A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain–computer interface (BCI)
In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems. Methods for increasing the n...
Saved in:
Published in | Brain research Vol. 1515; pp. 66 - 77 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
17.06.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0006-8993 1872-6240 1872-6240 |
DOI | 10.1016/j.brainres.2013.03.050 |
Cover
Loading…
Abstract | In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black–white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system.
•We proposed a new dual-frequency stimulation method to address ‘attention-shift’ issue.•A conventional pattern-reversal checkerboard visual stimulus was modulated with two different frequencies.•Ten visual stimuli eliciting distinct SSVEPs were generated using only four frequencies.•An online keypad system was implemented using the proposed visual stimuli.•Online experiments showed average ITR of 33.26bits/min and average accuracy of 87.23%. |
---|---|
AbstractList | In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black-white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26 bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system.In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black-white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26 bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system. In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black–white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system. •We proposed a new dual-frequency stimulation method to address ‘attention-shift’ issue.•A conventional pattern-reversal checkerboard visual stimulus was modulated with two different frequencies.•Ten visual stimuli eliciting distinct SSVEPs were generated using only four frequencies.•An online keypad system was implemented using the proposed visual stimuli.•Online experiments showed average ITR of 33.26bits/min and average accuracy of 87.23%. In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black–white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system. In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black-white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26 bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system. AbstractIn the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black–white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26 bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system. |
Author | Hwan Kim, Dong Im, Chang-Hwan Hwang, Han-Jeong Han, Chang-Hee |
Author_xml | – sequence: 1 givenname: Han-Jeong surname: Hwang fullname: Hwang, Han-Jeong organization: Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea – sequence: 2 givenname: Dong surname: Hwan Kim fullname: Hwan Kim, Dong organization: Center for Bionics, Korea Institute of Science and Technology, Seoul, Republic of Korea – sequence: 3 givenname: Chang-Hee surname: Han fullname: Han, Chang-Hee organization: Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea – sequence: 4 givenname: Chang-Hwan surname: Im fullname: Im, Chang-Hwan email: ich@hanyang.ac.kr organization: Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27449559$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23587933$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9qFDEUxgep2G31FWpuhHox68lkJzMDUqxL1UJBYa23IcmcsVlnkppkKnvnC3jlG_okZrtbhV64Qsgf-H0nX_Kdg2zPOotZdkRhSoHyF8up8tJYj2FaAGVTSKOEB9mE1lWR82IGe9kEAHheNw3bzw5CWKYjYw08yvYLVtZVw9gk-3FKLH4j7Sj7vPP4dUSrVyREM4y9jMZZMmC8ci2JjhirPcqAJF4hseOg0BPXkRsTknqrMaRznqRNNLnuZQhksfh09iFXSdeSW8-_vv_UbrgeY5Ibm-ZOaiTHr-fnzx9nDzvZB3yyXQ-zyzdnH-fv8ov3b8_npxe55ozGHJViVDKFXQsN0KLVZS1bZIqrpms0VlyVvFI1q2QBoBEKwJJjrTivsaIdO8yON3WvvUtPDlEMJmjse2nRjUFQzhkvoarL3SjjswpqqOuEHm3RUQ3YimtvBulX4u63E_BsC8igZd95abUJf7lqNmvKskkc33DauxA8dn8QCmIdv1iKu_jFOn4BaZSQhC_vCbWJtzHGhPe75U838k46IT_75O1ykYAydU5Twmzt7NWGwJTOjUEvgjapZbA1HnUUrTO7Lzm5V0L3xpr0H19whWHpRm9T9oKKUAgQi3UTr3uYMkgOgP27wP84-A0IhAUh |
CODEN | BRREAP |
CitedBy_id | crossref_primary_10_1088_1741_2552_ad4091 crossref_primary_10_1007_s42979_024_02638_2 crossref_primary_10_1016_j_brainres_2018_05_018 crossref_primary_10_3390_mti8020006 crossref_primary_10_1016_j_procs_2020_03_241 crossref_primary_10_1109_TNSRE_2018_2837501 crossref_primary_10_1088_1741_2552_aac605 crossref_primary_10_1038_s41597_024_03887_9 crossref_primary_10_1109_TBME_2022_3212192 crossref_primary_10_1364_BOE_6_004063 crossref_primary_10_1002_asjc_3050 crossref_primary_10_3390_brainsci10090616 crossref_primary_10_1093_gigascience_giz133 crossref_primary_10_1109_JBHI_2024_3514794 crossref_primary_10_11834_jig_230031 crossref_primary_10_1088_1741_2552_ac284a crossref_primary_10_1088_1361_6501_ad25e6 crossref_primary_10_1109_THMS_2023_3273538 crossref_primary_10_1371_journal_pone_0072654 crossref_primary_10_1088_1741_2560_12_4_046008 crossref_primary_10_1109_TNSRE_2023_3328917 crossref_primary_10_1016_j_eswa_2024_124144 crossref_primary_10_1109_TBME_2014_2300164 crossref_primary_10_1038_s41597_023_02841_5 crossref_primary_10_1111_psyp_12793 crossref_primary_10_3389_fncom_2018_00021 crossref_primary_10_3389_fnhum_2017_00278 crossref_primary_10_1109_TNSRE_2020_3005771 crossref_primary_10_1088_1741_2552_acb50e crossref_primary_10_3389_fnhum_2022_859259 crossref_primary_10_1016_j_bspc_2020_101898 crossref_primary_10_1088_1741_2552_aa5989 crossref_primary_10_1016_j_jneumeth_2015_11_001 crossref_primary_10_3389_fnins_2022_1057010 crossref_primary_10_1016_j_compbiomed_2022_105521 crossref_primary_10_1109_TBME_2014_2320948 crossref_primary_10_1016_j_jneumeth_2015_05_014 crossref_primary_10_1109_ACCESS_2019_2910737 crossref_primary_10_1049_el_2013_2792 crossref_primary_10_1109_TNSRE_2025_3528884 crossref_primary_10_1088_1741_2552_ad775f crossref_primary_10_1088_1741_2552_acab31 crossref_primary_10_1016_j_aei_2019_100994 crossref_primary_10_1088_1741_2552_abaa9b crossref_primary_10_3390_s20030891 crossref_primary_10_1049_joe_2018_9071 crossref_primary_10_1088_1741_2552_ac0bfa crossref_primary_10_1093_gigascience_giae041 crossref_primary_10_1109_ACCESS_2018_2854555 crossref_primary_10_3389_fnins_2018_00943 crossref_primary_10_3390_s20020348 crossref_primary_10_3389_fnins_2022_842635 crossref_primary_10_3389_fnhum_2018_00201 |
Cites_doi | 10.1016/j.jneumeth.2011.10.010 10.1155/2010/702357 10.1016/j.neulet.2009.11.039 10.1049/el:20060171 10.1016/j.neuroimage.2007.01.051 10.1007/978-3-642-02490-0_49 10.1109/TBME.2002.803536 10.3109/17482961003777470 10.1088/0967-3334/27/1/006 10.1109/86.847824 10.1016/j.neulet.2010.07.043 10.1109/IEMBS.2009.5333544 10.1016/S1388-2457(02)00057-3 10.1016/j.neuroimage.2005.12.003 10.1016/j.jneumeth.2007.03.005 10.1371/journal.pone.0029519 10.1016/j.pneurobio.2009.11.005 10.1109/TBME.2010.2068571 10.1109/TBME.2011.2116018 10.1109/86.712231 10.1111/j.1528-1167.2005.31405.x 10.1016/j.jneumeth.2010.11.016 10.1088/1741-2560/8/3/036020 10.1038/18581 10.1016/j.jneumeth.2009.01.015 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. Elsevier B.V. 2015 INIST-CNRS Copyright © 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.brainres.2013.03.050 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EISSN | 1872-6240 |
EndPage | 77 |
ExternalDocumentID | 23587933 27449559 10_1016_j_brainres_2013_03_050 US201500095049 S0006899313004903 1_s2_0_S0006899313004903 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPCBC SSN SSZ T5K Z5R ZGI ~G- .55 .GJ 41~ 53G AACTN AAQXK AAYJJ ACRPL ADIYS ADMUD ADNMO AFCTW AFJKZ AFKWA AGHFR AI. AJOXV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HMQ HVGLF HZ~ MVM PKN R2- RIG SEW SNS VH1 WUQ X7M XPP AADPK AAIAV ABYKQ AJBFU EFLBG ABPIF ABPTK AFMIJ FBQ AAYXX AGQPQ AGRNS AIGII APXCP BNPGV CITATION IQODW CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c631t-ebb31a3befd09012dc58ade3b6b9f9ce76b567b837a200ce020e56e8b668e71f3 |
IEDL.DBID | .~1 |
ISSN | 0006-8993 1872-6240 |
IngestDate | Fri Sep 05 11:58:30 EDT 2025 Fri Sep 05 03:58:52 EDT 2025 Thu Apr 03 06:52:58 EDT 2025 Sun Feb 16 07:29:57 EST 2025 Thu Apr 24 22:57:50 EDT 2025 Tue Aug 05 11:58:30 EDT 2025 Wed Dec 27 19:11:27 EST 2023 Fri Feb 23 02:22:49 EST 2024 Sun Feb 23 10:19:26 EST 2025 Tue Aug 26 16:33:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Steady-state visual evoked potential (SSVEP) Electroencephalography (EEG) Dual-frequency stimulation Pattern reversal visual stimuli Brain–computer interface (BCI) Human Central nervous system Electrophysiology Visual evoked potential Stimulation Brain-computer interface (BCI) Electroencephalography Encephalon Visual stimulus Number Computer Steady-state visual evoked potential SSVEP |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c631t-ebb31a3befd09012dc58ade3b6b9f9ce76b567b837a200ce020e56e8b668e71f3 |
Notes | http://dx.doi.org/10.1016/j.brainres.2013.03.050 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23587933 |
PQID | 1364708088 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1663650785 proquest_miscellaneous_1364708088 pubmed_primary_23587933 pascalfrancis_primary_27449559 crossref_primary_10_1016_j_brainres_2013_03_050 crossref_citationtrail_10_1016_j_brainres_2013_03_050 fao_agris_US201500095049 elsevier_sciencedirect_doi_10_1016_j_brainres_2013_03_050 elsevier_clinicalkeyesjournals_1_s2_0_S0006899313004903 elsevier_clinicalkey_doi_10_1016_j_brainres_2013_03_050 |
PublicationCentury | 2000 |
PublicationDate | 2013-06-17 |
PublicationDateYYYYMMDD | 2013-06-17 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Brain research |
PublicationTitleAlternate | Brain Res |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Panicker, Puthusserypady, Ying (bib15) 2011; 58 Hwang, Kwon, Im (bib8) 2009; 179 Pires, Nunes, Castelo-Branco (bib18) 2011; 195 Sellers, Vaughan, Wolpaw (bib20) 2010; 11 Gao, X., Cheng, M., Xu, D., Gao, S., 2000. Characteristics of steady-state visual evoked potential induced by multi-frequency stimulus. In: Proceedings of IEEE/EMBS Asia-Pacific Conference on Biomedical Engineering. Mukesh, Jaganathan, Reddy (bib13) 2006; 27 Perelmouter, Birbaumer (bib16) 2000; 8 Vialatte, F.-B., Maurice, M., Dauwels, J., Cichocki, A., 2009. Steady state visual evoked potentials in the delta range (0.5–5 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib29) 2002; 113 Vialatte, Maurice, Dauwels, Cichocki (bib23) 2010; 90 Kronegg, J., Voloshynovskiy, S., Pun, T., 2005. Analysis of bit-rate definitions for brain–computer interfaces. In: Proceedings of 2005 International Conference on Human–Computer Interfaction. Blankertz, Dornhege, Krauledat, Muller, Curio (bib3) 2007; 37 Hoffmann, Vesin, Ebrahimi, Diserens (bib7) 2008; 167 Bakardjian, Tanaka, Cichocki (bib1) 2010; 469 Volosyak (bib24) 2011; 8 Cheng, Gao, Gao, Xu (bib4) 2002; 49 Zhang, Xu, Liu, Hu, Zhang, Yao (bib31) 2012; 7 Quitadamo, Abbafati, Cardarilli, Mattia, Cincotti, Babiloni, Marciani, Bianchi (bib19) 2012; 203 Shyu, Lee, Liu, Sie (bib21) 2010; 483 Fisher, Harding, Erba, Barkley, Wilkins (bib5) 2005; 46 Wang, Y., Zhang, Z., Gao, X., Gao, S., 2004. Lead selection for SSVEP-based brain–computer interface. In: Proceedings of 26th International Conference on IEEE EMBS, pp. 4507–4510. Birbaumer, Ghanayim, Hinterberger, Iversen, Kotchoubey, Kubler, Perelmouter, Taub, Flor (bib2) 1999; 398 Wang, R., Gao, X., Gao, S., 2005. Frequency selection for SSVEP-based binocular rivalry. In: Proceedings of 2nd International IEEE EMBS Conference on Neural Engineering, pp. 600–603. Jia, Gao, Hong, Gao (bib9) 2011; 58 Hz). In: Proceedings of 15th International Conference on Advances in Neuro-information Processing—Volume Part I, pp. 400–407. Zhu, Bieger, Molina, Aarts (bib32) 2010; 2010 Yan, Z., Gao, X., Bin, G., Hong, B., Gao, S., 2009. A half-field stimulation pattern for SSVEP-based brain–computer interface. In: Proceedings of 31st International Conference on IEEE EMBS, pp. 6461–6464. Wolpaw, Ramoser, McFarland, Pfurtscheller (bib28) 1998; 6 Materka, Byczuk (bib12) 2006; 42 Pfurtscheller, Brunner, Schlogl, da Silva (bib17) 2006; 31 Wolpaw (10.1016/j.brainres.2013.03.050_bib28) 1998; 6 Zhang (10.1016/j.brainres.2013.03.050_bib31) 2012; 7 Pires (10.1016/j.brainres.2013.03.050_bib18) 2011; 195 Pfurtscheller (10.1016/j.brainres.2013.03.050_bib17) 2006; 31 10.1016/j.brainres.2013.03.050_bib22 Shyu (10.1016/j.brainres.2013.03.050_bib21) 2010; 483 10.1016/j.brainres.2013.03.050_bib25 Hwang (10.1016/j.brainres.2013.03.050_bib8) 2009; 179 10.1016/j.brainres.2013.03.050_bib26 Hoffmann (10.1016/j.brainres.2013.03.050_bib7) 2008; 167 Panicker (10.1016/j.brainres.2013.03.050_bib15) 2011; 58 Cheng (10.1016/j.brainres.2013.03.050_bib4) 2002; 49 Quitadamo (10.1016/j.brainres.2013.03.050_bib19) 2012; 203 Jia (10.1016/j.brainres.2013.03.050_bib9) 2011; 58 Sellers (10.1016/j.brainres.2013.03.050_bib20) 2010; 11 Zhu (10.1016/j.brainres.2013.03.050_bib32) 2010; 2010 Materka (10.1016/j.brainres.2013.03.050_bib12) 2006; 42 Bakardjian (10.1016/j.brainres.2013.03.050_bib1) 2010; 469 Birbaumer (10.1016/j.brainres.2013.03.050_bib2) 1999; 398 10.1016/j.brainres.2013.03.050_bib30 10.1016/j.brainres.2013.03.050_bib10 Perelmouter (10.1016/j.brainres.2013.03.050_bib16) 2000; 8 10.1016/j.brainres.2013.03.050_bib6 Vialatte (10.1016/j.brainres.2013.03.050_bib23) 2010; 90 Volosyak (10.1016/j.brainres.2013.03.050_bib24) 2011; 8 Blankertz (10.1016/j.brainres.2013.03.050_bib3) 2007; 37 Fisher (10.1016/j.brainres.2013.03.050_bib5) 2005; 46 Mukesh (10.1016/j.brainres.2013.03.050_bib13) 2006; 27 Wolpaw (10.1016/j.brainres.2013.03.050_bib29) 2002; 113 |
References_xml | – volume: 398 start-page: 297 year: 1999 end-page: 298 ident: bib2 article-title: A spelling device for the paralysed publication-title: Nature – volume: 90 start-page: 418 year: 2010 end-page: 438 ident: bib23 article-title: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives publication-title: Prog. Neurobiol. – volume: 203 start-page: 361 year: 2012 end-page: 368 ident: bib19 article-title: Evaluation of the performances of different P300 based brain–computer interfaces by means of the efficiency metric publication-title: J. Neurosci. Methods – volume: 58 start-page: 200 year: 2011 end-page: 206 ident: bib9 article-title: Frequency and phase mixed coding in SSVEP-based brain–computer interface publication-title: IEEE Trans. Biomed. Eng. – volume: 58 start-page: 1781 year: 2011 end-page: 1788 ident: bib15 article-title: An asynchronous P300 BCI with SSVEP-based control state detection publication-title: IEEE Trans. Biomed. Eng. – volume: 31 start-page: 153 year: 2006 end-page: 159 ident: bib17 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: Neuroimage – reference: Wang, R., Gao, X., Gao, S., 2005. Frequency selection for SSVEP-based binocular rivalry. In: Proceedings of 2nd International IEEE EMBS Conference on Neural Engineering, pp. 600–603. – volume: 2010 start-page: 1 year: 2010 end-page: 12 ident: bib32 article-title: A survey of stimulation methods used in SSVEP-based BCIs publication-title: Comput. Intell. Neurosci. – volume: 167 start-page: 115 year: 2008 end-page: 125 ident: bib7 article-title: An efficient P300-based brain–computer interface for disabled subjects publication-title: J. Neurosci. Methods – volume: 483 start-page: 28 year: 2010 end-page: 31 ident: bib21 article-title: Dual-frequency steady-state visual evoked potential for brain computer interface publication-title: Neurosci. Lett. – volume: 8 start-page: 036020 year: 2011 ident: bib24 article-title: SSVEP-based Bremen–BCI interface-boosting information transfer rates publication-title: J. Neural Eng. – volume: 27 start-page: 61 year: 2006 end-page: 71 ident: bib13 article-title: A novel multiple frequency stimulation method for steady state VEP based brain computer interfaces publication-title: Physiol. Meas. – volume: 195 start-page: 270 year: 2011 end-page: 281 ident: bib18 article-title: Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis publication-title: J. Neurosci. Methods – reference: Hz). In: Proceedings of 15th International Conference on Advances in Neuro-information Processing—Volume Part I, pp. 400–407. – volume: 42 start-page: 321 year: 2006 end-page: 322 ident: bib12 article-title: Alternate half-field stimulation technique for SSVEP-based brain–computer interfaces publication-title: Electron. Lett. – reference: Wang, Y., Zhang, Z., Gao, X., Gao, S., 2004. Lead selection for SSVEP-based brain–computer interface. In: Proceedings of 26th International Conference on IEEE EMBS, pp. 4507–4510. – volume: 46 start-page: 1426 year: 2005 end-page: 1441 ident: bib5 article-title: Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America working group publication-title: Epilepsia – volume: 7 start-page: e29519 year: 2012 ident: bib31 article-title: Multiple frequencies sequential coding for SSVEP-based brain–computer interface publication-title: PLOS One – volume: 469 start-page: 34 year: 2010 end-page: 38 ident: bib1 article-title: Optimization of SSVEP brain responses with application to eight-command brain–computer interface publication-title: Neurosci. Lett. – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bib29 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. – reference: Gao, X., Cheng, M., Xu, D., Gao, S., 2000. Characteristics of steady-state visual evoked potential induced by multi-frequency stimulus. In: Proceedings of IEEE/EMBS Asia-Pacific Conference on Biomedical Engineering. – volume: 49 start-page: 1181 year: 2002 end-page: 1186 ident: bib4 article-title: Design and implementation of a brain–computer interface with high transfer rates publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 227 year: 2000 end-page: 232 ident: bib16 article-title: A binary spelling interface with random errors publication-title: IEEE Trans. Rehabil. Eng. – volume: 37 start-page: 539 year: 2007 end-page: 550 ident: bib3 article-title: The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects publication-title: Neuroimage – volume: 11 start-page: 449 year: 2010 end-page: 455 ident: bib20 article-title: A brain–computer interface for long-term independent home use publication-title: Amyotroph. Lateral Scler. – volume: 179 start-page: 150 year: 2009 end-page: 156 ident: bib8 article-title: Neurofeedback-based motor imagery training for brain–computer interface (BCI) publication-title: J. Neurosci. Methods – reference: Vialatte, F.-B., Maurice, M., Dauwels, J., Cichocki, A., 2009. Steady state visual evoked potentials in the delta range (0.5–5 – reference: Yan, Z., Gao, X., Bin, G., Hong, B., Gao, S., 2009. A half-field stimulation pattern for SSVEP-based brain–computer interface. In: Proceedings of 31st International Conference on IEEE EMBS, pp. 6461–6464. – reference: Kronegg, J., Voloshynovskiy, S., Pun, T., 2005. Analysis of bit-rate definitions for brain–computer interfaces. In: Proceedings of 2005 International Conference on Human–Computer Interfaction. – volume: 6 start-page: 326 year: 1998 end-page: 333 ident: bib28 article-title: EEG-based communication: improved accuracy by response verification publication-title: IEEE Trans. Rehabil. Eng. – volume: 203 start-page: 361 year: 2012 ident: 10.1016/j.brainres.2013.03.050_bib19 article-title: Evaluation of the performances of different P300 based brain–computer interfaces by means of the efficiency metric publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.10.010 – volume: 2010 start-page: 1 year: 2010 ident: 10.1016/j.brainres.2013.03.050_bib32 article-title: A survey of stimulation methods used in SSVEP-based BCIs publication-title: Comput. Intell. Neurosci. doi: 10.1155/2010/702357 – volume: 469 start-page: 34 year: 2010 ident: 10.1016/j.brainres.2013.03.050_bib1 article-title: Optimization of SSVEP brain responses with application to eight-command brain–computer interface publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.11.039 – volume: 42 start-page: 321 year: 2006 ident: 10.1016/j.brainres.2013.03.050_bib12 article-title: Alternate half-field stimulation technique for SSVEP-based brain–computer interfaces publication-title: Electron. Lett. doi: 10.1049/el:20060171 – volume: 37 start-page: 539 year: 2007 ident: 10.1016/j.brainres.2013.03.050_bib3 article-title: The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.01.051 – ident: 10.1016/j.brainres.2013.03.050_bib22 doi: 10.1007/978-3-642-02490-0_49 – volume: 49 start-page: 1181 year: 2002 ident: 10.1016/j.brainres.2013.03.050_bib4 article-title: Design and implementation of a brain–computer interface with high transfer rates publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2002.803536 – volume: 11 start-page: 449 year: 2010 ident: 10.1016/j.brainres.2013.03.050_bib20 article-title: A brain–computer interface for long-term independent home use publication-title: Amyotroph. Lateral Scler. doi: 10.3109/17482961003777470 – ident: 10.1016/j.brainres.2013.03.050_bib25 – volume: 27 start-page: 61 year: 2006 ident: 10.1016/j.brainres.2013.03.050_bib13 article-title: A novel multiple frequency stimulation method for steady state VEP based brain computer interfaces publication-title: Physiol. Meas. doi: 10.1088/0967-3334/27/1/006 – volume: 8 start-page: 227 year: 2000 ident: 10.1016/j.brainres.2013.03.050_bib16 article-title: A binary spelling interface with random errors publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.847824 – volume: 483 start-page: 28 year: 2010 ident: 10.1016/j.brainres.2013.03.050_bib21 article-title: Dual-frequency steady-state visual evoked potential for brain computer interface publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.07.043 – ident: 10.1016/j.brainres.2013.03.050_bib30 doi: 10.1109/IEMBS.2009.5333544 – ident: 10.1016/j.brainres.2013.03.050_bib6 – ident: 10.1016/j.brainres.2013.03.050_bib10 – volume: 113 start-page: 767 year: 2002 ident: 10.1016/j.brainres.2013.03.050_bib29 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 31 start-page: 153 year: 2006 ident: 10.1016/j.brainres.2013.03.050_bib17 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.003 – volume: 167 start-page: 115 year: 2008 ident: 10.1016/j.brainres.2013.03.050_bib7 article-title: An efficient P300-based brain–computer interface for disabled subjects publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.005 – volume: 7 start-page: e29519 year: 2012 ident: 10.1016/j.brainres.2013.03.050_bib31 article-title: Multiple frequencies sequential coding for SSVEP-based brain–computer interface publication-title: PLOS One doi: 10.1371/journal.pone.0029519 – volume: 90 start-page: 418 year: 2010 ident: 10.1016/j.brainres.2013.03.050_bib23 article-title: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2009.11.005 – volume: 58 start-page: 200 year: 2011 ident: 10.1016/j.brainres.2013.03.050_bib9 article-title: Frequency and phase mixed coding in SSVEP-based brain–computer interface publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2068571 – volume: 58 start-page: 1781 year: 2011 ident: 10.1016/j.brainres.2013.03.050_bib15 article-title: An asynchronous P300 BCI with SSVEP-based control state detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2116018 – volume: 6 start-page: 326 year: 1998 ident: 10.1016/j.brainres.2013.03.050_bib28 article-title: EEG-based communication: improved accuracy by response verification publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.712231 – volume: 46 start-page: 1426 year: 2005 ident: 10.1016/j.brainres.2013.03.050_bib5 article-title: Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America working group publication-title: Epilepsia doi: 10.1111/j.1528-1167.2005.31405.x – volume: 195 start-page: 270 year: 2011 ident: 10.1016/j.brainres.2013.03.050_bib18 article-title: Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.11.016 – volume: 8 start-page: 036020 year: 2011 ident: 10.1016/j.brainres.2013.03.050_bib24 article-title: SSVEP-based Bremen–BCI interface-boosting information transfer rates publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036020 – volume: 398 start-page: 297 year: 1999 ident: 10.1016/j.brainres.2013.03.050_bib2 article-title: A spelling device for the paralysed publication-title: Nature doi: 10.1038/18581 – volume: 179 start-page: 150 year: 2009 ident: 10.1016/j.brainres.2013.03.050_bib8 article-title: Neurofeedback-based motor imagery training for brain–computer interface (BCI) publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.01.015 – ident: 10.1016/j.brainres.2013.03.050_bib26 |
SSID | ssj0003390 |
Score | 2.3844805 |
Snippet | In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies... AbstractIn the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 66 |
SubjectTerms | Adult Behavioral psychophysiology Biological and medical sciences brain Brain-Computer Interfaces Brain-Computer Interfaces - psychology Brain–computer interface (BCI) Cell Phone Dual-frequency stimulation Electroencephalography Electroencephalography (EEG) Electroencephalography - methods Electrophysiology evoked potentials Evoked Potentials, Visual Evoked Potentials, Visual - physiology Female Fundamental and applied biological sciences. Psychology Humans information exchange Male methods Neurology Pattern reversal visual stimuli Photic Stimulation Photic Stimulation - methods physiology psychology Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Steady-state visual evoked potential (SSVEP) Young Adult |
Title | A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain–computer interface (BCI) |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006899313004903 https://www.clinicalkey.es/playcontent/1-s2.0-S0006899313004903 https://dx.doi.org/10.1016/j.brainres.2013.03.050 https://www.ncbi.nlm.nih.gov/pubmed/23587933 https://www.proquest.com/docview/1364708088 https://www.proquest.com/docview/1663650785 |
Volume | 1515 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKuXBBhQINhZWREIKDu0kcx85xWbXa8qgqlkW9WXZiV1vRpNpskXpB_AFO_EN-CTN5bKl4CqRIK0WZTWKPZ75xZuYj5HFmQhu6zDGXOM4SsHgsA6TMuLdCKK9CLrE4-fVBOpklL47E0RoZ97UwmFbZ2f7WpjfWujsz7EZzeDafY41vmEK0wPGDTJI1HT-TRGL__J2Pl2kenLf7LBg549XfVQmf7FikYYCwFlO8eNPsFOvvf-6grnlTYeakqWHwfMt68WtY2rinvQ1ys8OVdNQ--i2y5srbZHNUQkx9ekGf0CbTs9lC3ySfRxTANMUqLOYXbS71BYW1ftpxedGWV5ouKzovEVbWjgJQpC19CK08_TCvQbqTmVNAvrRJTWQ5onE6nb7bPWToIQvavP3XT1_yjj-CYoeKhTe5o0-fj_ef3SGzvd234wnraBlYnvJoyZy1PDLcOl-EgCbiIhfKFI7b1GY-y51MrUilhcjXwBLMHQBSJ1KnbJoqJyPP75L1sirdFqFceRsVIk5lISFOzGwoFChVqJJEGGlUQEQ_FzrvepYjdcZ73Senneh-DjXOoQ7hEGFAhiu5s7Zrxx8lZD_Vuq9JBSuqwbH8m6SrO2NQ60jXsQ71DwobkGwleUXn_-quW6CP2hyDK9CzaYwbVwiX4Y8DMriipKsRwGaQ2HAwII96rdVgTPALkSlddQ5PimwCEEMo9ZtrAKMCrJdKBOReq_KXd-BCgcHn9__jzbbJjbilHGGRfEDWl4tz9xCA39IOmpU9INdH4zevDvF3_-Xk4BvwIVnY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOcAFFQo0FIqREIKDu0kcx85xWbXaQlshbRf1ZtmJjVLRbLXZIvWC-AOc-If8Emby2FLxFEg5RZk87PHMN87MfIQ8zUxoQ5c55hLHWQIWj2WAlBn3VgjlVcglFicfHKbjafLqWByvkFFfC4NplZ3tb216Y627M4NuNAdnZYk1vmEK0QLHHzJJhh0_ryeCS1Tt7Y-XeR6ctxstGDrj5d-VCZ9sW-RhgLgWc7x40-0UC_B_7qGueTPD1ElTw-j5lvbi17i08U-7a-RWByzpsH3322TFVXfI-rCCoPr0gj6jTapns4e-Tj4PKaBpimVYzM_bZOoLCov9tCPzoi2xNF3MaFkhrqwdBaRIW_4QOvP0Q1mDdCdTUoC-tMlNZDnCcTqZvN15w9BFFrT5-q-fvuQdgQTFFhVzb3JHn78c7b24S6a7O0ejMet4GVie8mjBnLU8Mtw6X4QAJ-IiF8oUjtvUZj7LnUytSKWF0NfAGswdIFInUqdsmionI8_vkdVqVrkNQrnyNipEnMpCQqCY2VAo0KpQJYkw0qiAiH4udN41LUfujPe6z0470f0capxDHcIhwoAMlnJnbduOP0rIfqp1X5QKZlSDZ_k3SVd31qDWka5jHeofNDYg2VLyitL_1VM3QB-1eQe-QE8nMe5cIV6GGwdk64qSLkcAu0Fix8GAPOm1VoM1wV9EpnKzc3hTpBOAIEKp31wDIBVwvVQiIPdblb98AhcKLD5_8B9f9pjcGB8d7Ov9vcPXm-Rm3PKPsEg-JKuL-bl7BChwYbeaVf4NpipZ2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+dual-frequency+stimulation+method+to+increase+the+number+of+visual+stimuli+for+multi-class+SSVEP-based+brain%E2%80%95computer+interface+%28BCI%29&rft.jtitle=Brain+research&rft.au=HWANG%2C+Han-Jeong&rft.au=DONG+HWAN+KIM&rft.au=HAN%2C+Chang-Hee&rft.au=IM%2C+Chang-Hwan&rft.date=2013-06-17&rft.pub=Elsevier&rft.issn=0006-8993&rft.volume=1515&rft.spage=66&rft.epage=77&rft_id=info:doi/10.1016%2Fj.brainres.2013.03.050&rft.externalDBID=n%2Fa&rft.externalDocID=27449559 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2FS0006899313X0023X%2Fcov150h.gif |