PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR-Cas systems
The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjac...
Saved in:
Published in | Genome Biology Vol. 22; no. 1; p. 281 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
30.09.2021
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database.
By using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders.
This study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known. |
---|---|
AbstractList | Background The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database. Results By using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders. Conclusions This study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known. Abstract Background The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database. Results By using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders. Conclusions This study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known. BACKGROUNDThe adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database.RESULTSBy using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders.CONCLUSIONSThis study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known. Abstract Background The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database. Results By using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders. Conclusions This study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known. The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database. By using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders. This study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known. |
ArticleNumber | 281 |
Author | Baijens, Jan H L Brouns, Stan J J Vink, Jochem N A |
Author_xml | – sequence: 1 givenname: Jochem N A surname: Vink fullname: Vink, Jochem N A organization: Kavli Institute of Nanoscience, Delft, The Netherlands – sequence: 2 givenname: Jan H L surname: Baijens fullname: Baijens, Jan H L organization: Kavli Institute of Nanoscience, Delft, The Netherlands – sequence: 3 givenname: Stan J J orcidid: 0000-0002-9573-1724 surname: Brouns fullname: Brouns, Stan J J email: stanbrouns@gmail.com, stanbrouns@gmail.com organization: Kavli Institute of Nanoscience, Delft, The Netherlands. stanbrouns@gmail.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34593010$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkkuLFDEUhYOMOA_9Ay6kwI2b0jwqqWQjDI2PhhGHUcFdSN3caqupTsqkSph_b7p7HGZchISTcz_uTc45OQkxICEvGX3LmFbvMhNUmppyVlZjZG2ekDPWtE3dKvrz5MH5lJznvKWUmYarZ-RUNNIIyugZ6a8vv9QJJ3Rz5XKOMLh5iCFXLvgqTw4wVRlHhL1aTQl7TBgAczWEKg9hM-LBCrGOAEtKRapWN-tv1zf1yuUq3-YZd_k5edq7MeOLu_2C_Pj44fvqc3319dN6dXlVgxJsrnuj0YDpqVdGeSVbzZgB2kHXG-mgc5SD50L0qLxWLeWGggcpNeOcMe7EBVkfuT66rZ3SsHPp1kY32IMQ08a6NA8wovWMImXS8Faopu9aIzqGXrQSoLC0Lqz3R9a0dDv0gGFObnwEfXwThl92E_9Y3WiuKC2AN3eAFH8vmGe7GzLgOLqAccmWl_nalkq1t77-z7qNSwrlqYpLC8aE1Ly4-NEFKeZc_uK-GUbtPhL2GAlbImEPkbCmFL16OMZ9yb8MiL8INbN_ |
CitedBy_id | crossref_primary_10_1089_crispr_2021_0150 crossref_primary_10_1016_j_jbc_2023_105178 crossref_primary_10_1093_nar_gkad622 crossref_primary_10_3390_agriculture14030487 crossref_primary_10_1186_s40168_023_01607_w crossref_primary_10_3389_fbioe_2023_1213236 crossref_primary_10_1042_BCJ20220073 crossref_primary_10_1016_j_tim_2023_03_017 crossref_primary_10_1016_j_cub_2022_05_021 crossref_primary_10_1038_s41467_022_30402_8 crossref_primary_10_1038_s41579_022_00793_y crossref_primary_10_1371_journal_pcbi_1011621 crossref_primary_10_1128_aac_01547_22 crossref_primary_10_1007_s10482_024_01960_2 crossref_primary_10_1016_j_tibs_2022_02_004 crossref_primary_10_1021_acsagscitech_1c00279 crossref_primary_10_3389_fmicb_2022_960559 crossref_primary_10_1007_s13562_022_00811_3 crossref_primary_10_1111_jpy_13393 crossref_primary_10_1128_mbio_03025_23 crossref_primary_10_1038_s41467_022_34213_9 |
Cites_doi | 10.1093/nar/gkz915 10.1128/mBio.01397-17 10.1093/nar/18.20.6097 10.4161/rna.23764 10.1016/j.cell.2009.07.040 10.1099/mic.0.023960-0 10.1093/nar/gkaa749 10.1093/nar/gky425 10.1093/nar/gkt1154 10.1038/s41586-019-1786-y 10.1111/apm.12935 10.1038/s41564-019-0612-5 10.1093/nar/gkz1197 10.3389/fmicb.2019.02054 10.1093/nar/gku527 10.1371/journal.pgen.1003742 10.1038/s41564-020-0755-4 10.1093/nar/gky1127 10.1093/bioinformatics/btu459 10.1093/bioinformatics/btw454 10.1098/rspb.2015.1270 10.1021/acschembio.7b00855 10.1099/mic.0.28048-0 10.1016/j.molcel.2019.10.021 10.1371/journal.pgen.1000810 10.1371/journal.pone.0040913 10.1038/nsmb.2019 10.1093/nar/gkn741 10.1128/mBio.03338-20 10.1016/j.molcel.2018.06.005 10.1093/nar/gky544 10.1371/journal.pone.0035888 10.3389/fmicb.2019.03078 10.1101/gad.272153.115 10.1261/rna.049130.114 10.1038/s41467-020-20633-y 10.1111/j.1365-2958.2009.06641.x 10.1093/nar/gkx1094 10.1126/science.1159689 10.1371/journal.pone.0050797 10.1093/nar/gki025 10.1126/sciadv.aay5981 10.1093/nar/gkaa685 10.1016/j.molcel.2016.02.031 10.1016/j.jbiotec.2015.06.427 10.1128/JB.01412-07 10.1074/jbc.RA119.008728 10.1080/15476286.2018.1509662 10.1038/ncomms1937 10.1038/nrmicro2577 10.1111/j.1365-2958.2011.07586.x 10.1093/nar/gkt767 10.1016/j.cell.2015.10.008 10.1016/j.jmb.2016.11.024 10.1038/s41467-020-19344-1 10.1074/jbc.M112.377002 10.1038/s41579-019-0299-x 10.1002/biot.201700595 10.1016/j.ijmm.2016.08.005 10.1186/1741-7007-12-36 10.1016/j.celrep.2017.11.110 10.1111/mmi.14237 10.1016/j.cell.2021.01.029 10.1016/j.chom.2019.08.008 10.1093/nar/gkz217 10.1080/15476286.2018.1504546 10.7554/eLife.44248 10.1126/science.1225829 10.1371/journal.pone.0033802 10.1038/s41596-020-00465-2 10.7554/eLife.27601 10.1016/0092-8674(88)90086-4 10.1093/nar/gkt606 10.1016/j.molcel.2018.05.002 10.1126/science.aal5056 10.1016/j.mec.2019.e00116 10.1016/j.molcel.2017.12.007 10.1038/nrmicro3241 10.1038/nature13637 10.1093/bioinformatics/bts565 10.3390/microorganisms8050720 10.1038/nature16995 10.1101/2021.05.01.442224 10.1073/pnas.1400071111 10.1016/S0022-2836(05)80360-2 10.1093/nar/gkw387 10.1016/j.molcel.2018.03.003 10.1126/science.aao0100 10.1016/j.idairyj.2021.105027 10.1128/mBio.01508-15 10.1093/nar/gkz1091 10.1111/mmi.12152 10.1128/JB.01415-07 10.1093/bioinformatics/btu114 10.1038/nature08703 10.1186/1471-2105-11-119 10.1101/gr.096651.109 10.1093/nar/gkr1178 10.1038/s41598-018-29746-3 10.1016/j.celrep.2018.02.103 10.1093/nar/gkab133 10.1093/nar/gkw929 10.1098/rstb.2018.0092 10.1038/nrmicro3569 10.1093/bioinformatics/btp163 10.1038/nature23467 10.1038/nature13579 10.1126/science.aad4234 |
ContentType | Journal Article |
Copyright | 2021. The Author(s). 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: 2021. The Author(s). – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13059-021-02495-9 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health Medical collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 281 |
ExternalDocumentID | oai_doaj_org_article_d10e015927364fb793b1ed375cc21188 10_1186_s13059_021_02495_9 34593010 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: VI.C.182.027 |
GroupedDBID | --- 0R~ 29H 3V. 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACJQM ACPRK ACRMQ ADBBV ADINQ ADUKV AEGXH AFKRA AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CGR CUY CVF EBD EBLON EBS ECM EIF EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR ISR ITC KPI LK8 M1P M7P NPM PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP AAYXX AFPKN CITATION 7XB 8FK AZQEC DWQXO GNUQQ K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c631t-f98e9c9f0d696d6578119c0bcbf95acba02cd233fe6d8670290cdc558122112a3 |
IEDL.DBID | RPM |
ISSN | 1474-760X 1474-7596 |
IngestDate | Tue Oct 22 15:14:17 EDT 2024 Tue Sep 17 21:27:31 EDT 2024 Fri Oct 25 04:17:49 EDT 2024 Thu Oct 10 18:36:06 EDT 2024 Thu Sep 26 16:55:08 EDT 2024 Wed Oct 16 00:42:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c631t-f98e9c9f0d696d6578119c0bcbf95acba02cd233fe6d8670290cdc558122112a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9573-1724 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482600/ |
PMID | 34593010 |
PQID | 2583113582 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d10e015927364fb793b1ed375cc21188 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8482600 proquest_miscellaneous_2578770560 proquest_journals_2583113582 crossref_primary_10_1186_s13059_021_02495_9 pubmed_primary_34593010 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-30 |
PublicationDateYYYYMMDD | 2021-09-30 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Genome Biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2021 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | A Pawluk (2495_CR29) 2017 2495_CR60 2495_CR63 2495_CR62 EM Anderson (2495_CR94) 2015; 211 2495_CR65 2495_CR64 H Lee (2495_CR15) 2018; 70 D Gleditzsch (2495_CR9) 2019; 16 R Clarke (2495_CR89) 2018; 71 L Cao (2495_CR22) 2016; 306 AH Magadán (2495_CR72) 2012; 7 2495_CR67 2495_CR66 2495_CR69 2495_CR68 2495_CR52 2495_CR51 2495_CR54 2495_CR53 TJ Nicholson (2495_CR97) 2019; 16 A Mir (2495_CR73) 2018; 13 C Richter (2495_CR50) 2014; 42 2495_CR55 RT Leenay (2495_CR46) 2016; 62 SN Kieper (2495_CR14) 2018; 22 2495_CR83 SJJ Brouns (2495_CR2) 2008; 321 2495_CR87 2495_CR86 G Gasiunas (2495_CR12) 2020; 11 SJ Lange (2495_CR58) 2013; 41 I Garcia-Heredia (2495_CR82) 2012; 7 KS Makarova (2495_CR85) 2011; 9 IMA Chen (2495_CR107) 2017; 45 2495_CR116 PF Vale (2495_CR27) 2015; 282 AB Crawley (2495_CR71) 2018; 8 J Callanan (2495_CR84) 2020; 6 C Anders (2495_CR47) 2014; 513 2495_CR74 K Houenoussi (2495_CR56) 2020; 2020 2495_CR76 D Collias (2495_CR112) 2021; 12 2495_CR75 F Nobrega (2495_CR28) 2020; 2020 RT Leenay (2495_CR59) 2017; 429 FJM Mojica (2495_CR8) 2009; 155 2495_CR109 M Kazlauskiene (2495_CR99) 2017; 357 2495_CR108 2495_CR78 2495_CR103 2495_CR104 D Arndt (2495_CR105) 2016; 44 H Deveau (2495_CR42) 2008; 190 C Pourcel (2495_CR6) 2020; 48 D Couvin (2495_CR57) 2018; 46 2495_CR21 2495_CR20 DC Swarts (2495_CR49) 2012; 7 OS Alkhnbashi (2495_CR114) 2014; 30 BJ Mendoza (2495_CR48) 2018; 13 KS Makarova (2495_CR4) 2020; 18 2495_CR23 2495_CR25 TD Schneider (2495_CR115) 1990; 18 2495_CR26 2495_CR92 2495_CR91 2495_CR93 2495_CR98 PC Fineran (2495_CR95) 2014; 111 2495_CR90 LA Marraffini (2495_CR80) 2010; 463 S Federhen (2495_CR101) 2012; 40 KS Makarova (2495_CR77) 2015; 13 C Xue (2495_CR11) 2017; 21 P Horvath (2495_CR43) 2008; 190 S Fischer (2495_CR45) 2012; 287 LA Cooper (2495_CR17) 2018; 9 2495_CR16 2495_CR18 LA Marraffini (2495_CR3) 2015; 526 JNA Vink (2495_CR10) 2020; 77 MM Jore (2495_CR88) 2011; 18 2495_CR41 2495_CR40 RK Lillestøl (2495_CR61) 2009; 72 H Chen (2495_CR96) 2021; 2021 AL Mitchell (2495_CR106) 2020; 48 PJA Cock (2495_CR111) 2009; 25 P Soto-Perez (2495_CR37) 2019; 26 2495_CR1 2495_CR7 SA Shah (2495_CR19) 2013; 10 2495_CR5 L Fu (2495_CR113) 2012; 28 2495_CR30 2495_CR32 ER Westra (2495_CR24) 2014; 12 2495_CR31 SD Mendoza (2495_CR33) 2020; 577 K Johnson (2495_CR79) 2019; 294 C Almendros (2495_CR70) 2019; 47 E Pasolli (2495_CR110) 2019; 176 A Bolotin (2495_CR44) 2005; 151 KD Pruitt (2495_CR102) 2005; 33 2495_CR34 2495_CR36 A Lopatina (2495_CR81) 2019; 374 M Shiimori (2495_CR13) 2018; 70 2495_CR35 2495_CR38 O Niewoehner (2495_CR100) 2017; 548 2495_CR39 |
References_xml | – volume: 2021 start-page: 01.04.425308 year: 2021 ident: 2495_CR96 publication-title: bioRxiv [Internet] contributor: fullname: H Chen – volume: 48 start-page: D535 issue: D1 year: 2020 ident: 2495_CR6 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz915 contributor: fullname: C Pourcel – volume: 526 start-page: 55 year: 2015 ident: 2495_CR3 publication-title: Nature [Internet] Nature Research contributor: fullname: LA Marraffini – ident: 2495_CR41 doi: 10.1128/mBio.01397-17 – volume: 18 start-page: 6097 issue: 20 year: 1990 ident: 2495_CR115 publication-title: Nucleic Acids Res doi: 10.1093/nar/18.20.6097 contributor: fullname: TD Schneider – volume: 10 start-page: 891 issue: 5 year: 2013 ident: 2495_CR19 publication-title: RNA Biol doi: 10.4161/rna.23764 contributor: fullname: SA Shah – ident: 2495_CR7 doi: 10.1016/j.cell.2009.07.040 – volume: 155 start-page: 733 issue: 3 year: 2009 ident: 2495_CR8 publication-title: Microbiology. doi: 10.1099/mic.0.023960-0 contributor: fullname: FJM Mojica – ident: 2495_CR66 doi: 10.1093/nar/gkaa749 – volume: 46 start-page: W246 issue: W1 year: 2018 ident: 2495_CR57 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky425 contributor: fullname: D Couvin – ident: 2495_CR64 doi: 10.1093/nar/gkt1154 – volume: 577 start-page: 244 issue: 7789 year: 2020 ident: 2495_CR33 publication-title: Nature. doi: 10.1038/s41586-019-1786-y contributor: fullname: SD Mendoza – ident: 2495_CR60 doi: 10.1111/apm.12935 – volume: 2020 start-page: 02.973784 issue: 03 year: 2020 ident: 2495_CR28 publication-title: bioRxiv Cold Spring Harbor Laboratory contributor: fullname: F Nobrega – ident: 2495_CR34 doi: 10.1038/s41564-019-0612-5 – ident: 2495_CR32 doi: 10.1093/nar/gkz1197 – ident: 2495_CR54 doi: 10.3389/fmicb.2019.02054 – volume: 42 start-page: 8516 issue: 13 year: 2014 ident: 2495_CR50 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku527 contributor: fullname: C Richter – ident: 2495_CR78 doi: 10.1371/journal.pgen.1003742 – ident: 2495_CR83 doi: 10.1038/s41564-020-0755-4 – ident: 2495_CR108 doi: 10.1093/nar/gky1127 – volume: 30 start-page: i489 issue: 17 year: 2014 ident: 2495_CR114 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu459 contributor: fullname: OS Alkhnbashi – ident: 2495_CR53 doi: 10.1093/bioinformatics/btw454 – volume: 282 start-page: 20151270 issue: 1812 year: 2015 ident: 2495_CR27 publication-title: Proc R Soc B Biol Sci doi: 10.1098/rspb.2015.1270 contributor: fullname: PF Vale – volume: 13 start-page: 357 issue: 2 year: 2018 ident: 2495_CR73 publication-title: ACS Chem Biol doi: 10.1021/acschembio.7b00855 contributor: fullname: A Mir – volume: 151 start-page: 2551 issue: 8 year: 2005 ident: 2495_CR44 publication-title: Microbiology. doi: 10.1099/mic.0.28048-0 contributor: fullname: A Bolotin – volume: 77 start-page: 39 year: 2020 ident: 2495_CR10 publication-title: Mol Cell [Internet] doi: 10.1016/j.molcel.2019.10.021 contributor: fullname: JNA Vink – ident: 2495_CR90 doi: 10.1371/journal.pgen.1000810 – volume: 7 start-page: e40913 issue: 7 year: 2012 ident: 2495_CR72 publication-title: PLoS One doi: 10.1371/journal.pone.0040913 contributor: fullname: AH Magadán – volume: 18 start-page: 529 year: 2011 ident: 2495_CR88 publication-title: Nat Struct Mol Biol [Internet] Nature Research doi: 10.1038/nsmb.2019 contributor: fullname: MM Jore – ident: 2495_CR104 doi: 10.1093/nar/gkn741 – ident: 2495_CR31 doi: 10.1128/mBio.03338-20 – volume: 71 start-page: 42 issue: 1 year: 2018 ident: 2495_CR89 publication-title: Mol Cell doi: 10.1016/j.molcel.2018.06.005 contributor: fullname: R Clarke – ident: 2495_CR51 doi: 10.1093/nar/gky544 – volume: 7 start-page: e35888 year: 2012 ident: 2495_CR49 publication-title: PLoS One [Internet] Public Library of Science doi: 10.1371/journal.pone.0035888 contributor: fullname: DC Swarts – ident: 2495_CR25 doi: 10.3389/fmicb.2019.03078 – ident: 2495_CR75 doi: 10.1101/gad.272153.115 – ident: 2495_CR92 doi: 10.1261/rna.049130.114 – volume: 12 start-page: 555 year: 2021 ident: 2495_CR112 publication-title: Nat Commun [Internet] doi: 10.1038/s41467-020-20633-y contributor: fullname: D Collias – volume: 72 start-page: 259 issue: 1 year: 2009 ident: 2495_CR61 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2009.06641.x contributor: fullname: RK Lillestøl – ident: 2495_CR103 doi: 10.1093/nar/gkx1094 – volume: 321 start-page: 960 year: 2008 ident: 2495_CR2 publication-title: Science [Internet] American Association for the Advancement of Science doi: 10.1126/science.1159689 contributor: fullname: SJJ Brouns – ident: 2495_CR69 doi: 10.1371/journal.pone.0050797 – volume: 33 start-page: D501 issue: Database issue year: 2005 ident: 2495_CR102 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki025 contributor: fullname: KD Pruitt – volume: 6 start-page: eaay5981 issue: 6 year: 2020 ident: 2495_CR84 publication-title: Sci Adv doi: 10.1126/sciadv.aay5981 contributor: fullname: J Callanan – ident: 2495_CR20 doi: 10.1093/nar/gkaa685 – volume: 62 start-page: 137 issue: 1 year: 2016 ident: 2495_CR46 publication-title: Mol Cell doi: 10.1016/j.molcel.2016.02.031 contributor: fullname: RT Leenay – volume: 211 start-page: 56 year: 2015 ident: 2495_CR94 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2015.06.427 contributor: fullname: EM Anderson – volume: 190 start-page: 1390 year: 2008 ident: 2495_CR42 publication-title: J Bacteriol [Internet] doi: 10.1128/JB.01412-07 contributor: fullname: H Deveau – volume: 294 start-page: 10290 year: 2019 ident: 2495_CR79 publication-title: J Biol Chem [Internet] Elsevier doi: 10.1074/jbc.RA119.008728 contributor: fullname: K Johnson – volume: 16 start-page: 566 issue: 4 year: 2019 ident: 2495_CR97 publication-title: RNA Biol doi: 10.1080/15476286.2018.1509662 contributor: fullname: TJ Nicholson – ident: 2495_CR98 doi: 10.1038/ncomms1937 – volume: 9 start-page: 467 issue: 6 year: 2011 ident: 2495_CR85 publication-title: Nat Publ Group doi: 10.1038/nrmicro2577 contributor: fullname: KS Makarova – ident: 2495_CR62 doi: 10.1111/j.1365-2958.2011.07586.x – volume: 2020 start-page: 01.15.903914 year: 2020 ident: 2495_CR56 publication-title: bioRxiv [Internet] contributor: fullname: K Houenoussi – ident: 2495_CR93 doi: 10.1093/nar/gkt767 – ident: 2495_CR87 doi: 10.1016/j.cell.2015.10.008 – volume: 429 start-page: 177 issue: 2 year: 2017 ident: 2495_CR59 publication-title: J Mol Biol doi: 10.1016/j.jmb.2016.11.024 contributor: fullname: RT Leenay – volume: 11 start-page: 5512 issue: 1 year: 2020 ident: 2495_CR12 publication-title: Nat Commun doi: 10.1038/s41467-020-19344-1 contributor: fullname: G Gasiunas – volume: 287 start-page: 33351 issue: 40 year: 2012 ident: 2495_CR45 publication-title: J Biol Chem doi: 10.1074/jbc.M112.377002 contributor: fullname: S Fischer – volume: 18 start-page: 67 issue: 2 year: 2020 ident: 2495_CR4 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0299-x contributor: fullname: KS Makarova – volume: 13 start-page: 1700595 issue: 9 year: 2018 ident: 2495_CR48 publication-title: Biotechnol J doi: 10.1002/biot.201700595 contributor: fullname: BJ Mendoza – volume: 306 start-page: 686 issue: 8 year: 2016 ident: 2495_CR22 publication-title: Int J Med Microbiol doi: 10.1016/j.ijmm.2016.08.005 contributor: fullname: L Cao – ident: 2495_CR5 doi: 10.1186/1741-7007-12-36 – volume: 21 start-page: 3717 issue: 13 year: 2017 ident: 2495_CR11 publication-title: Cell Rep doi: 10.1016/j.celrep.2017.11.110 contributor: fullname: C Xue – ident: 2495_CR16 doi: 10.1111/mmi.14237 – ident: 2495_CR39 doi: 10.1016/j.cell.2021.01.029 – volume: 26 start-page: 325 year: 2019 ident: 2495_CR37 publication-title: Cell Host Microbe [Internet] doi: 10.1016/j.chom.2019.08.008 contributor: fullname: P Soto-Perez – volume: 47 start-page: 5223 issue: 10 year: 2019 ident: 2495_CR70 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz217 contributor: fullname: C Almendros – volume: 16 start-page: 504 year: 2019 ident: 2495_CR9 publication-title: RNA Biol [Internet] doi: 10.1080/15476286.2018.1504546 contributor: fullname: D Gleditzsch – ident: 2495_CR86 doi: 10.7554/eLife.44248 – ident: 2495_CR52 doi: 10.1126/science.1225829 – volume: 7 start-page: e33802 issue: 3 year: 2012 ident: 2495_CR82 publication-title: PLoS One doi: 10.1371/journal.pone.0033802 contributor: fullname: I Garcia-Heredia – ident: 2495_CR35 doi: 10.1038/s41596-020-00465-2 – ident: 2495_CR30 doi: 10.7554/eLife.27601 – ident: 2495_CR91 doi: 10.1016/0092-8674(88)90086-4 – volume: 41 start-page: 8034 issue: 17 year: 2013 ident: 2495_CR58 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt606 contributor: fullname: SJ Lange – volume: 70 start-page: 814 issue: 5 year: 2018 ident: 2495_CR13 publication-title: Mol Cell doi: 10.1016/j.molcel.2018.05.002 contributor: fullname: M Shiimori – ident: 2495_CR1 doi: 10.1126/science.aal5056 – ident: 2495_CR65 doi: 10.1016/j.mec.2019.e00116 – ident: 2495_CR36 doi: 10.1016/j.molcel.2017.12.007 – volume: 12 start-page: 317 issue: 5 year: 2014 ident: 2495_CR24 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3241 contributor: fullname: ER Westra – ident: 2495_CR21 doi: 10.1038/nature13637 – volume: 28 start-page: 3150 issue: 23 year: 2012 ident: 2495_CR113 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts565 contributor: fullname: L Fu – ident: 2495_CR67 doi: 10.3390/microorganisms8050720 – ident: 2495_CR18 doi: 10.1038/nature16995 – ident: 2495_CR74 doi: 10.1101/2021.05.01.442224 – volume: 111 start-page: 1629 year: 2014 ident: 2495_CR95 publication-title: Proc Natl Acad Sci [Internet] doi: 10.1073/pnas.1400071111 contributor: fullname: PC Fineran – ident: 2495_CR40 doi: 10.1016/S0022-2836(05)80360-2 – volume: 44 start-page: W16 issue: W1 year: 2016 ident: 2495_CR105 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw387 contributor: fullname: D Arndt – volume: 70 start-page: 48 issue: 1 year: 2018 ident: 2495_CR15 publication-title: Mol Cell doi: 10.1016/j.molcel.2018.03.003 contributor: fullname: H Lee – volume: 357 start-page: 605 year: 2017 ident: 2495_CR99 publication-title: Science (80- ) doi: 10.1126/science.aao0100 contributor: fullname: M Kazlauskiene – ident: 2495_CR68 doi: 10.1016/j.idairyj.2021.105027 – volume-title: Anti-CRISPR: discovery, mechanism and function year: 2017 ident: 2495_CR29 contributor: fullname: A Pawluk – ident: 2495_CR63 doi: 10.1128/mBio.01508-15 – ident: 2495_CR26 doi: 10.1093/nar/gkz1091 – ident: 2495_CR76 doi: 10.1111/mmi.12152 – volume: 190 start-page: 1401 issue: 4 year: 2008 ident: 2495_CR43 publication-title: J Bacteriol doi: 10.1128/JB.01415-07 contributor: fullname: P Horvath – ident: 2495_CR55 doi: 10.1093/bioinformatics/btu114 – volume: 463 start-page: 568 year: 2010 ident: 2495_CR80 publication-title: Nature [Internet] doi: 10.1038/nature08703 contributor: fullname: LA Marraffini – ident: 2495_CR116 doi: 10.1186/1471-2105-11-119 – ident: 2495_CR109 doi: 10.1101/gr.096651.109 – volume: 48 start-page: D570 year: 2020 ident: 2495_CR106 publication-title: Nucleic Acids Res [Internet] contributor: fullname: AL Mitchell – volume: 40 start-page: D136 issue: D1 year: 2012 ident: 2495_CR101 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1178 contributor: fullname: S Federhen – volume: 9 start-page: e02100 year: 2018 ident: 2495_CR17 publication-title: MBio [Internet] American Society for Microbiology contributor: fullname: LA Cooper – volume: 8 start-page: 11544 issue: 1 year: 2018 ident: 2495_CR71 publication-title: Sci Rep doi: 10.1038/s41598-018-29746-3 contributor: fullname: AB Crawley – volume: 22 start-page: 3377 issue: 13 year: 2018 ident: 2495_CR14 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.02.103 contributor: fullname: SN Kieper – ident: 2495_CR38 doi: 10.1093/nar/gkab133 – volume: 45 start-page: D507 issue: D1 year: 2017 ident: 2495_CR107 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw929 contributor: fullname: IMA Chen – volume: 176 start-page: 649 year: 2019 ident: 2495_CR110 publication-title: Cell Cell Press contributor: fullname: E Pasolli – volume: 374 start-page: 20180092 issue: 1772 year: 2019 ident: 2495_CR81 publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2018.0092 contributor: fullname: A Lopatina – volume: 13 start-page: 722 year: 2015 ident: 2495_CR77 publication-title: Nat Rev Microbiol [Internet] Nature Research doi: 10.1038/nrmicro3569 contributor: fullname: KS Makarova – volume: 25 start-page: 1422 issue: 11 year: 2009 ident: 2495_CR111 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp163 contributor: fullname: PJA Cock – volume: 548 start-page: 543 issue: 7669 year: 2017 ident: 2495_CR100 publication-title: Nature. doi: 10.1038/nature23467 contributor: fullname: O Niewoehner – volume: 513 start-page: 569 issue: 7519 year: 2014 ident: 2495_CR47 publication-title: Nature. doi: 10.1038/nature13579 contributor: fullname: C Anders – ident: 2495_CR23 doi: 10.1126/science.aad4234 |
SSID | ssj0019426 ssj0017866 |
Score | 2.5300252 |
Snippet | The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders... Abstract Background The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence... Background The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that... BACKGROUNDThe adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links... Abstract Background The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 281 |
SubjectTerms | Adaptation Bacteria Base Sequence Clustered Regularly Interspaced Short Palindromic Repeats Conserved Sequence CRISPR CRISPR-Cas Systems Deoxyribonucleic acid DNA Gene mapping Genes Genomes Immune system Metagenomics mRNA Nucleotide sequence Nucleotides Open reading frames Position-Specific Scoring Matrices Species Specificity |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA8iFPpSaj_PqqTgmwSz-drNox4VW6iIVvAt5LMVyt5xez70v3eS7J1eKfjS1ySw2d8kM5Nk5jcIHUZmnfaeEWGVI0K2jjjLBdFgHMG9FTy5EiB7oc5vxLdbefuk1FeOCav0wBW449DQCCZLg5lVIjlYTq6JgbcSPgDOcU3zpXp1mBrfDzQYnlWKTKeOB9DUUpMcjpAp8iTRG2aosPX_y8X8O1Lyiek5e41ejT4jPqlz3UFbsX-DXtQqkn_eonR58p0s4hy0KraPaA_Y9gGDwvBxgYdS7gZa8XxdWGTAdz3OVwW_YxnqZ2Tmfb4S7H_i6dXX68srMrUDrmTPwzt0c_blx_ScjOUTiFe8WZKku6i9TjQorYKSOadUe-q8S1pa7yxlPjDOU1ShUy1lmvrgpQSTD8gyy9-j7X7Wx48IawA0B1hzOIyIxiuQa5dYUJYm662lE3S0QtPMK0uGKaeLTpmKvQHsTcHe6Ak6zYCvR2aG69IAcjej3M1zcp-gvZW4zLjtBsNkx5smJ_9O0Od1N2yY_Api-zi7z2NAR7Xg98GsP1TprmfChdSg8aCn3ZD7xlQ3e_q7X4WUuxNd5vrf_R__9gm9ZGWt5rCUPbS9XNzHffB9lu6gLPMHZ2AAJg priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpe9umgYVeisitl6WTiVZEpJAw7JtIDehl5NAsbfrzSH_viPZ63RLydGSMMPMaPTNaDSD0JdIrdPeU8KtdISLyhFnGScaDkeAt5zVLifIXsjTS35-Ja6GgFs3pFVubGI21KH1KUZ-QIViZZnedX5b_iapa1S6XR1aaDxFOxQ8hWKCdo6OL-aL8R6hUgmtDB-a0_6xUUpBFFpu3tAoedCBKReapHyFVENPEL11TuVy_v_DoP-mUv51Np28RC8GUIkPey14hZ7E5jV61reZvH-D6vnhd7KKSzC72D6Io8O2CRgsio8r3OV-ODCKl2PnkQ7fNjjFEn7FvNS3pPU-xQybazxbnP2YL8jMdrivBt29RZcnxz9np2Tor0C8ZOWa1FpF7XVdBKllkCI9OtW-cN7VWljvbEF9oIzVUQYlq4LqwgcvBGACcBupZe_QpGmb-AFhDcxNGdgMvBVeegmCVzUN0ha19dYWU_R1w02z7MtomOx-KGl63hvgvcm8N3qKjhLDx5WpBHYeaFfXZthRJpRFBCyjAX9JXjuwM66MgVUCyID_qina24jLDPuyMw9aNEWfx2nYUemaxDaxvUtrwIhVAAyB6ve9dEdKGBcaTCLMVFty3yJ1e6a5vclVuxVXqRnA7uNkfUTPadbClJGyhybr1V38BLBn7fYH3f4Dl8n-pw priority: 102 providerName: ProQuest |
Title | PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR-Cas systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34593010 https://www.proquest.com/docview/2583113582 https://search.proquest.com/docview/2578770560 https://pubmed.ncbi.nlm.nih.gov/PMC8482600 https://doaj.org/article/d10e015927364fb793b1ed375cc21188 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZtx2CXse6nty5osNtQY1s_LB2b0NIOWkK2QthFSLLcBlo7xOlh__2eZDtbRk-9GGIr5qHv6emT_L0nhL763FjlXE6YEZYwXlhiDWVEweQI9JbRykaB7JU4v2bfF3yxh_iQCxNF-84uj-u7--N6eRu1lat7Nx50YuPZ5VQyGeqqj_fRPjjosETvPx0UMhCU_odieZdfFFSHXIkhbUaKcQvRmysSJAqhbB4noYAoZVyBy6c7s1Qs5v8YA_1fSPnPzHT2Cr3sKSU-6Uw_RHu-fo2ed4dM_n6DqtnJJVn7FQRdbP6C0WJTlxjiifNr3MbTcOAuXm3PHWnxssZhJ-HOx6auIY1zYcewvsHT-cWP2ZxMTYu7WtDtW3R9dvpzek760xWIEzTbkEpJr5yq0lIoUQoeUk6VS62zleLGWZPmrswprbwopSjSXKWudJwDI4BFY27oO3RQN7X_gLCCfg76awqwsMwJgF1WeSlMWhlnTJqgb0Nv6lVXREPHxYcUuoNBAww6wqBVgiahw7ctQwHseKNZ3-jeDXSZpR6YjAL2JVhlIcrYzJe04GAGvFcm6GiAS_ejstU5lzTLQm5wgr5sH8N4Ch9JTO2bh9AGQlgBtBCsft-hu7Vk8I4EFTu475i6-wRcONbs7l3245P_-Qm9iFKVmAZ5hA426wf_GfjQxo5gFCyKEXo2Ob2azUdxVwGu88mvURwZfwAOlQrJ |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,21400,27936,27937,31731,31732,33756,33757,43322,43817,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8WahgJG4IauJX4lPqKyottBWVWmlvVl-pVRCybLZHvj3zDjZLYsQx9hWNJoZj7-x50HI-8SdNyFwJp32TKrKM--EZAYOR4C3UjQ-B8ie6NmF_DJX8_HCrR_DKtc2MRvq2AW8I9_jqhZliXmdHxc_GXaNwtfVsYXGbXIH63BhB4NqvnG4yqpGrDJ-GMmHVCMMQFRGrzNoar3XgyFXhmG0AlbQU8xsnVK5mP-_EOjfgZR_nEwHD8mDEVLS_UEHHpFbqX1M7g5NJn89Ic3p_jFbpgUYXepuhNFT10YK9iSkJe1zNxwYpYtN35GeXrUUbxJ-pLw0dKwLAW8M20s6PTv8dnrGpq6nQy3o_im5OPh8Pp2xsbsCC1qUK9aYOplgmiJqo6NWmHJqQuGDb4xywbuCh8iFaJKOta4KbooQg1KACMBp5E48Iztt16YXhBpgLsZfC_BVZBk0iL1ueNSuaFxwrpiQD2tu2sVQRMNm56PWduC9Bd7bzHtrJuQTMnyzEgtg54FueWnH_WRjWSRAMgbQl5aNByvjyxRFpYAM-G89IbtrcdlxV_b2Rocm5N1mGvYTPpK4NnXXuAZMWAWwEKh-Pkh3Q4mQyoBBhJlqS-5bpG7PtFffc83uWtbYCuDl_8l6S-7Nzo-P7NHhyddX5D7PGomxKbtkZ7W8Tq8BAK38m6zlvwFndgBB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgCMSG9yNQwEjskCfOw469LAOjFmg1KlSq2Fi245QRbRJNZhbw9Vw7ydCpWHWZxIns3IePk-NzEXrnUm2ktSnJNTckZ4UhRmc5kTA5ArzNs8oEguwR3z_JP5-y00ulvgJp35rFpD6_mNSLn4Fb2V7YeOSJxfPDqciF11WP27KKb6JbELOUjwv14QdCITxMGQ5knva7jDz3kEk-bp4RPO4ghzNJPFHBi-cx4mVEs5xJcHy6NVcFSf__4dCrdMpL89PsPvoxjqynpfyarFdmYv9cEX281tAfoHsDasV7fZOH6IarH6HbfR3L349RNd87JEvXQl7H-p-9O6zrEkPKsm6Ju1BwB87idlPapMOLGvuPFecuNLUNaaz1HyXrMzw9Pvg2PyZT3eFebrp7gk5mn75P98lQwIFYniUrUknhpJUVLbnkJWd-V6u01FhTSaat0TS1ZZplleOl4AVNJbWlZQxAB6xLU509RTt1U7vnCEswoqd4ZzD8PLEcPEtUack1rbTVmkbo_Wgq1fY6HSqsbwRXvY0V2FgFGysZoQ_empuWXmM7nGiWZ2p43apMqAOwJAHg8bwykMhM4sqsYNANeK6I0O7oC2oI_E6lTGRJ4rcfR-jt5jKErP8Po2vXrH0byJIFIE_o9bPedTY9GV0vQsWWU211dfsKuEqQBR9c48W173yD7sw_ztTXg6MvL9HdNMSEJ8bsop3Vcu1eAfpamdchzv4Cp24qug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PAM-repeat+associations+and+spacer+selection+preferences+in+single+and+co-occurring+CRISPR-Cas+systems&rft.jtitle=Genome+biology&rft.au=Vink%2C+Jochem+N+A&rft.au=Baijens%2C+Jan+H+L&rft.au=Brouns%2C+Stan+J+J&rft.date=2021-09-30&rft.eissn=1474-760X&rft.volume=22&rft.issue=1&rft.spage=281&rft_id=info:doi/10.1186%2Fs13059-021-02495-9&rft_id=info%3Apmid%2F34593010&rft.externalDocID=34593010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |