parra, J.L. et al. (2014). The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 37, 711-719.
– reference: Grytnes, J. (2003). Ecological interpretations of the mid-domain effect. Ecol. Lett., 6, 883-888.
– reference: Colwell, R.K. & Rangel, T.F. (2009). Hutchinson's duality: the once and future niche. PNAS, 106, 19651-19658.
– reference: Longino, J.T. & Colwell, R.K. (2011). Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere, 2(3), art. 29. doi:10.1890/ES10-00200.1.
– reference: Rahbek, C. (2005). The role of spatial scale in the perception of large-scale species-richness patterns. Ecol. Lett., 8, 224-239.
– reference: Currie, D., Mittelbach, G., Cornell, H., Field, R., Guegan, J., Hawkins, B. et al. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett., 7, 1121-1134.
– reference: Colwell, R.K. & Rangel, T.F. (2010). A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles. Philos. Trans. R. Soc. Lond. B Biol. Sci., 365, 3695-3707.
– reference: Dunn, R.R., McCain, C.M. & Sanders, N. (2007). When does diversity fit null model predictions? Scale and range size mediate the mid-domain effect. Glob. Ecol. Biogeogr., 3, 305-312.
– reference: Connolly, S.R. (2005). Process-based models of species distributions and the middomain effect. Am. Nat., 166, 1-11.
– reference: Rangel, T.F., Diniz Filho, J.A.F. & Bini, L.M. (2010). SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 33, 46-50.
– reference: Wu, Y., Colwell, R.K., Han, N., Zhang, R., Wang, W., Quan, Q. et al. (2014). Understanding historical and current patterns of species richness of babblers along a 5000-m subtropical elevational gradient. Global Ecol. Biogeogr., 23, 1167-1176.
– reference: McCain, C.M. (2007). Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob. Ecol. Biogeogr., 16, 1-13.
– reference: Ahrens, C.D. (2013). Meteorology today, (11th edn.). Brooks/Cole Publishing, Belmont CA, USA.
– reference: Prevedello, J.A., Figueiredo, M.S., Grelle, C.E. & Vieira, M.V. (2013). Rethinking edge effects: the unaccounted role of geometric constraints. Ecography, 36, 287-299.
– reference: Presley, S.J., Willig, M.R., Bloch, C.P., Castro-Arellano, I., Higgins, C.L. & Klingbeil, B.T. (2011). A complex metacommunity structure for gastropods along an elevational gradient. Biotropica, 43, 480-488.
– reference: Chan, W.-P., Chen, I.-C., Colwell, R.K., Liu, W.-C., Huang, C.-Y. & Shen, S.-F. (2016). Seasonal and daily climate variation have opposite effects on species elevational range size. Science, 351, 1437-1439.
– reference: Colwell, R.K., Rahbek, C. & Gotelli, N. (2004). The mid-domain effect and species richness patterns: what have we learned so far? Am. Nat., 163, E1-E23.
– reference: Colwell, R.K. & Lees, D.C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol., 15, 70-76.
– reference: Dunn, R.R., Colwell, R.K. & Nilsson, C. (2006). The river domain: why are there more species halfway up the river? Ecography, 29, 251-259.
– reference: Gotelli, N., Anderson, M.J., Arita, H.T., Chao, A., Colwell, R.K., Connolly, S.R. et al. (2009). Patterns and causes of species richness: a general simulation model for macroecology. Ecol. Lett., 12, 873-886.
– reference: Colwell, R.K. & Hurtt, G.C. (1994). Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat., 144, 570-595.
– reference: Storch, D., Davies, R.G., Zajicek, S., Orme, C.D.L., Olson, V., Thomas, G.H. et al. (2006). Energy, range dynamics and global species richness patterns: reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett., 9, 1308-1320.
– reference: Jetz, W. & Rahbek, C. (2001). Geometric constraints explain much of the species richness pattern in African birds. PNAS, 98, 5661-5666.
– reference: Lomolino, M.V. (2001). Elevational gradients of species density: historical and prospective views. Global Ecol. Biogeogr., 10, 3-13.
– reference: Letten, A.D., Kathleen Lyons, S. & Moles, A.T. (2013). The mid-domain effect: it's not just about space. J. Biogeogr., 40, 2017-2019.
– reference: Colwell, R.K., Rahbek, C. & Gotelli, N. (2005). The mid-domain effect: there's a baby in the bathwater. Am. Nat., 166, E149-E154.
– volume: 8
  start-page: 918
  year: 2005
  end-page: 924
  article-title: Intraspecific application of the mid‐domain effect model: spatial and temporal nest distributions of green turtles, , at Tortuguero, Costa Rica
  publication-title: Ecol. Lett.
– volume: 144
  start-page: 570
  year: 1994
  end-page: 595
  article-title: Nonbiological gradients in species richness and a spurious Rapoport effect
  publication-title: Am. Nat.
– volume: 8
  start-page: 224
  year: 2005
  end-page: 239
  article-title: The role of spatial scale in the perception of large‐scale species‐richness patterns
  publication-title: Ecol. Lett.
– volume: 28
  start-page: 253
  year: 2005
  end-page: 263
  article-title: An evolutionary tolerance model explaining spatial patterns in species richness under environmental gradients and geometric constraints
  publication-title: Ecography
– volume: 365
  start-page: 3695
  year: 2010
  end-page: 3707
  article-title: A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 36
  start-page: 287
  year: 2013
  end-page: 299
  article-title: Rethinking edge effects: the unaccounted role of geometric constraints
  publication-title: Ecography
– volume: 120
  start-page: 128
  year: 2011
  end-page: 142
  article-title: Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra
  publication-title: Oikos
– volume: 78
  start-page: 3
  year: 2008
  end-page: 18
  article-title: Tests of the mid‐domain hypothesis: a review of the evidence
  publication-title: Ecol. Monogr.
– volume: 163
  start-page: E1
  year: 2004
  end-page: E23
  article-title: The mid‐domain effect and species richness patterns: what have we learned so far?
  publication-title: Am. Nat.
– volume: 37
  start-page: 711
  year: 2014
  end-page: 719
  article-title: The origin and maintenance of montane diversity: integrating evolutionary and ecological processes
  publication-title: Ecography
– volume: 23
  start-page: 1167
  year: 2014
  end-page: 1176
  article-title: Understanding historical and current patterns of species richness of babblers along a 5000‐m subtropical elevational gradient
  publication-title: Global Ecol. Biogeogr.
– volume: 84
  start-page: 3105
  year: 2003
  end-page: 3117
  article-title: Energy, water, and broad‐scale geographic patterns of species richness
  publication-title: Ecology
– volume: 100
  start-page: 15324
  year: 2003
  article-title: Markov chain Monte Carlo without likelihoods
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 16
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Could temperature and water availability drive elevational species richness patterns? A global case study for bats
  publication-title: Glob. Ecol. Biogeogr.
– volume: 23
  start-page: 1418
  year: 2009
  end-page: 1426
  article-title: The future of tropical species on a warmer planet
  publication-title: Conserv. Biol.
– volume: 12
  start-page: 873
  year: 2009
  end-page: 886
  article-title: Patterns and causes of species richness: a general simulation model for macroecology
  publication-title: Ecol. Lett.
– volume: 166
  start-page: 1
  year: 2005
  end-page: 11
  article-title: Process‐based models of species distributions and the middomain effect
  publication-title: Am. Nat.
– volume: 6
  start-page: 883
  year: 2003
  end-page: 888
  article-title: Ecological interpretations of the mid‐domain effect
  publication-title: Ecol. Lett.
– volume: 14
  start-page: 816
  year: 2011
  end-page: 827
  article-title: Statistical inference for stochastic simulation models – theory and application
  publication-title: Ecol. Lett.
– year: 2010
– volume: 19
  start-page: 200
  year: 1995
  end-page: 205
  article-title: The elevational gradient of species richness: a uniform pattern?
  publication-title: Ecography
– volume: 98
  start-page: 5661
  year: 2001
  end-page: 5666
  article-title: Geometric constraints explain much of the species richness pattern in African birds
  publication-title: PNAS
– volume: 98
  start-page: 604
  year: 2010
  end-page: 613
  article-title: Intraspecific functional variability: extent, structure and sources of variation
  publication-title: J. Ecol.
– volume: 15
  start-page: 70
  year: 2000
  end-page: 76
  article-title: The mid‐domain effect: geometric constraints on the geography of species richness
  publication-title: Trends Ecol. Evol.
– volume: 8
  start-page: 351
  year: 2002
  end-page: 364
  article-title: Geometric constraints and spatial pattern of species richness: critique of range‐based null models
  publication-title: Divers. Distrib.
– volume: 40
  start-page: 2017
  year: 2013
  end-page: 2019
  article-title: The mid‐domain effect: it's not just about space
  publication-title: J. Biogeogr.
– volume: 9
  start-page: 1308
  year: 2006
  end-page: 1320
  article-title: Energy, range dynamics and global species richness patterns: reconciling mid‐domain effects and environmental determinants of avian diversity
  publication-title: Ecol. Lett.
– volume: 29
  start-page: 251
  year: 2006
  end-page: 259
  article-title: The river domain: why are there more species halfway up the river?
  publication-title: Ecography
– volume: 2
  start-page: art. 29
  issue: 3
  year: 2011
  article-title: Density compensation, species composition, and richness of ants on a neotropical elevational gradient
  publication-title: Ecosphere
– volume: 106
  start-page: 19651
  year: 2009
  end-page: 19658
  article-title: Hutchinson's duality: the once and future niche
  publication-title: PNAS
– volume: 35
  start-page: 2138
  year: 2008
  end-page: 2147
  article-title: The mid‐domain effect matters: simulation analyses of range‐size distribution data from Mount Kinabalu
  publication-title: Borneo. J. Biogeogr.
– volume: 274
  start-page: 165
  year: 2007
  end-page: 174
  article-title: Predicting continental‐scale patterns of bird species richness with spatially explicit models
  publication-title: Proc. Biol. Sci.
– volume: 166
  start-page: E149
  year: 2005
  end-page: E154
  article-title: The mid‐domain effect: there's a baby in the bathwater
  publication-title: Am. Nat.
– volume: 16
  start-page: 1830
  year: 2010
  end-page: 1836
  article-title: Biotic attrition from tropical forests correcting for truncated temperature niches
  publication-title: Global Change Biol.
– volume: 351
  start-page: 1437
  year: 2016
  end-page: 1439
  article-title: Seasonal and daily climate variation have opposite effects on species elevational range size
  publication-title: Science
– volume: 10
  start-page: 3
  year: 2001
  end-page: 13
  article-title: Elevational gradients of species density: historical and prospective views
  publication-title: Global Ecol. Biogeogr.
– volume: 35
  start-page: 1147
  year: 2012
  end-page: 1159
  article-title: Constraining null models with environmental gradients: a new method for evaluating the effects of environmental factors and geometric constraints on geographic diversity patterns
  publication-title: Ecography
– volume: 201
  start-page: 147
  year: 2009
  end-page: 167
– volume: 43
  start-page: 480
  year: 2011
  end-page: 488
  article-title: A complex metacommunity structure for gastropods along an elevational gradient
  publication-title: Biotropica
– volume: 7
  start-page: 1121
  year: 2004
  end-page: 1134
  article-title: Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness
  publication-title: Ecol. Lett.
– volume: 3
  start-page: 305
  year: 2007
  end-page: 312
  article-title: When does diversity fit null model predictions? Scale and range size mediate the mid‐domain effect
  publication-title: Glob. Ecol. Biogeogr.
– volume: 113
  start-page: D01103
  year: 2008
  article-title: A global monthly land surface air temperature analysis for 1948‐present
  publication-title: J. Geophys. Res.
– volume: 9
  start-page: e104030
  year: 2014
  article-title: How ants drop out: ant abundance on tropical mountains
  publication-title: PLoS ONE
– start-page: 283
  year: 2007
  end-page: 299
– volume: 33
  start-page: 46
  year: 2010
  end-page: 50
  article-title: SAM: a comprehensive application for Spatial Analysis in Macroecology
  publication-title: Ecography
– year: 2013
– ident: e_1_2_7_28_1
  doi: 10.1111/jbi.12196
– ident: e_1_2_7_48_1
  doi: 10.1111/geb.12197
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1461-0248.2004.00701.x
– ident: e_1_2_7_31_1
  doi: 10.1371/journal.pone.0104030
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1600-0587.2009.06299.x
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1600-0587.2012.07820.x
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1466-8238.2006.00263.x
– start-page: 147
  volume-title: Forest Ecology
  year: 2009
  ident: e_1_2_7_35_1
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1744-7429.2010.00727.x
– ident: e_1_2_7_21_1
  doi: 10.1111/ecog.00578
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-2745.2010.01651.x
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1461-0248.2009.01353.x
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1600-0587.1995.tb00341.x
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1461-0248.2004.00671.x
– ident: e_1_2_7_40_1
  doi: 10.1098/rspb.2006.3700
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1600-0587.2012.07384.x
– ident: e_1_2_7_5_1
  doi: 10.1126/science.aab4119
– volume-title: Meteorology today
  year: 2013
  ident: e_1_2_7_2_1
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1466-8238.2006.00284.x
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1523-1739.2009.01337.x
– ident: e_1_2_7_32_1
  doi: 10.1073/pnas.0306899100
– ident: e_1_2_7_41_1
  doi: 10.1111/j.0906-7590.2005.04038.x
– ident: e_1_2_7_6_1
  doi: 10.1086/285695
– ident: e_1_2_7_10_1
  doi: 10.1086/382056
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-2699.2008.01952.x
– ident: e_1_2_7_27_1
  doi: 10.1046/j.1472-4642.2002.00160.x
– ident: e_1_2_7_22_1
  doi: 10.1046/j.1461-0248.2003.00511.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1461-0248.2011.01640.x
– ident: e_1_2_7_29_1
  doi: 10.1046/j.1466-822x.2001.00229.x
– ident: e_1_2_7_7_1
  doi: 10.1016/S0169-5347(99)01767-X
– ident: e_1_2_7_9_1
  doi: 10.1098/rstb.2010.0293
– ident: e_1_2_7_30_1
  doi: 10.1890/ES10‐00200.1
– ident: e_1_2_7_19_1
  doi: 10.1201/b16018
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.091100998
– ident: e_1_2_7_4_1
  doi: 10.1017/CBO9780511814938.016
– ident: e_1_2_7_13_1
  doi: 10.1890/06-1302.1
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1461-0248.2005.00793.x
– ident: e_1_2_7_17_1
  doi: 10.1029/2007JD008470
– ident: e_1_2_7_15_1
  doi: 10.1111/j.2006.0906-7590.04259.x
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1461-0248.2006.00984.x
– ident: e_1_2_7_12_1
  doi: 10.1086/430638
– ident: e_1_2_7_34_1
  doi: 10.1002/9780470015902.a0022548
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1365-2486.2009.02085.x
– ident: e_1_2_7_25_1
  doi: 10.1890/03-8006
– ident: e_1_2_7_11_1
  doi: 10.1086/491689
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.0901650106
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1600-0706.2010.18811.x
SSID ssj0012971
Score 2.4788842
Snippet We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1009
SubjectTerms Animals
Bayes Theorem
Bayesian model
Biodiversity
Biogeography
data collection
Ecosystem
elevational gradients
environmental factors
geometric constraints
geometry
Insecta - physiology
insects
mid-domain effect
midpoint predictor model
Models, Biological
mountains
Plant Physiological Phenomena
sea level
simulation models
species diversity
Species richness
stochastic model
truncated niche
vertebrates
Vertebrates - physiology
Title Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints
URI https://api.istex.fr/ark:/67375/WNG-7SRGN5R8-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12640
https://www.ncbi.nlm.nih.gov/pubmed/27358193
https://www.proquest.com/docview/1810518907
https://www.proquest.com/docview/1811291936
https://www.proquest.com/docview/1815705820
https://www.proquest.com/docview/2000161817
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9Ki-CLrd-nrawi4kuOJJv9iD4VuWsRew-nxXsQls1mo6U2V3I5sPrPO7ObhFZaEd8CmUs2k5nZ3-RmfkPIyywrq0TlPHJVaqLMShblLneRtFmV2VQqobAb-WgmDo-z9wu-2CBv-16YwA8xfHBDz_DxGh3cFKtLTg5ReZzAdo75OtZqISCaD9RRsI2FZCsTkC6nbNGxCmEVz_DLK3vRFqr1x3VA8ypu9RvPdJt86Zcc6k1Ox-u2GNuff7A5_ucz7ZA7HSCl-8GC7pINV98jt8KIygs4mnha64v75NfRSXm-PKlbatq2CWN6qKlLis2akG9TiKjfMHC-oThgzXN9U4CXFBkpmtA_QbuyMHqpvw5uXja-OsRf7atbnuGUL0stQlecYNGuHpDj6eTTu8OoG90QWYE92UqwCinQnTSOI69T4UxqY8NyYYVNqkLG3BaFQiohXhlnU8bSMpaGszIHu2IPyWa9rN1jQgubQNaV2wLeIgSYxGD3O4Qdm8XK2USMyOv-JWrb8Zrj4r7rPr8BrWqv1RF5MYieBzKP64ReeUsYJExzitVvkuvPswMtP84PZnyu9HREdntT0Z3jrzQAJghzKo_liDwfToPL4v8wpnbLtZcB8wTkLP4qw0FHgM9ulkkDYFcJ3OtRMNVh0YBKOYA9BtrxBnfz8-rJh4k_ePLvok_JbQCOItTa7ZLNtlm7PQBnbfHMe-FvMn408w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTQhe-P4oDDAIIV5SJXHsOIgXBO0KtH0om-gLshzH2aZBOmWpxOCf585Oog1tCPEWKdfEudydf5fe_Y6QF0lSlJHMeGDLWAeJSVmQ2cwGqUnKxMSpFBK7kWdzMdlLPi75coO86XphPD9E_8ENPcPFa3Rw_CB9xsshLA8j2M8hYd_Cid7InP9-0ZNHwUbm061EQMIcs2XLK4R1PP1Pz-1GW6jYHxdBzfPI1W094xvka7doX3FyNFw3-dD8_IPP8X-f6ia53mJS-tYb0S2yYavb5IqfUnkKRyPHbH16h_yaHRbHq8Oqobppaj-ph-qqoNivCSk3haB6gLHzNcUZa47umwLCpEhKUfsWCtpWhtEzLXZw86J2BSLuavt29R0HfRlqEL3iEIvm5C7ZG492302CdnpDYAS2ZUvBSmRBt6m2HKmdcqtjE2qWCSNMVOZpyE2eS2QT4qW2JmYsLsJUc1ZkYFrsHtmsVpV9QGhuIki8MpPDa4QYE2lsgIfIY5JQWhOJAXnVvUVlWmpzXNw31aU4oFXltDogz3vRY8_ncZHQS2cKvYSuj7AALuXqy3xHpZ8XO3O-kGo8INudrajW908UYCaIdDIL0wF51p8Gr8W_YnRlV2snA_YJ4Fn8VYaDjgCiXS4Te8wuI7jXfW-r_aIBmHLAewy04yzu8udVo-nIHTz8d9Gn5OpkdzZV0w_zT4_INcCRwpfebZPNpl7bx4DVmvyJc8nfYrw5Dw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9Ki-KL3x9Xq64i4kuOfO1H6pPYu1ZtDzkt3kNh2Ww2WmpzR5qDVv95Z3aT0Eor4lsgc8lmMjP7m9zMbwh5maZFGcmMBbaMdZAakQSZzWwgTFqmJhaSS-xG3pvwnf30w4zNVsibrhfG80P0H9zQM1y8RgdfFOU5J4eoPIxgO4d8fS3lYYZzG7amPXcU7GM-20o55MtxMmtphbCMp__phc1oDfV6ehnSvAhc3c4zvkUOujX7gpOj4bLJh-bnH3SO__lQt8nNFpHSt96E7pAVW90l1_yMyjM4Gjle67N75NfeYbGYH1YN1U1T-zk9VFcFxW5NSLgphNTvGDk3KU5Yc2TfFPAlRUqK2jdQ0LYujJ5rsIObF7UrD3FX-2bnxzjmy1CD2BVHWDQn98n-ePTl3U7Qzm4IDMembMmTEjnQrdCWIbFTbnVsQp1k3HATlbkImclziVxCrNTWxEkSF6HQLCkyMKzkAVmt5pV9RGhuIki7MpPDW4QIE2lsf4e4Y9JQWhPxAXndvURlWmJzXNwP1SU4oFXltDogL3rRhWfzuEzolbOEXkLXR1j-Jpj6OtlW4vN0e8KmUo0HZKMzFdV6_okCxARxTmahGJDn_WnwWfwjRld2vnQyYJ4AnflfZRjoCADa1TKxR-wygns99KbaLxpgKQO0l4B2nMFd_bxqtDtyB-v_LvqMXP-0NVa77ycfH5MbACK5r7vbIKtNvbRPAKg1-VPnkL8BjFw3vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Midpoint+attractors+and+species+richness%3A+Modelling+the+interaction+between+environmental+drivers+and+geometric+constraints&rft.jtitle=Ecology+letters&rft.au=Colwell%2C+Robert+K&rft.au=Gotelli%2C+Nicholas+J&rft.au=Ashton%2C+Louise+A&rft.au=Beck%2C+Jan&rft.date=2016-09-01&rft.eissn=1461-0248&rft.volume=19&rft.issue=9&rft.spage=1009&rft.epage=1022&rft_id=info:doi/10.1111%2Fele.12640&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon