Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow
•3D velocity selective inversion based arterial spin labeling (VSI-ASL) achieved high reliability during the test-retest CBF measurement for detecting between-subject variations among healthy subjects using absolute CBF.•3D VSI-ASL achieved high reliability during the test-retest CBF measurement for...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 271; p. 120039 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2023
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •3D velocity selective inversion based arterial spin labeling (VSI-ASL) achieved high reliability during the test-retest CBF measurement for detecting between-subject variations among healthy subjects using absolute CBF.•3D VSI-ASL achieved high reliability during the test-retest CBF measurement for detecting between-region variations among healthy subjects using relative CBF.•Physiology parameters partially explained the variability of CBF across subjects.
Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4 ± 2.0%) over within-subject CoV (within-session: 3.8 ± 1.1%; between-session: 4.9 ± 0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4 ± 3.0%) over within-region CoV (within-session: 2.3 ± 0.9%; between-session: 3.3 ± 1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO2, and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility. |
---|---|
AbstractList | Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4 ± 2.0%) over within-subject CoV (within-session: 3.8 ± 1.1%; between-session: 4.9 ± 0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4 ± 3.0%) over within-region CoV (within-session: 2.3 ± 0.9%; between-session: 3.3 ± 1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO 2, and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility. Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4 ± 2.0%) over within-subject CoV (within-session: 3.8 ± 1.1%; between-session: 4.9 ± 0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4 ± 3.0%) over within-region CoV (within-session: 2.3 ± 0.9%; between-session: 3.3 ± 1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO2, and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility.Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4 ± 2.0%) over within-subject CoV (within-session: 3.8 ± 1.1%; between-session: 4.9 ± 0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4 ± 3.0%) over within-region CoV (within-session: 2.3 ± 0.9%; between-session: 3.3 ± 1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO2, and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility. Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4 ± 2.0%) over within-subject CoV (within-session: 3.8 ± 1.1%; between-session: 4.9 ± 0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4 ± 3.0%) over within-region CoV (within-session: 2.3 ± 0.9%; between-session: 3.3 ± 1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO2, and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility. Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4±2.0%) over within-subject CoV (within-session: 3.8±1.1%; between-session: 4.9±0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4±3.0%) over within-region CoV (within-session: 2.3±0.9%; between-session: 3.3±1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO 2 , and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility. •3D velocity selective inversion based arterial spin labeling (VSI-ASL) achieved high reliability during the test-retest CBF measurement for detecting between-subject variations among healthy subjects using absolute CBF.•3D VSI-ASL achieved high reliability during the test-retest CBF measurement for detecting between-region variations among healthy subjects using relative CBF.•Physiology parameters partially explained the variability of CBF across subjects. Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4 ± 2.0%) over within-subject CoV (within-session: 3.8 ± 1.1%; between-session: 4.9 ± 0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4 ± 3.0%) over within-region CoV (within-session: 2.3 ± 0.9%; between-session: 3.3 ± 1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO2, and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility. Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4 ± 2.0%) over within-subject CoV (within-session: 3.8 ± 1.1%; between-session: 4.9 ± 0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4 ± 3.0%) over within-region CoV (within-session: 2.3 ± 0.9%; between-session: 3.3 ± 1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO , and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility. |
ArticleNumber | 120039 |
Author | Zhu, Dan Qin, Qin Xu, Feng Albert, Marilyn S. Hillis, Argye E. Lin, Doris D.M. Bakker, Arnold Soldan, Anja Liu, Dapeng |
AuthorAffiliation | d Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21287, USA b F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA c Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA a The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA |
AuthorAffiliation_xml | – name: a The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA – name: b F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA – name: c Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA – name: d Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21287, USA |
Author_xml | – sequence: 1 givenname: Feng surname: Xu fullname: Xu, Feng email: feng.xu@jhu.edu organization: The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 2 givenname: Dapeng orcidid: 0000-0002-4432-3202 surname: Liu fullname: Liu, Dapeng organization: The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 3 givenname: Dan orcidid: 0000-0002-0940-1519 surname: Zhu fullname: Zhu, Dan organization: The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 4 givenname: Argye E. surname: Hillis fullname: Hillis, Argye E. organization: Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 5 givenname: Arnold surname: Bakker fullname: Bakker, Arnold organization: Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21287, USA – sequence: 6 givenname: Anja orcidid: 0000-0002-6193-0418 surname: Soldan fullname: Soldan, Anja organization: Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 7 givenname: Marilyn S. surname: Albert fullname: Albert, Marilyn S. organization: Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 8 givenname: Doris D.M. orcidid: 0000-0002-6001-2383 surname: Lin fullname: Lin, Doris D.M. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 9 givenname: Qin orcidid: 0000-0002-6432-2944 surname: Qin fullname: Qin, Qin organization: The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36931331$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuP0zAUhSM0iHnAX0CR2LBJ8SOJ4w2v4TXSSGyGteXY18XFtYudFnXDb-d2OgNMV105ds79fH3POa9OYopQVTUlM0po_2oxi7DOyS_1HGaMMD6jjBAuH1VnlMiukZ1gJ7vvjjcDpfK0Oi9lQQiRtB2eVKe8l5xyTs-q3zdQpibDhEudIXg9-uCnbZ1czT_UGwjJ4LYpEMBMfgO1zhNkr0NdVj7WQY9YFOe1S7m2iEER7mLKS5RsNConn2LZ8QxkGDMejyElW7uQfj2tHjsdCjy7Wy-qb58-3lx-aa6_fr66fHfdmJ7TqQEmnaSC9WyQRkjdWmaAE97z1vBO9M44ED0dBe9FazXT0rjBjMa1UjvbSX5RXe25NumFWmWcXN6qpL26PUh5rvBd3gRQwuphHGFkrCct13K0rieGETto2xLaIevNnrVaj0uwBuKEj3oAffgn-u9qnjYKresI6xgSXt4Rcvq5xsmrpS8GQtAR0rooJiTlgklBUfriQLpI6xxxVjsVl1wQsQM-_7-lv73c-4yC13uByamUDE6hq7fOYIc-YGu77nq1UP-CpXbBUvtgIWA4ANzfcUTp-30poMEbD1kV4yEasD5jXNABfwzk7QHEYOy80eEHbI9D_AHp3AcW |
CitedBy_id | crossref_primary_10_3390_brainsci14020126 crossref_primary_10_1002_mrm_30085 crossref_primary_10_1162_imag_a_00506 crossref_primary_10_1002_mrm_30166 crossref_primary_10_1002_mrm_30134 crossref_primary_10_1016_j_pscychresns_2023_111720 crossref_primary_10_1016_j_neuroimage_2025_121095 crossref_primary_10_1002_mrm_29695 crossref_primary_10_1002_mrm_29681 crossref_primary_10_1016_j_bbe_2024_04_002 crossref_primary_10_1002_mrm_30439 |
Cites_doi | 10.1038/sj.jcbfm.9600076 10.1002/mrm.27668 10.1002/mrm.25870 10.1016/j.nicl.2022.102950 10.1002/mrm.20906 10.3174/ajnr.A6856 10.1007/s10334-007-0073-3 10.1002/mrm.28603 10.1161/HYPERTENSIONAHA.118.11233 10.1002/mrm.29300 10.1016/j.neuroimage.2021.118236 10.1016/j.mri.2010.03.037 10.1016/j.neurobiolaging.2014.12.019 10.1007/s12975-021-00983-5 10.1002/mrm.25764 10.1002/mrm.25197 10.1177/0271678X19867154 10.1002/mrm.28805 10.1038/jcbfm.2013.17 10.1073/pnas.98.2.676 10.1002/mrm.27160 10.1037/0033-2909.86.2.420 10.1148/radiol.2272012051 10.1177/0271678X16636393 10.1002/mrm.26325 10.1002/jmri.22345 10.1016/j.nicl.2021.102853 10.1002/mrm.28187 10.1016/j.neuroimage.2015.03.043 10.1016/j.neuroimage.2011.02.080 10.1002/nbm.1462 10.1002/uog.5256 10.1152/japplphysiol.00939.2020 10.1109/MCSE.2016.93 10.1037/1082-989X.1.1.30 10.1038/jcbfm.2011.10 10.1002/mrm.29371 10.1002/mrm.28815 10.1002/mrm.28310 10.1002/hbm.23846 10.1016/j.mri.2017.09.004 10.1002/mrm.28253 10.1161/HYPERTENSIONAHA.115.05799 10.1002/jmri.24175 10.1016/j.neuroimage.2010.08.043 10.1038/jcbfm.2010.13 10.1002/mrm.21994 10.3389/fnins.2021.627627 10.1002/mrm.26864 10.1002/mrm.28622 10.1002/jmri.27638 10.1002/mrm.26010 10.1002/mrm.24295 10.1016/j.mri.2020.07.010 10.1002/mrm.20023 10.1002/jmri.10416 10.1002/mrm.27461 10.1016/j.mri.2010.05.002 10.1002/jmri.24246 10.1016/j.comppsych.2006.11.001 10.1038/jcbfm.2014.92 10.1002/mrm.28572 10.1002/mrm.10140 10.1148/radiol.12111509 10.1002/mrm.10510 10.1016/j.neuroimage.2014.02.011 10.1016/j.neuroimage.2009.07.068 10.1093/cercor/bhq224 10.3174/ajnr.A1454 10.1093/cercor/bhq090 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier Inc. Copyright Elsevier Limited May 1, 2023 |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Inc. – notice: Copyright Elsevier Limited May 1, 2023 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM DOA |
DOI | 10.1016/j.neuroimage.2023.120039 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central (subscription) Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 120039 |
ExternalDocumentID | oai_doaj_org_article_7da8bbeb226043a9bdf60c20d8ad4015 PMC10150252 36931331 10_1016_j_neuroimage_2023_120039 S1053811923001854 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: P41 EB031771 – fundername: NHLBI NIH HHS grantid: R01 HL144751 – fundername: NHLBI NIH HHS grantid: R01 HL138182 – fundername: NICHD NIH HHS grantid: P50 HD103538 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SEW SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c631t-e29f91726289c79a4d2ce303634c3576fcfe761b73674da2a9cf8cbcf49afd593 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:31:44 EDT 2025 Thu Aug 21 18:37:07 EDT 2025 Tue Aug 05 10:09:22 EDT 2025 Wed Aug 13 06:52:19 EDT 2025 Wed Feb 19 02:24:24 EST 2025 Thu Apr 24 23:07:40 EDT 2025 Tue Aug 05 12:02:43 EDT 2025 Fri Feb 23 02:36:44 EST 2024 Tue Aug 26 17:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Between-subject variation Test-retest reliability Cerebral blood flow Coefficients of variation Intraclass correlation coefficients Velocity selective arterial spin labeling |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c631t-e29f91726289c79a4d2ce303634c3576fcfe761b73674da2a9cf8cbcf49afd593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6432-2944 0000-0002-6193-0418 0000-0002-0940-1519 0000-0002-4432-3202 0000-0002-6001-2383 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811923001854 |
PMID | 36931331 |
PQID | 2793937072 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7da8bbeb226043a9bdf60c20d8ad4015 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10150252 proquest_miscellaneous_2791372971 proquest_journals_2793937072 pubmed_primary_36931331 crossref_citationtrail_10_1016_j_neuroimage_2023_120039 crossref_primary_10_1016_j_neuroimage_2023_120039 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2023_120039 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2023_120039 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Shin, Qin (bib0055) 2018; 80 Kilroy, Apostolova, Liu, Yan, Ringman, Wang (bib0031) 2014; 39 Qin, Qu, Li, Liu, Shin, Zhao, Lin, van Zijl, Wen (bib0050) 2019; 81 Zhang, Herzog, Mauler, Filss, Okell, Kops, Tellmann, Fischer, Brocke, Sturm, Coenen, Shah (bib0070) 2014; 34 Zhu, Li, Liu, Liu, Pei, Shin, Sedaghat, Qin (bib0071) 2020; 84 Lin, Qu, Zuo, Fan, You, Feng (bib0037) 2020; 73 Alsop, Detre, Golay, Günther, Hendrikse, Hernandez-Garcia, Lu, MacIntosh, Parkes, Smits, van Osch, Wang, Wong, Zaharchuk (bib0002) 2015; 73 Wu, Lou, Wu, Ma (bib0063) 2014; 39 Chappell, McConnell, Golay, Günther, Hernandez-Tamames, van Osch, Asllani (bib0007) 2021; 238 Xu, Zhu, Fan, Lu, Liu, Li, Qin (bib0067) 2021; 86 Jiang, Kim, Chodkowski, Donahue, Pekar, Van Zijl, Albert (bib0030) 2010; 28 Lu, Xu, Rodrigue, Kennedy, Cheng, Flicker, Hebrank, Uh, Park (bib0042) 2011; 21 Mutsaerts, van Osch, Zelaya, Wang, Nordhøy, Wang, Wastling, Fernandez-Seara, Petersen, Pizzini, Fallatah, Hendrikse, Geier, Günther, Golay, Nederveen, Bjørnerud, Groote (bib0045) 2015; 113 Qin, van Zijl (bib0052) 2016; 76 Aslan, Lu (bib0003) 2010; 28 Liu, Xu, Li, van Zijl, Lin, Qin (bib0040) 2020; 84 Xu, Rowley, Wu, Alsop, Shankaranarayanan, Dowling, Christian, Oakes, Johnson (bib0068) 2010; 23 Heijtel, Mutsaerts, Bakker, Schober, Stevens, Petersen, van Berckel, Majoie, Booij, van Osch, Vanbavel, Boellaard, Lammertsma, Nederveen (bib0020) 2014; 92 Hernandez-Garcia, Nielsen, Noll (bib0024) 2019; 81 Baas, Petr, Kuijer, Nederveen, Mutsaerts, van de Ven (bib0004) 2021; 42 Giardino, Friedman, Dager (bib0017) 2007; 48 Eng (bib0010) 2003; 227 Almeida, Greenberg, Lu, Chase, Fournier, Cooper, Deckersbach, Adams, Carmody, Fava, Kurian, McGrath, McInnis, Oquendo, Parsey, Weissman, Trivedi, Phillips (bib0001) 2018; 45 Ibaraki, Shinohara, Nakamura, Miura, Kinoshita, Kinoshita (bib0025) 2010; 30 Petersen, Mouridsen, Golay (bib0047) 2010; 49 Salarian, Arash, 2016. Intraclass Correlation Coefficient (ICC) [WWW Document]. MATLAB Central File Exchange. URL McGraw, Wong (bib0043) 1996; 1 Ssali, Narciso, Hicks, Liu, Jesso, Richardson, Günther, Konstandin, Eickel, Prato, Anazodo, Finger, St Lawrence (bib0059) 2022; 33 Binnie, Pauls, Benjamin, Dhillon, Betteridge, Clarke, Ghatala, Hainsworth, Howe, Khan, Kruuse, Madigan, Moynihan, Patel, Pereira, Rostrup, Shtaya, Spilling, Trippier, Williams, Isaacs, Barrick, Hainsworth (bib0006) 2022; 13 Ito, Ibaraki, Kanno, Fukuda, Miura (bib0026) 2005; 25 Landes, Javed, Jao, Qin, Nayak (bib0032) 2020; 84 Liu, Xu, Lu (bib0041) 2013; 69 Hermes, Hagemann, Britz, Lieser, Rock, Naumann, Walter (bib0023) 2007; 20 Jain, Duda, Avants, Giannetta, Xie, Roberts, Detre, Hurt, Wehrli, Wang (bib0027) 2012; 263 Mori, Wu, Ceritoglu, Li, Kolasny, Vaillant, Faria, Oishi, Miller (bib0044) 2016; 18 Qin, Alsop, Bolar, Hernandez-Garcia, Meakin, Liu, Nayak, Schmid, van Osch, Wong, Woods, Zaharchuk, Zhao, Zun, Guo (bib0049) 2022; 88 Wu, Jiang, Yang, Lien (bib0064) 2011; 56 Yen, Field, Martin, Ari, Burdette, Moody, Takahashi (bib0069) 2002; 47 Shrout, Fleiss (bib0057) 1979; 86 Floyd, Ratcliffe, Wang, Resch, Detre (bib0012) 2003; 18 van der Veen, Muller, Vincken, Westerink, Mali, van der Graaf, Geerlings (bib0060) 2015; 36 Xu, Li, Liu, Hua, Strouse, Pekar, Lu, van Zijl, Qin (bib0066) 2018; 39 Henriksen, Kruuse, Olesen, Jensen, Larsson, Birk, Hansen, Wienecke, Rostrup (bib0022) 2013; 33 Gevers, van Osch, Bokkers, Kies, Teeuwisse, Majoie, Hendrikse, Nederveen (bib0016) 2011; 31 Shin, Qin, Park, Crawford, Rajagopalan (bib0056) 2016; 76 (accessed 9.13.22). Wang, Saykin, Pfeuffer, Lin, Mosier, Shen, Kim, Hutchins (bib0061) 2011; 54 Bartlett, Frost (bib0005) 2008; 31 Glodzik, Rusinek, Tsui, Pirraglia, Kim, Deshpande, Li, Storey, Randall, Chen, Osorio, Butler, Tanzi, McQuillan, Harvey, Williams, Ogedegbe, Babb, de Leon (bib0018) 2019; 73 Jann, Shao, Ma, Cen, D'Orazio, Barisano, Yan, Casey, Lamas, Staffaroni, Kramer, Ringman, Wang (bib0028) 2021; 15 Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib0053) 2001; 98 Franklin, Bones, Harteveld, Hirschler, van Stralen, Qin, de Boer, Hoogduin, Bos, van Osch, Schmid (bib0014) 2021; 85 Foster-Dingley, Moonen, de Craen, de Ruijter, van der Mast, van der Grond (bib0013) 2015; 66 Li, Liu, Lu, Strouse, van Zijl, Qin (bib0034) 2017; 77 Qin, Shin, Schär, Guo, Chen, Qiao (bib0051) 2016; 75 Li, Xu, Schär, Liu, Shin, Zhao, van Zijl, Wasserman, Qiao, Qin (bib0035) 2018; 79 Wong, Cronin, Wu, Inglis, Frank, Liu (bib0062) 2006; 55 Fan, Jahanian, Holdsworth, Zaharchuk (bib0011) 2016; 36 Xu, Ge, Lu (bib0065) 2009; 62 Duhamel, de Bazelaire, Alsop (bib0009) 2003; 50 Li, Liu, van Zijl, Qin (bib0033) 2021; 86 Ssali, Anazodo, Narciso, Liu, Jesso, Richardson, Günther, Konstandin, Eickel, Prato, Finger, St Lawrence (bib0058) 2022; 35 Pfefferbaum, Chanraud, Pitel, Müller-Oehring, Shankaranarayanan, Alsop, Rohlfing, Sullivan (bib0048) 2011; 21 Liu, Jiang, Tekes, Kulikowicz, Martin, Lee, Liu, Qin (bib0038) 2021; 54 Gevers, Majoie, van den Tweel, Lavini, Nederveen (bib0015) 2009; 30 Jiang, Lin, Liu, Sur, Xu, Hazel, Pottanat, Yasar, Rosenberg, Albert, Lu (bib0029) 2020; 40 Li, Xu, Zhu, van Zijl, Qin (bib0036) 2022; 88 Chen, Wang, Detre (bib0008) 2011; 33 Liu, Li, Xu, Zhu, Shin, Qin (bib0039) 2021; 85 Henriksen, Gjedde, Vang, Law, Aanerud, Rostrup (bib0021) 2021; 130 Parkes, Rashid, Chard, Tofts (bib0046) 2004; 51 Guo, Das, Hernandez-Garcia (bib0019) 2021; 85 Zhu (10.1016/j.neuroimage.2023.120039_bib0071) 2020; 84 Shrout (10.1016/j.neuroimage.2023.120039_bib0057) 1979; 86 Parkes (10.1016/j.neuroimage.2023.120039_bib0046) 2004; 51 Alsop (10.1016/j.neuroimage.2023.120039_bib0002) 2015; 73 Mori (10.1016/j.neuroimage.2023.120039_bib0044) 2016; 18 Liu (10.1016/j.neuroimage.2023.120039_bib0038) 2021; 54 Giardino (10.1016/j.neuroimage.2023.120039_bib0017) 2007; 48 Lin (10.1016/j.neuroimage.2023.120039_bib0037) 2020; 73 Lu (10.1016/j.neuroimage.2023.120039_bib0042) 2011; 21 Petersen (10.1016/j.neuroimage.2023.120039_bib0047) 2010; 49 Gevers (10.1016/j.neuroimage.2023.120039_bib0016) 2011; 31 Bartlett (10.1016/j.neuroimage.2023.120039_bib0005) 2008; 31 Zhang (10.1016/j.neuroimage.2023.120039_bib0070) 2014; 34 Qin (10.1016/j.neuroimage.2023.120039_bib0051) 2016; 75 Jiang (10.1016/j.neuroimage.2023.120039_bib0029) 2020; 40 Floyd (10.1016/j.neuroimage.2023.120039_bib0012) 2003; 18 Hermes (10.1016/j.neuroimage.2023.120039_bib0023) 2007; 20 Hernandez-Garcia (10.1016/j.neuroimage.2023.120039_bib0024) 2019; 81 Henriksen (10.1016/j.neuroimage.2023.120039_bib0021) 2021; 130 Jain (10.1016/j.neuroimage.2023.120039_bib0027) 2012; 263 Franklin (10.1016/j.neuroimage.2023.120039_bib0014) 2021; 85 Fan (10.1016/j.neuroimage.2023.120039_bib0011) 2016; 36 Glodzik (10.1016/j.neuroimage.2023.120039_bib0018) 2019; 73 Henriksen (10.1016/j.neuroimage.2023.120039_bib0022) 2013; 33 Wu (10.1016/j.neuroimage.2023.120039_bib0063) 2014; 39 Shin (10.1016/j.neuroimage.2023.120039_bib0056) 2016; 76 Ssali (10.1016/j.neuroimage.2023.120039_bib0059) 2022; 33 Landes (10.1016/j.neuroimage.2023.120039_bib0032) 2020; 84 Li (10.1016/j.neuroimage.2023.120039_bib0035) 2018; 79 Foster-Dingley (10.1016/j.neuroimage.2023.120039_bib0013) 2015; 66 Ibaraki (10.1016/j.neuroimage.2023.120039_bib0025) 2010; 30 Kilroy (10.1016/j.neuroimage.2023.120039_bib0031) 2014; 39 Qin (10.1016/j.neuroimage.2023.120039_bib0052) 2016; 76 Liu (10.1016/j.neuroimage.2023.120039_bib0040) 2020; 84 Qin (10.1016/j.neuroimage.2023.120039_bib0050) 2019; 81 Yen (10.1016/j.neuroimage.2023.120039_bib0069) 2002; 47 Shin (10.1016/j.neuroimage.2023.120039_bib0055) 2018; 80 Ito (10.1016/j.neuroimage.2023.120039_bib0026) 2005; 25 Xu (10.1016/j.neuroimage.2023.120039_bib0068) 2010; 23 Xu (10.1016/j.neuroimage.2023.120039_bib0067) 2021; 86 Wang (10.1016/j.neuroimage.2023.120039_bib0061) 2011; 54 Liu (10.1016/j.neuroimage.2023.120039_bib0041) 2013; 69 Guo (10.1016/j.neuroimage.2023.120039_bib0019) 2021; 85 Pfefferbaum (10.1016/j.neuroimage.2023.120039_bib0048) 2011; 21 Liu (10.1016/j.neuroimage.2023.120039_bib0039) 2021; 85 Eng (10.1016/j.neuroimage.2023.120039_bib0010) 2003; 227 Gevers (10.1016/j.neuroimage.2023.120039_bib0015) 2009; 30 van der Veen (10.1016/j.neuroimage.2023.120039_bib0060) 2015; 36 Jiang (10.1016/j.neuroimage.2023.120039_bib0030) 2010; 28 Xu (10.1016/j.neuroimage.2023.120039_bib0066) 2018; 39 Chen (10.1016/j.neuroimage.2023.120039_bib0008) 2011; 33 Duhamel (10.1016/j.neuroimage.2023.120039_bib0009) 2003; 50 Binnie (10.1016/j.neuroimage.2023.120039_bib0006) 2022; 13 Chappell (10.1016/j.neuroimage.2023.120039_bib0007) 2021; 238 Wu (10.1016/j.neuroimage.2023.120039_bib0064) 2011; 56 Li (10.1016/j.neuroimage.2023.120039_bib0036) 2022; 88 Jann (10.1016/j.neuroimage.2023.120039_bib0028) 2021; 15 Baas (10.1016/j.neuroimage.2023.120039_bib0004) 2021; 42 Li (10.1016/j.neuroimage.2023.120039_bib0034) 2017; 77 Almeida (10.1016/j.neuroimage.2023.120039_bib0001) 2018; 45 Heijtel (10.1016/j.neuroimage.2023.120039_bib0020) 2014; 92 Li (10.1016/j.neuroimage.2023.120039_bib0033) 2021; 86 Raichle (10.1016/j.neuroimage.2023.120039_bib0053) 2001; 98 10.1016/j.neuroimage.2023.120039_bib0054 McGraw (10.1016/j.neuroimage.2023.120039_bib0043) 1996; 1 Mutsaerts (10.1016/j.neuroimage.2023.120039_bib0045) 2015; 113 Ssali (10.1016/j.neuroimage.2023.120039_bib0058) 2022; 35 Qin (10.1016/j.neuroimage.2023.120039_bib0049) 2022; 88 Wong (10.1016/j.neuroimage.2023.120039_bib0062) 2006; 55 Xu (10.1016/j.neuroimage.2023.120039_bib0065) 2009; 62 Aslan (10.1016/j.neuroimage.2023.120039_bib0003) 2010; 28 |
References_xml | – volume: 113 start-page: 143 year: 2015 end-page: 152 ident: bib0045 article-title: Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: implications for multi-center studies publication-title: Neuroimage – volume: 33 start-page: 940 year: 2011 end-page: 949 ident: bib0008 article-title: Test-retest reliability of arterial spin labeling with common labeling strategies publication-title: J. Magn. Reson. Imaging – volume: 75 start-page: 1232 year: 2016 end-page: 1241 ident: bib0051 article-title: Velocity-selective magnetization-prepared non-contrast-enhanced cerebral MR angiography at 3 Tesla: improved immunity to B0/B1 inhomogeneity publication-title: Magn. Reson. Med. – volume: 33 start-page: 787 year: 2013 end-page: 792 ident: bib0022 article-title: Sources of variability of resting cerebral blood flow in healthy subjects: a study using publication-title: J. Cereb. Blood Flow Metab. – volume: 54 start-page: 1188 year: 2011 end-page: 1195 ident: bib0061 article-title: Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T publication-title: Neuroimage – volume: 92 start-page: 182 year: 2014 end-page: 192 ident: bib0020 article-title: Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with publication-title: Neuroimage – volume: 21 start-page: 1426 year: 2011 end-page: 1434 ident: bib0042 article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan publication-title: Cereb. Cortex – volume: 35 year: 2022 ident: bib0058 article-title: Sensitivity of arterial spin labeling for characterization of longitudinal perfusion changes in frontotemporal dementia and related disorders publication-title: Neuroimage Clin. – volume: 39 start-page: 344 year: 2018 end-page: 353 ident: bib0066 article-title: Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses publication-title: Hum. Brain Mapp. – volume: 85 start-page: 2027 year: 2021 end-page: 2039 ident: bib0019 article-title: Comparison of velocity-selective arterial spin labeling schemes publication-title: Magn. Reson. Med. – volume: 15 year: 2021 ident: bib0028 article-title: Evaluation of Cerebral Blood Flow Measured by 3D PCASL as Biomarker of Vascular Cognitive Impairment and Dementia (VCID) in a Cohort of Elderly Latinx Subjects at Risk of Small Vessel Disease publication-title: Front. Neurosci. – volume: 130 start-page: 1836 year: 2021 end-page: 1847 ident: bib0021 article-title: Regional and interindividual relationships between cerebral perfusion and oxygen metabolism publication-title: J. Appl. Physiol. – volume: 263 start-page: 527 year: 2012 end-page: 536 ident: bib0027 article-title: Longitudinal reproducibility and accuracy of pseudo-continuous arterial spin-labeled perfusion MR imaging in typically developing children publication-title: Radiology – volume: 238 year: 2021 ident: bib0007 article-title: Partial volume correction in arterial spin labeling perfusion MRI: a method to disentangle anatomy from physiology or an analysis step too far? publication-title: Neuroimage – volume: 36 start-page: 842 year: 2016 end-page: 861 ident: bib0011 article-title: Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review publication-title: J. Cereb. Blood Flow Metab. – volume: 66 start-page: 954 year: 2015 end-page: 960 ident: bib0013 article-title: Blood pressure is not associated with cerebral blood flow in older persons publication-title: Hypertension – volume: 54 start-page: 1053 year: 2021 end-page: 1065 ident: bib0038 article-title: Multi-Parametric Evaluation of Cerebral Hemodynamics in Neonatal Piglets Using Non-Contrast-Enhanced Magnetic Resonance Imaging Methods publication-title: J. Magn. Reson. Imaging – volume: 34 start-page: 1373 year: 2014 end-page: 1380 ident: bib0070 article-title: Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging publication-title: J. Cereb. Blood Flow Metab. – volume: 73 start-page: 102 year: 2015 end-page: 116 ident: bib0002 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn. Reson. Med. – volume: 85 start-page: 2580 year: 2021 end-page: 2594 ident: bib0014 article-title: Multi-organ comparison of flow-based arterial spin labeling techniques: spatially non-selective labeling for cerebral and renal perfusion imaging publication-title: Magn. Reson. Med. – volume: 81 start-page: 3544 year: 2019 end-page: 3554 ident: bib0050 article-title: Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains publication-title: Magn. Reson. Med. – volume: 62 start-page: 141 year: 2009 end-page: 148 ident: bib0065 article-title: Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI publication-title: Magn. Reson. Med. – volume: 73 start-page: 197 year: 2019 end-page: 205 ident: bib0018 article-title: Different relationship between systolic blood pressure and cerebral perfusion in subjects with and without hypertension publication-title: Hypertension – volume: 80 start-page: 1997 year: 2018 end-page: 2005 ident: bib0055 article-title: Characterization and suppression of stripe artifact in velocity-selective magnetization-prepared unenhanced MR angiography publication-title: Magn. Reson. Med. – volume: 33 year: 2022 ident: bib0059 article-title: Concordance of regional hypoperfusion by pCASL MRI and 15O-water PET in frontotemporal dementia: is pCASL an efficacious alternative? publication-title: Neuroimage Clin. – volume: 55 start-page: 1334 year: 2006 end-page: 1341 ident: bib0062 article-title: Velocity-selective arterial spin labeling publication-title: Magn. Reson. Med. – volume: 48 start-page: 103 year: 2007 end-page: 112 ident: bib0017 article-title: Anxiety, respiration, and cerebral blood flow: implications for functional brain imaging publication-title: Compr. Psychiatry – volume: 23 start-page: 286 year: 2010 end-page: 293 ident: bib0068 article-title: Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease publication-title: NMR Biomed. – volume: 88 start-page: 1528 year: 2022 end-page: 1547 ident: bib0049 article-title: Velocity-selective arterial spin labeling perfusion MRI: a review of the state of the art and recommendations for clinical implementation publication-title: Magn. Reson. Med. – volume: 81 start-page: 1004 year: 2019 end-page: 1015 ident: bib0024 article-title: Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL publication-title: Magn. Reson. Med. – volume: 39 start-page: 931 year: 2014 end-page: 939 ident: bib0031 article-title: Reliability of two-dimensional and three-dimensional pseudo-continuous arterial spin labeling perfusion MRI in elderly populations: comparison with 15O-water positron emission tomography publication-title: J. Magn. Reson. Imaging – volume: 98 start-page: 676 year: 2001 end-page: 682 ident: bib0053 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 76 start-page: 466 year: 2016 end-page: 477 ident: bib0056 article-title: Identification and reduction of image artifacts in non-contrast-enhanced velocity-selective peripheral angiography at 3T publication-title: Magn. Reson. Med. – volume: 20 start-page: 103 year: 2007 end-page: 115 ident: bib0023 article-title: Reproducibility of continuous arterial spin labeling perfusion MRI after 7 weeks publication-title: MAGMA – volume: 73 start-page: 111 year: 2020 end-page: 117 ident: bib0037 article-title: Test-retest reliability and reproducibility of long-label pseudo-continuous arterial spin labeling publication-title: Magn. Reson. Imaging – volume: 30 start-page: 1296 year: 2010 end-page: 1305 ident: bib0025 article-title: Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans publication-title: J. Cereb. Blood Flow Metab. – volume: 79 start-page: 2014 year: 2018 end-page: 2023 ident: bib0035 article-title: Whole-brain arteriography and venography: using improved velocity-selective saturation pulse trains publication-title: Magn. Reson. Med. – volume: 77 start-page: 2296 year: 2017 end-page: 2302 ident: bib0034 article-title: Fast measurement of blood T1 in the human carotid artery at 3T: accuracy, precision, and reproducibility publication-title: Magn. Reson. Med. – volume: 84 start-page: 2512 year: 2020 end-page: 2522 ident: bib0040 article-title: Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition publication-title: Magn. Reson. Med. – volume: 50 start-page: 145 year: 2003 end-page: 153 ident: bib0009 article-title: Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain publication-title: Magn. Reson. Med. – volume: 69 start-page: 675 year: 2013 end-page: 681 ident: bib0041 article-title: Test-retest reproducibility of a rapid method to measure brain oxygen metabolism publication-title: Magn. Reson. Med. – volume: 86 start-page: 1420 year: 2021 end-page: 1433 ident: bib0033 article-title: Three-dimensional whole-brain mapping of cerebral blood volume and venous cerebral blood volume using Fourier transform-based velocity-selective pulse trains publication-title: Magn. Reson. Med. – volume: 39 start-page: 402 year: 2014 end-page: 409 ident: bib0063 article-title: Intra- and interscanner reliability and reproducibility of 3D whole-brain pseudo-continuous arterial spin-labeling MR perfusion at 3T publication-title: J. Magn. Reson. Imaging – volume: 18 start-page: 21 year: 2016 end-page: 35 ident: bib0044 article-title: MRICloud: delivering high-throughput MRI neuroinformatics as cloud-based software as a service publication-title: Comput. Sci. Eng. – volume: 86 start-page: 1360 year: 2021 end-page: 1368 ident: bib0067 article-title: Magnetic resonance angiography and perfusion mapping by arterial spin labeling using Fourier transform-based velocity-selective pulse trains: examination on a commercial perfusion phantom publication-title: Magn. Reson. Med. – volume: 85 start-page: 2723 year: 2021 end-page: 2734 ident: bib0039 article-title: Ensuring both velocity and spatial responses robust to B 0 /B 1 + field inhomogeneities for velocity-selective arterial spin labeling through dynamic phase-cycling publication-title: Magn. Reson. Med. – volume: 31 start-page: 466 year: 2008 end-page: 475 ident: bib0005 article-title: Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables publication-title: Ultrasound Obstet. Gynecol. – volume: 28 start-page: 1283 year: 2010 end-page: 1289 ident: bib0030 article-title: Reliability and reproducibility of perfusion MRI in cognitively normal subjects publication-title: Magn. Reson. Imaging – volume: 76 start-page: 1136 year: 2016 end-page: 1148 ident: bib0052 article-title: Velocity-selective-inversion prepared arterial spin labeling publication-title: Magn. Reson. Med. – volume: 13 start-page: 583 year: 2022 end-page: 594 ident: bib0006 article-title: Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease publication-title: Transl. Stroke Res. – volume: 1 start-page: 30 year: 1996 end-page: 46 ident: bib0043 article-title: Forming inferences about some intraclass correlation coefficients publication-title: Psychol. Method. – volume: 45 start-page: 26 year: 2018 end-page: 33 ident: bib0001 article-title: Test-retest reliability of cerebral blood flow in healthy individuals using arterial spin labeling: findings from the EMBARC study publication-title: Magn. Reson. Imaging – volume: 84 start-page: 1173 year: 2020 end-page: 1183 ident: bib0071 article-title: Non-contrast-enhanced abdominal MRA at 3 T using velocity-selective pulse trains publication-title: Magn. Reson. Med. – volume: 49 start-page: 104 year: 2010 end-page: 113 ident: bib0047 article-title: The QUASAR reproducibility study, Part II: results from a multi-center Arterial Spin Labeling test-retest study publication-title: Neuroimage – volume: 21 start-page: 233 year: 2011 end-page: 244 ident: bib0048 article-title: Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions publication-title: Cereb. Cortex – volume: 18 start-page: 649 year: 2003 end-page: 655 ident: bib0012 article-title: Precision of the CASL-perfusion MRI technique for the measurement of cerebral blood flow in whole brain and vascular territories publication-title: J. Magn. Reson. Imaging – volume: 30 start-page: 968 year: 2009 end-page: 971 ident: bib0015 article-title: Acquisition time and reproducibility of continuous arterial spin-labeling perfusion imaging at 3T publication-title: AJNR Am. J. Neuroradiol. – volume: 88 start-page: 1292 year: 2022 end-page: 1302 ident: bib0036 article-title: T2 -oximetry-based cerebral venous oxygenation mapping using Fourier-transform-based velocity-selective pulse trains publication-title: Magn. Reson. Med. – volume: 51 start-page: 736 year: 2004 end-page: 743 ident: bib0046 article-title: Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects publication-title: Magn. Reson. Med. – reference: Salarian, Arash, 2016. Intraclass Correlation Coefficient (ICC) [WWW Document]. MATLAB Central File Exchange. URL – reference: (accessed 9.13.22). – volume: 86 start-page: 420 year: 1979 end-page: 428 ident: bib0057 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. – volume: 28 start-page: 928 year: 2010 end-page: 935 ident: bib0003 article-title: On the sensitivity of ASL MRI in detecting regional differences in cerebral blood flow publication-title: Magn. Reson. Imaging – volume: 47 start-page: 921 year: 2002 end-page: 928 ident: bib0069 article-title: Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge publication-title: Magn. Reson. Med. – volume: 31 start-page: 1706 year: 2011 end-page: 1715 ident: bib0016 article-title: Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion publication-title: J. Cereb. Blood Flow Metab. – volume: 56 start-page: 1244 year: 2011 end-page: 1250 ident: bib0064 article-title: Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging–a normative study of reproducibility in the human brain publication-title: Neuroimage – volume: 84 start-page: 1909 year: 2020 end-page: 1918 ident: bib0032 article-title: Improved velocity-selective labeling pulses for myocardial ASL publication-title: Magn. Reson. Med. – volume: 42 start-page: 109 year: 2021 end-page: 115 ident: bib0004 article-title: Effects of acquisition parameter modifications and field strength on the reproducibility of brain perfusion measurements using arterial spin-labeling publication-title: AJNR Am. J. Neuroradiol. – volume: 25 start-page: 852 year: 2005 end-page: 857 ident: bib0026 article-title: Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography publication-title: J. Cereb. Blood Flow Metab. – volume: 36 start-page: 1417 year: 2015 end-page: 1423 ident: bib0060 article-title: Hemoglobin, hematocrit, and changes in cerebral blood flow: the second manifestations of ARTerial disease-magnetic resonance study publication-title: Neurobiol. Aging – volume: 227 start-page: 309 year: 2003 end-page: 313 ident: bib0010 article-title: Sample size estimation: how many individuals should be studied? publication-title: Radiology – volume: 40 start-page: 1492 year: 2020 end-page: 1500 ident: bib0029 article-title: Normal variations in brain oxygen extraction fraction are partly attributed to differences in end-tidal CO2 publication-title: J. Cereb. Blood Flow Metab. – volume: 25 start-page: 852 year: 2005 ident: 10.1016/j.neuroimage.2023.120039_bib0026 article-title: Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600076 – volume: 81 start-page: 3544 year: 2019 ident: 10.1016/j.neuroimage.2023.120039_bib0050 article-title: Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27668 – volume: 76 start-page: 466 year: 2016 ident: 10.1016/j.neuroimage.2023.120039_bib0056 article-title: Identification and reduction of image artifacts in non-contrast-enhanced velocity-selective peripheral angiography at 3T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25870 – volume: 33 year: 2022 ident: 10.1016/j.neuroimage.2023.120039_bib0059 article-title: Concordance of regional hypoperfusion by pCASL MRI and 15O-water PET in frontotemporal dementia: is pCASL an efficacious alternative? publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2022.102950 – volume: 55 start-page: 1334 year: 2006 ident: 10.1016/j.neuroimage.2023.120039_bib0062 article-title: Velocity-selective arterial spin labeling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20906 – volume: 42 start-page: 109 year: 2021 ident: 10.1016/j.neuroimage.2023.120039_bib0004 article-title: Effects of acquisition parameter modifications and field strength on the reproducibility of brain perfusion measurements using arterial spin-labeling publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A6856 – volume: 20 start-page: 103 year: 2007 ident: 10.1016/j.neuroimage.2023.120039_bib0023 article-title: Reproducibility of continuous arterial spin labeling perfusion MRI after 7 weeks publication-title: MAGMA doi: 10.1007/s10334-007-0073-3 – volume: 85 start-page: 2580 year: 2021 ident: 10.1016/j.neuroimage.2023.120039_bib0014 article-title: Multi-organ comparison of flow-based arterial spin labeling techniques: spatially non-selective labeling for cerebral and renal perfusion imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28603 – volume: 73 start-page: 197 year: 2019 ident: 10.1016/j.neuroimage.2023.120039_bib0018 article-title: Different relationship between systolic blood pressure and cerebral perfusion in subjects with and without hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.118.11233 – volume: 88 start-page: 1292 year: 2022 ident: 10.1016/j.neuroimage.2023.120039_bib0036 article-title: T2 -oximetry-based cerebral venous oxygenation mapping using Fourier-transform-based velocity-selective pulse trains publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29300 – volume: 238 year: 2021 ident: 10.1016/j.neuroimage.2023.120039_bib0007 article-title: Partial volume correction in arterial spin labeling perfusion MRI: a method to disentangle anatomy from physiology or an analysis step too far? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118236 – volume: 28 start-page: 928 year: 2010 ident: 10.1016/j.neuroimage.2023.120039_bib0003 article-title: On the sensitivity of ASL MRI in detecting regional differences in cerebral blood flow publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2010.03.037 – volume: 36 start-page: 1417 year: 2015 ident: 10.1016/j.neuroimage.2023.120039_bib0060 article-title: Hemoglobin, hematocrit, and changes in cerebral blood flow: the second manifestations of ARTerial disease-magnetic resonance study publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.12.019 – volume: 13 start-page: 583 year: 2022 ident: 10.1016/j.neuroimage.2023.120039_bib0006 article-title: Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease publication-title: Transl. Stroke Res. doi: 10.1007/s12975-021-00983-5 – volume: 75 start-page: 1232 year: 2016 ident: 10.1016/j.neuroimage.2023.120039_bib0051 article-title: Velocity-selective magnetization-prepared non-contrast-enhanced cerebral MR angiography at 3 Tesla: improved immunity to B0/B1 inhomogeneity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25764 – volume: 73 start-page: 102 year: 2015 ident: 10.1016/j.neuroimage.2023.120039_bib0002 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25197 – volume: 40 start-page: 1492 year: 2020 ident: 10.1016/j.neuroimage.2023.120039_bib0029 article-title: Normal variations in brain oxygen extraction fraction are partly attributed to differences in end-tidal CO2 publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X19867154 – volume: 86 start-page: 1360 year: 2021 ident: 10.1016/j.neuroimage.2023.120039_bib0067 article-title: Magnetic resonance angiography and perfusion mapping by arterial spin labeling using Fourier transform-based velocity-selective pulse trains: examination on a commercial perfusion phantom publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28805 – volume: 33 start-page: 787 year: 2013 ident: 10.1016/j.neuroimage.2023.120039_bib0022 article-title: Sources of variability of resting cerebral blood flow in healthy subjects: a study using 133Xe SPECT measurements publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2013.17 – volume: 98 start-page: 676 year: 2001 ident: 10.1016/j.neuroimage.2023.120039_bib0053 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.98.2.676 – volume: 80 start-page: 1997 year: 2018 ident: 10.1016/j.neuroimage.2023.120039_bib0055 article-title: Characterization and suppression of stripe artifact in velocity-selective magnetization-prepared unenhanced MR angiography publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27160 – volume: 86 start-page: 420 year: 1979 ident: 10.1016/j.neuroimage.2023.120039_bib0057 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. doi: 10.1037/0033-2909.86.2.420 – volume: 227 start-page: 309 year: 2003 ident: 10.1016/j.neuroimage.2023.120039_bib0010 article-title: Sample size estimation: how many individuals should be studied? publication-title: Radiology doi: 10.1148/radiol.2272012051 – volume: 36 start-page: 842 year: 2016 ident: 10.1016/j.neuroimage.2023.120039_bib0011 article-title: Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X16636393 – volume: 77 start-page: 2296 year: 2017 ident: 10.1016/j.neuroimage.2023.120039_bib0034 article-title: Fast measurement of blood T1 in the human carotid artery at 3T: accuracy, precision, and reproducibility publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26325 – volume: 33 start-page: 940 year: 2011 ident: 10.1016/j.neuroimage.2023.120039_bib0008 article-title: Test-retest reliability of arterial spin labeling with common labeling strategies publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22345 – volume: 35 year: 2022 ident: 10.1016/j.neuroimage.2023.120039_bib0058 article-title: Sensitivity of arterial spin labeling for characterization of longitudinal perfusion changes in frontotemporal dementia and related disorders publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2021.102853 – volume: 84 start-page: 1173 year: 2020 ident: 10.1016/j.neuroimage.2023.120039_bib0071 article-title: Non-contrast-enhanced abdominal MRA at 3 T using velocity-selective pulse trains publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28187 – volume: 113 start-page: 143 year: 2015 ident: 10.1016/j.neuroimage.2023.120039_bib0045 article-title: Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: implications for multi-center studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.043 – volume: 56 start-page: 1244 year: 2011 ident: 10.1016/j.neuroimage.2023.120039_bib0064 article-title: Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging–a normative study of reproducibility in the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.080 – volume: 23 start-page: 286 year: 2010 ident: 10.1016/j.neuroimage.2023.120039_bib0068 article-title: Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease publication-title: NMR Biomed. doi: 10.1002/nbm.1462 – volume: 31 start-page: 466 year: 2008 ident: 10.1016/j.neuroimage.2023.120039_bib0005 article-title: Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables publication-title: Ultrasound Obstet. Gynecol. doi: 10.1002/uog.5256 – volume: 130 start-page: 1836 year: 2021 ident: 10.1016/j.neuroimage.2023.120039_bib0021 article-title: Regional and interindividual relationships between cerebral perfusion and oxygen metabolism publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00939.2020 – volume: 18 start-page: 21 year: 2016 ident: 10.1016/j.neuroimage.2023.120039_bib0044 article-title: MRICloud: delivering high-throughput MRI neuroinformatics as cloud-based software as a service publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2016.93 – volume: 1 start-page: 30 year: 1996 ident: 10.1016/j.neuroimage.2023.120039_bib0043 article-title: Forming inferences about some intraclass correlation coefficients publication-title: Psychol. Method. doi: 10.1037/1082-989X.1.1.30 – volume: 31 start-page: 1706 year: 2011 ident: 10.1016/j.neuroimage.2023.120039_bib0016 article-title: Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2011.10 – volume: 88 start-page: 1528 year: 2022 ident: 10.1016/j.neuroimage.2023.120039_bib0049 article-title: Velocity-selective arterial spin labeling perfusion MRI: a review of the state of the art and recommendations for clinical implementation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29371 – ident: 10.1016/j.neuroimage.2023.120039_bib0054 – volume: 86 start-page: 1420 year: 2021 ident: 10.1016/j.neuroimage.2023.120039_bib0033 article-title: Three-dimensional whole-brain mapping of cerebral blood volume and venous cerebral blood volume using Fourier transform-based velocity-selective pulse trains publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28815 – volume: 84 start-page: 2512 year: 2020 ident: 10.1016/j.neuroimage.2023.120039_bib0040 article-title: Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28310 – volume: 39 start-page: 344 year: 2018 ident: 10.1016/j.neuroimage.2023.120039_bib0066 article-title: Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23846 – volume: 45 start-page: 26 year: 2018 ident: 10.1016/j.neuroimage.2023.120039_bib0001 article-title: Test-retest reliability of cerebral blood flow in healthy individuals using arterial spin labeling: findings from the EMBARC study publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2017.09.004 – volume: 84 start-page: 1909 year: 2020 ident: 10.1016/j.neuroimage.2023.120039_bib0032 article-title: Improved velocity-selective labeling pulses for myocardial ASL publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28253 – volume: 66 start-page: 954 year: 2015 ident: 10.1016/j.neuroimage.2023.120039_bib0013 article-title: Blood pressure is not associated with cerebral blood flow in older persons publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.115.05799 – volume: 39 start-page: 402 year: 2014 ident: 10.1016/j.neuroimage.2023.120039_bib0063 article-title: Intra- and interscanner reliability and reproducibility of 3D whole-brain pseudo-continuous arterial spin-labeling MR perfusion at 3T publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24175 – volume: 54 start-page: 1188 year: 2011 ident: 10.1016/j.neuroimage.2023.120039_bib0061 article-title: Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.043 – volume: 30 start-page: 1296 year: 2010 ident: 10.1016/j.neuroimage.2023.120039_bib0025 article-title: Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2010.13 – volume: 62 start-page: 141 year: 2009 ident: 10.1016/j.neuroimage.2023.120039_bib0065 article-title: Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21994 – volume: 15 year: 2021 ident: 10.1016/j.neuroimage.2023.120039_bib0028 article-title: Evaluation of Cerebral Blood Flow Measured by 3D PCASL as Biomarker of Vascular Cognitive Impairment and Dementia (VCID) in a Cohort of Elderly Latinx Subjects at Risk of Small Vessel Disease publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.627627 – volume: 79 start-page: 2014 year: 2018 ident: 10.1016/j.neuroimage.2023.120039_bib0035 article-title: Whole-brain arteriography and venography: using improved velocity-selective saturation pulse trains publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26864 – volume: 85 start-page: 2723 year: 2021 ident: 10.1016/j.neuroimage.2023.120039_bib0039 article-title: Ensuring both velocity and spatial responses robust to B 0 /B 1 + field inhomogeneities for velocity-selective arterial spin labeling through dynamic phase-cycling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28622 – volume: 54 start-page: 1053 year: 2021 ident: 10.1016/j.neuroimage.2023.120039_bib0038 article-title: Multi-Parametric Evaluation of Cerebral Hemodynamics in Neonatal Piglets Using Non-Contrast-Enhanced Magnetic Resonance Imaging Methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.27638 – volume: 76 start-page: 1136 year: 2016 ident: 10.1016/j.neuroimage.2023.120039_bib0052 article-title: Velocity-selective-inversion prepared arterial spin labeling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26010 – volume: 69 start-page: 675 year: 2013 ident: 10.1016/j.neuroimage.2023.120039_bib0041 article-title: Test-retest reproducibility of a rapid method to measure brain oxygen metabolism publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24295 – volume: 73 start-page: 111 year: 2020 ident: 10.1016/j.neuroimage.2023.120039_bib0037 article-title: Test-retest reliability and reproducibility of long-label pseudo-continuous arterial spin labeling publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2020.07.010 – volume: 51 start-page: 736 year: 2004 ident: 10.1016/j.neuroimage.2023.120039_bib0046 article-title: Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20023 – volume: 18 start-page: 649 year: 2003 ident: 10.1016/j.neuroimage.2023.120039_bib0012 article-title: Precision of the CASL-perfusion MRI technique for the measurement of cerebral blood flow in whole brain and vascular territories publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.10416 – volume: 81 start-page: 1004 year: 2019 ident: 10.1016/j.neuroimage.2023.120039_bib0024 article-title: Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27461 – volume: 28 start-page: 1283 year: 2010 ident: 10.1016/j.neuroimage.2023.120039_bib0030 article-title: Reliability and reproducibility of perfusion MRI in cognitively normal subjects publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2010.05.002 – volume: 39 start-page: 931 year: 2014 ident: 10.1016/j.neuroimage.2023.120039_bib0031 article-title: Reliability of two-dimensional and three-dimensional pseudo-continuous arterial spin labeling perfusion MRI in elderly populations: comparison with 15O-water positron emission tomography publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24246 – volume: 48 start-page: 103 year: 2007 ident: 10.1016/j.neuroimage.2023.120039_bib0017 article-title: Anxiety, respiration, and cerebral blood flow: implications for functional brain imaging publication-title: Compr. Psychiatry doi: 10.1016/j.comppsych.2006.11.001 – volume: 34 start-page: 1373 year: 2014 ident: 10.1016/j.neuroimage.2023.120039_bib0070 article-title: Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2014.92 – volume: 85 start-page: 2027 year: 2021 ident: 10.1016/j.neuroimage.2023.120039_bib0019 article-title: Comparison of velocity-selective arterial spin labeling schemes publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28572 – volume: 47 start-page: 921 year: 2002 ident: 10.1016/j.neuroimage.2023.120039_bib0069 article-title: Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10140 – volume: 263 start-page: 527 year: 2012 ident: 10.1016/j.neuroimage.2023.120039_bib0027 article-title: Longitudinal reproducibility and accuracy of pseudo-continuous arterial spin-labeled perfusion MR imaging in typically developing children publication-title: Radiology doi: 10.1148/radiol.12111509 – volume: 50 start-page: 145 year: 2003 ident: 10.1016/j.neuroimage.2023.120039_bib0009 article-title: Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10510 – volume: 92 start-page: 182 year: 2014 ident: 10.1016/j.neuroimage.2023.120039_bib0020 article-title: Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with 15O H₂O positron emission tomography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.02.011 – volume: 49 start-page: 104 year: 2010 ident: 10.1016/j.neuroimage.2023.120039_bib0047 article-title: The QUASAR reproducibility study, Part II: results from a multi-center Arterial Spin Labeling test-retest study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.07.068 – volume: 21 start-page: 1426 year: 2011 ident: 10.1016/j.neuroimage.2023.120039_bib0042 article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq224 – volume: 30 start-page: 968 year: 2009 ident: 10.1016/j.neuroimage.2023.120039_bib0015 article-title: Acquisition time and reproducibility of continuous arterial spin-labeling perfusion imaging at 3T publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A1454 – volume: 21 start-page: 233 year: 2011 ident: 10.1016/j.neuroimage.2023.120039_bib0048 article-title: Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq090 |
SSID | ssj0009148 |
Score | 2.4887826 |
Snippet | •3D velocity selective inversion based arterial spin labeling (VSI-ASL) achieved high reliability during the test-retest CBF measurement for detecting... Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120039 |
SubjectTerms | Arteries Between-subject variation Blood flow Blood pressure Caffeine Carbon dioxide Cerebral blood flow Cerebrovascular Circulation - physiology Coefficients of variation Hematocrit Humans Intraclass correlation coefficients Magnetic resonance imaging Magnetic Resonance Imaging - methods Neuroimaging Reproducibility of Results Scanners Spin labeling Spin Labels Substantia grisea Test-retest reliability Variation Veins & arteries Velocity Velocity selective arterial spin labeling |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k2gICNxTYntxE7UU2mpKqRyaqXeLNuxRVDIVrtbEBd-OzN2Eho4sAeOiR9KxmPPN_b4G0LeOgYzTFZt7lxd5WVpWW6r2uYW03CbOqjW4N3h80_y7LL8eFVd3Ur1hTFhiR44Ce4dVK6tBf8PgHcpTGPbIAvHi7Y2LfgGkb0UbN7kTE10u4Dyx7idFM0V2SG7rzBHDzBh-AHDoKxmYYwiZ__CJv2NOf8Mnbxli04fkPsjiKRH6eMfkjt-eETuno_H5I_JzwvoLV_jnuqWrn3fJTLuH3QVqDihGCbk4DHfxCQ4sN7RGNkJqkg3191AQTPiNXUKiJa2Hs8Z8GlAfNvTb-Bep30-7M_5NZ499zSGwNPQr74_IZenHy6Oz_Ix0ULupGDb3PMmgNvGJXhfTjWmbLnzaNtE6QQ4JMEFrySzSkhVtoabxoXaWRfKxoS2asRTsjesBv-cUMAjQRUOecIKsHuVKbyRxlulvFShDhlRk8S1G1nIMRlGr6dwsy_691hpHCudxiojbG55nZg4dmjzHgd1ro9c2vEFaJgeNUz_S8My0kwqoafrqrDAQkfdDh9wOLcdIU2CKju23p80UI9Ly0ZzWFEBUxaKZ-TNXAyLAp70mMGvbmIdhueximXkWVLYWQZCNoIJASX1QpUXQlqWDN3nSDzOcHuMV_zF_xDrS3IPfzUFj-6Tve36xr8CgLe1r-Nc_gUaolPw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj5UwFG50TIwb41t0NDVx25FSoJBZGF-Ticm4mknujrSlVQzClXtH48bfPueUwhVNzF1CH4H29Lz7HUJeGg4nLM9qZkyRsTTVnOms0ExjGW5VOFkrvDt89ik_vUg_rrJVcLhtQlrlxBM9o657gz7yVwkQEojSWCav198ZVo3C6GoooXGd3EDoMqRquZI70F2ejlfhMsEK6BAyecb8Lo8X2XyDU3uEJcSPOKZplQvx5FH8F1LqXy3072TKP6TTyR1yO6iV9M1IB3fJNdvdIzfPQuD8Pvl9DrOxAb2sWzrYthnhuX_R3lHxnmLikIFHtvFlcYADUp_rCcRJN-umo0Ar_uI6BR2X1hYjD_jUocbb0h9gcI-eP5zP2AGj0S31SfHUtf3PB-Ti5MP5u1MWSi8wkwu-ZTYpHRhySQ72mJGlSuvEWJR2IjUCTBRnnJU511LkMq1VokrjCqONS0vl6qwUD8lB13f2MaGgoTgZG0QOi0ESZiq2KldWS2lz6QoXETmteGUCLjmWx2irKQHta7Xbqwr3qhr3KiJ8HrkesTn2GPMWN3Xuj-ja_kU_fK7CYa2AQAutrQbVNE6FKnXt8tgkcV2oGuzRLCLlRBLVdIEVWC5M1OzxAcfz2KDkjMrLnqMPJwqsArPZVLujEZEXczOwCYz9qM72l74Pxwit5BF5NBLsvAYiLwUXAlqKBSkvFmnZ0jVfPBQ5R4dZkiVP_v9dT8kt_IkxUfSQHGyHS_sMlLmtfu5P7BXnt0yu priority: 102 providerName: ProQuest |
Title | Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811923001854 https://dx.doi.org/10.1016/j.neuroimage.2023.120039 https://www.ncbi.nlm.nih.gov/pubmed/36931331 https://www.proquest.com/docview/2793937072 https://www.proquest.com/docview/2791372971 https://pubmed.ncbi.nlm.nih.gov/PMC10150252 https://doaj.org/article/7da8bbeb226043a9bdf60c20d8ad4015 |
Volume | 271 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLemISEuaHyXjcpIXNPGsRMn4rSNTQW0CsEm9RbZjj2CSlK1HYjL_nbecz5G4FKJSyvHH0rs5_fh9_N7hLwxDHZYEheBMWkcCKFZoONUBxrTcKvUyULh3eGLeTK7Eh8W8WKPnHZ3YRBW2fL-hqd7bt0-mbazOV2V5fQLaAYgblBDwcxyMcYEFUIilU9u72AeGRPNdbiYB9i6RfM0GC8fM7L8Djt3gmnEJwyhWtlARPlI_gNJ9a8m-jeg8g8JdX5AHraqJT1u3v4R2bPVY3L_onWePyG3lzBasMaT1i1d22XZhOj-RWtH-TuK4CEDxWDjU-MAF6Qe7wkESjersqJAL_7yOgU9lxYWvQ9YqlDrXdIfYHQ3p384nrFr9EgvqQfGU7esfz4lV-dnl6ezoE2_EJiEs21go8yBMRclYJMZmSlRRMaixOPCcDBTnHFWJkxLnkhRqEhlxqVGGycy5Yo448_IflVX9gWhoKU4GRqMHhaCNIxVaFWirJbSJtKlbkRkN-O5aWOTY4qMZd6B0L7ld2uV41rlzVqNCOt7rpr4HDv0OcFF7dtjhG3_oF5f5y2J5UCkqdZWg3oaCq4yXbgkNFFYpKoAmzQekawjiby7xApsFwYqd3iBt33fAbHv2Puoo8C8ZTibPAI-C5pmKKMRed1XA6tA_4-qbH3j2zD00ko2Is8bgu3ngCcZZ5xDTTog5cEkDWuq8qsPR87w0CyKo5f_9VWH5AGWGizpEdnfrm_sK9D3tnrsNzT8yoUck3vH7z_O5vB_cjb_9Hnsz1B-A1flXNE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIgGXijeBAkaCo8t6X94VQggoVUqbnlIpN2N7bQhKd0OSUvXCT-I3MmPvJgQklEuPG6-tjWf8zYznRcgLw-GE5VnFjCkylqaaM50Vmmlsw60KJyqFucODk7x_mn4aZaMt8qvLhcGwyg4TPVBXjcE78lcxMBKI0kjEb6ffGXaNQu9q10IjsMWRvbwAk23-5nAf6Psyjg8-Dj_0WdtVgJk84Qtm49KBjRLnYGoYUaq0io1FIE9Sk4D27YyzYNtrkeQirVSsSuMKo41LS-WqDIsvAeRfA8EbobEnRmJV5JenIfUuS1jBedlGDoV4Ml-fcnwGKLGHLcv3OIaFlWvi0HcNWJOK_2q9fwdv_iEND26RnVaNpe8C390mW7a-Q64PWkf9XfJzCKuxGd7qLujMTsahHPglbRxN9ikGKhl4ZHPfhgcQl_rYUjgMdD4d1xR40yfKU9CpaWXR04FPNWrYE_oDDPxw04jrGTtD7_eE-iB86ibNxT1yeiVEuU-266a2DwkFwjgRGaxUFoHkzVRkVa6sFsLmwhWuR0S349K0ddCxHcdEdgFv3-SKVhJpJQOteoQvZ05DLZAN5rxHoi7fx2re_odm9kW24CDhQBRaWw2qcJQmqtSVyyMTR1WhKrB_sx4pO5aQXcIsQDwsNN7gA14v57ZKVVCWNpy923GgbMFtLldHsUeeL4cBltDXpGrbnPt3OHqEBe-RB4Fhl3uQ5GXCkwRGijVWXtuk9ZF6_NWXPud4QRdn8aP_f9czcqM_HBzL48OTo8fkJv6hEKS6S7YXs3P7BBTJhX7qTy8ln68aLn4DCWCJ7w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTpp4QXwTGGAkePQWOx9OhBBidNXGWDWhTdpbsB0bikpS2o5pL_xh_HXcxUlLQUJ92WPq2Ep955_vfD_fEfLCcFhhaVIyY7KExbHmTCeZZhrLcKvMyVLh3eHjYXpwFr8_T843yK_uLgzSKjtMbIC6rA2eke8KUCTYSkMpdl1LizjpD95MvjOsIIWR1q6chleRI3t1Ce7b7PVhH2T9UojB_um7A9ZWGGAmjficWZE78FdECm6HkbmKS2EsgnoUmwgscWecBT9fyyiVcamEyo3LjDYuzpUrE0zEBPC_KdEr6pHNvf3hycdlyl8e-4t4ScQyzvOWR-TZZU22ytE3wIwdLGC-w5Eklq9sjk0NgZU98l8b-G8q5x974-AWudkatfSt18LbZMNWd8jWcRu2v0t-nsJobIpnvHM6teORTw5-RWtHoz5F2pKBRzZrivIA_tKGaQpLg84mo4qCpjbX5ilY2LS0GPfApwrt7TH9Ae6-P3fE8YydYix8TBtKPnXj-vIeObsWsdwnvaqu7ENCwT5yMjSYtyyEfThRoVWpslpKm0qXuYDIbsYL02ZFx-Ic46Kjv30tlrIqUFaFl1VA-KLnxGcGWaPPHgp18T7m9m5-qKefixYqClgemdZWg2EcxpHKdenS0IiwzFQJ3nASkLxTiaK7PguADwON1viAV4u-rYnlTac1e293Gli0UDcrlgszIM8XzQBSGHlSla0vmnc4xoclD8gDr7CLOYjSPOJRBC3ZiiqvTNJqSzX60iRC53hcJxLx6P_f9YxsAVQUHw6HR4_JDfw_nrG6TXrz6YV9AlblXD9tly8ln64bMX4D86WPig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Test-retest+reliability+of+3D+velocity-selective+arterial+spin+labeling+for+detecting+normal+variations+of+cerebral+blood+flow&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Xu%2C+Feng&rft.au=Liu%2C+Dapeng&rft.au=Zhu%2C+Dan&rft.au=Hillis%2C+Argye+E.&rft.date=2023-05-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=271&rft_id=info:doi/10.1016%2Fj.neuroimage.2023.120039&rft.externalDocID=S1053811923001854 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |