Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model

The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats....

Full description

Saved in:
Bibliographic Details
Published inJournal of Clinical Biochemistry and Nutrition Vol. 67; no. 2; pp. 188 - 198
Main Authors Park, Sunmin, Zhang, Ting, Wu, Xuangao, Qiu, Jing Yi
Format Journal Article
LanguageEnglish
Published Gifu SOCIETY FOR FREE RADICAL RESEARCH JAPAN 01.01.2020
Japan Science and Technology Agency
the Society for Free Radical Research Japan
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25–35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing Proteobacteria, and AD-CHO improved it by elevating Bacteriodetes. In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia.
AbstractList The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25–35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing Proteobacteria , and AD-CHO improved it by elevating Bacteriodetes . In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia.
The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25–35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing Proteobacteria, and AD-CHO improved it by elevating Bacteriodetes. In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia.
The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25-35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing Proteobacteria, and AD-CHO improved it by elevating Bacteriodetes. In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia.The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25-35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing Proteobacteria, and AD-CHO improved it by elevating Bacteriodetes. In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia.
Author Zhang, Ting
Qiu, Jing Yi
Wu, Xuangao
Park, Sunmin
Author_xml – sequence: 1
  fullname: Park, Sunmin
  organization: Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University
– sequence: 2
  fullname: Zhang, Ting
  organization: Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University
– sequence: 3
  fullname: Wu, Xuangao
  organization: Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University
– sequence: 4
  fullname: Qiu, Jing Yi
  organization: Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University
BookMark eNptks9u1DAQxi1URLeFC08QiQtCSrHjxLEviKrin6jEBc6W44wTL4m92E6lcuI1eAReiyfB2S0rUXGxrW9-843HnjN04rwDhJ4SfEEJq19udecuiCh5-wBtCOe4bDBnJ2iDBalKjLE4RWcxbjGuWcPqR-iUUlyThrQb9OsjpOxW7ILvF52sd0V3W3zN4gDO6qK3kArl-lW1LkGYbUrgUmFUTNYNxahihoyBsKqQDzrFItukEYphScVsdfCd9UntfXobQcV9wSFAjGtF63KouJy-j2BnCL9__IxHLqhs4XuYHqOHRk0Rntzt5-jL2zefr96X15_efbi6vC41oySVxnBBialMi7u6YZQ2VVMJw2nVC-BCgxCckaoyPal1W9GuUQ1hvOtxx3TPG3qOXh18d0s3Q69zW0FNchfsrMKt9MrKfyPOjnLwN7JtKOUMZ4PndwbBf1sgJjnbqGGalAO_RFnVtRCiagXP6LN76NYvweX2MkVFjTEnbabwgcoPGWMAI7VNav2rXN9OkmC5zoFc50ASIfma8uJeyt_7_xd-fYC3MakBjqgKyeoJDihrZbUu-5RjSI8qSHD0D-6a0XM
CitedBy_id crossref_primary_10_3390_nu17010149
crossref_primary_10_1016_j_metabol_2024_156104
crossref_primary_10_1007_s11357_024_01432_5
crossref_primary_10_1017_S0007114521000829
crossref_primary_10_3389_fnins_2023_1130730
crossref_primary_10_3390_nu14030513
crossref_primary_10_1016_j_arr_2022_101728
crossref_primary_10_1016_j_neuropharm_2023_109478
crossref_primary_10_18632_aging_205741
crossref_primary_10_1177_1934578X231206228
crossref_primary_10_3390_nu14235053
crossref_primary_10_3390_nu14071431
crossref_primary_10_3390_nu16020308
crossref_primary_10_1007_s00702_023_02620_x
crossref_primary_10_3390_ijtm4040052
crossref_primary_10_3390_nu15245108
crossref_primary_10_1002_dad2_70057
crossref_primary_10_3389_fnut_2024_1484856
crossref_primary_10_1016_j_bj_2025_100827
crossref_primary_10_3389_fnagi_2022_1015837
crossref_primary_10_14283_jpad_2022_3
crossref_primary_10_25122_jml_2023_0370
crossref_primary_10_3390_foods12020424
crossref_primary_10_1093_nutrit_nuad104
crossref_primary_10_3390_nu14091758
crossref_primary_10_1016_j_brainres_2024_149348
crossref_primary_10_1155_2023_5562120
crossref_primary_10_1002_biof_1703
crossref_primary_10_1016_j_ijbiomac_2023_127559
crossref_primary_10_18502_sjms_v15i5_7147
crossref_primary_10_1007_s40501_024_00322_z
crossref_primary_10_1016_j_jff_2022_105180
crossref_primary_10_1016_j_arr_2024_102515
crossref_primary_10_3389_fnut_2024_1322509
crossref_primary_10_1016_j_jad_2021_06_028
crossref_primary_10_3390_metabo14010025
crossref_primary_10_1016_j_arr_2024_102233
crossref_primary_10_1055_a_1957_8449
crossref_primary_10_3389_fnins_2022_899612
crossref_primary_10_1016_j_chom_2021_07_004
crossref_primary_10_1515_revneuro_2020_0078
crossref_primary_10_3390_ijms25010124
crossref_primary_10_1038_s41392_021_00831_w
crossref_primary_10_3390_nu14030668
crossref_primary_10_1080_1028415X_2022_2143609
crossref_primary_10_1186_s12986_021_00635_3
crossref_primary_10_3233_JAD_220205
crossref_primary_10_3389_fnut_2022_860575
crossref_primary_10_3390_nu13124342
crossref_primary_10_1371_journal_pone_0275684
crossref_primary_10_31083_j_jin2303050
crossref_primary_10_3389_fnagi_2021_650047
crossref_primary_10_1016_j_neubiorev_2022_104814
crossref_primary_10_1093_nutrit_nuad009
crossref_primary_10_3390_nu14040782
crossref_primary_10_1016_j_nut_2023_111992
crossref_primary_10_1016_j_expneurol_2024_114920
crossref_primary_10_1038_s43587_022_00311_y
crossref_primary_10_3390_cells11152301
crossref_primary_10_3233_JAD_230002
Cites_doi 10.1038/nature18309
10.1016/j.jalz.2016.02.010
10.1152/ajpendo.00005.2018
10.1007/s12035-018-0983-2
10.1210/en.2015-1622
10.3233/JAD-180202
10.1007/s12035-018-1188-4
10.1016/j.expneurol.2019.04.012
10.1038/s41522-018-0073-2
10.1016/j.neuroscience.2011.07.054
10.1007/s13311-019-00755-y
10.1093/jn/123.11.1939
10.1186/1742-2094-11-85
10.1258/ebm.2010.010186
10.1016/j.jnutbio.2016.10.003
10.14715/cmb/2018.64.1.18
10.1016/j.mce.2015.09.014
10.1006/meth.2001.1262
10.3233/JAD-161141
10.1016/bs.pmbts.2016.12.019
10.1128/mBio.01343-17
10.1177/1535370217751610
10.1016/j.brainresrev.2008.09.002
10.1186/s12974-015-0243-6
10.1016/j.biopha.2018.06.106
10.3389/fnins.2019.00629
10.1111/nyas.12999
10.1001/jamaneurol.2019.1424
10.1039/C7FO01244F
10.1016/j.cmet.2017.08.004
10.1039/C8FO01296B
10.1080/1028415X.2015.1135572
10.3233/JAD-180176
10.1038/s41598-018-25190-5
10.1016/j.bcp.2013.12.024
10.1016/j.bbadis.2016.04.017
10.1038/s41598-017-13601-y
10.1016/j.clnu.2015.09.010
10.1007/s00394-010-0120-0
10.3390/antiox7050063
10.1203/01.PDR.0000112032.47575.D1
10.1212/WNL.0000000000007747
10.1186/s12974-019-1494-4
10.1016/j.nutres.2018.09.010
10.3945/jn.112.173401
ContentType Journal Article
Copyright 2020 JCBN
Copyright Japan Science and Technology Agency 2020
Copyright © 2020 JCBN.
Copyright © 2020 JCBN 2020
Copyright_xml – notice: 2020 JCBN
– notice: Copyright Japan Science and Technology Agency 2020
– notice: Copyright © 2020 JCBN.
– notice: Copyright © 2020 JCBN 2020
DBID AAYXX
CITATION
7QL
7QP
7TK
7U9
C1K
H94
K9.
NAPCQ
7X8
5PM
DOI 10.3164/jcbn.19-87
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Nursing & Allied Health Premium
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Diet & Clinical Nutrition
EISSN 1880-5086
EndPage 198
ExternalDocumentID PMC7533860
10_3164_jcbn_19_87
article_jcbn_67_2_67_19_87_article_char_en
GroupedDBID ---
.GJ
29K
2WC
5GY
ACGFO
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
D-I
DIK
DU5
E3Z
F5P
GX1
HH5
HYE
JSF
JSH
KQ8
M48
O5R
O5S
OK1
P6G
PQEST
PQQKQ
RJT
RPM
RZJ
TKC
TR2
AAYXX
CITATION
7QL
7QP
7TK
7U9
C1K
H94
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c631t-ff8931f2f70b4563352529f832d9e89ce9986122fd14c723b5a5168bd0b6cd853
IEDL.DBID M48
ISSN 0912-0009
IngestDate Thu Aug 21 13:22:45 EDT 2025
Fri Jul 11 07:50:46 EDT 2025
Mon Jun 30 20:23:01 EDT 2025
Tue Jul 01 00:55:44 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Wed Apr 05 15:07:16 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-ff8931f2f70b4563352529f832d9e89ce9986122fd14c723b5a5168bd0b6cd853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3164/jcbn.19-87
PMID 33041517
PQID 2439400817
PQPubID 1996339
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7533860
proquest_miscellaneous_2449992798
proquest_journals_2439400817
crossref_citationtrail_10_3164_jcbn_19_87
crossref_primary_10_3164_jcbn_19_87
jstage_primary_article_jcbn_67_2_67_19_87_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationPlace Gifu
PublicationPlace_xml – name: Gifu
– name: Kyoto, Japan
PublicationTitle Journal of Clinical Biochemistry and Nutrition
PublicationTitleAlternate J. Clin. Biochem. Nutr.
PublicationYear 2020
Publisher SOCIETY FOR FREE RADICAL RESEARCH JAPAN
Japan Science and Technology Agency
the Society for Free Radical Research Japan
Publisher_xml – name: SOCIETY FOR FREE RADICAL RESEARCH JAPAN
– name: Japan Science and Technology Agency
– name: the Society for Free Radical Research Japan
References 16 Tingirikari JMR. Microbiota-accessible pectic poly- and oligosaccharides in gut health. Food Funct 2018; 9: 5059–5073.
30 Newman JC, Covarrubias AJ, Zhao M, et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab 2017; 26: 547–557.e8.
42 Park S, Ahn J, Lee BK. Very-low-fat diets may be associated with increased risk of metabolic syndrome in the adult population. Clin Nutr 2016; 35: 1159–1167.
6 Lu J, Guo P, Liu X, et al. Herbal formula fo shou san attenuates Alzheimer’s disease-related pathologies via the gut-liver-brain axis in APP/PS1 mouse model of Alzheimer’s disease. Evid Based Complement Alternat Med 2019; 2019: 8302950.
38 Sochocka M, Donskow-Lysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-a critical review. Mol Neurobiol 2019; 56: 1841–1851.
26 Park S, Kim DS, Kang ES, Kim DB, Kang S. Low dose brain estrogen prevents menopausal syndrome while maintaining the diversity of the gut microbiomes in estrogen-deficient rats. Am J Physiol Endocrinol Metab 2018; 315: E99–E109.
19 Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 2019; 5: 5.
23 Reeves PG, Nielsen FH, Fahey GC, Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993; 123: 1939–1951.
14 Shin BK, Kang S, Kim DS, Park S. Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheimer’s disease-induced estrogen deficient rats. Exp Biol Med (Maywood) 2018; 243: 334–343.
28 Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 2009; 59: 293–315.
12 Park S, Kim DS, Kang S, Daily JW 3rd. A ketogenic diet impairs energy and glucose homeostasis by the attenuation of hypothalamic leptin signaling and hepatic insulin signaling in a rat model of non-obese type 2 diabetes. Exp Biol Med (Maywood) 2011; 236: 194–204.
5 Akhter F, Chen D, Yan SF, Yan SS. Mitochondrial perturbation in Alzheimer’s disease and diabetes. Prog Mol Biol Transl Sci 2017; 146: 341–361.
43 Park S, Kim DS, Kang S. Gastrodia elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: vanillin and 4-hydroxybenzaldehyde are the bioactive candidates. Eur J Nutr 2011; 50: 107–118.
8 Vasconcelos AR, Yshii LM, Viel TA, et al. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 2014; 11: 85.
36 Chen W, Liang T, Zuo W, et al. Neuroprotective effect of 1-deoxynojirimycin on cognitive impairment, β-amyloid deposition, and neuroinflammation in the SAMP8 mice. Biomed Pharmacother 2018; 106: 92–97.
39 Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7: 13537.
21 Park S, Kim DS, Kang S, Kim HJ. The combination of luteolin and l-theanine improved Alzheimer disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-β-infused rats. Nutr Res 2018; 60: 116–131.
15 Angelucci F, Cechova K, Amlerova J, Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J Neuroinflammation 2019; 16: 108.
25 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001; 25: 402–408.
4 Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 2016; 12: 719–732.
35 Latta CH, Sudduth TL, Weekman EM, et al. Determining the role of IL-4 induced neuroinflammation in microglial activity and amyloid-beta using BV2 microglial cells and APP/PS1 transgenic mice. J Neuroinflammation 2015; 12: 41.
37 Lin L, Zheng LJ, Zhang LJ. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Mol Neurobiol 2018; 55: 8243–8250.
46 Maier TV, Lucio M, Lee LH, et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. mBio 2017; 8. pii: e01343-17.
1 Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88: 640–651.
31 Cunnane SC, Courchesne-Loyer A, St-Pierre V, et al. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann N Y Acad Sci 2016; 1367: 12–20.
34 Grillo CA, Woodruff JL, Macht VA, Reagan LP. Insulin resistance and hippocampal dysfunction: disentangling peripheral and brain causes from consequences. Exp Neurol 2019; 318: 71–77.
3 Gabbouj S, Ryhänen S, Marttinen M, et al. Altered insulin signaling in Alzheimer’s disease brain - special emphasis on PI3K-Akt pathway. Front Neurosci 2019; 13: 629.
45 Shang W, Si X, Zhou Z, Li Y, Strappe P, Blanchard C. Characterization of fecal fat composition and gut derived fecal microbiota in high-fat diet fed rats following intervention with chito-oligosaccharide and resistant starch complexes. Food Funct 2017; 8: 4374–4383.
22 Yang HJ, Hwang JT, Kwon DY, et al. Yuzu extract prevents cognitive decline and impaired glucose homeostasis in β-amyloid-infused rats. J Nutr 2013; 143: 1093–1099.
2 Ryu JC, Zimmer ER, Rosa-Neto P, Yoon SO. Consequences of metabolic disruption in Alzheimer’s disease pathology. Neurotherapeutics 2019; 16: 600–610.
13 Park S, Yoo KM, Hyun JS, Kang S. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets. J Nutr Biochem 2017; 40: 14–22.
32 Bischof GN, Jacobs HIL. Subthreshold amyloid and its biological and clinical meaning: long way ahead. Neurology 2019; 93: 72–79.
9 Seimon RV, Roekenes JA, Zibellini J, et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 2015; 418 Pt 2: 153–172.
17 Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 2016; 534: 213–217.
24 Park S, Kang S, Kim DS, Moon BR. Agrimonia pilosa Ledeb., Cinnamomum cassia Blume, and Lonicera japonica Thunb. protect against cognitive dysfunction and energy and glucose dysregulation by reducing neuroinflammation and hippocampal insulin resistance in β-amyloid-infused rats. Nutr Neurosci 2017; 20: 77–88.
44 Al-Daihan S, Ben Bacha A, Al-Dbass AM, Alonazi MA, Bhat RS. High-fat diet stimulates the gut pathogenic microbiota and maintains hepatic injury in antibiotic-treated rats. Cell Mol Biol (Noisy-le-grand) 2018; 64: 103–106.
33 Hanseeuw BJ, Betensky RA, Jacobs HIL, et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol 2019. DOI: 10.1001/jamaneurol.2019.1424.
10 Gotthardt JD, Verpeut JL, Yeomans BL, et al. Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide Y gene expression in diet-induced obese male mice. Endocrinology 2016; 157: 679–691.
29 Zhao Q, Stafstrom CE, Fu DD, Hu Y, Holmes GL. Detrimental effects of the ketogenic diet on cognitive function in rats. Pediatr Res 2004; 55: 498–506.
40 Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 2018; 63: 1337–1346.
41 Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis 2017; 58: 1–15.
11 Croteau E, Castellano CA, Richard MA, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J Alzheimers Dis 2018; 64: 551–561.
18 Ma D, Wang AC, Parikh I, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 2018; 8: 6670.
27 Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-oxidant and anti-inflammatory activity of ketogenic diet: new perspectives for neuroprotection in Alzheimer’s disease. Antioxidants (Basel) 2018; 7. pii: E63.
7 Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863: 1037–1045.
20 Liu P, Jing Y, Collie ND, Campbell SA, Zhang H. Pre-aggregated Aβ(25–35) alters arginine metabolism in the rat hippocampus and prefrontal cortex. Neuroscience 2011; 193: 269–282.
22
44
23
45
24
46
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 28 Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 2009; 59: 293–315.
– reference: 10 Gotthardt JD, Verpeut JL, Yeomans BL, et al. Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide Y gene expression in diet-induced obese male mice. Endocrinology 2016; 157: 679–691.
– reference: 38 Sochocka M, Donskow-Lysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-a critical review. Mol Neurobiol 2019; 56: 1841–1851.
– reference: 45 Shang W, Si X, Zhou Z, Li Y, Strappe P, Blanchard C. Characterization of fecal fat composition and gut derived fecal microbiota in high-fat diet fed rats following intervention with chito-oligosaccharide and resistant starch complexes. Food Funct 2017; 8: 4374–4383.
– reference: 8 Vasconcelos AR, Yshii LM, Viel TA, et al. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 2014; 11: 85.
– reference: 6 Lu J, Guo P, Liu X, et al. Herbal formula fo shou san attenuates Alzheimer’s disease-related pathologies via the gut-liver-brain axis in APP/PS1 mouse model of Alzheimer’s disease. Evid Based Complement Alternat Med 2019; 2019: 8302950.
– reference: 18 Ma D, Wang AC, Parikh I, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 2018; 8: 6670.
– reference: 31 Cunnane SC, Courchesne-Loyer A, St-Pierre V, et al. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann N Y Acad Sci 2016; 1367: 12–20.
– reference: 14 Shin BK, Kang S, Kim DS, Park S. Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheimer’s disease-induced estrogen deficient rats. Exp Biol Med (Maywood) 2018; 243: 334–343.
– reference: 7 Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863: 1037–1045.
– reference: 17 Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 2016; 534: 213–217.
– reference: 20 Liu P, Jing Y, Collie ND, Campbell SA, Zhang H. Pre-aggregated Aβ(25–35) alters arginine metabolism in the rat hippocampus and prefrontal cortex. Neuroscience 2011; 193: 269–282.
– reference: 46 Maier TV, Lucio M, Lee LH, et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. mBio 2017; 8. pii: e01343-17.
– reference: 36 Chen W, Liang T, Zuo W, et al. Neuroprotective effect of 1-deoxynojirimycin on cognitive impairment, β-amyloid deposition, and neuroinflammation in the SAMP8 mice. Biomed Pharmacother 2018; 106: 92–97.
– reference: 24 Park S, Kang S, Kim DS, Moon BR. Agrimonia pilosa Ledeb., Cinnamomum cassia Blume, and Lonicera japonica Thunb. protect against cognitive dysfunction and energy and glucose dysregulation by reducing neuroinflammation and hippocampal insulin resistance in β-amyloid-infused rats. Nutr Neurosci 2017; 20: 77–88.
– reference: 11 Croteau E, Castellano CA, Richard MA, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J Alzheimers Dis 2018; 64: 551–561.
– reference: 43 Park S, Kim DS, Kang S. Gastrodia elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: vanillin and 4-hydroxybenzaldehyde are the bioactive candidates. Eur J Nutr 2011; 50: 107–118.
– reference: 23 Reeves PG, Nielsen FH, Fahey GC, Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993; 123: 1939–1951.
– reference: 37 Lin L, Zheng LJ, Zhang LJ. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Mol Neurobiol 2018; 55: 8243–8250.
– reference: 16 Tingirikari JMR. Microbiota-accessible pectic poly- and oligosaccharides in gut health. Food Funct 2018; 9: 5059–5073.
– reference: 9 Seimon RV, Roekenes JA, Zibellini J, et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 2015; 418 Pt 2: 153–172.
– reference: 22 Yang HJ, Hwang JT, Kwon DY, et al. Yuzu extract prevents cognitive decline and impaired glucose homeostasis in β-amyloid-infused rats. J Nutr 2013; 143: 1093–1099.
– reference: 5 Akhter F, Chen D, Yan SF, Yan SS. Mitochondrial perturbation in Alzheimer’s disease and diabetes. Prog Mol Biol Transl Sci 2017; 146: 341–361.
– reference: 4 Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 2016; 12: 719–732.
– reference: 40 Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 2018; 63: 1337–1346.
– reference: 2 Ryu JC, Zimmer ER, Rosa-Neto P, Yoon SO. Consequences of metabolic disruption in Alzheimer’s disease pathology. Neurotherapeutics 2019; 16: 600–610.
– reference: 3 Gabbouj S, Ryhänen S, Marttinen M, et al. Altered insulin signaling in Alzheimer’s disease brain - special emphasis on PI3K-Akt pathway. Front Neurosci 2019; 13: 629.
– reference: 41 Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis 2017; 58: 1–15.
– reference: 1 Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88: 640–651.
– reference: 21 Park S, Kim DS, Kang S, Kim HJ. The combination of luteolin and l-theanine improved Alzheimer disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-β-infused rats. Nutr Res 2018; 60: 116–131.
– reference: 33 Hanseeuw BJ, Betensky RA, Jacobs HIL, et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol 2019. DOI: 10.1001/jamaneurol.2019.1424.
– reference: 25 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001; 25: 402–408.
– reference: 30 Newman JC, Covarrubias AJ, Zhao M, et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab 2017; 26: 547–557.e8.
– reference: 32 Bischof GN, Jacobs HIL. Subthreshold amyloid and its biological and clinical meaning: long way ahead. Neurology 2019; 93: 72–79.
– reference: 26 Park S, Kim DS, Kang ES, Kim DB, Kang S. Low dose brain estrogen prevents menopausal syndrome while maintaining the diversity of the gut microbiomes in estrogen-deficient rats. Am J Physiol Endocrinol Metab 2018; 315: E99–E109.
– reference: 34 Grillo CA, Woodruff JL, Macht VA, Reagan LP. Insulin resistance and hippocampal dysfunction: disentangling peripheral and brain causes from consequences. Exp Neurol 2019; 318: 71–77.
– reference: 15 Angelucci F, Cechova K, Amlerova J, Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J Neuroinflammation 2019; 16: 108.
– reference: 19 Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 2019; 5: 5.
– reference: 39 Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7: 13537.
– reference: 12 Park S, Kim DS, Kang S, Daily JW 3rd. A ketogenic diet impairs energy and glucose homeostasis by the attenuation of hypothalamic leptin signaling and hepatic insulin signaling in a rat model of non-obese type 2 diabetes. Exp Biol Med (Maywood) 2011; 236: 194–204.
– reference: 42 Park S, Ahn J, Lee BK. Very-low-fat diets may be associated with increased risk of metabolic syndrome in the adult population. Clin Nutr 2016; 35: 1159–1167.
– reference: 44 Al-Daihan S, Ben Bacha A, Al-Dbass AM, Alonazi MA, Bhat RS. High-fat diet stimulates the gut pathogenic microbiota and maintains hepatic injury in antibiotic-treated rats. Cell Mol Biol (Noisy-le-grand) 2018; 64: 103–106.
– reference: 13 Park S, Yoo KM, Hyun JS, Kang S. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets. J Nutr Biochem 2017; 40: 14–22.
– reference: 35 Latta CH, Sudduth TL, Weekman EM, et al. Determining the role of IL-4 induced neuroinflammation in microglial activity and amyloid-beta using BV2 microglial cells and APP/PS1 transgenic mice. J Neuroinflammation 2015; 12: 41.
– reference: 27 Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-oxidant and anti-inflammatory activity of ketogenic diet: new perspectives for neuroprotection in Alzheimer’s disease. Antioxidants (Basel) 2018; 7. pii: E63.
– reference: 29 Zhao Q, Stafstrom CE, Fu DD, Hu Y, Holmes GL. Detrimental effects of the ketogenic diet on cognitive function in rats. Pediatr Res 2004; 55: 498–506.
– ident: 17
  doi: 10.1038/nature18309
– ident: 4
  doi: 10.1016/j.jalz.2016.02.010
– ident: 26
  doi: 10.1152/ajpendo.00005.2018
– ident: 37
  doi: 10.1007/s12035-018-0983-2
– ident: 10
  doi: 10.1210/en.2015-1622
– ident: 11
  doi: 10.3233/JAD-180202
– ident: 38
  doi: 10.1007/s12035-018-1188-4
– ident: 34
  doi: 10.1016/j.expneurol.2019.04.012
– ident: 19
  doi: 10.1038/s41522-018-0073-2
– ident: 20
  doi: 10.1016/j.neuroscience.2011.07.054
– ident: 2
  doi: 10.1007/s13311-019-00755-y
– ident: 23
  doi: 10.1093/jn/123.11.1939
– ident: 8
  doi: 10.1186/1742-2094-11-85
– ident: 12
  doi: 10.1258/ebm.2010.010186
– ident: 13
  doi: 10.1016/j.jnutbio.2016.10.003
– ident: 44
  doi: 10.14715/cmb/2018.64.1.18
– ident: 9
  doi: 10.1016/j.mce.2015.09.014
– ident: 25
  doi: 10.1006/meth.2001.1262
– ident: 41
  doi: 10.3233/JAD-161141
– ident: 5
  doi: 10.1016/bs.pmbts.2016.12.019
– ident: 46
  doi: 10.1128/mBio.01343-17
– ident: 14
  doi: 10.1177/1535370217751610
– ident: 28
  doi: 10.1016/j.brainresrev.2008.09.002
– ident: 35
  doi: 10.1186/s12974-015-0243-6
– ident: 36
  doi: 10.1016/j.biopha.2018.06.106
– ident: 3
  doi: 10.3389/fnins.2019.00629
– ident: 31
  doi: 10.1111/nyas.12999
– ident: 33
  doi: 10.1001/jamaneurol.2019.1424
– ident: 45
  doi: 10.1039/C7FO01244F
– ident: 30
  doi: 10.1016/j.cmet.2017.08.004
– ident: 16
  doi: 10.1039/C8FO01296B
– ident: 24
  doi: 10.1080/1028415X.2015.1135572
– ident: 40
  doi: 10.3233/JAD-180176
– ident: 18
  doi: 10.1038/s41598-018-25190-5
– ident: 1
  doi: 10.1016/j.bcp.2013.12.024
– ident: 7
  doi: 10.1016/j.bbadis.2016.04.017
– ident: 39
  doi: 10.1038/s41598-017-13601-y
– ident: 42
  doi: 10.1016/j.clnu.2015.09.010
– ident: 43
  doi: 10.1007/s00394-010-0120-0
– ident: 27
  doi: 10.3390/antiox7050063
– ident: 6
– ident: 29
  doi: 10.1203/01.PDR.0000112032.47575.D1
– ident: 32
  doi: 10.1212/WNL.0000000000007747
– ident: 15
  doi: 10.1186/s12974-019-1494-4
– ident: 21
  doi: 10.1016/j.nutres.2018.09.010
– ident: 22
  doi: 10.3945/jn.112.173401
SSID ssj0046564
Score 2.4587636
Snippet The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment,...
SourceID pubmedcentral
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 188
SubjectTerms Alzheimer's disease
Amyloid
amyloid-β
Carbohydrates
Cognitive ability
Dementia disorders
Diet
Digestive system
Dysbacteriosis
Fasting
Glucose
Glucose metabolism
Glucose tolerance
gut microbiome
Gut microbiota
High carbohydrate diet
High fat diet
Hippocampus
Inflammation
Insulin
insulin signaling
Intestinal microflora
Intolerance
Ketogenesis
ketone
Ketones
Low carbohydrate diet
Memory
Microbiomes
Microbiota
Neurodegenerative diseases
Original
Starch
Title Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model
URI https://www.jstage.jst.go.jp/article/jcbn/67/2/67_19-87/_article/-char/en
https://www.proquest.com/docview/2439400817
https://www.proquest.com/docview/2449992798
https://pubmed.ncbi.nlm.nih.gov/PMC7533860
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Clinical Biochemistry and Nutrition, 2020, Vol.67(2), pp.188-198
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB61BVW9ICigBkplBELikJIfJ3YOCFVAVVFtJSRW6i2yE7ubsg1lNytRTrwGj8Br9Uk64_yIoJ645JCZTKLMOP4mHn8D8DK0EjMfzFRTESufF2Hmy0hbP7GhkqUSJtS0G3lykh5N-afT5HQN-v6d3Qtc3praUT-p6WK-_-P71Tsc8G9dxpnyN-eFrvfpJmId7uCMJKiTwYQPqwlECeZopDIqQ0BQ0dKU_nPtFmxSbo8zoBjNUXfPEaadmRECHddP_jUhHd6Hex2SZAet6x_Amqm3wftQmYa9Yh3d55yd9Gz727A56dbRH8KfY0Mk3Oyy5XtFMdNX7CuexHiqClaSFVWXdJYIJWjXP4Lrhlm1pDppNlNL1vdWaVhXFMLQDOJJdrZq2EXVMjw1ytnp1oGYKwdrqUDQMIrYwfznzFQXZnH96_dy0MO4ZK5JzyOYHn788v7I75o2-EUah41vLSKg0EZWBBrBGW3pSqLM4oejzIzMCoP5HaKqyJYhL0QU60QlYSp1Gei0KBE8PIaNGt_ADrBSxDrNCimyMuXCSs1jGyQlD2LLrVHKg9e9m_KiYzSnxhrzHDMb8m5O3s3DLJfCgxeD7mXL43GrVtZ6e9Dpxm-rk4o8ooPTHUS0PQ6_MR7s9gGS92GcR9x1npchmn4-iHEE07KMqs23FelQ1hmJTHogRoE1PAVxgI8ldTVzXOCYbcYyDZ7895VPYSuiXwjur9IubDSLlXmGOKvRe7B-_FnuuaF0A5XGMPg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ketone+production+by+ketogenic+diet+and+by+intermittent+fasting+has+different+effects+on+the+gut+microbiota+and+disease+progression+in+an+Alzheimer%E2%80%99s+disease+rat+model&rft.jtitle=Journal+of+clinical+biochemistry+and+nutrition&rft.au=Park%2C+Sunmin&rft.au=Zhang%2C+Ting&rft.au=Wu%2C+Xuangao&rft.au=Yi+Qiu%2C+Jing&rft.date=2020-01-01&rft.pub=the+Society+for+Free+Radical+Research+Japan&rft.issn=0912-0009&rft.eissn=1880-5086&rft.volume=67&rft.issue=2&rft.spage=188&rft.epage=198&rft_id=info:doi/10.3164%2Fjcbn.19-87&rft_id=info%3Apmid%2F33041517&rft.externalDocID=PMC7533860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0912-0009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0912-0009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0912-0009&client=summon