Fulvic acid application increases rice seedlings performance under low phosphorus stress

Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated th...

Full description

Saved in:
Bibliographic Details
Published inBMC plant biology Vol. 24; no. 1; p. 703
Main Authors Lv, Xiaomeng, Li, Qingchao, Deng, Xuan, Ding, Shitao, Sun, Ruibo, Chen, Shunquan, Yun, Wenjing, Dai, Changrong, Luo, Bingbing
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 25.07.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed. The findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H -ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice. The effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool.
AbstractList Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed. The findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H -ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice. The effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool.
Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed. The findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H.sup.+-ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice. The effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool.
Abstract Background Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed. Results The findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H+-ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice. Conclusions The effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool.
Background Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed. Results The findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H.sup.+-ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice. Conclusions The effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool. Keywords: Fulvic acid, Rice seedlings, Low phosphorus stress, Physiological mechanism
BackgroundFulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed.ResultsThe findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H+-ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice.ConclusionsThe effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool.
Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed.BACKGROUNDFulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed.The findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H+-ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice.RESULTSThe findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H+-ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice.The effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool.CONCLUSIONSThe effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool.
BACKGROUND: Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed. RESULTS: The findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H⁺-ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice. CONCLUSIONS: The effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool.
ArticleNumber 703
Audience Academic
Author Lv, Xiaomeng
Li, Qingchao
Chen, Shunquan
Yun, Wenjing
Dai, Changrong
Ding, Shitao
Sun, Ruibo
Luo, Bingbing
Deng, Xuan
Author_xml – sequence: 1
  givenname: Xiaomeng
  surname: Lv
  fullname: Lv, Xiaomeng
– sequence: 2
  givenname: Qingchao
  surname: Li
  fullname: Li, Qingchao
– sequence: 3
  givenname: Xuan
  surname: Deng
  fullname: Deng, Xuan
– sequence: 4
  givenname: Shitao
  surname: Ding
  fullname: Ding, Shitao
– sequence: 5
  givenname: Ruibo
  surname: Sun
  fullname: Sun, Ruibo
– sequence: 6
  givenname: Shunquan
  surname: Chen
  fullname: Chen, Shunquan
– sequence: 7
  givenname: Wenjing
  surname: Yun
  fullname: Yun, Wenjing
– sequence: 8
  givenname: Changrong
  surname: Dai
  fullname: Dai, Changrong
– sequence: 9
  givenname: Bingbing
  surname: Luo
  fullname: Luo, Bingbing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39054445$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhgdpsR_6B7yQAW_qxdScJDOZXEkpVhcKBT_Au5DJnGyzzCZjMlP135vu1totokyGhJPnfTk5vEfFng8ei-IFkFOAtnmTgLaCVITyitSc1RV_UhwCF1BRSuXeg_NBcZTSihAQLZdPiwMms4Dz-rD4ejEPN86U2ri-1OM4OKMnF3zpvImoE6YyOoNlQuwH55epHDHaENfa5-rse4zlEL6X43VI-Y9zKtMUMaVnxb7VQ8Lnd_tx8eXi3efzD9Xl1fvF-dllZRoGU2VRNoT1tKWskZ1owJiu73QHhtmu4aJrqCWADGtOEGwtrQAh0DaSNpyDZMfFYuvbB71SY3RrHX-qoJ3aFEJcKh0nZwZUrJZojEbDkfC6szK70g76TrQgbAvZ6-3Wa5y7NfYG_RT1sGO6e-PdtVqGGwVABZBaZIeTO4cYvs2YJrV2yeAwaI9hTopBzQSRsiX_R0nLheB809erR-gqzNHnsWZKAs2rZn-opc6Pdd6G3KO5NVVnLaGNaMjG6_QvVP56XDuTA2Zdru8IXu8IMjPhj2mp55TU4tPHXfblwwHeT-533jJAt4CJIaWI9h4Bom5DrbahVjnUahNqxbOofSQybtqkNLfuhn9JfwHBzPkr
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_176862
Cites_doi 10.1016/j.gexplo.2012.10.006
10.1104/pp.112.196345
10.1007/s11104-014-2131-8
10.3389/fmicb.2021.719653
10.1093/aob/mcl114
10.1186/s12864-020-06815-4
10.1111/tpj.15208
10.3390/IJMS23147756
10.1007/s00374-012-0662-9
10.1111/tpj.15560
10.1021/acs.jafc.2c03063
10.1111/j.1747-6593.2008.00120.x
10.1016/S0166-2481(08)70016-3
10.1104/pp.103.024380
10.1016/S0038-0717(02)00174-8
10.1093/plphys/kiac030
10.1186/s40538-019-0153-4
10.1016/j.foodchem.2019.02.015
10.3389/fpls.2018.00263
10.1093/jxb/ern298
10.1016/j.apsoil.2017.06.007
10.1002/anie.201911060
10.3390/agriculture10070254
10.1002/9780470494950.ch8
10.1007/0-306-47624-X_89
10.11674/zwyf.16319
10.3389/fpls.2019.00736
10.17660/eJHS.2017/82.6.2
10.1186/s40538-022-00295-2
10.1016/j.biotechadv.2021.107754
10.1038/s41467-021-20964-4
10.1104/pp.18.01097
10.1111/j.1439-037X.2011.00483.x
10.1111/tpj.14176
10.11674/zwyf.18461
10.3390/molecules26082256
10.3389/fpls.2020.582267
10.3389/fpls.2023.1244591
10.1104/pp.007088
10.1002/jpln.201500228
10.1111/j.1365-3040.2009.02009.x
10.11686/cyxb20130416
10.19336/j.cnki.trtb.2016.04.22
10.3390/ijms232213904
10.1111/tpj.12804
10.1111/pbi.14160
10.1007/s11104-013-1800-3
10.1007/s11270-020-04558-2
10.1039/C9RA09907G
10.1093/mp/ssp120
ContentType Journal Article
Copyright 2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X2
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7N
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s12870-024-05435-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE




Agricultural Science Database
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1471-2229
EndPage 703
ExternalDocumentID oai_doaj_org_article_359eccaec4e045bf93e52b1db7817f81
PMC11271057
A802676081
39054445
10_1186_s12870_024_05435_4
Genre Journal Article
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  grantid: 2022A1515110457
– fundername: Natural Science Foundation of Anhui Provincial Department of Education
  grantid: KJ2021A0134
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2023A1515012244
– fundername: Anhui Provincial Natural Science Foundation
  grantid: 2108085QC123
– fundername: the Program at Anhui Agricultural University
  grantid: rc522012
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X2
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IGH
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M0K
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c631t-fe9603d282369b761ccbdbab1c3fb647b62f01e3e540e1f59f7177ef692644193
IEDL.DBID M48
ISSN 1471-2229
IngestDate Wed Aug 27 01:22:33 EDT 2025
Thu Aug 21 18:34:12 EDT 2025
Fri Jul 11 06:53:04 EDT 2025
Thu Jul 10 22:26:19 EDT 2025
Fri Jul 25 10:41:00 EDT 2025
Tue Jun 17 22:07:40 EDT 2025
Tue Jun 10 21:04:43 EDT 2025
Fri Jun 27 05:56:25 EDT 2025
Mon Jul 21 06:08:52 EDT 2025
Tue Jul 01 03:52:43 EDT 2025
Thu Apr 24 23:12:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rice seedlings
Low phosphorus stress
Physiological mechanism
Fulvic acid
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-fe9603d282369b761ccbdbab1c3fb647b62f01e3e540e1f59f7177ef692644193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/359eccaec4e045bf93e52b1db7817f81
PMID 39054445
PQID 3091291253
PQPubID 44650
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_359eccaec4e045bf93e52b1db7817f81
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11271057
proquest_miscellaneous_3153709980
proquest_miscellaneous_3084774481
proquest_journals_3091291253
gale_infotracmisc_A802676081
gale_infotracacademiconefile_A802676081
gale_incontextgauss_ISR_A802676081
pubmed_primary_39054445
crossref_primary_10_1186_s12870_024_05435_4
crossref_citationtrail_10_1186_s12870_024_05435_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-25
PublicationDateYYYYMMDD 2024-07-25
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC plant biology
PublicationTitleAlternate BMC Plant Biol
PublicationYear 2024
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References F Yan (5435_CR47) 2001; 92
SA Anjum (5435_CR11) 2011; 197
LP Canellas (5435_CR32) 2002; 130
K Qin (5435_CR22) 2020
HA Lin (5435_CR25) 2023; 14
JP Lynch (5435_CR40) 2022; 109
M Schniter (5435_CR13) 1978; 22
MSRA da Silva (5435_CR17) 2021; 12
S Nardi (5435_CR48) 2009
LY Wang (5435_CR26) 2022; 70
MX Zhang (5435_CR30) 2021; 12
MX Chang (5435_CR43) 2019; 179
Z Bai (5435_CR2) 2013; 372
5435_CR5
S De Pascale (5435_CR21) 2018; 82
5435_CR8
N Bernstein (5435_CR33) 2019
K Jindo (5435_CR16) 2016; 179
H Rouached (5435_CR39) 2010; 3
TT Ding (5435_CR42) 2021; 106
DD Xu (5435_CR35) 2019; 286
ZP Li (5435_CR12) 2016; 47
5435_CR38
ZH Shah (5435_CR3) 2018; 9
SB Sun (5435_CR44) 2012; 159
P Calvo (5435_CR4) 2014; 383
M Shahid (5435_CR7) 2012; 48
AC Souza (5435_CR41) 2022
GQ Gong (5435_CR6) 2020; 10
S Nardi (5435_CR10) 2002; 34
H Takehisa (5435_CR23) 2019; 97
CR Dai (5435_CR24) 2022; 188
5435_CR31
RV Kapoore (5435_CR34) 2021; 49
S Nardi (5435_CR15) 2021; 26
E Puglisi (5435_CR19) 2013; 129
YY Zhang (5435_CR28) 2023; 10
M Olaetxea (5435_CR14) 2018; 123
BB Luo (5435_CR27) 2022; 23
J Li (5435_CR36) 2017; 23
MK Ma (5435_CR37) 2019; 25
F Yang (5435_CR20) 2019; 58
ZL Hui (5435_CR9) 2013; 22
CR Chang (5435_CR50) 2008; 60
XQ Tang (5435_CR1) 2009; 2
H Lambers (5435_CR46) 2006; 98
NOA Canellas (5435_CR18) 2019
F Zhang (5435_CR45) 2015; 82
YY Zhu (5435_CR29) 2009; 32
SE Smith (5435_CR49) 2003; 133
References_xml – volume: 129
  start-page: 82
  year: 2013
  ident: 5435_CR19
  publication-title: J Geochem Explor
  doi: 10.1016/j.gexplo.2012.10.006
– volume: 159
  start-page: 1571
  year: 2012
  ident: 5435_CR44
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.196345
– volume: 383
  start-page: 3
  year: 2014
  ident: 5435_CR4
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2131-8
– volume: 12
  start-page: 719653
  year: 2021
  ident: 5435_CR17
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.719653
– volume: 98
  start-page: 693
  year: 2006
  ident: 5435_CR46
  publication-title: Ann Bot
  doi: 10.1093/aob/mcl114
– ident: 5435_CR8
  doi: 10.1186/s12864-020-06815-4
– volume: 106
  start-page: 928
  issue: 4
  year: 2021
  ident: 5435_CR42
  publication-title: Plant J
  doi: 10.1111/tpj.15208
– volume: 23
  start-page: 7756
  year: 2022
  ident: 5435_CR27
  publication-title: Int J Mol Sci
  doi: 10.3390/IJMS23147756
– volume: 48
  start-page: 689
  year: 2012
  ident: 5435_CR7
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-012-0662-9
– volume: 109
  start-page: 415
  year: 2022
  ident: 5435_CR40
  publication-title: Plant J
  doi: 10.1111/tpj.15560
– volume: 70
  start-page: 10738
  year: 2022
  ident: 5435_CR26
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.2c03063
– volume: 2
  start-page: 80
  year: 2009
  ident: 5435_CR1
  publication-title: Water Environ J
  doi: 10.1111/j.1747-6593.2008.00120.x
– volume: 22
  start-page: 216
  year: 1978
  ident: 5435_CR13
  publication-title: Agrochimica
  doi: 10.1016/S0166-2481(08)70016-3
– volume: 133
  start-page: 16
  year: 2003
  ident: 5435_CR49
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.024380
– volume: 34
  start-page: 1527
  year: 2002
  ident: 5435_CR10
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(02)00174-8
– volume: 188
  start-page: 2272
  year: 2022
  ident: 5435_CR24
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiac030
– year: 2019
  ident: 5435_CR18
  publication-title: Chem Biol Technol Agric
  doi: 10.1186/s40538-019-0153-4
– volume: 286
  start-page: 226
  year: 2019
  ident: 5435_CR35
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2019.02.015
– volume: 9
  start-page: e00263
  year: 2018
  ident: 5435_CR3
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00263
– volume: 60
  start-page: 557
  year: 2008
  ident: 5435_CR50
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ern298
– volume: 123
  start-page: 521
  year: 2018
  ident: 5435_CR14
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2017.06.007
– volume: 58
  start-page: 18813
  year: 2019
  ident: 5435_CR20
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201911060
– year: 2020
  ident: 5435_CR22
  publication-title: Agriculture
  doi: 10.3390/agriculture10070254
– volume-title: Biophysico-chemical processes in environmental systems
  year: 2009
  ident: 5435_CR48
  doi: 10.1002/9780470494950.ch8
– volume: 92
  start-page: 186
  year: 2001
  ident: 5435_CR47
  publication-title: Developments Plant Soil Sci
  doi: 10.1007/0-306-47624-X_89
– volume: 23
  start-page: 641
  year: 2017
  ident: 5435_CR36
  publication-title: Plant Nutr Fertilizer Sci
  doi: 10.11674/zwyf.16319
– year: 2019
  ident: 5435_CR33
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.00736
– volume: 82
  start-page: 277
  year: 2018
  ident: 5435_CR21
  publication-title: Eur J Hortic Sci
  doi: 10.17660/eJHS.2017/82.6.2
– year: 2022
  ident: 5435_CR41
  publication-title: Chem Biol Technol Agric
  doi: 10.1186/s40538-022-00295-2
– volume: 49
  start-page: 107754
  year: 2021
  ident: 5435_CR34
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2021.107754
– volume: 12
  start-page: 735
  year: 2021
  ident: 5435_CR30
  publication-title: Nat Commn
  doi: 10.1038/s41467-021-20964-4
– volume: 179
  start-page: 656
  year: 2019
  ident: 5435_CR43
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.01097
– volume: 197
  start-page: 409
  year: 2011
  ident: 5435_CR11
  publication-title: J Agron Crop Sci
  doi: 10.1111/j.1439-037X.2011.00483.x
– volume: 97
  start-page: 1048
  year: 2019
  ident: 5435_CR23
  publication-title: Plant J
  doi: 10.1111/tpj.14176
– volume: 25
  start-page: 362
  year: 2019
  ident: 5435_CR37
  publication-title: Plant Nutr Fertilizer Sci
  doi: 10.11674/zwyf.18461
– volume: 26
  start-page: 2256
  year: 2021
  ident: 5435_CR15
  publication-title: Molecules
  doi: 10.3390/molecules26082256
– ident: 5435_CR38
  doi: 10.3389/fpls.2020.582267
– volume: 14
  start-page: 1244591
  year: 2023
  ident: 5435_CR25
  publication-title: Plant Sci
  doi: 10.3389/fpls.2023.1244591
– volume: 130
  start-page: 1951
  year: 2002
  ident: 5435_CR32
  publication-title: Plant Physiol
  doi: 10.1104/pp.007088
– volume: 179
  start-page: 206
  year: 2016
  ident: 5435_CR16
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201500228
– volume: 32
  start-page: 1428
  year: 2009
  ident: 5435_CR29
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2009.02009.x
– volume: 22
  start-page: 130
  year: 2013
  ident: 5435_CR9
  publication-title: Pratacultural J
  doi: 10.11686/cyxb20130416
– volume: 47
  start-page: 914
  year: 2016
  ident: 5435_CR12
  publication-title: Soil Bull (in Chinese)
  doi: 10.19336/j.cnki.trtb.2016.04.22
– ident: 5435_CR31
  doi: 10.3390/ijms232213904
– volume: 82
  start-page: 556
  year: 2015
  ident: 5435_CR45
  publication-title: Plant J
  doi: 10.1111/tpj.12804
– volume: 10
  start-page: 1111
  year: 2023
  ident: 5435_CR28
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.14160
– volume: 372
  start-page: 27
  year: 2013
  ident: 5435_CR2
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1800-3
– ident: 5435_CR5
  doi: 10.1007/s11270-020-04558-2
– volume: 10
  start-page: 5468
  year: 2020
  ident: 5435_CR6
  publication-title: RSC Adv
  doi: 10.1039/C9RA09907G
– volume: 3
  start-page: 288
  year: 2010
  ident: 5435_CR39
  publication-title: Mol Plant
  doi: 10.1093/mp/ssp120
SSID ssj0017849
Score 2.44104
Snippet Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus...
Background Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low...
BackgroundFulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low...
BACKGROUND: Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low...
Abstract Background Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 703
SubjectTerms absorption
Acids
Adenosine triphosphatase
Agricultural production
Agricultural research
Aquatic plants
Benzopyrans - pharmacology
Biomass
Chlorophyll
Environmental aspects
Fertilizers
Fulvic acid
Fulvic acids
Genes
growth performance
H+-transporting ATPase
Humic acid
Hydroponics
Low phosphorus stress
Morphogenesis
Morphology
Organic acids
Organic phosphorus
Oryza - drug effects
Oryza - growth & development
Oryza - metabolism
Phenotypes
Phosphate transporter
Phosphates
Phosphorus
Phosphorus - metabolism
phosphorus fertilizers
Phosphorus in the body
Physiological aspects
Physiological effects
Physiological mechanism
Plant growth
Plant Roots - drug effects
Plant Roots - growth & development
Plant Roots - metabolism
plasma membrane
Rhizosphere
Rice
Rice seedlings
secretion
Seedlings
Seedlings - drug effects
Seedlings - growth & development
Seedlings - metabolism
Software
Stress (Physiology)
Stress concentration
Stress, Physiological - drug effects
sustainable technology
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yePAi_ra6ShTBg4RtmjQ_jrvisgp6UBfmFpImcQeWdpjOIP73vtd2xinCehGml8krnfny0vc9kvc9Qt6UETVivGKNrxKTPnLmhY5MZx2TCcHbYbvg8xd1cSk_LerFQasvPBM2ygOPwJ2I2uJTUiMTsI-QrUh1FXgM2nCdh6LrCmLeLpma9g-0kXZXImPUSc9xP49BPGJAUUTN5CwMDWr9f7-TD4LS_MDkQQQ6v0fuTtSRno4_-T65ldoH5PZZB_Tu10OygGQSVj31zTLSg21pumyRGPapp6gfRHsIV1iC3tPVn5oBiqVka3rd_aSrq66Ha73t6VhH8ohcnn_4_v6CTW0TWKME37CcICsRscJW5jZoxZsmxOADb0QOSuqgqlzyBDjKMvFc2wwpnU5Z2YEcWfGYHLVdm54SKqzMdYYoDlMqrZDBGytl9iZ5bSOPBeE7FF0zaYpja4trN-QWRrkReQfIuwF5Jwvybn_PalTUuNH6DCdnb4lq2MMX4CNu8hH3Lx8pyGucWod6Fy0eqPnht33vPn776k4NtuBSJRq9nYxyB_-h8VN9AiCBElkzy-OZJSzIZj688yA3vRB6J8BHK_jUoiCv9sN4Jx5ya1O3RRugChryZX6DDUQoDazelAV5MjrlHhthATQp64KYmbvOwJuPtMurQVIcWLfGjs_P_gfcz8mdalhqqAFyTI426216AdRtE14Oq_Q3qRtAvA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZg8MAL4jeBgQxC4gFZq2Mntp_QhpgGEjwAk_pm2Y69VZqSUrea9t9zl6ZdI6RK6Ut8kZrzne-72PcdIR8mDXLEuJoFV0YmXcOZE6phKqkmau-d6bcLfvysz87l92k1HT645eFY5WZN7Bfqpgv4jfxIQGAr4arE5_lfhl2jcHd1aKFxl9xD6jI80qWm24SLKy3NplBG10eZ464eg6jEAKiIislRMOo5-_9fmXdC0_jY5E4cOn1EHg4Akh6vZ_wxuRPbJ-T-SQcg7-YpmUJKCb5PXZg1dGdzms5ahIc5ZoosQjRD0MJC9Eznt5UDFAvKFvSqu6bzyy7Db7HKdF1N8oycn3798-WMDc0TWKgFX7IUITcRTYkNzY1XNQ_BN955HkTytVS-LtOERxEBskWeKpMgsVMx1aaHSEY8Jwdt18aXhAojU5UglsPESiOkd9pImZyOTpmGNwXhGy3aMDCLY4OLK9tnGLq2a81b0LztNW9lQT5tn5mveTX2Sp_g5GwlkRO7v9EtLuzgYlZUBu0xBhkBp_pk4N1KzxuvNFdJ84K8x6m1yHrR4rGaC7fK2X77_csea2zEVU9Q6OMglDp4h-CGKgXQBBJljSQPR5LglmE8vLEgOywL2d4acUHebYfxSTzq1sZuhTIAGBRkzXyPDMQpBdheTwryYm2UW90IA0qTsiqIHpnrSHnjkXZ22ROLA_ZW2Pf51f7__po8KHsnQo6PQ3KwXKziG4BmS_-2979_kPY3UQ
  priority: 102
  providerName: ProQuest
Title Fulvic acid application increases rice seedlings performance under low phosphorus stress
URI https://www.ncbi.nlm.nih.gov/pubmed/39054445
https://www.proquest.com/docview/3091291253
https://www.proquest.com/docview/3084774481
https://www.proquest.com/docview/3153709980
https://pubmed.ncbi.nlm.nih.gov/PMC11271057
https://doaj.org/article/359eccaec4e045bf93e52b1db7817f81
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBf9GKMvY9_z1gVtDPYwvEWWbFkPYzSjpRu0jGyBsBch2VIbCHZmJ2z973fn2GnMukISQnQKWHfn-52l-x0hb4Y5csSYJMxM5EJhchYaLvNQepm71Fqjmu2Cs_PkdCK-TuPpDunaHbULWN-Y2mE_qUk1f__n19UncPiPjcOnyYea4W5dCNEmBADC41Dskn2ITBId9Uxc7yrIVKiucObGeQfkLlfwXWB101acauj8_71pb0Wt_onKrRB1cp_ca7ElPVobwwOy44qH5M6oBPx39YhMIduE2wI12SynW_vWdFYgcqxdTZFgiNYQz7BGvaaL66ICirVmFZ2Xv-nisqzhXa1qui40eUwmJ8c_Pp-GbV-FMEs4W4beQdrC8wh7nSsrE5ZlNrfGsox7mwhpk8gPmeMO0JxjPlYecj7pfKIa9KT4E7JXlIV7RihXwscewjzoXCgurEmVEN6kzkiVszwgrFtFnbWk49j7Yq6b5CNN9FoJGpSgGyVoEZB3mzmLNeXGrdIjVM5GEumymx_K6kK33qd5rNBUXSYcQFjrFVxbZFluZcqkT1lAXqNqNRJiFHji5sKs6lp_-T7WRyn26EqGKPS2FfIlXENm2gIGWAnk0OpJHvYkwWOz_nBnQbozeM0BuEXwinlAXm2GcSaegitcuUIZwBISEmp2iwyEMAmwPx0G5OnaKDdr09l2QNKeufYWrz9SzC4bznGA5RJbQj__75--IAdR40rI_HFI9pbVyr0EwLa0A7Irp3JA9kfH59_Gg-axx6DxTPgcj37-BTx9PuI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBclHWwvY9_z1m3a2NjDMI0s-UMPYzRbS7K2YXQt5E2VbKkNFDuLE0r_qf2Nu_NHGjPIWyF-ic5gn-7jdz7dHSEf-xn2iNGRn-rA-kJnzNc8zvzYxZlNjNGyShccj6Phmfg5CSdb5G9bC4PHKlubWBnqrEjxG_kuB8cWwC_k32Z_fJwahdnVdoRGLRaH9uYaQrby6-gH7O-nIDjYP_0-9JupAn4acbbwnQXQzrMAJ31LA1F8mprMaMNS7kwkYhMFrs8st4BlLHOhdBDxxNZFssIO2HwJTP624BDK9Mj2YH_862SVt4gTIdvSnCTaLRnmEX3wgz5AIx76ouP-qikB__uCNWfYPai55vkOHpGHDWSle7WMPSZbNn9C7g0KgJU3T8kEgliwNlSn04yupcPpNEdAWtqSYt8iWoKbxNL3ks5uaxUolrDN6VVxTWeXRQnXfFnSun7lGTm7E8Y-J728yO1LQrkULnSAHkCUhOTC6EQK4XRidSwzlnmEtVxUadPLHEdqXKkqpkkiVXNeAedVxXklPPJldc-s7uSxkXqAm7OixC7c1R_F_EI1Sq14KFEDbCosIGPjJLxbYFhm4oTFLmEe-YBbq7DPRo4HeS70sizV6PeJ2ktw9FfUR6LPDZEr4B1S3dRFACewNVeHcqdDCYYg7S63EqQaQ1SqW7XxyPvVMt6Jh-tyWyyRBiBKDHE620ADnjGGaCLpe-RFLZQr3nAJTBMi9EjSEdcO87or-fSyamUOaD_GSdOvNj_7O3J_eHp8pI5G48PX5EFQKRR2GNkhvcV8ad8AMFyYt402UnJ-1wbgH-VRdQo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fulvic+acid+application+increases+rice+seedlings+performance+under+low+phosphorus+stress&rft.jtitle=BMC+plant+biology&rft.au=Lv%2C+Xiaomeng&rft.au=Li%2C+Qingchao&rft.au=Deng%2C+Xuan&rft.au=Ding%2C+Shitao&rft.date=2024-07-25&rft.eissn=1471-2229&rft.volume=24&rft.issue=1&rft.spage=703&rft_id=info:doi/10.1186%2Fs12870-024-05435-4&rft_id=info%3Apmid%2F39054445&rft.externalDocID=39054445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon