A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain–computer interface (BCI)

In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems. Methods for increasing the n...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 1515; pp. 66 - 77
Main Authors Hwang, Han-Jeong, Hwan Kim, Dong, Han, Chang-Hee, Im, Chang-Hwan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 17.06.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0006-8993
1872-6240
1872-6240
DOI10.1016/j.brainres.2013.03.050

Cover

Loading…
Abstract In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black–white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system. •We proposed a new dual-frequency stimulation method to address ‘attention-shift’ issue.•A conventional pattern-reversal checkerboard visual stimulus was modulated with two different frequencies.•Ten visual stimuli eliciting distinct SSVEPs were generated using only four frequencies.•An online keypad system was implemented using the proposed visual stimuli.•Online experiments showed average ITR of 33.26bits/min and average accuracy of 87.23%.
AbstractList In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black-white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26 bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system.In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black-white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26 bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system.
In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black–white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system. •We proposed a new dual-frequency stimulation method to address ‘attention-shift’ issue.•A conventional pattern-reversal checkerboard visual stimulus was modulated with two different frequencies.•Ten visual stimuli eliciting distinct SSVEPs were generated using only four frequencies.•An online keypad system was implemented using the proposed visual stimuli.•Online experiments showed average ITR of 33.26bits/min and average accuracy of 87.23%.
In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black–white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system.
In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black-white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26 bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system.
AbstractIn the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-based BCI, as available stimulation frequencies are generally limited when visual stimuli are presented through a computer monitor. The new stimulation was based on a conventional black–white checkerboard pattern; however, unlike the conventional approach, ten visual stimuli eliciting distinct SSVEP responses at different frequencies could be generated by combining four different stimulation frequencies. Through the offline experiments conducted with eleven participants, we confirmed that all ten visual stimuli could evoke distinct and discriminable single SSVEP peaks, of which the signal-to-noise ratios were high enough to be used for practical SSVEP-based BCI systems. In order to demonstrate the possibility of the practical use of the proposed method, a mental keypad system was implemented and online experiments were conducted with additional ten participants. We achieved an average information transfer rate of 33.26 bits/min and an average accuracy of 87.23%, and all ten participants succeeded in calling their mobile phones using our online BCI system.
Author Hwan Kim, Dong
Im, Chang-Hwan
Hwang, Han-Jeong
Han, Chang-Hee
Author_xml – sequence: 1
  givenname: Han-Jeong
  surname: Hwang
  fullname: Hwang, Han-Jeong
  organization: Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
– sequence: 2
  givenname: Dong
  surname: Hwan Kim
  fullname: Hwan Kim, Dong
  organization: Center for Bionics, Korea Institute of Science and Technology, Seoul, Republic of Korea
– sequence: 3
  givenname: Chang-Hee
  surname: Han
  fullname: Han, Chang-Hee
  organization: Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
– sequence: 4
  givenname: Chang-Hwan
  surname: Im
  fullname: Im, Chang-Hwan
  email: ich@hanyang.ac.kr
  organization: Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27449559$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23587933$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9qFDEUxgep2G31FWpuhHox68lkJzMDUqxL1UJBYa23IcmcsVlnkppkKnvnC3jlG_okZrtbhV64Qsgf-H0nX_Kdg2zPOotZdkRhSoHyF8up8tJYj2FaAGVTSKOEB9mE1lWR82IGe9kEAHheNw3bzw5CWKYjYw08yvYLVtZVw9gk-3FKLH4j7Sj7vPP4dUSrVyREM4y9jMZZMmC8ci2JjhirPcqAJF4hseOg0BPXkRsTknqrMaRznqRNNLnuZQhksfh09iFXSdeSW8-_vv_UbrgeY5Ibm-ZOaiTHr-fnzx9nDzvZB3yyXQ-zyzdnH-fv8ov3b8_npxe55ozGHJViVDKFXQsN0KLVZS1bZIqrpms0VlyVvFI1q2QBoBEKwJJjrTivsaIdO8yON3WvvUtPDlEMJmjse2nRjUFQzhkvoarL3SjjswpqqOuEHm3RUQ3YimtvBulX4u63E_BsC8igZd95abUJf7lqNmvKskkc33DauxA8dn8QCmIdv1iKu_jFOn4BaZSQhC_vCbWJtzHGhPe75U838k46IT_75O1ykYAydU5Twmzt7NWGwJTOjUEvgjapZbA1HnUUrTO7Lzm5V0L3xpr0H19whWHpRm9T9oKKUAgQi3UTr3uYMkgOgP27wP84-A0IhAUh
CODEN BRREAP
CitedBy_id crossref_primary_10_1088_1741_2552_ad4091
crossref_primary_10_1007_s42979_024_02638_2
crossref_primary_10_1016_j_brainres_2018_05_018
crossref_primary_10_3390_mti8020006
crossref_primary_10_1016_j_procs_2020_03_241
crossref_primary_10_1109_TNSRE_2018_2837501
crossref_primary_10_1088_1741_2552_aac605
crossref_primary_10_1038_s41597_024_03887_9
crossref_primary_10_1109_TBME_2022_3212192
crossref_primary_10_1364_BOE_6_004063
crossref_primary_10_1002_asjc_3050
crossref_primary_10_3390_brainsci10090616
crossref_primary_10_1093_gigascience_giz133
crossref_primary_10_1109_JBHI_2024_3514794
crossref_primary_10_11834_jig_230031
crossref_primary_10_1088_1741_2552_ac284a
crossref_primary_10_1088_1361_6501_ad25e6
crossref_primary_10_1109_THMS_2023_3273538
crossref_primary_10_1371_journal_pone_0072654
crossref_primary_10_1088_1741_2560_12_4_046008
crossref_primary_10_1109_TNSRE_2023_3328917
crossref_primary_10_1016_j_eswa_2024_124144
crossref_primary_10_1109_TBME_2014_2300164
crossref_primary_10_1038_s41597_023_02841_5
crossref_primary_10_1111_psyp_12793
crossref_primary_10_3389_fncom_2018_00021
crossref_primary_10_3389_fnhum_2017_00278
crossref_primary_10_1109_TNSRE_2020_3005771
crossref_primary_10_1088_1741_2552_acb50e
crossref_primary_10_3389_fnhum_2022_859259
crossref_primary_10_1016_j_bspc_2020_101898
crossref_primary_10_1088_1741_2552_aa5989
crossref_primary_10_1016_j_jneumeth_2015_11_001
crossref_primary_10_3389_fnins_2022_1057010
crossref_primary_10_1016_j_compbiomed_2022_105521
crossref_primary_10_1109_TBME_2014_2320948
crossref_primary_10_1016_j_jneumeth_2015_05_014
crossref_primary_10_1109_ACCESS_2019_2910737
crossref_primary_10_1049_el_2013_2792
crossref_primary_10_1109_TNSRE_2025_3528884
crossref_primary_10_1088_1741_2552_ad775f
crossref_primary_10_1088_1741_2552_acab31
crossref_primary_10_1016_j_aei_2019_100994
crossref_primary_10_1088_1741_2552_abaa9b
crossref_primary_10_3390_s20030891
crossref_primary_10_1049_joe_2018_9071
crossref_primary_10_1088_1741_2552_ac0bfa
crossref_primary_10_1093_gigascience_giae041
crossref_primary_10_1109_ACCESS_2018_2854555
crossref_primary_10_3389_fnins_2018_00943
crossref_primary_10_3390_s20020348
crossref_primary_10_3389_fnins_2022_842635
crossref_primary_10_3389_fnhum_2018_00201
Cites_doi 10.1016/j.jneumeth.2011.10.010
10.1155/2010/702357
10.1016/j.neulet.2009.11.039
10.1049/el:20060171
10.1016/j.neuroimage.2007.01.051
10.1007/978-3-642-02490-0_49
10.1109/TBME.2002.803536
10.3109/17482961003777470
10.1088/0967-3334/27/1/006
10.1109/86.847824
10.1016/j.neulet.2010.07.043
10.1109/IEMBS.2009.5333544
10.1016/S1388-2457(02)00057-3
10.1016/j.neuroimage.2005.12.003
10.1016/j.jneumeth.2007.03.005
10.1371/journal.pone.0029519
10.1016/j.pneurobio.2009.11.005
10.1109/TBME.2010.2068571
10.1109/TBME.2011.2116018
10.1109/86.712231
10.1111/j.1528-1167.2005.31405.x
10.1016/j.jneumeth.2010.11.016
10.1088/1741-2560/8/3/036020
10.1038/18581
10.1016/j.jneumeth.2009.01.015
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Elsevier B.V.
2015 INIST-CNRS
Copyright © 2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.brainres.2013.03.050
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1872-6240
EndPage 77
ExternalDocumentID 23587933
27449559
10_1016_j_brainres_2013_03_050
US201500095049
S0006899313004903
1_s2_0_S0006899313004903
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPCBC
SSN
SSZ
T5K
Z5R
ZGI
~G-
.55
.GJ
41~
53G
AACTN
AAQXK
AAYJJ
ACRPL
ADIYS
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
MVM
PKN
R2-
RIG
SEW
SNS
VH1
WUQ
X7M
XPP
AADPK
AAIAV
ABYKQ
AJBFU
EFLBG
ABPIF
ABPTK
AFMIJ
FBQ
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
BNPGV
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c631t-ebb31a3befd09012dc58ade3b6b9f9ce76b567b837a200ce020e56e8b668e71f3
IEDL.DBID .~1
ISSN 0006-8993
1872-6240
IngestDate Fri Sep 05 11:58:30 EDT 2025
Fri Sep 05 03:58:52 EDT 2025
Thu Apr 03 06:52:58 EDT 2025
Sun Feb 16 07:29:57 EST 2025
Thu Apr 24 22:57:50 EDT 2025
Tue Aug 05 11:58:30 EDT 2025
Wed Dec 27 19:11:27 EST 2023
Fri Feb 23 02:22:49 EST 2024
Sun Feb 23 10:19:26 EST 2025
Tue Aug 26 16:33:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Steady-state visual evoked potential (SSVEP)
Electroencephalography (EEG)
Dual-frequency stimulation
Pattern reversal visual stimuli
Brain–computer interface (BCI)
Human
Central nervous system
Electrophysiology
Visual evoked potential
Stimulation
Brain-computer interface (BCI)
Electroencephalography
Encephalon
Visual stimulus
Number
Computer
Steady-state visual evoked potential
SSVEP
Language English
License CC BY 4.0
Copyright © 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-ebb31a3befd09012dc58ade3b6b9f9ce76b567b837a200ce020e56e8b668e71f3
Notes http://dx.doi.org/10.1016/j.brainres.2013.03.050
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23587933
PQID 1364708088
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1663650785
proquest_miscellaneous_1364708088
pubmed_primary_23587933
pascalfrancis_primary_27449559
crossref_primary_10_1016_j_brainres_2013_03_050
crossref_citationtrail_10_1016_j_brainres_2013_03_050
fao_agris_US201500095049
elsevier_sciencedirect_doi_10_1016_j_brainres_2013_03_050
elsevier_clinicalkeyesjournals_1_s2_0_S0006899313004903
elsevier_clinicalkey_doi_10_1016_j_brainres_2013_03_050
PublicationCentury 2000
PublicationDate 2013-06-17
PublicationDateYYYYMMDD 2013-06-17
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-17
  day: 17
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Brain research
PublicationTitleAlternate Brain Res
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Panicker, Puthusserypady, Ying (bib15) 2011; 58
Hwang, Kwon, Im (bib8) 2009; 179
Pires, Nunes, Castelo-Branco (bib18) 2011; 195
Sellers, Vaughan, Wolpaw (bib20) 2010; 11
Gao, X., Cheng, M., Xu, D., Gao, S., 2000. Characteristics of steady-state visual evoked potential induced by multi-frequency stimulus. In: Proceedings of IEEE/EMBS Asia-Pacific Conference on Biomedical Engineering.
Mukesh, Jaganathan, Reddy (bib13) 2006; 27
Perelmouter, Birbaumer (bib16) 2000; 8
Vialatte, F.-B., Maurice, M., Dauwels, J., Cichocki, A., 2009. Steady state visual evoked potentials in the delta range (0.5–5
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib29) 2002; 113
Vialatte, Maurice, Dauwels, Cichocki (bib23) 2010; 90
Kronegg, J., Voloshynovskiy, S., Pun, T., 2005. Analysis of bit-rate definitions for brain–computer interfaces. In: Proceedings of 2005 International Conference on Human–Computer Interfaction.
Blankertz, Dornhege, Krauledat, Muller, Curio (bib3) 2007; 37
Hoffmann, Vesin, Ebrahimi, Diserens (bib7) 2008; 167
Bakardjian, Tanaka, Cichocki (bib1) 2010; 469
Volosyak (bib24) 2011; 8
Cheng, Gao, Gao, Xu (bib4) 2002; 49
Zhang, Xu, Liu, Hu, Zhang, Yao (bib31) 2012; 7
Quitadamo, Abbafati, Cardarilli, Mattia, Cincotti, Babiloni, Marciani, Bianchi (bib19) 2012; 203
Shyu, Lee, Liu, Sie (bib21) 2010; 483
Fisher, Harding, Erba, Barkley, Wilkins (bib5) 2005; 46
Wang, Y., Zhang, Z., Gao, X., Gao, S., 2004. Lead selection for SSVEP-based brain–computer interface. In: Proceedings of 26th International Conference on IEEE EMBS, pp. 4507–4510.
Birbaumer, Ghanayim, Hinterberger, Iversen, Kotchoubey, Kubler, Perelmouter, Taub, Flor (bib2) 1999; 398
Wang, R., Gao, X., Gao, S., 2005. Frequency selection for SSVEP-based binocular rivalry. In: Proceedings of 2nd International IEEE EMBS Conference on Neural Engineering, pp. 600–603.
Jia, Gao, Hong, Gao (bib9) 2011; 58
Hz). In: Proceedings of 15th International Conference on Advances in Neuro-information Processing—Volume Part I, pp. 400–407.
Zhu, Bieger, Molina, Aarts (bib32) 2010; 2010
Yan, Z., Gao, X., Bin, G., Hong, B., Gao, S., 2009. A half-field stimulation pattern for SSVEP-based brain–computer interface. In: Proceedings of 31st International Conference on IEEE EMBS, pp. 6461–6464.
Wolpaw, Ramoser, McFarland, Pfurtscheller (bib28) 1998; 6
Materka, Byczuk (bib12) 2006; 42
Pfurtscheller, Brunner, Schlogl, da Silva (bib17) 2006; 31
Wolpaw (10.1016/j.brainres.2013.03.050_bib28) 1998; 6
Zhang (10.1016/j.brainres.2013.03.050_bib31) 2012; 7
Pires (10.1016/j.brainres.2013.03.050_bib18) 2011; 195
Pfurtscheller (10.1016/j.brainres.2013.03.050_bib17) 2006; 31
10.1016/j.brainres.2013.03.050_bib22
Shyu (10.1016/j.brainres.2013.03.050_bib21) 2010; 483
10.1016/j.brainres.2013.03.050_bib25
Hwang (10.1016/j.brainres.2013.03.050_bib8) 2009; 179
10.1016/j.brainres.2013.03.050_bib26
Hoffmann (10.1016/j.brainres.2013.03.050_bib7) 2008; 167
Panicker (10.1016/j.brainres.2013.03.050_bib15) 2011; 58
Cheng (10.1016/j.brainres.2013.03.050_bib4) 2002; 49
Quitadamo (10.1016/j.brainres.2013.03.050_bib19) 2012; 203
Jia (10.1016/j.brainres.2013.03.050_bib9) 2011; 58
Sellers (10.1016/j.brainres.2013.03.050_bib20) 2010; 11
Zhu (10.1016/j.brainres.2013.03.050_bib32) 2010; 2010
Materka (10.1016/j.brainres.2013.03.050_bib12) 2006; 42
Bakardjian (10.1016/j.brainres.2013.03.050_bib1) 2010; 469
Birbaumer (10.1016/j.brainres.2013.03.050_bib2) 1999; 398
10.1016/j.brainres.2013.03.050_bib30
10.1016/j.brainres.2013.03.050_bib10
Perelmouter (10.1016/j.brainres.2013.03.050_bib16) 2000; 8
10.1016/j.brainres.2013.03.050_bib6
Vialatte (10.1016/j.brainres.2013.03.050_bib23) 2010; 90
Volosyak (10.1016/j.brainres.2013.03.050_bib24) 2011; 8
Blankertz (10.1016/j.brainres.2013.03.050_bib3) 2007; 37
Fisher (10.1016/j.brainres.2013.03.050_bib5) 2005; 46
Mukesh (10.1016/j.brainres.2013.03.050_bib13) 2006; 27
Wolpaw (10.1016/j.brainres.2013.03.050_bib29) 2002; 113
References_xml – volume: 398
  start-page: 297
  year: 1999
  end-page: 298
  ident: bib2
  article-title: A spelling device for the paralysed
  publication-title: Nature
– volume: 90
  start-page: 418
  year: 2010
  end-page: 438
  ident: bib23
  article-title: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives
  publication-title: Prog. Neurobiol.
– volume: 203
  start-page: 361
  year: 2012
  end-page: 368
  ident: bib19
  article-title: Evaluation of the performances of different P300 based brain–computer interfaces by means of the efficiency metric
  publication-title: J. Neurosci. Methods
– volume: 58
  start-page: 200
  year: 2011
  end-page: 206
  ident: bib9
  article-title: Frequency and phase mixed coding in SSVEP-based brain–computer interface
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 58
  start-page: 1781
  year: 2011
  end-page: 1788
  ident: bib15
  article-title: An asynchronous P300 BCI with SSVEP-based control state detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 31
  start-page: 153
  year: 2006
  end-page: 159
  ident: bib17
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: Neuroimage
– reference: Wang, R., Gao, X., Gao, S., 2005. Frequency selection for SSVEP-based binocular rivalry. In: Proceedings of 2nd International IEEE EMBS Conference on Neural Engineering, pp. 600–603.
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 12
  ident: bib32
  article-title: A survey of stimulation methods used in SSVEP-based BCIs
  publication-title: Comput. Intell. Neurosci.
– volume: 167
  start-page: 115
  year: 2008
  end-page: 125
  ident: bib7
  article-title: An efficient P300-based brain–computer interface for disabled subjects
  publication-title: J. Neurosci. Methods
– volume: 483
  start-page: 28
  year: 2010
  end-page: 31
  ident: bib21
  article-title: Dual-frequency steady-state visual evoked potential for brain computer interface
  publication-title: Neurosci. Lett.
– volume: 8
  start-page: 036020
  year: 2011
  ident: bib24
  article-title: SSVEP-based Bremen–BCI interface-boosting information transfer rates
  publication-title: J. Neural Eng.
– volume: 27
  start-page: 61
  year: 2006
  end-page: 71
  ident: bib13
  article-title: A novel multiple frequency stimulation method for steady state VEP based brain computer interfaces
  publication-title: Physiol. Meas.
– volume: 195
  start-page: 270
  year: 2011
  end-page: 281
  ident: bib18
  article-title: Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis
  publication-title: J. Neurosci. Methods
– reference: Hz). In: Proceedings of 15th International Conference on Advances in Neuro-information Processing—Volume Part I, pp. 400–407.
– volume: 42
  start-page: 321
  year: 2006
  end-page: 322
  ident: bib12
  article-title: Alternate half-field stimulation technique for SSVEP-based brain–computer interfaces
  publication-title: Electron. Lett.
– reference: Wang, Y., Zhang, Z., Gao, X., Gao, S., 2004. Lead selection for SSVEP-based brain–computer interface. In: Proceedings of 26th International Conference on IEEE EMBS, pp. 4507–4510.
– volume: 46
  start-page: 1426
  year: 2005
  end-page: 1441
  ident: bib5
  article-title: Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America working group
  publication-title: Epilepsia
– volume: 7
  start-page: e29519
  year: 2012
  ident: bib31
  article-title: Multiple frequencies sequential coding for SSVEP-based brain–computer interface
  publication-title: PLOS One
– volume: 469
  start-page: 34
  year: 2010
  end-page: 38
  ident: bib1
  article-title: Optimization of SSVEP brain responses with application to eight-command brain–computer interface
  publication-title: Neurosci. Lett.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bib29
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– reference: Gao, X., Cheng, M., Xu, D., Gao, S., 2000. Characteristics of steady-state visual evoked potential induced by multi-frequency stimulus. In: Proceedings of IEEE/EMBS Asia-Pacific Conference on Biomedical Engineering.
– volume: 49
  start-page: 1181
  year: 2002
  end-page: 1186
  ident: bib4
  article-title: Design and implementation of a brain–computer interface with high transfer rates
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 227
  year: 2000
  end-page: 232
  ident: bib16
  article-title: A binary spelling interface with random errors
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 37
  start-page: 539
  year: 2007
  end-page: 550
  ident: bib3
  article-title: The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects
  publication-title: Neuroimage
– volume: 11
  start-page: 449
  year: 2010
  end-page: 455
  ident: bib20
  article-title: A brain–computer interface for long-term independent home use
  publication-title: Amyotroph. Lateral Scler.
– volume: 179
  start-page: 150
  year: 2009
  end-page: 156
  ident: bib8
  article-title: Neurofeedback-based motor imagery training for brain–computer interface (BCI)
  publication-title: J. Neurosci. Methods
– reference: Vialatte, F.-B., Maurice, M., Dauwels, J., Cichocki, A., 2009. Steady state visual evoked potentials in the delta range (0.5–5
– reference: Yan, Z., Gao, X., Bin, G., Hong, B., Gao, S., 2009. A half-field stimulation pattern for SSVEP-based brain–computer interface. In: Proceedings of 31st International Conference on IEEE EMBS, pp. 6461–6464.
– reference: Kronegg, J., Voloshynovskiy, S., Pun, T., 2005. Analysis of bit-rate definitions for brain–computer interfaces. In: Proceedings of 2005 International Conference on Human–Computer Interfaction.
– volume: 6
  start-page: 326
  year: 1998
  end-page: 333
  ident: bib28
  article-title: EEG-based communication: improved accuracy by response verification
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 203
  start-page: 361
  year: 2012
  ident: 10.1016/j.brainres.2013.03.050_bib19
  article-title: Evaluation of the performances of different P300 based brain–computer interfaces by means of the efficiency metric
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.10.010
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.brainres.2013.03.050_bib32
  article-title: A survey of stimulation methods used in SSVEP-based BCIs
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2010/702357
– volume: 469
  start-page: 34
  year: 2010
  ident: 10.1016/j.brainres.2013.03.050_bib1
  article-title: Optimization of SSVEP brain responses with application to eight-command brain–computer interface
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.11.039
– volume: 42
  start-page: 321
  year: 2006
  ident: 10.1016/j.brainres.2013.03.050_bib12
  article-title: Alternate half-field stimulation technique for SSVEP-based brain–computer interfaces
  publication-title: Electron. Lett.
  doi: 10.1049/el:20060171
– volume: 37
  start-page: 539
  year: 2007
  ident: 10.1016/j.brainres.2013.03.050_bib3
  article-title: The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.051
– ident: 10.1016/j.brainres.2013.03.050_bib22
  doi: 10.1007/978-3-642-02490-0_49
– volume: 49
  start-page: 1181
  year: 2002
  ident: 10.1016/j.brainres.2013.03.050_bib4
  article-title: Design and implementation of a brain–computer interface with high transfer rates
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.803536
– volume: 11
  start-page: 449
  year: 2010
  ident: 10.1016/j.brainres.2013.03.050_bib20
  article-title: A brain–computer interface for long-term independent home use
  publication-title: Amyotroph. Lateral Scler.
  doi: 10.3109/17482961003777470
– ident: 10.1016/j.brainres.2013.03.050_bib25
– volume: 27
  start-page: 61
  year: 2006
  ident: 10.1016/j.brainres.2013.03.050_bib13
  article-title: A novel multiple frequency stimulation method for steady state VEP based brain computer interfaces
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/27/1/006
– volume: 8
  start-page: 227
  year: 2000
  ident: 10.1016/j.brainres.2013.03.050_bib16
  article-title: A binary spelling interface with random errors
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.847824
– volume: 483
  start-page: 28
  year: 2010
  ident: 10.1016/j.brainres.2013.03.050_bib21
  article-title: Dual-frequency steady-state visual evoked potential for brain computer interface
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2010.07.043
– ident: 10.1016/j.brainres.2013.03.050_bib30
  doi: 10.1109/IEMBS.2009.5333544
– ident: 10.1016/j.brainres.2013.03.050_bib6
– ident: 10.1016/j.brainres.2013.03.050_bib10
– volume: 113
  start-page: 767
  year: 2002
  ident: 10.1016/j.brainres.2013.03.050_bib29
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 31
  start-page: 153
  year: 2006
  ident: 10.1016/j.brainres.2013.03.050_bib17
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 167
  start-page: 115
  year: 2008
  ident: 10.1016/j.brainres.2013.03.050_bib7
  article-title: An efficient P300-based brain–computer interface for disabled subjects
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.005
– volume: 7
  start-page: e29519
  year: 2012
  ident: 10.1016/j.brainres.2013.03.050_bib31
  article-title: Multiple frequencies sequential coding for SSVEP-based brain–computer interface
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0029519
– volume: 90
  start-page: 418
  year: 2010
  ident: 10.1016/j.brainres.2013.03.050_bib23
  article-title: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2009.11.005
– volume: 58
  start-page: 200
  year: 2011
  ident: 10.1016/j.brainres.2013.03.050_bib9
  article-title: Frequency and phase mixed coding in SSVEP-based brain–computer interface
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2068571
– volume: 58
  start-page: 1781
  year: 2011
  ident: 10.1016/j.brainres.2013.03.050_bib15
  article-title: An asynchronous P300 BCI with SSVEP-based control state detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2116018
– volume: 6
  start-page: 326
  year: 1998
  ident: 10.1016/j.brainres.2013.03.050_bib28
  article-title: EEG-based communication: improved accuracy by response verification
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.712231
– volume: 46
  start-page: 1426
  year: 2005
  ident: 10.1016/j.brainres.2013.03.050_bib5
  article-title: Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America working group
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2005.31405.x
– volume: 195
  start-page: 270
  year: 2011
  ident: 10.1016/j.brainres.2013.03.050_bib18
  article-title: Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.11.016
– volume: 8
  start-page: 036020
  year: 2011
  ident: 10.1016/j.brainres.2013.03.050_bib24
  article-title: SSVEP-based Bremen–BCI interface-boosting information transfer rates
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036020
– volume: 398
  start-page: 297
  year: 1999
  ident: 10.1016/j.brainres.2013.03.050_bib2
  article-title: A spelling device for the paralysed
  publication-title: Nature
  doi: 10.1038/18581
– volume: 179
  start-page: 150
  year: 2009
  ident: 10.1016/j.brainres.2013.03.050_bib8
  article-title: Neurofeedback-based motor imagery training for brain–computer interface (BCI)
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.01.015
– ident: 10.1016/j.brainres.2013.03.050_bib26
SSID ssj0003390
Score 2.3844805
Snippet In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies...
AbstractIn the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 66
SubjectTerms Adult
Behavioral psychophysiology
Biological and medical sciences
brain
Brain-Computer Interfaces
Brain-Computer Interfaces - psychology
Brain–computer interface (BCI)
Cell Phone
Dual-frequency stimulation
Electroencephalography
Electroencephalography (EEG)
Electroencephalography - methods
Electrophysiology
evoked potentials
Evoked Potentials, Visual
Evoked Potentials, Visual - physiology
Female
Fundamental and applied biological sciences. Psychology
Humans
information exchange
Male
methods
Neurology
Pattern reversal visual stimuli
Photic Stimulation
Photic Stimulation - methods
physiology
psychology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Steady-state visual evoked potential (SSVEP)
Young Adult
Title A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain–computer interface (BCI)
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006899313004903
https://www.clinicalkey.es/playcontent/1-s2.0-S0006899313004903
https://dx.doi.org/10.1016/j.brainres.2013.03.050
https://www.ncbi.nlm.nih.gov/pubmed/23587933
https://www.proquest.com/docview/1364708088
https://www.proquest.com/docview/1663650785
Volume 1515
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKuXBBhQINhZWREIKDu0kcx85xWbXa8qgqlkW9WXZiV1vRpNpskXpB_AFO_EN-CTN5bKl4CqRIK0WZTWKPZ75xZuYj5HFmQhu6zDGXOM4SsHgsA6TMuLdCKK9CLrE4-fVBOpklL47E0RoZ97UwmFbZ2f7WpjfWujsz7EZzeDafY41vmEK0wPGDTJI1HT-TRGL__J2Pl2kenLf7LBg549XfVQmf7FikYYCwFlO8eNPsFOvvf-6grnlTYeakqWHwfMt68WtY2rinvQ1ys8OVdNQ--i2y5srbZHNUQkx9ekGf0CbTs9lC3ySfRxTANMUqLOYXbS71BYW1ftpxedGWV5ouKzovEVbWjgJQpC19CK08_TCvQbqTmVNAvrRJTWQ5onE6nb7bPWToIQvavP3XT1_yjj-CYoeKhTe5o0-fj_ef3SGzvd234wnraBlYnvJoyZy1PDLcOl-EgCbiIhfKFI7b1GY-y51MrUilhcjXwBLMHQBSJ1KnbJoqJyPP75L1sirdFqFceRsVIk5lISFOzGwoFChVqJJEGGlUQEQ_FzrvepYjdcZ73Senneh-DjXOoQ7hEGFAhiu5s7Zrxx8lZD_Vuq9JBSuqwbH8m6SrO2NQ60jXsQ71DwobkGwleUXn_-quW6CP2hyDK9CzaYwbVwiX4Y8DMriipKsRwGaQ2HAwII96rdVgTPALkSlddQ5PimwCEEMo9ZtrAKMCrJdKBOReq_KXd-BCgcHn9__jzbbJjbilHGGRfEDWl4tz9xCA39IOmpU9INdH4zevDvF3_-Xk4BvwIVnY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOcAFFQo0FIqREIKDu0kcx85xWbXaQlshbRf1ZtmJjVLRbLXZIvWC-AOc-If8Emby2FLxFEg5RZk87PHMN87MfIQ8zUxoQ5c55hLHWQIWj2WAlBn3VgjlVcglFicfHKbjafLqWByvkFFfC4NplZ3tb216Y627M4NuNAdnZYk1vmEK0QLHHzJJhh0_ryeCS1Tt7Y-XeR6ctxstGDrj5d-VCZ9sW-RhgLgWc7x40-0UC_B_7qGueTPD1ElTw-j5lvbi17i08U-7a-RWByzpsH3322TFVXfI-rCCoPr0gj6jTapns4e-Tj4PKaBpimVYzM_bZOoLCov9tCPzoi2xNF3MaFkhrqwdBaRIW_4QOvP0Q1mDdCdTUoC-tMlNZDnCcTqZvN15w9BFFrT5-q-fvuQdgQTFFhVzb3JHn78c7b24S6a7O0ejMet4GVie8mjBnLU8Mtw6X4QAJ-IiF8oUjtvUZj7LnUytSKWF0NfAGswdIFInUqdsmionI8_vkdVqVrkNQrnyNipEnMpCQqCY2VAo0KpQJYkw0qiAiH4udN41LUfujPe6z0470f0capxDHcIhwoAMlnJnbduOP0rIfqp1X5QKZlSDZ_k3SVd31qDWka5jHeofNDYg2VLyitL_1VM3QB-1eQe-QE8nMe5cIV6GGwdk64qSLkcAu0Fix8GAPOm1VoM1wV9EpnKzc3hTpBOAIEKp31wDIBVwvVQiIPdblb98AhcKLD5_8B9f9pjcGB8d7Ov9vcPXm-Rm3PKPsEg-JKuL-bl7BChwYbeaVf4NpipZ2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+dual-frequency+stimulation+method+to+increase+the+number+of+visual+stimuli+for+multi-class+SSVEP-based+brain%E2%80%95computer+interface+%28BCI%29&rft.jtitle=Brain+research&rft.au=HWANG%2C+Han-Jeong&rft.au=DONG+HWAN+KIM&rft.au=HAN%2C+Chang-Hee&rft.au=IM%2C+Chang-Hwan&rft.date=2013-06-17&rft.pub=Elsevier&rft.issn=0006-8993&rft.volume=1515&rft.spage=66&rft.epage=77&rft_id=info:doi/10.1016%2Fj.brainres.2013.03.050&rft.externalDBID=n%2Fa&rft.externalDocID=27449559
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2FS0006899313X0023X%2Fcov150h.gif