Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model
The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats....
Saved in:
Published in | Journal of Clinical Biochemistry and Nutrition Vol. 67; no. 2; pp. 188 - 198 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Gifu
SOCIETY FOR FREE RADICAL RESEARCH JAPAN
01.01.2020
Japan Science and Technology Agency the Society for Free Radical Research Japan |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25–35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing Proteobacteria, and AD-CHO improved it by elevating Bacteriodetes. In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia. |
---|---|
AbstractList | The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25–35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing
Proteobacteria
, and AD-CHO improved it by elevating
Bacteriodetes
. In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia. The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25–35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing Proteobacteria, and AD-CHO improved it by elevating Bacteriodetes. In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia. The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25-35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing Proteobacteria, and AD-CHO improved it by elevating Bacteriodetes. In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia.The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment, glucose metabolism, and inflammation while altering the gut microbiome. The hypothesis and the mechanism were explored in amyloid-β infused rats. Rats that received an amyloid-β(25-35) infusion into the hippocampus had either ketogenic diet (AD-KD), intermittent fasting (AD-IMF), 30 energy percent fat diet (AD-CON), or high carbohydrate (starch) diet (AD-CHO) for 8 weeks. AD-IMF and AD-CHO, but not AD-KD, lowered the hippocampal amyloid-β deposition compared to the AD-CON despite serum ketone concentrations being elevated in both AD-KD and AD-IMF. AD-IMF and AD-CHO, but not AD-KD, improved memory function in passive avoidance, Y maze, and water maze tests compared to the AD-CON. Hippocampal insulin signaling (pAkt→pGSK-3β) was potentiated and pTau was attenuated in AD-IMF and AD-CHO much more than AD-CON. AD-IMF and AD-CON had similar glucose tolerance results during OGTT, but AD-KD and AD-IMF exhibited glucose intolerance. AD-KD exacerbated gut dysbiosis by increasing Proteobacteria, and AD-CHO improved it by elevating Bacteriodetes. In conclusion, ketone production itself might not improve memory function, insulin resistance, neuroinflammation or the gut microbiome when induced by ketone-producing remedies. Intermittent fasting and a high carbohydrate diet containing high starch may be beneficial for people with dementia. |
Author | Zhang, Ting Qiu, Jing Yi Wu, Xuangao Park, Sunmin |
Author_xml | – sequence: 1 fullname: Park, Sunmin organization: Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University – sequence: 2 fullname: Zhang, Ting organization: Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University – sequence: 3 fullname: Wu, Xuangao organization: Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University – sequence: 4 fullname: Qiu, Jing Yi organization: Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University |
BookMark | eNptks9u1DAQxi1URLeFC08QiQtCSrHjxLEviKrin6jEBc6W44wTL4m92E6lcuI1eAReiyfB2S0rUXGxrW9-843HnjN04rwDhJ4SfEEJq19udecuiCh5-wBtCOe4bDBnJ2iDBalKjLE4RWcxbjGuWcPqR-iUUlyThrQb9OsjpOxW7ILvF52sd0V3W3zN4gDO6qK3kArl-lW1LkGYbUrgUmFUTNYNxahihoyBsKqQDzrFItukEYphScVsdfCd9UntfXobQcV9wSFAjGtF63KouJy-j2BnCL9__IxHLqhs4XuYHqOHRk0Rntzt5-jL2zefr96X15_efbi6vC41oySVxnBBialMi7u6YZQ2VVMJw2nVC-BCgxCckaoyPal1W9GuUQ1hvOtxx3TPG3qOXh18d0s3Q69zW0FNchfsrMKt9MrKfyPOjnLwN7JtKOUMZ4PndwbBf1sgJjnbqGGalAO_RFnVtRCiagXP6LN76NYvweX2MkVFjTEnbabwgcoPGWMAI7VNav2rXN9OkmC5zoFc50ASIfma8uJeyt_7_xd-fYC3MakBjqgKyeoJDihrZbUu-5RjSI8qSHD0D-6a0XM |
CitedBy_id | crossref_primary_10_3390_nu17010149 crossref_primary_10_1016_j_metabol_2024_156104 crossref_primary_10_1007_s11357_024_01432_5 crossref_primary_10_1017_S0007114521000829 crossref_primary_10_3389_fnins_2023_1130730 crossref_primary_10_3390_nu14030513 crossref_primary_10_1016_j_arr_2022_101728 crossref_primary_10_1016_j_neuropharm_2023_109478 crossref_primary_10_18632_aging_205741 crossref_primary_10_1177_1934578X231206228 crossref_primary_10_3390_nu14235053 crossref_primary_10_3390_nu14071431 crossref_primary_10_3390_nu16020308 crossref_primary_10_1007_s00702_023_02620_x crossref_primary_10_3390_ijtm4040052 crossref_primary_10_3390_nu15245108 crossref_primary_10_1002_dad2_70057 crossref_primary_10_3389_fnut_2024_1484856 crossref_primary_10_1016_j_bj_2025_100827 crossref_primary_10_3389_fnagi_2022_1015837 crossref_primary_10_14283_jpad_2022_3 crossref_primary_10_25122_jml_2023_0370 crossref_primary_10_3390_foods12020424 crossref_primary_10_1093_nutrit_nuad104 crossref_primary_10_3390_nu14091758 crossref_primary_10_1016_j_brainres_2024_149348 crossref_primary_10_1155_2023_5562120 crossref_primary_10_1002_biof_1703 crossref_primary_10_1016_j_ijbiomac_2023_127559 crossref_primary_10_18502_sjms_v15i5_7147 crossref_primary_10_1007_s40501_024_00322_z crossref_primary_10_1016_j_jff_2022_105180 crossref_primary_10_1016_j_arr_2024_102515 crossref_primary_10_3389_fnut_2024_1322509 crossref_primary_10_1016_j_jad_2021_06_028 crossref_primary_10_3390_metabo14010025 crossref_primary_10_1016_j_arr_2024_102233 crossref_primary_10_1055_a_1957_8449 crossref_primary_10_3389_fnins_2022_899612 crossref_primary_10_1016_j_chom_2021_07_004 crossref_primary_10_1515_revneuro_2020_0078 crossref_primary_10_3390_ijms25010124 crossref_primary_10_1038_s41392_021_00831_w crossref_primary_10_3390_nu14030668 crossref_primary_10_1080_1028415X_2022_2143609 crossref_primary_10_1186_s12986_021_00635_3 crossref_primary_10_3233_JAD_220205 crossref_primary_10_3389_fnut_2022_860575 crossref_primary_10_3390_nu13124342 crossref_primary_10_1371_journal_pone_0275684 crossref_primary_10_31083_j_jin2303050 crossref_primary_10_3389_fnagi_2021_650047 crossref_primary_10_1016_j_neubiorev_2022_104814 crossref_primary_10_1093_nutrit_nuad009 crossref_primary_10_3390_nu14040782 crossref_primary_10_1016_j_nut_2023_111992 crossref_primary_10_1016_j_expneurol_2024_114920 crossref_primary_10_1038_s43587_022_00311_y crossref_primary_10_3390_cells11152301 crossref_primary_10_3233_JAD_230002 |
Cites_doi | 10.1038/nature18309 10.1016/j.jalz.2016.02.010 10.1152/ajpendo.00005.2018 10.1007/s12035-018-0983-2 10.1210/en.2015-1622 10.3233/JAD-180202 10.1007/s12035-018-1188-4 10.1016/j.expneurol.2019.04.012 10.1038/s41522-018-0073-2 10.1016/j.neuroscience.2011.07.054 10.1007/s13311-019-00755-y 10.1093/jn/123.11.1939 10.1186/1742-2094-11-85 10.1258/ebm.2010.010186 10.1016/j.jnutbio.2016.10.003 10.14715/cmb/2018.64.1.18 10.1016/j.mce.2015.09.014 10.1006/meth.2001.1262 10.3233/JAD-161141 10.1016/bs.pmbts.2016.12.019 10.1128/mBio.01343-17 10.1177/1535370217751610 10.1016/j.brainresrev.2008.09.002 10.1186/s12974-015-0243-6 10.1016/j.biopha.2018.06.106 10.3389/fnins.2019.00629 10.1111/nyas.12999 10.1001/jamaneurol.2019.1424 10.1039/C7FO01244F 10.1016/j.cmet.2017.08.004 10.1039/C8FO01296B 10.1080/1028415X.2015.1135572 10.3233/JAD-180176 10.1038/s41598-018-25190-5 10.1016/j.bcp.2013.12.024 10.1016/j.bbadis.2016.04.017 10.1038/s41598-017-13601-y 10.1016/j.clnu.2015.09.010 10.1007/s00394-010-0120-0 10.3390/antiox7050063 10.1203/01.PDR.0000112032.47575.D1 10.1212/WNL.0000000000007747 10.1186/s12974-019-1494-4 10.1016/j.nutres.2018.09.010 10.3945/jn.112.173401 |
ContentType | Journal Article |
Copyright | 2020 JCBN Copyright Japan Science and Technology Agency 2020 Copyright © 2020 JCBN. Copyright © 2020 JCBN 2020 |
Copyright_xml | – notice: 2020 JCBN – notice: Copyright Japan Science and Technology Agency 2020 – notice: Copyright © 2020 JCBN. – notice: Copyright © 2020 JCBN 2020 |
DBID | AAYXX CITATION 7QL 7QP 7TK 7U9 C1K H94 K9. NAPCQ 7X8 5PM |
DOI | 10.3164/jcbn.19-87 |
DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Nursing & Allied Health Premium Virology and AIDS Abstracts Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Nursing & Allied Health Premium |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Diet & Clinical Nutrition |
EISSN | 1880-5086 |
EndPage | 198 |
ExternalDocumentID | PMC7533860 10_3164_jcbn_19_87 article_jcbn_67_2_67_19_87_article_char_en |
GroupedDBID | --- .GJ 29K 2WC 5GY ACGFO ACPRK ADBBV ADRAZ AENEX AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 D-I DIK DU5 E3Z F5P GX1 HH5 HYE JSF JSH KQ8 M48 O5R O5S OK1 P6G PQEST PQQKQ RJT RPM RZJ TKC TR2 AAYXX CITATION 7QL 7QP 7TK 7U9 C1K H94 K9. NAPCQ 7X8 5PM |
ID | FETCH-LOGICAL-c631t-ff8931f2f70b4563352529f832d9e89ce9986122fd14c723b5a5168bd0b6cd853 |
IEDL.DBID | M48 |
ISSN | 0912-0009 |
IngestDate | Thu Aug 21 13:22:45 EDT 2025 Fri Jul 11 07:50:46 EDT 2025 Mon Jun 30 20:23:01 EDT 2025 Tue Jul 01 00:55:44 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Wed Apr 05 15:07:16 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c631t-ff8931f2f70b4563352529f832d9e89ce9986122fd14c723b5a5168bd0b6cd853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3164/jcbn.19-87 |
PMID | 33041517 |
PQID | 2439400817 |
PQPubID | 1996339 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7533860 proquest_miscellaneous_2449992798 proquest_journals_2439400817 crossref_citationtrail_10_3164_jcbn_19_87 crossref_primary_10_3164_jcbn_19_87 jstage_primary_article_jcbn_67_2_67_19_87_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 20200101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Gifu |
PublicationPlace_xml | – name: Gifu – name: Kyoto, Japan |
PublicationTitle | Journal of Clinical Biochemistry and Nutrition |
PublicationTitleAlternate | J. Clin. Biochem. Nutr. |
PublicationYear | 2020 |
Publisher | SOCIETY FOR FREE RADICAL RESEARCH JAPAN Japan Science and Technology Agency the Society for Free Radical Research Japan |
Publisher_xml | – name: SOCIETY FOR FREE RADICAL RESEARCH JAPAN – name: Japan Science and Technology Agency – name: the Society for Free Radical Research Japan |
References | 16 Tingirikari JMR. Microbiota-accessible pectic poly- and oligosaccharides in gut health. Food Funct 2018; 9: 5059–5073. 30 Newman JC, Covarrubias AJ, Zhao M, et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab 2017; 26: 547–557.e8. 42 Park S, Ahn J, Lee BK. Very-low-fat diets may be associated with increased risk of metabolic syndrome in the adult population. Clin Nutr 2016; 35: 1159–1167. 6 Lu J, Guo P, Liu X, et al. Herbal formula fo shou san attenuates Alzheimer’s disease-related pathologies via the gut-liver-brain axis in APP/PS1 mouse model of Alzheimer’s disease. Evid Based Complement Alternat Med 2019; 2019: 8302950. 38 Sochocka M, Donskow-Lysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-a critical review. Mol Neurobiol 2019; 56: 1841–1851. 26 Park S, Kim DS, Kang ES, Kim DB, Kang S. Low dose brain estrogen prevents menopausal syndrome while maintaining the diversity of the gut microbiomes in estrogen-deficient rats. Am J Physiol Endocrinol Metab 2018; 315: E99–E109. 19 Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 2019; 5: 5. 23 Reeves PG, Nielsen FH, Fahey GC, Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993; 123: 1939–1951. 14 Shin BK, Kang S, Kim DS, Park S. Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheimer’s disease-induced estrogen deficient rats. Exp Biol Med (Maywood) 2018; 243: 334–343. 28 Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 2009; 59: 293–315. 12 Park S, Kim DS, Kang S, Daily JW 3rd. A ketogenic diet impairs energy and glucose homeostasis by the attenuation of hypothalamic leptin signaling and hepatic insulin signaling in a rat model of non-obese type 2 diabetes. Exp Biol Med (Maywood) 2011; 236: 194–204. 5 Akhter F, Chen D, Yan SF, Yan SS. Mitochondrial perturbation in Alzheimer’s disease and diabetes. Prog Mol Biol Transl Sci 2017; 146: 341–361. 43 Park S, Kim DS, Kang S. Gastrodia elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: vanillin and 4-hydroxybenzaldehyde are the bioactive candidates. Eur J Nutr 2011; 50: 107–118. 8 Vasconcelos AR, Yshii LM, Viel TA, et al. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 2014; 11: 85. 36 Chen W, Liang T, Zuo W, et al. Neuroprotective effect of 1-deoxynojirimycin on cognitive impairment, β-amyloid deposition, and neuroinflammation in the SAMP8 mice. Biomed Pharmacother 2018; 106: 92–97. 39 Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7: 13537. 21 Park S, Kim DS, Kang S, Kim HJ. The combination of luteolin and l-theanine improved Alzheimer disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-β-infused rats. Nutr Res 2018; 60: 116–131. 15 Angelucci F, Cechova K, Amlerova J, Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J Neuroinflammation 2019; 16: 108. 25 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001; 25: 402–408. 4 Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 2016; 12: 719–732. 35 Latta CH, Sudduth TL, Weekman EM, et al. Determining the role of IL-4 induced neuroinflammation in microglial activity and amyloid-beta using BV2 microglial cells and APP/PS1 transgenic mice. J Neuroinflammation 2015; 12: 41. 37 Lin L, Zheng LJ, Zhang LJ. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Mol Neurobiol 2018; 55: 8243–8250. 46 Maier TV, Lucio M, Lee LH, et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. mBio 2017; 8. pii: e01343-17. 1 Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88: 640–651. 31 Cunnane SC, Courchesne-Loyer A, St-Pierre V, et al. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann N Y Acad Sci 2016; 1367: 12–20. 34 Grillo CA, Woodruff JL, Macht VA, Reagan LP. Insulin resistance and hippocampal dysfunction: disentangling peripheral and brain causes from consequences. Exp Neurol 2019; 318: 71–77. 3 Gabbouj S, Ryhänen S, Marttinen M, et al. Altered insulin signaling in Alzheimer’s disease brain - special emphasis on PI3K-Akt pathway. Front Neurosci 2019; 13: 629. 45 Shang W, Si X, Zhou Z, Li Y, Strappe P, Blanchard C. Characterization of fecal fat composition and gut derived fecal microbiota in high-fat diet fed rats following intervention with chito-oligosaccharide and resistant starch complexes. Food Funct 2017; 8: 4374–4383. 22 Yang HJ, Hwang JT, Kwon DY, et al. Yuzu extract prevents cognitive decline and impaired glucose homeostasis in β-amyloid-infused rats. J Nutr 2013; 143: 1093–1099. 2 Ryu JC, Zimmer ER, Rosa-Neto P, Yoon SO. Consequences of metabolic disruption in Alzheimer’s disease pathology. Neurotherapeutics 2019; 16: 600–610. 13 Park S, Yoo KM, Hyun JS, Kang S. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets. J Nutr Biochem 2017; 40: 14–22. 32 Bischof GN, Jacobs HIL. Subthreshold amyloid and its biological and clinical meaning: long way ahead. Neurology 2019; 93: 72–79. 9 Seimon RV, Roekenes JA, Zibellini J, et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 2015; 418 Pt 2: 153–172. 17 Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 2016; 534: 213–217. 24 Park S, Kang S, Kim DS, Moon BR. Agrimonia pilosa Ledeb., Cinnamomum cassia Blume, and Lonicera japonica Thunb. protect against cognitive dysfunction and energy and glucose dysregulation by reducing neuroinflammation and hippocampal insulin resistance in β-amyloid-infused rats. Nutr Neurosci 2017; 20: 77–88. 44 Al-Daihan S, Ben Bacha A, Al-Dbass AM, Alonazi MA, Bhat RS. High-fat diet stimulates the gut pathogenic microbiota and maintains hepatic injury in antibiotic-treated rats. Cell Mol Biol (Noisy-le-grand) 2018; 64: 103–106. 33 Hanseeuw BJ, Betensky RA, Jacobs HIL, et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol 2019. DOI: 10.1001/jamaneurol.2019.1424. 10 Gotthardt JD, Verpeut JL, Yeomans BL, et al. Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide Y gene expression in diet-induced obese male mice. Endocrinology 2016; 157: 679–691. 29 Zhao Q, Stafstrom CE, Fu DD, Hu Y, Holmes GL. Detrimental effects of the ketogenic diet on cognitive function in rats. Pediatr Res 2004; 55: 498–506. 40 Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 2018; 63: 1337–1346. 41 Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis 2017; 58: 1–15. 11 Croteau E, Castellano CA, Richard MA, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J Alzheimers Dis 2018; 64: 551–561. 18 Ma D, Wang AC, Parikh I, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 2018; 8: 6670. 27 Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-oxidant and anti-inflammatory activity of ketogenic diet: new perspectives for neuroprotection in Alzheimer’s disease. Antioxidants (Basel) 2018; 7. pii: E63. 7 Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863: 1037–1045. 20 Liu P, Jing Y, Collie ND, Campbell SA, Zhang H. Pre-aggregated Aβ(25–35) alters arginine metabolism in the rat hippocampus and prefrontal cortex. Neuroscience 2011; 193: 269–282. 22 44 23 45 24 46 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: 28 Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 2009; 59: 293–315. – reference: 10 Gotthardt JD, Verpeut JL, Yeomans BL, et al. Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide Y gene expression in diet-induced obese male mice. Endocrinology 2016; 157: 679–691. – reference: 38 Sochocka M, Donskow-Lysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-a critical review. Mol Neurobiol 2019; 56: 1841–1851. – reference: 45 Shang W, Si X, Zhou Z, Li Y, Strappe P, Blanchard C. Characterization of fecal fat composition and gut derived fecal microbiota in high-fat diet fed rats following intervention with chito-oligosaccharide and resistant starch complexes. Food Funct 2017; 8: 4374–4383. – reference: 8 Vasconcelos AR, Yshii LM, Viel TA, et al. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 2014; 11: 85. – reference: 6 Lu J, Guo P, Liu X, et al. Herbal formula fo shou san attenuates Alzheimer’s disease-related pathologies via the gut-liver-brain axis in APP/PS1 mouse model of Alzheimer’s disease. Evid Based Complement Alternat Med 2019; 2019: 8302950. – reference: 18 Ma D, Wang AC, Parikh I, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 2018; 8: 6670. – reference: 31 Cunnane SC, Courchesne-Loyer A, St-Pierre V, et al. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann N Y Acad Sci 2016; 1367: 12–20. – reference: 14 Shin BK, Kang S, Kim DS, Park S. Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheimer’s disease-induced estrogen deficient rats. Exp Biol Med (Maywood) 2018; 243: 334–343. – reference: 7 Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863: 1037–1045. – reference: 17 Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 2016; 534: 213–217. – reference: 20 Liu P, Jing Y, Collie ND, Campbell SA, Zhang H. Pre-aggregated Aβ(25–35) alters arginine metabolism in the rat hippocampus and prefrontal cortex. Neuroscience 2011; 193: 269–282. – reference: 46 Maier TV, Lucio M, Lee LH, et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. mBio 2017; 8. pii: e01343-17. – reference: 36 Chen W, Liang T, Zuo W, et al. Neuroprotective effect of 1-deoxynojirimycin on cognitive impairment, β-amyloid deposition, and neuroinflammation in the SAMP8 mice. Biomed Pharmacother 2018; 106: 92–97. – reference: 24 Park S, Kang S, Kim DS, Moon BR. Agrimonia pilosa Ledeb., Cinnamomum cassia Blume, and Lonicera japonica Thunb. protect against cognitive dysfunction and energy and glucose dysregulation by reducing neuroinflammation and hippocampal insulin resistance in β-amyloid-infused rats. Nutr Neurosci 2017; 20: 77–88. – reference: 11 Croteau E, Castellano CA, Richard MA, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J Alzheimers Dis 2018; 64: 551–561. – reference: 43 Park S, Kim DS, Kang S. Gastrodia elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: vanillin and 4-hydroxybenzaldehyde are the bioactive candidates. Eur J Nutr 2011; 50: 107–118. – reference: 23 Reeves PG, Nielsen FH, Fahey GC, Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993; 123: 1939–1951. – reference: 37 Lin L, Zheng LJ, Zhang LJ. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Mol Neurobiol 2018; 55: 8243–8250. – reference: 16 Tingirikari JMR. Microbiota-accessible pectic poly- and oligosaccharides in gut health. Food Funct 2018; 9: 5059–5073. – reference: 9 Seimon RV, Roekenes JA, Zibellini J, et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 2015; 418 Pt 2: 153–172. – reference: 22 Yang HJ, Hwang JT, Kwon DY, et al. Yuzu extract prevents cognitive decline and impaired glucose homeostasis in β-amyloid-infused rats. J Nutr 2013; 143: 1093–1099. – reference: 5 Akhter F, Chen D, Yan SF, Yan SS. Mitochondrial perturbation in Alzheimer’s disease and diabetes. Prog Mol Biol Transl Sci 2017; 146: 341–361. – reference: 4 Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 2016; 12: 719–732. – reference: 40 Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 2018; 63: 1337–1346. – reference: 2 Ryu JC, Zimmer ER, Rosa-Neto P, Yoon SO. Consequences of metabolic disruption in Alzheimer’s disease pathology. Neurotherapeutics 2019; 16: 600–610. – reference: 3 Gabbouj S, Ryhänen S, Marttinen M, et al. Altered insulin signaling in Alzheimer’s disease brain - special emphasis on PI3K-Akt pathway. Front Neurosci 2019; 13: 629. – reference: 41 Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis 2017; 58: 1–15. – reference: 1 Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88: 640–651. – reference: 21 Park S, Kim DS, Kang S, Kim HJ. The combination of luteolin and l-theanine improved Alzheimer disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-β-infused rats. Nutr Res 2018; 60: 116–131. – reference: 33 Hanseeuw BJ, Betensky RA, Jacobs HIL, et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol 2019. DOI: 10.1001/jamaneurol.2019.1424. – reference: 25 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001; 25: 402–408. – reference: 30 Newman JC, Covarrubias AJ, Zhao M, et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab 2017; 26: 547–557.e8. – reference: 32 Bischof GN, Jacobs HIL. Subthreshold amyloid and its biological and clinical meaning: long way ahead. Neurology 2019; 93: 72–79. – reference: 26 Park S, Kim DS, Kang ES, Kim DB, Kang S. Low dose brain estrogen prevents menopausal syndrome while maintaining the diversity of the gut microbiomes in estrogen-deficient rats. Am J Physiol Endocrinol Metab 2018; 315: E99–E109. – reference: 34 Grillo CA, Woodruff JL, Macht VA, Reagan LP. Insulin resistance and hippocampal dysfunction: disentangling peripheral and brain causes from consequences. Exp Neurol 2019; 318: 71–77. – reference: 15 Angelucci F, Cechova K, Amlerova J, Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J Neuroinflammation 2019; 16: 108. – reference: 19 Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 2019; 5: 5. – reference: 39 Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7: 13537. – reference: 12 Park S, Kim DS, Kang S, Daily JW 3rd. A ketogenic diet impairs energy and glucose homeostasis by the attenuation of hypothalamic leptin signaling and hepatic insulin signaling in a rat model of non-obese type 2 diabetes. Exp Biol Med (Maywood) 2011; 236: 194–204. – reference: 42 Park S, Ahn J, Lee BK. Very-low-fat diets may be associated with increased risk of metabolic syndrome in the adult population. Clin Nutr 2016; 35: 1159–1167. – reference: 44 Al-Daihan S, Ben Bacha A, Al-Dbass AM, Alonazi MA, Bhat RS. High-fat diet stimulates the gut pathogenic microbiota and maintains hepatic injury in antibiotic-treated rats. Cell Mol Biol (Noisy-le-grand) 2018; 64: 103–106. – reference: 13 Park S, Yoo KM, Hyun JS, Kang S. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets. J Nutr Biochem 2017; 40: 14–22. – reference: 35 Latta CH, Sudduth TL, Weekman EM, et al. Determining the role of IL-4 induced neuroinflammation in microglial activity and amyloid-beta using BV2 microglial cells and APP/PS1 transgenic mice. J Neuroinflammation 2015; 12: 41. – reference: 27 Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-oxidant and anti-inflammatory activity of ketogenic diet: new perspectives for neuroprotection in Alzheimer’s disease. Antioxidants (Basel) 2018; 7. pii: E63. – reference: 29 Zhao Q, Stafstrom CE, Fu DD, Hu Y, Holmes GL. Detrimental effects of the ketogenic diet on cognitive function in rats. Pediatr Res 2004; 55: 498–506. – ident: 17 doi: 10.1038/nature18309 – ident: 4 doi: 10.1016/j.jalz.2016.02.010 – ident: 26 doi: 10.1152/ajpendo.00005.2018 – ident: 37 doi: 10.1007/s12035-018-0983-2 – ident: 10 doi: 10.1210/en.2015-1622 – ident: 11 doi: 10.3233/JAD-180202 – ident: 38 doi: 10.1007/s12035-018-1188-4 – ident: 34 doi: 10.1016/j.expneurol.2019.04.012 – ident: 19 doi: 10.1038/s41522-018-0073-2 – ident: 20 doi: 10.1016/j.neuroscience.2011.07.054 – ident: 2 doi: 10.1007/s13311-019-00755-y – ident: 23 doi: 10.1093/jn/123.11.1939 – ident: 8 doi: 10.1186/1742-2094-11-85 – ident: 12 doi: 10.1258/ebm.2010.010186 – ident: 13 doi: 10.1016/j.jnutbio.2016.10.003 – ident: 44 doi: 10.14715/cmb/2018.64.1.18 – ident: 9 doi: 10.1016/j.mce.2015.09.014 – ident: 25 doi: 10.1006/meth.2001.1262 – ident: 41 doi: 10.3233/JAD-161141 – ident: 5 doi: 10.1016/bs.pmbts.2016.12.019 – ident: 46 doi: 10.1128/mBio.01343-17 – ident: 14 doi: 10.1177/1535370217751610 – ident: 28 doi: 10.1016/j.brainresrev.2008.09.002 – ident: 35 doi: 10.1186/s12974-015-0243-6 – ident: 36 doi: 10.1016/j.biopha.2018.06.106 – ident: 3 doi: 10.3389/fnins.2019.00629 – ident: 31 doi: 10.1111/nyas.12999 – ident: 33 doi: 10.1001/jamaneurol.2019.1424 – ident: 45 doi: 10.1039/C7FO01244F – ident: 30 doi: 10.1016/j.cmet.2017.08.004 – ident: 16 doi: 10.1039/C8FO01296B – ident: 24 doi: 10.1080/1028415X.2015.1135572 – ident: 40 doi: 10.3233/JAD-180176 – ident: 18 doi: 10.1038/s41598-018-25190-5 – ident: 1 doi: 10.1016/j.bcp.2013.12.024 – ident: 7 doi: 10.1016/j.bbadis.2016.04.017 – ident: 39 doi: 10.1038/s41598-017-13601-y – ident: 42 doi: 10.1016/j.clnu.2015.09.010 – ident: 43 doi: 10.1007/s00394-010-0120-0 – ident: 27 doi: 10.3390/antiox7050063 – ident: 6 – ident: 29 doi: 10.1203/01.PDR.0000112032.47575.D1 – ident: 32 doi: 10.1212/WNL.0000000000007747 – ident: 15 doi: 10.1186/s12974-019-1494-4 – ident: 21 doi: 10.1016/j.nutres.2018.09.010 – ident: 22 doi: 10.3945/jn.112.173401 |
SSID | ssj0046564 |
Score | 2.4587636 |
Snippet | The benefits of ketone production regimens remain controversial. Here, we hypothesized that the ketone-producing regimens modulated cognitive impairment,... |
SourceID | pubmedcentral proquest crossref jstage |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 188 |
SubjectTerms | Alzheimer's disease Amyloid amyloid-β Carbohydrates Cognitive ability Dementia disorders Diet Digestive system Dysbacteriosis Fasting Glucose Glucose metabolism Glucose tolerance gut microbiome Gut microbiota High carbohydrate diet High fat diet Hippocampus Inflammation Insulin insulin signaling Intestinal microflora Intolerance Ketogenesis ketone Ketones Low carbohydrate diet Memory Microbiomes Microbiota Neurodegenerative diseases Original Starch |
Title | Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model |
URI | https://www.jstage.jst.go.jp/article/jcbn/67/2/67_19-87/_article/-char/en https://www.proquest.com/docview/2439400817 https://www.proquest.com/docview/2449992798 https://pubmed.ncbi.nlm.nih.gov/PMC7533860 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Clinical Biochemistry and Nutrition, 2020, Vol.67(2), pp.188-198 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB61BVW9ICigBkplBELikJIfJ3YOCFVAVVFtJSRW6i2yE7ubsg1lNytRTrwGj8Br9Uk64_yIoJ645JCZTKLMOP4mHn8D8DK0EjMfzFRTESufF2Hmy0hbP7GhkqUSJtS0G3lykh5N-afT5HQN-v6d3Qtc3praUT-p6WK-_-P71Tsc8G9dxpnyN-eFrvfpJmId7uCMJKiTwYQPqwlECeZopDIqQ0BQ0dKU_nPtFmxSbo8zoBjNUXfPEaadmRECHddP_jUhHd6Hex2SZAet6x_Amqm3wftQmYa9Yh3d55yd9Gz727A56dbRH8KfY0Mk3Oyy5XtFMdNX7CuexHiqClaSFVWXdJYIJWjXP4Lrhlm1pDppNlNL1vdWaVhXFMLQDOJJdrZq2EXVMjw1ytnp1oGYKwdrqUDQMIrYwfznzFQXZnH96_dy0MO4ZK5JzyOYHn788v7I75o2-EUah41vLSKg0EZWBBrBGW3pSqLM4oejzIzMCoP5HaKqyJYhL0QU60QlYSp1Gei0KBE8PIaNGt_ADrBSxDrNCimyMuXCSs1jGyQlD2LLrVHKg9e9m_KiYzSnxhrzHDMb8m5O3s3DLJfCgxeD7mXL43GrVtZ6e9Dpxm-rk4o8ooPTHUS0PQ6_MR7s9gGS92GcR9x1npchmn4-iHEE07KMqs23FelQ1hmJTHogRoE1PAVxgI8ldTVzXOCYbcYyDZ7895VPYSuiXwjur9IubDSLlXmGOKvRe7B-_FnuuaF0A5XGMPg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ketone+production+by+ketogenic+diet+and+by+intermittent+fasting+has+different+effects+on+the+gut+microbiota+and+disease+progression+in+an+Alzheimer%E2%80%99s+disease+rat+model&rft.jtitle=Journal+of+clinical+biochemistry+and+nutrition&rft.au=Park%2C+Sunmin&rft.au=Zhang%2C+Ting&rft.au=Wu%2C+Xuangao&rft.au=Yi+Qiu%2C+Jing&rft.date=2020-01-01&rft.pub=the+Society+for+Free+Radical+Research+Japan&rft.issn=0912-0009&rft.eissn=1880-5086&rft.volume=67&rft.issue=2&rft.spage=188&rft.epage=198&rft_id=info:doi/10.3164%2Fjcbn.19-87&rft_id=info%3Apmid%2F33041517&rft.externalDocID=PMC7533860 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0912-0009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0912-0009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0912-0009&client=summon |