Discrete Wavelet Transform based sEMG Data Alignment for Gesture-Free Hand Intention Recognition
In scenarios where collaborators and non-collaborators coexist, it is important to enable covert information exchange among collaborators while evading detection. Based on isometric muscle contraction, a surface electromyography (sEMG) based gesture-free hand intention recognition system has been de...
Saved in:
Published in | IEEE sensors journal p. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
28.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2025.3602235 |
Cover
Abstract | In scenarios where collaborators and non-collaborators coexist, it is important to enable covert information exchange among collaborators while evading detection. Based on isometric muscle contraction, a surface electromyography (sEMG) based gesture-free hand intention recognition system has been developed to transmit messages securely. However, non-stationary sEMG signals, electrode displacement, and individual differences restrict the performance of single-day, cross-day, and cross-subject experiments. To overcome the difficulty, a discrete wavelet transform-based sEMG data alignment (DWT-DA) method is proposed to reduce the distribution difference between the source and target domains. The DWT-DA consists of three stages: time-frequency domain signal decomposition (TFD-SD), subject sub-signal recombination (SR), and time-frequency domain signal reconstruction (TFD-SR). The TFD-SD decomposes the original signal into several sub-signals focused on a specific frequency band or time-frequency region. The SR recombines the decomposed sub-signals to promote complementary enhancement between the features of each sub-signal. The TFD-SR reconstructs the processed sub-signal into a time-domain signal to achieve data augmentation and alignment. Experiments are conducted on a self-collected gesture-free hand intention recognition dataset, demonstrating excellent performance of the method on single-day, cross-day, and cross-subject evaluations. The code is available at https://github.com/ylfzero/EMG_DWT_DA. |
---|---|
AbstractList | In scenarios where collaborators and non-collaborators coexist, it is important to enable covert information exchange among collaborators while evading detection. Based on isometric muscle contraction, a surface electromyography (sEMG) based gesture-free hand intention recognition system has been developed to transmit messages securely. However, non-stationary sEMG signals, electrode displacement, and individual differences restrict the performance of single-day, cross-day, and cross-subject experiments. To overcome the difficulty, a discrete wavelet transform-based sEMG data alignment (DWT-DA) method is proposed to reduce the distribution difference between the source and target domains. The DWT-DA consists of three stages: time-frequency domain signal decomposition (TFD-SD), subject sub-signal recombination (SR), and time-frequency domain signal reconstruction (TFD-SR). The TFD-SD decomposes the original signal into several sub-signals focused on a specific frequency band or time-frequency region. The SR recombines the decomposed sub-signals to promote complementary enhancement between the features of each sub-signal. The TFD-SR reconstructs the processed sub-signal into a time-domain signal to achieve data augmentation and alignment. Experiments are conducted on a self-collected gesture-free hand intention recognition dataset, demonstrating excellent performance of the method on single-day, cross-day, and cross-subject evaluations. The code is available at https://github.com/ylfzero/EMG_DWT_DA. |
Author | Li, Hongxin Tang, Jingsheng Li, Wenqi Zhou, Zongtan Lu, Huimin Yan, Lingfeng |
Author_xml | – sequence: 1 givenname: Lingfeng surname: Yan fullname: Yan, Lingfeng organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Hongxin orcidid: 0000-0003-4951-9770 surname: Li fullname: Li, Hongxin organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 3 givenname: Jingsheng orcidid: 0000-0001-9304-750X surname: Tang fullname: Tang, Jingsheng email: mrtang@nudt.edu.cn organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 4 givenname: Wenqi orcidid: 0000-0003-3726-343X surname: Li fullname: Li, Wenqi organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 5 givenname: Huimin orcidid: 0000-0002-6375-581X surname: Lu fullname: Lu, Huimin organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 6 givenname: Zongtan orcidid: 0000-0002-6423-8603 surname: Zhou fullname: Zhou, Zongtan organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China |
BookMark | eNpFkF9LwzAUxYNMcJt-AMGHfIHO3KRJmsex_zIVdKBvNU1vR2VLJamC396WDXw6B849F85vRAa-8UjILbAJADP3D6-LpwlnXE6EYpwLeUGGIGWWgE6zQe8FS1Kh36_IKMZPxsBoqYfkY15HF7BF-mZ_8IAt3QXrY9WEIy1sxJLGxeOKzm1r6fRQ7_0RfUu7mK4wtt8Bk2VApGvrS7rxbRfWjacv6Jq9r3t_TS4re4h4c9Yx2S0Xu9k62T6vNrPpNnFK8EQbbZR0VoMRaVFi4TBNhcqqysoSHSpnpTEsU7zgLkNQkkE3k1nUArECMSZweutCE2PAKv8K9dGG3xxY3hPKe0J5Tyg_E-o6d6dOjYj_9wCp5IqLPzWfZMk |
CODEN | ISJEAZ |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JSEN.2025.3602235 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JSEN_2025_3602235 11145262 |
Genre | orig-research |
GrantInformation_xml | – fundername: Innovation Science Foundation of National University of Defense Technology grantid: 24-ZZCX-GZZ-11 – fundername: STI 2030-Major Projects grantid: 2022ZD0208504 – fundername: National Natural Science Foundation of China grantid: 62203460; U22A2059 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 ZY4 |
ID | FETCH-LOGICAL-c632-797965ca71934bdebce44368ffa5dece6ca5990862b2c8e165010220ae73eef13 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Wed Sep 03 16:40:46 EDT 2025 Wed Sep 10 07:40:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c632-797965ca71934bdebce44368ffa5dece6ca5990862b2c8e165010220ae73eef13 |
ORCID | 0000-0003-3726-343X 0000-0002-6375-581X 0000-0003-4951-9770 0000-0002-6423-8603 0000-0001-9304-750X |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2025_3602235 ieee_primary_11145262 |
PublicationCentury | 2000 |
PublicationDate | 20250828 |
PublicationDateYYYYMMDD | 2025-08-28 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250828 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0019757 |
Score | 2.4352567 |
SecondaryResourceType | online_first |
Snippet | In scenarios where collaborators and non-collaborators coexist, it is important to enable covert information exchange among collaborators while evading... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | data alignment discrete wavelet transform Discrete wavelet transforms Electrodes Feature extraction Gesture-free hand intention recognition Hands human-computer interaction Muscles Signal resolution surface electromyographic (sEMG) Time-domain analysis Time-frequency analysis Training Transforms |
Title | Discrete Wavelet Transform based sEMG Data Alignment for Gesture-Free Hand Intention Recognition |
URI | https://ieeexplore.ieee.org/document/11145262 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagCzDwKEWUlzwwISVN6thpxoq-VKkdoIhuwXEuUIFSVJIBfj1nJ6EVEhKblTiR5Tvffed7EXLNfKY4B2WxKPAsT3hg4cC1BEu4ZGiOBVIbipOpGD144zmfl8nqJhcGAEzwGdh6aHz58VLl-qqshedSd8RGibuNfFYka_24DALflPXEE-xYHvPnpQvTdYLW-L4_RVOwzW0mUGeZ1m5rJbTRVcUolcEBmVbLKWJJXu08i2z19atS47_Xe0j2S3hJuwU_HJEtSOtkb6PoYJ3slH3PXz6PyVNvgWIDcTN9lLoDRUZnFZClWr_F9KM_GdKezCTtvi2eTegAxdd0iNokX4E1WAHQkUxjaoLhNZnpXRWUtEwbZDboz25HVtlzwVKCIdYO_EBwJX3EdV4UQ6TA0zXqk0TyGBQIJTnqLzSDorbqgIv4TpuMjgSfASQuOyG1dJnCqU4G574X-AmTiHpipqdwlCCRENLFXzlNclPRIHwvKmuExiJxglATLNQEC0uCNUlDb-96YrmzZ388Pye7-nN9-dvuXJBatsrhEtFDFl0ZrvkGLM-__w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLYQDIWBs4hyemBCSknqI81Y0YvSdoAiugXHeYEKlKKSDPDreXZTipCQ2KzEsiw_29_3_C5CzpnPtBCgHRYF3OGSg4MNz5EsEYqhOhYooygOhrJ7z3tjMS6C1W0sDABY5zOomqa15cdTnZunsks8l6YiNt64awj8XMzDtb6NBoFvE3viGXYdzvxxYcT03OCyd9caojJYE1UmEbVscbclDP2oq2Jhpb1FhosJzb1JXqp5FlX1569cjf-e8TbZLAgmbcx3xA5ZgXSXbPxIO7hLSkXl8-ePPfLYnODFgcyZPihTgyKjowWVpQbhYvreGnRoU2WKNl4nT9Z5gOJv2kE8yWfgtGcAtKvSmFp3eCNoertwS5qmZTJqt0ZXXaeouuBoyZBtB34ghVY-MjsexRBp4CZLfZIoEYMGqZVABENFKKrpOnjI8IzS6CrwGUDisX2ymk5TODDh4MLngZ8whbwnZqaLwDskklJ5OJRbIRcLGYRv89waodVJ3CA0AguNwMJCYBVSNsu77Fis7OEf389IqTsa9MP-9fDmiKybocxTcK1-TFazWQ4nyCWy6NTuoC9ogsNM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Wavelet+Transform+based+sEMG+Data+Alignment+for+Gesture-Free+Hand+Intention+Recognition&rft.jtitle=IEEE+sensors+journal&rft.au=Yan%2C+Lingfeng&rft.au=Li%2C+Hongxin&rft.au=Tang%2C+Jingsheng&rft.au=Li%2C+Wenqi&rft.date=2025-08-28&rft.issn=1530-437X&rft.eissn=1558-1748&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2025.3602235&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2025_3602235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |