Cover

Loading…
Abstract Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.
AbstractList Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. Networks of interconnected brain regions coordinate brain activities. Information is processed in the grey matter (cortex and subcortical structures) and passed along the network via whitish, fatty-coated fiber bundles, the white matter. Using maps of these white matter tracks, we provided evidence that higher intelligence may result from more efficient information transfer. Specifically, we hypothesized that higher IQ derives from higher global efficiency of the brain anatomical network. Seventy-nine healthy young adults were divided into general and high IQ groups. We used diffusion tensor tractography, which maps brain white matter fibers, to construct anatomical brain networks for each subject and calculated the network properties using both binary and weighted networks. We consistently found that the high intelligence group's brain network was significantly more efficient than was the general intelligence group's. Moreover, IQ scores were significantly correlated with network properties, such as shorter path lengths and higher overall efficiency, indicating that the information transfer in the brain was more efficient. These converging evidences support the hypothesis that the efficiency of the organization of the brain structure may be an important biological basis for intelligence.
Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.
Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.
  Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.
Audience Academic
Author Li, Jun
Yu, Chunshui
Jiang, Tianzi
Li, Kuncheng
Qin, Wen
Li, Yonghui
Liu, Yong
AuthorAffiliation 1 LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
Indiana University, United States of America
2 National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
3 Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
AuthorAffiliation_xml – name: 1 LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– name: Indiana University, United States of America
– name: 3 Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
– name: 2 National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
Author_xml – sequence: 1
  givenname: Yonghui
  surname: Li
  fullname: Li, Yonghui
– sequence: 2
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
– sequence: 3
  givenname: Jun
  surname: Li
  fullname: Li, Jun
– sequence: 4
  givenname: Wen
  surname: Qin
  fullname: Qin, Wen
– sequence: 5
  givenname: Kuncheng
  surname: Li
  fullname: Li, Kuncheng
– sequence: 6
  givenname: Chunshui
  surname: Yu
  fullname: Yu, Chunshui
– sequence: 7
  givenname: Tianzi
  surname: Jiang
  fullname: Jiang, Tianzi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19492086$$D View this record in MEDLINE/PubMed
BookMark eNqVkl2L1DAUhousuB_6D0QHBGEvZuxJ0jTxQhgXPwaWFXTvw5k0rRk7yZikfvx7M0532YoIkouE5HnfJOe8p8WR884UxWMoF0BreLHxQ3DYL3Z6bRdQliWV1b3iBKqKzmtaiaM76-PiNMZNRioh-YPiGCSTpBT8pDh_HdC62dJh8lursZ9dmfTdhy8zdM1s5ZLpe9sZp83D4n6LfTSPxvmsuH775vri_fzyw7vVxfJyrjmFNG9AS8kAWlkTahrOka0NRU1AoliTklDdIDRSyEYArxpgNWLNCHDKGKvpWfH0YLvrfVTjJ6MCCoQxKRjLxOpANB43ahfsFsNP5dGq3xs-dApDsro3ymRB1cpWV4BMSiIEz_fzOi-ZbFuavV6Ntw3rrWm0cSlgPzGdnjj7WXX-myJc0KqussHz0SD4r4OJSW1t1Llo6IwfouI1hVpymcFnB7DD_DDrWp_99B5WS1LmTgGVZaYWf6HyaEzuTg5Aa_P-RHA-EWQmmR-pwyFGtfr08T_Yqyn75G5hbityk5wMvDwAOvgYg2mVtgmT9fs62V5BqfYxvemg2sdUjTHNYvaH-Nb_X7Jf8ybpdQ
CitedBy_id crossref_primary_10_3390_e22090917
crossref_primary_10_1111_epi_12350
crossref_primary_10_1016_j_neuroimage_2016_08_041
crossref_primary_10_1002_brb3_2241
crossref_primary_10_1038_s41598_022_08521_5
crossref_primary_10_1523_JNEUROSCI_1415_20_2020
crossref_primary_10_3389_fnana_2017_00012
crossref_primary_10_1016_j_neurobiolaging_2019_09_006
crossref_primary_10_1016_j_nicl_2013_03_007
crossref_primary_10_1109_ACCESS_2018_2879487
crossref_primary_10_1371_journal_pone_0068910
crossref_primary_10_1016_j_ynirp_2023_100165
crossref_primary_10_1016_j_jad_2013_03_004
crossref_primary_10_1016_j_neuroimage_2012_01_059
crossref_primary_10_1007_s11682_019_00090_y
crossref_primary_10_1002_brb3_2112
crossref_primary_10_1002_hbm_25301
crossref_primary_10_1016_j_brainres_2022_147922
crossref_primary_10_1002_hbm_23242
crossref_primary_10_1016_j_clinph_2012_01_011
crossref_primary_10_1063_5_0008289
crossref_primary_10_1371_journal_pone_0117295
crossref_primary_10_1002_jsc_2202
crossref_primary_10_2337_db12_1644
crossref_primary_10_1016_j_psiq_2011_05_001
crossref_primary_10_1089_brain_2013_0209
crossref_primary_10_1177_1073858413503712
crossref_primary_10_1089_brain_2013_0202
crossref_primary_10_3389_fnhum_2016_00114
crossref_primary_10_1016_j_neuroimage_2017_09_025
crossref_primary_10_1016_j_neuroimage_2012_02_070
crossref_primary_10_1016_j_neuroimage_2017_02_037
crossref_primary_10_1093_cercor_bhab307
crossref_primary_10_1016_j_nicl_2015_07_003
crossref_primary_10_1016_j_neuroimage_2013_04_087
crossref_primary_10_1016_j_neuroimage_2024_120844
crossref_primary_10_1371_journal_pone_0131493
crossref_primary_10_1007_s11682_016_9559_9
crossref_primary_10_1016_j_neuroimage_2010_12_012
crossref_primary_10_1002_hbm_22177
crossref_primary_10_1016_j_neuroimage_2014_05_065
crossref_primary_10_1002_hbm_23017
crossref_primary_10_1111_jcpp_13184
crossref_primary_10_1371_journal_pone_0074125
crossref_primary_10_3389_fnagi_2021_637002
crossref_primary_10_1002_hbm_21030
crossref_primary_10_3389_fnana_2015_00152
crossref_primary_10_1002_hbm_23452
crossref_primary_10_1016_j_intell_2016_11_001
crossref_primary_10_1093_cercor_bht333
crossref_primary_10_3390_brainsci10090578
crossref_primary_10_1016_j_brainres_2020_147176
crossref_primary_10_1016_j_tine_2019_04_001
crossref_primary_10_1016_j_neuroimage_2015_07_048
crossref_primary_10_1038_nrn2793
crossref_primary_10_1093_cercor_bhr388
crossref_primary_10_1371_journal_pone_0088451
crossref_primary_10_1093_cercor_bhq058
crossref_primary_10_1109_TCDS_2020_2965135
crossref_primary_10_1002_hbm_24896
crossref_primary_10_3389_fncom_2014_00126
crossref_primary_10_19066_cogsci_2017_28_4_004
crossref_primary_10_1371_journal_pone_0301599
crossref_primary_10_3182_20130902_3_CN_3020_00078
crossref_primary_10_1016_j_neuroimage_2017_11_015
crossref_primary_10_1097_YCO_0b013e32834591f8
crossref_primary_10_1007_s00429_021_02388_4
crossref_primary_10_1016_j_neuroimage_2010_03_011
crossref_primary_10_53841_bpsadm_2019_11_4_28
crossref_primary_10_1007_s10548_014_0356_8
crossref_primary_10_1162_NECO_a_00925
crossref_primary_10_1002_hbm_23798
crossref_primary_10_1016_j_neuroimage_2013_08_011
crossref_primary_10_1097_NMD_0000000000001001
crossref_primary_10_1016_j_neuroimage_2014_12_046
crossref_primary_10_3389_fncom_2022_836532
crossref_primary_10_1002_hbm_21297
crossref_primary_10_1155_2018_6142898
crossref_primary_10_1016_j_ijpsycho_2014_04_001
crossref_primary_10_1093_cercor_bhr298
crossref_primary_10_1073_pnas_1220826110
crossref_primary_10_1016_j_heliyon_2021_e06268
crossref_primary_10_1016_j_mehy_2017_12_003
crossref_primary_10_1038_s41467_024_52479_z
crossref_primary_10_1016_j_jad_2023_01_116
crossref_primary_10_1007_s11571_024_10148_3
crossref_primary_10_1016_j_biosystems_2009_10_010
crossref_primary_10_1016_j_nicl_2015_06_007
crossref_primary_10_1002_hbm_21169
crossref_primary_10_1038_s41598_017_02304_z
crossref_primary_10_1038_s41598_020_76528_x
crossref_primary_10_1007_s00429_019_01914_9
crossref_primary_10_3389_fnagi_2022_788661
crossref_primary_10_1111_dmcn_13487
crossref_primary_10_1002_hbm_23343
crossref_primary_10_1016_j_intell_2021_101545
crossref_primary_10_1371_journal_pone_0058921
crossref_primary_10_1016_j_neuroimage_2012_03_071
crossref_primary_10_1016_j_brainres_2012_09_014
crossref_primary_10_1371_journal_pone_0086258
crossref_primary_10_3389_fnins_2022_814477
crossref_primary_10_1073_pnas_1111738109
crossref_primary_10_1007_s12474_011_0002_0
crossref_primary_10_1016_j_neubiorev_2016_08_024
crossref_primary_10_1093_nop_npad044
crossref_primary_10_1016_j_bbr_2024_115222
crossref_primary_10_1016_j_neuroimage_2013_04_056
crossref_primary_10_1016_j_neuroimage_2012_09_004
crossref_primary_10_1523_JNEUROSCI_4085_10_2011
crossref_primary_10_1002_hbm_21232
crossref_primary_10_1017_S0033291721004244
crossref_primary_10_1111_odi_12314
crossref_primary_10_1093_cercor_bhaa391
crossref_primary_10_1016_j_intell_2016_04_002
crossref_primary_10_1080_02688697_2016_1208809
crossref_primary_10_1089_brain_2012_0106
crossref_primary_10_3389_fnhum_2017_00189
crossref_primary_10_1155_2015_495375
crossref_primary_10_1002_hbm_23887
crossref_primary_10_1371_journal_pone_0033540
crossref_primary_10_1002_hbm_23885
crossref_primary_10_3934_mbe_2022416
crossref_primary_10_3389_fpsyt_2020_497116
crossref_primary_10_1002_hbm_22550
crossref_primary_10_1162_netn_a_00318
crossref_primary_10_1007_s11682_012_9220_1
crossref_primary_10_3389_fninf_2022_859309
crossref_primary_10_1016_j_nicl_2015_05_008
crossref_primary_10_1002_per_2217
crossref_primary_10_1016_j_celrep_2019_10_067
crossref_primary_10_1146_annurev_clinpsy_040510_143934
crossref_primary_10_5406_19398298_136_1_04
crossref_primary_10_5498_wjp_v2_i1_1
crossref_primary_10_1038_srep10057
crossref_primary_10_1002_hbm_21332
crossref_primary_10_1212_WNL_0b013e31828c2ee5
crossref_primary_10_1016_j_neuroimage_2010_06_041
crossref_primary_10_1002_hbm_22428
crossref_primary_10_1093_cercor_bhac111
crossref_primary_10_1371_journal_pone_0055347
crossref_primary_10_3389_fncom_2016_00012
crossref_primary_10_1016_j_neubiorev_2018_08_013
crossref_primary_10_1016_j_neuroimage_2017_01_079
crossref_primary_10_1093_comnet_cnac037
crossref_primary_10_1016_j_tics_2016_03_001
crossref_primary_10_1007_s00422_014_0641_3
crossref_primary_10_1089_brain_2012_0127
crossref_primary_10_1259_bjr_20140086
crossref_primary_10_1089_brain_2012_0122
crossref_primary_10_3389_fnhum_2017_00169
crossref_primary_10_1371_journal_pone_0024239
crossref_primary_10_1371_journal_pone_0031029
crossref_primary_10_1111_nyas_12833
crossref_primary_10_1016_j_intell_2011_02_004
crossref_primary_10_1016_j_neuroimage_2018_03_077
crossref_primary_10_1016_j_plrev_2022_03_001
crossref_primary_10_1007_s11065_021_09512_5
crossref_primary_10_1016_j_neuropsychologia_2022_108285
crossref_primary_10_1016_j_neuroimage_2018_09_041
crossref_primary_10_3233_JIFS_223819
crossref_primary_10_1016_j_neuroimage_2018_01_018
crossref_primary_10_1016_j_neuroimage_2013_01_013
crossref_primary_10_1016_j_neulet_2010_11_046
crossref_primary_10_1016_j_ssci_2021_105261
crossref_primary_10_1089_brain_2018_0622
crossref_primary_10_1371_journal_pone_0067354
crossref_primary_10_1016_j_nicl_2016_12_005
crossref_primary_10_1016_j_tics_2013_09_012
crossref_primary_10_1186_s12859_021_03973_4
crossref_primary_10_1016_j_jneumeth_2010_01_014
crossref_primary_10_1016_j_neuroimage_2020_117027
crossref_primary_10_1371_journal_pcbi_1012870
crossref_primary_10_3389_fninf_2016_00046
crossref_primary_10_1002_hbm_22751
crossref_primary_10_1038_nrn3801
crossref_primary_10_3389_fnagi_2019_00310
crossref_primary_10_1371_journal_pone_0053199
crossref_primary_10_3389_fnhum_2018_00070
crossref_primary_10_1016_j_neuroimage_2023_120160
crossref_primary_10_1089_brain_2018_0615
crossref_primary_10_1007_s11682_019_00175_8
crossref_primary_10_1089_brain_2018_0616
crossref_primary_10_1093_brain_aww297
crossref_primary_10_3389_fpsyt_2020_00658
crossref_primary_10_1016_j_neuroimage_2018_02_066
crossref_primary_10_1093_schbul_sbv174
crossref_primary_10_1002_hbm_22988
crossref_primary_10_1016_j_bandc_2022_105943
crossref_primary_10_1002_hbm_23833
crossref_primary_10_1109_TMI_2015_2416271
crossref_primary_10_1016_j_neulet_2013_02_062
crossref_primary_10_1515_RNS_2011_039
crossref_primary_10_1093_bioinformatics_btx050
crossref_primary_10_1111_ejn_14883
crossref_primary_10_3389_fnagi_2017_00361
crossref_primary_10_1016_j_euroneuro_2010_03_008
crossref_primary_10_1093_brain_awx050
crossref_primary_10_1093_cercor_bhq111
crossref_primary_10_1371_journal_pone_0048846
crossref_primary_10_1002_hbm_23501
crossref_primary_10_1016_j_neuroimage_2010_12_046
crossref_primary_10_1073_pnas_1502052112
crossref_primary_10_1016_j_neuroscience_2010_11_039
crossref_primary_10_1007_s12264_012_1245_3
crossref_primary_10_1111_ejn_14535
crossref_primary_10_1016_j_bpsc_2016_01_002
crossref_primary_10_1016_j_physrep_2019_12_004
crossref_primary_10_1007_s12264_013_1300_8
crossref_primary_10_3390_life12030416
crossref_primary_10_1093_brain_aww194
crossref_primary_10_1007_s00429_016_1243_8
crossref_primary_10_3389_fnsys_2020_00058
crossref_primary_10_1016_j_intell_2018_12_003
crossref_primary_10_1080_17588928_2011_628383
crossref_primary_10_1111_j_1748_6653_2011_02004_x
crossref_primary_10_1162_NETN_a_00010
crossref_primary_10_1002_hbm_22524
crossref_primary_10_1016_j_neunet_2013_01_007
crossref_primary_10_1016_j_intell_2015_04_009
crossref_primary_10_1016_j_neuroscience_2011_11_048
crossref_primary_10_1002_brb3_70386
crossref_primary_10_1016_j_intell_2015_12_002
crossref_primary_10_1016_j_dcn_2018_03_003
crossref_primary_10_1016_j_neuroimage_2010_09_083
crossref_primary_10_1371_journal_pone_0141840
crossref_primary_10_1227_NEU_0b013e318258e9ff
crossref_primary_10_1038_s41598_024_64845_4
crossref_primary_10_3389_fnins_2021_549322
crossref_primary_10_1016_j_neuroimage_2011_11_055
crossref_primary_10_1016_j_bpsc_2019_09_004
crossref_primary_10_1007_s12017_014_8316_8
crossref_primary_10_1016_j_neuroimage_2014_08_048
crossref_primary_10_3389_fnagi_2019_00113
crossref_primary_10_1016_j_neuroimage_2019_116233
crossref_primary_10_1073_pnas_1109038108
crossref_primary_10_1007_s11434_014_0716_5
crossref_primary_10_1371_journal_pone_0218201
crossref_primary_10_3389_fnhum_2015_00059
crossref_primary_10_18699_VJGB_22_22
crossref_primary_10_2147_PRBM_S357138
crossref_primary_10_3233_JAD_150311
crossref_primary_10_4018_jkdb_2012010102
crossref_primary_10_1016_j_neuroimage_2015_09_012
crossref_primary_10_1002_mds_25314
crossref_primary_10_1007_s11571_015_9327_3
crossref_primary_10_1162_netn_a_00151
crossref_primary_10_1093_cercor_bhw109
crossref_primary_10_3389_fnhum_2015_00061
crossref_primary_10_1212_WNL_0b013e31829a33f8
crossref_primary_10_1371_journal_pcbi_1002937
crossref_primary_10_1093_cercor_bhv050
crossref_primary_10_1007_s00429_014_0849_y
crossref_primary_10_1088_1741_2560_10_6_066017
crossref_primary_10_1017_nws_2014_26
crossref_primary_10_1016_j_bpsc_2022_09_005
crossref_primary_10_1016_j_neuroimage_2016_11_006
crossref_primary_10_3389_fnagi_2021_625931
crossref_primary_10_1007_s11065_014_9248_7
crossref_primary_10_1016_j_biopsych_2010_08_022
crossref_primary_10_1109_TPAMI_2024_3442811
crossref_primary_10_3389_fnins_2018_00233
crossref_primary_10_3171_2015_4_JNS142683
crossref_primary_10_1002_hbm_23941
crossref_primary_10_1016_j_pnpbp_2014_01_005
crossref_primary_10_1093_schbul_sbt162
crossref_primary_10_18632_oncotarget_19104
crossref_primary_10_1007_s00429_021_02249_0
crossref_primary_10_1038_s41598_019_55818_z
crossref_primary_10_1016_j_neures_2018_07_005
crossref_primary_10_1016_j_neuroimage_2014_09_055
crossref_primary_10_1016_j_neuroimage_2013_07_045
crossref_primary_10_1016_j_neuroimage_2022_119659
crossref_primary_10_3389_fnhum_2014_00409
crossref_primary_10_1016_j_neulet_2010_04_032
crossref_primary_10_1016_j_nicl_2022_103133
crossref_primary_10_1016_j_tine_2019_02_006
crossref_primary_10_1016_j_biopsych_2022_11_012
crossref_primary_10_1162_jocn_a_01830
crossref_primary_10_1038_s41598_024_51333_y
crossref_primary_10_1089_brain_2014_0306
crossref_primary_10_1002_hbm_26286
crossref_primary_10_1016_j_ibneur_2024_06_005
crossref_primary_10_1016_j_conb_2010_03_002
crossref_primary_10_1371_journal_pone_0072654
crossref_primary_10_1093_braincomms_fcaa062
crossref_primary_10_1177_1745691612447308
crossref_primary_10_1523_JNEUROSCI_4136_10_2010
crossref_primary_10_1016_j_neuroimage_2016_05_047
crossref_primary_10_1371_journal_pone_0014801
crossref_primary_10_1007_s11071_023_08968_9
crossref_primary_10_1016_j_intell_2011_11_001
crossref_primary_10_1016_j_jpsychires_2023_10_019
crossref_primary_10_3174_ajnr_A4975
crossref_primary_10_1016_j_paid_2016_06_037
crossref_primary_10_1016_j_neuroimage_2018_08_075
crossref_primary_10_1016_j_eplepsyres_2015_12_002
crossref_primary_10_1016_j_jhevol_2011_11_013
crossref_primary_10_1017_pen_2018_4
crossref_primary_10_1111_nyas_13338
crossref_primary_10_1002_brb3_721
crossref_primary_10_1007_s11548_014_0977_0
crossref_primary_10_1371_journal_pone_0013701
crossref_primary_10_1007_s00117_023_01146_3
crossref_primary_10_1371_journal_pone_0212901
crossref_primary_10_1371_journal_pone_0071229
crossref_primary_10_3390_brainsci12050596
crossref_primary_10_1146_annurev_bioeng_071516_044511
crossref_primary_10_1186_s40708_020_00114_0
crossref_primary_10_3389_fnbeh_2016_00194
crossref_primary_10_1093_cercor_bhw059
crossref_primary_10_3389_fnins_2016_00452
crossref_primary_10_1016_j_bbi_2015_12_011
crossref_primary_10_1016_j_neuroimage_2011_09_035
crossref_primary_10_1162_jocn_a_00821
crossref_primary_10_1542_peds_2015_0608
crossref_primary_10_1162_netn_a_00291
crossref_primary_10_7759_cureus_14996
crossref_primary_10_1093_brain_awr223
crossref_primary_10_1111_jcpp_12365
crossref_primary_10_1016_j_neuroimage_2013_04_024
crossref_primary_10_1073_pnas_2018784118
crossref_primary_10_1016_j_neuroimage_2017_04_029
crossref_primary_10_1016_j_neuroimage_2010_09_006
crossref_primary_10_1093_cercor_bhs167
crossref_primary_10_1038_s41598_017_15926_0
crossref_primary_10_1016_j_archger_2023_104992
crossref_primary_10_1097_WCO_0b013e32833aa567
crossref_primary_10_1212_WNL_0000000000000627
crossref_primary_10_1089_brain_2015_0401
crossref_primary_10_1016_j_cobme_2017_03_003
crossref_primary_10_1016_j_neuroimage_2015_07_006
crossref_primary_10_1155_2016_2947136
crossref_primary_10_1038_s41598_017_11593_3
crossref_primary_10_1111_j_1749_6632_2010_05888_x
crossref_primary_10_3390_app13042129
crossref_primary_10_1016_j_neubiorev_2017_03_018
crossref_primary_10_1089_brain_2011_0055
crossref_primary_10_1371_journal_pone_0072332
crossref_primary_10_3389_fpsyg_2016_01637
crossref_primary_10_1142_S0129065718500235
crossref_primary_10_1002_hbm_26598
crossref_primary_10_1109_JBHI_2021_3139701
crossref_primary_10_1016_j_schres_2016_01_025
crossref_primary_10_1093_cercor_bhs034
crossref_primary_10_1038_srep38890
crossref_primary_10_1002_hbm_26591
crossref_primary_10_1093_cercor_bhs270
crossref_primary_10_1523_JNEUROSCI_2874_10_2010
crossref_primary_10_1016_j_bbr_2012_01_037
crossref_primary_10_1016_j_bbr_2016_08_046
crossref_primary_10_1002_brb3_504
crossref_primary_10_1016_j_neuroimage_2012_10_007
crossref_primary_10_1038_nrn3214
crossref_primary_10_1016_j_neuroimage_2018_11_043
crossref_primary_10_1038_npp_2013_18
crossref_primary_10_1016_j_jagp_2013_10_004
crossref_primary_10_1016_j_cogpsych_2014_07_002
crossref_primary_10_1016_j_neuroimage_2013_08_064
crossref_primary_10_1371_journal_pone_0111262
crossref_primary_10_1038_srep26209
crossref_primary_10_1088_1742_5468_2011_11_P11018
crossref_primary_10_1162_netn_a_00091
crossref_primary_10_1016_j_neucom_2015_09_085
crossref_primary_10_3389_fnagi_2021_605158
crossref_primary_10_1016_j_neurobiolaging_2015_04_015
crossref_primary_10_1089_brain_2011_0025
crossref_primary_10_1016_j_neuroimage_2012_12_066
crossref_primary_10_1017_S1355617715000867
crossref_primary_10_1002_hbm_23291
crossref_primary_10_1016_j_neuroimage_2013_05_033
crossref_primary_10_1097_CCO_0000000000000126
crossref_primary_10_1016_j_jad_2015_11_041
crossref_primary_10_1016_j_neuroimage_2015_09_046
crossref_primary_10_1371_journal_pcbi_1002040
crossref_primary_10_1016_j_neuroimage_2011_01_016
crossref_primary_10_1038_nrn3000
crossref_primary_10_1155_2015_908917
crossref_primary_10_1016_j_bbadis_2011_08_003
crossref_primary_10_1016_j_jneumeth_2016_08_011
crossref_primary_10_1016_j_compbiomed_2019_103384
crossref_primary_10_1016_j_jneumeth_2011_09_031
crossref_primary_10_1016_j_neuroimage_2022_119553
crossref_primary_10_1002_brb3_3488
crossref_primary_10_1093_cercor_bhu133
crossref_primary_10_1523_JNEUROSCI_4858_10_2011
crossref_primary_10_1016_j_yebeh_2023_109101
crossref_primary_10_1007_s12264_020_00580_w
crossref_primary_10_1016_j_intell_2023_101727
crossref_primary_10_1016_j_ntt_2015_02_002
crossref_primary_10_1038_s41598_024_63716_2
crossref_primary_10_1523_JNEUROSCI_4854_12_2013
crossref_primary_10_1371_journal_pone_0073577
crossref_primary_10_1007_s11060_019_03327_4
crossref_primary_10_1016_j_brainres_2014_02_033
crossref_primary_10_1007_s12264_014_1518_0
crossref_primary_10_1016_j_clinph_2020_04_174
crossref_primary_10_1016_j_neuroimage_2012_04_053
crossref_primary_10_1016_j_jneumeth_2015_06_016
crossref_primary_10_1002_hbm_23198
crossref_primary_10_1093_cercor_bhv255
crossref_primary_10_1016_j_neuron_2013_09_015
crossref_primary_10_1093_ijnp_pyy100
crossref_primary_10_1016_j_bandc_2014_08_006
crossref_primary_10_1371_journal_pone_0050122
crossref_primary_10_1089_brain_2011_0062
crossref_primary_10_1259_bjr_20160656
crossref_primary_10_1523_JNEUROSCI_0964_10_2011
crossref_primary_10_1523_JNEUROSCI_0440_11_2011
crossref_primary_10_1016_j_schres_2018_03_033
crossref_primary_10_1093_cercor_bhw335
crossref_primary_10_1016_j_neuroimage_2014_07_027
crossref_primary_10_1016_j_tics_2013_10_007
crossref_primary_10_1093_cercor_bht064
crossref_primary_10_1371_journal_pone_0063310
crossref_primary_10_1038_srep15129
Cites_doi 10.1162/jocn.2006.18.3.320
10.1093/brain/119.5.1763
10.1016/j.cub.2004.05.008
10.1016/S0140-6736(02)08615-4
10.1016/j.neulet.2003.10.063
10.1385/NI:2:3:353
10.1002/1097-4679(199205)48:3<360::AID-JCLP2270480314>3.0.CO;2-P
10.1017/S0140525X07001185
10.1038/30918
10.1148/radiol.2301021640
10.1016/j.neuroimage.2004.12.044
10.1016/j.neuroimage.2004.11.019
10.1002/ajmg.b.30825
10.1038/nn1201-1153
10.1016/j.neuroimage.2004.05.027
10.1002/mrm.10074
10.1093/brain/awn018
10.1126/science.1065103
10.1016/S0010-9452(13)80051-2
10.1002/nbm.781
10.4103/0019-5359.15085
10.1016/j.neuroimage.2008.01.063
10.1002/hbm.10102
10.1016/j.neuroimage.2004.04.025
10.1093/cercor/bhi016
10.1093/brain/112.3.799
10.1093/brain/122.5.963
10.1093/cercor/bhj127
10.1016/j.neuroimage.2007.10.060
10.1038/nn1014
10.1371/journal.pone.0000597
10.1016/j.neuroimage.2005.07.036
10.1016/j.tics.2005.03.005
10.1159/000063730
10.1016/S1053-8119(03)00199-X
10.1523/JNEUROSCI.3874-05.2006
10.1523/JNEUROSCI.1929-08.2008
10.1016/j.neulet.2006.04.006
10.1007/s004220000205
10.1126/science.289.5478.457
10.1103/PhysRevLett.94.018102
10.1073/pnas.090504197
10.1016/j.neuroimage.2004.08.050
10.1038/nn758
10.1016/j.physrep.2005.10.009
10.1093/cercor/bhl149
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1038/nrn1119
10.1002/mrm.10144
10.1006/nimg.2001.1052
10.1093/brain/awh696
10.1103/PhysRevLett.87.198701
10.1073/pnas.0400087101
10.1073/pnas.96.18.10422
10.1176/ajp.150.1.130
10.1177/1073858406293182
10.1038/nn1075
10.1016/j.neuroimage.2007.02.012
10.1016/j.neuroimage.2006.01.006
10.1212/WNL.56.7.969
10.1093/cercor/bhn102
10.1371/journal.pcbi.0020095
10.1385/NI:2:2:145
10.1016/j.neuroimage.2005.08.051
10.1016/j.cmpb.2005.08.004
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2006.09.018
10.1038/35065725
10.1016/j.neuroimage.2008.02.036
10.1371/journal.pcbi.0030017
10.1371/journal.pbio.0060159
10.1006/cogp.1997.0659
10.1093/brain/124.3.617
10.1126/science.298.5594.824
10.1006/nimg.2001.0994
10.1016/j.neuropsychologia.2003.11.022
ContentType Journal Article
Copyright COPYRIGHT 2009 Public Library of Science
Li et al. 2009
2009 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Li Y, Liu Y, Li J, Qin W, Li K, et al. (2009) Brain Anatomical Network and Intelligence. PLoS Comput Biol 5(5): e1000395. doi:10.1371/journal.pcbi.1000395
Copyright_xml – notice: COPYRIGHT 2009 Public Library of Science
– notice: Li et al. 2009
– notice: 2009 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Li Y, Liu Y, Li J, Qin W, Li K, et al. (2009) Brain Anatomical Network and Intelligence. PLoS Comput Biol 5(5): e1000395. doi:10.1371/journal.pcbi.1000395
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1000395
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Brain Anatomical Network and Intelligence
EISSN 1553-7358
ExternalDocumentID 1312449844
oai_doaj_org_article_e9845f9fc51a499288623c6799249ff3
PMC2683575
A201551390
19492086
10_1371_journal_pcbi_1000395
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
H13
NPM
PV9
RZL
WOQ
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
3V.
AAPBV
ABPTK
M0N
M~E
ID FETCH-LOGICAL-c631t-d1c99411f9723ed66a4be3ac219a8b2023cda1d989d8165d147aa74216344473
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:31 EDT 2023
Wed Aug 27 01:02:22 EDT 2025
Thu Aug 21 18:15:19 EDT 2025
Fri Jul 11 00:28:41 EDT 2025
Tue Jun 17 22:06:44 EDT 2025
Tue Jun 10 21:12:40 EDT 2025
Fri Jun 27 06:01:16 EDT 2025
Fri Jun 27 05:44:28 EDT 2025
Thu Apr 03 07:05:52 EDT 2025
Tue Jul 01 04:23:35 EDT 2025
Thu Apr 24 23:13:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Brain
Intelligence
Humans
Male
Neural Pathways
Intelligence Tests
Nerve Net
Adolescent
Diffusion Magnetic Resonance Imaging
Brain Mapping
Adult
Female
Models, Neurological
Cluster Analysis
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-d1c99411f9723ed66a4be3ac219a8b2023cda1d989d8165d147aa74216344473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: Y. Li Y. Liu CY TJ. Analyzed the data: Y. Li Y. Liu JL CY. Contributed reagents/materials/analysis tools: WQ KL. Wrote the paper: Y. Li Y. Liu CY TJ. Data collection: Y. Liu JL WQ KL CY.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1000395
PMID 19492086
PQID 67317969
PQPubID 23479
ParticipantIDs plos_journals_1312449844
doaj_primary_oai_doaj_org_article_e9845f9fc51a499288623c6799249ff3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2683575
proquest_miscellaneous_67317969
gale_infotracmisc_A201551390
gale_infotracacademiconefile_A201551390
gale_incontextgauss_ISR_A201551390
gale_incontextgauss_ISN_A201551390
pubmed_primary_19492086
crossref_citationtrail_10_1371_journal_pcbi_1000395
crossref_primary_10_1371_journal_pcbi_1000395
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-05-01
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2009
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References R Plomin (ref43) 2001; 4
BW Waldmann (ref78) 1992; 48
YX Gong (ref63) 1982
G Esposito (ref8) 1999; 122 (Pt 5)
R Milo (ref77) 2002; 298
PM Thompson (ref47) 2001; 4
M Lazar (ref81) 2005; 24
S Frangou (ref49) 2004; 23
M Song (ref6) 2008; 41
R Byrne (ref55) 1995
DJ Watts (ref18) 1998; 393
S Mori (ref23) 1999; 45
NC Andreasen (ref41) 1993; 150
QY Gong (ref50) 2005; 25
P Thottakara (ref66) 2006; 29
SH Eriksson (ref60) 2001; 124
S Achard (ref16) 2006; 26
S Boccaletti (ref72) 2006; 424
S Mori (ref33) 2002; 47
H Jiang (ref64) 2006; 81
D Le Bihan (ref28) 2003; 4
FJ Rugg-Gunn (ref61) 2002; 359
CC Hilgetag (ref38) 2004; 2
S Mori (ref71) 2002; 15
RJ Haier (ref4) 2005; 25
DM Weinstein (ref67) 1999
P Hagmann (ref30) 2008; 6
V Latora (ref74) 2001; 87
GJ Parker (ref25) 2002; 15
DS Bassett (ref21) 2008; 28
RE Jung (ref11) 2007; 30
MA Changizi (ref59) 2001; 84
M Lazar (ref69) 2000
SF Witelson (ref35) 1989; 112 (Pt 3)
S Micheloyannis (ref19) 2006; 402
R Salvador (ref15) 2005; 15
TE Conturo (ref22) 1999; 96
VM Eguiluz (ref14) 2005; 94
CR Tench (ref26) 2002; 47
MA Koch (ref24) 2002; 16
SH Strogatz (ref37) 2001; 410
P Hagmann (ref29) 2007; 2
V Prabhakaran (ref1) 1997; 33
JL Gould (ref57) 2004; 14
SF Witelson (ref46) 2006; 129
JR Gray (ref2) 2003; 6
J Li (ref62) 2008; 150B
Y Iturria-Medina (ref39) 2007; 36
J Duncan (ref51) 2000; 289
M Lazar (ref70) 2001
KH Lee (ref10) 2006; 29
N Tzourio-Mazoyer (ref65) 2002; 15
CJ Stam (ref17) 2007; 17
AL Reiss (ref42) 1996; 119 (Pt 5)
G Roth (ref54) 2005; 9
Y Iturria-Medina (ref31) 2008; 40
DJ Tisserand (ref44) 2001; 56
Y He (ref20) 2007; 17
S Karande (ref79) 2005; 59
S Maslov (ref76) 2002; 296
O Sporns (ref12) 2004; 2
M Kaiser (ref53) 2006; 2
K Zhang (ref58) 2000; 97
R Colom (ref5) 2006; 31
T Fangmeier (ref9) 2006; 18
G Gong (ref32) 2009; 19
Y Liu (ref75) 2008; 131
KR Gibson (ref56) 2002; 59
DS Bassett (ref40) 2006; 12
A Barrat (ref73) 2004; 101
C Yu (ref34) 2008; 40
M Wilke (ref48) 2003; 20
DM Ivanovic (ref45) 2004; 42
MJ Boivin (ref7) 1992; 28
S Wakana (ref36) 2004; 230
M Lazar (ref68) 2003; 18
RJ Haier (ref3) 2004; 23
TE Behrens (ref27) 2003; 6
CJ Stam (ref13) 2004; 355
S Achard (ref52) 2007; 3
TE Behrens (ref80) 2007; 34
16848638 - PLoS Comput Biol. 2006 Jul 21;2(7):e95
16243544 - Neuroimage. 2006 Feb 1;29(3):868-78
12049867 - Lancet. 2002 May 18;359(9319):1748-51
18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48
16122946 - Neuroimage. 2006 Jan 15;29(2):578-86
16339797 - Brain. 2006 Feb;129(Pt 2):386-98
11969331 - Neuroimage. 2002 May;16(1):241-50
9212721 - Cogn Psychol. 1997 Jun;33(1):43-63
9989633 - Ann Neurol. 1999 Feb;45(2):265-9
16512999 - J Cogn Neurosci. 2006 Mar;18(3):320-34
18299296 - Brain. 2008 Apr;131(Pt 4):945-61
15325390 - Neuroimage. 2004 Sep;23(1):425-33
15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102
15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42
11979576 - Magn Reson Med. 2002 May;47(5):967-72
1499309 - Cortex. 1992 Jun;28(2):231-9
11988575 - Science. 2002 May 3;296(5569):910-3
10792049 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5621-6
17611629 - PLoS One. 2007;2(7):e597
18434203 - Neuroimage. 2008 Jul 1;41(3):1168-76
11723454 - Nat Neurosci. 2001 Dec;4(12):1153-4
14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8
11694885 - Nat Neurosci. 2001 Dec;4(12):1253-8
8931596 - Brain. 1996 Oct;119 ( Pt 5):1763-74
18567609 - Cereb Cortex. 2009 Mar;19(3):524-36
12592404 - Nat Neurosci. 2003 Mar;6(3):316-22
12778119 - Nat Rev Neurosci. 2003 Jun;4(6):469-80
16513370 - Neuroimage. 2006 Jul 1;31(3):1359-65
15866152 - Trends Cogn Sci. 2005 May;9(5):250-7
15627594 - Neuroimage. 2005 Jan 15;24(2):524-32
15365196 - Neuroinformatics. 2004;2(3):353-60
12097857 - Brain Behav Evol. 2002;59(1-2):10-20
15186759 - Curr Biol. 2004 May 25;14(10):R372-5
12808459 - Nat Neurosci. 2003 Jul;6(7):750-7
17655784 - Behav Brain Sci. 2007 Apr;30(2):135-54; discussion 154-87
18272400 - Neuroimage. 2008 Apr 15;40(3):1064-76
11906221 - Neuroimage. 2002 Apr;15(4):797-809
17079517 - Neuroscientist. 2006 Dec;12(6):512-23
18353685 - Neuroimage. 2008 May 1;40(4):1533-41
16399673 - J Neurosci. 2006 Jan 4;26(1):63-72
12399590 - Science. 2002 Oct 25;298(5594):824-7
1602026 - J Clin Psychol. 1992 May;48(3):360-3
11294939 - Neurology. 2001 Apr 10;56(7):969-71
10903207 - Science. 2000 Jul 21;289(5478):457-60
15734366 - Neuroimage. 2005 Mar;25(1):320-7
11258382 - Nature. 2001 Mar 8;410(6825):268-76
16413083 - Comput Methods Programs Biomed. 2006 Feb;81(2):106-16
16678344 - Neurosci Lett. 2006 Jul 24;402(3):273-7
10355679 - Brain. 1999 May;122 ( Pt 5):963-79
15093150 - Neuropsychologia. 2004;42(8):1118-31
18615479 - Am J Med Genet B Neuropsychiatr Genet. 2009 Apr 5;150B(3):375-80
15850735 - Neuroimage. 2005 May 1;25(4):1175-86
9623998 - Nature. 1998 Jun 4;393(6684):440-2
12632468 - Hum Brain Mapp. 2003 Apr;18(4):306-21
15319512 - Neuroinformatics. 2004;2(2):145-62
11222460 - Brain. 2001 Mar;124(Pt 3):617-26
11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701
17070705 - Neuroimage. 2007 Jan 1;34(1):144-55
8417555 - Am J Psychiatry. 1993 Jan;150(1):130-4
15805679 - Indian J Med Sci. 2005 Mar;59(3):95-103
14527581 - Neuroimage. 2003 Sep;20(1):202-15
11252638 - Biol Cybern. 2001 Mar;84(3):207-15
15528081 - Neuroimage. 2004 Nov;23(3):800-5
2731030 - Brain. 1989 Jun;112 ( Pt 3):799-835
15007165 - Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3747-52
17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17
17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19
11810663 - Magn Reson Med. 2002 Feb;47(2):215-23
14645885 - Radiology. 2004 Jan;230(1):77-87
16452642 - Cereb Cortex. 2007 Jan;17(1):92-9
11771995 - Neuroimage. 2002 Jan;15(1):273-89
12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80
10468624 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10422-7
17466539 - Neuroimage. 2007 Jul 1;36(3):645-60
18597554 - PLoS Biol. 2008 Jul 1;6(7):e159
References_xml – volume: 18
  start-page: 320
  year: 2006
  ident: ref9
  article-title: FMRI evidence for a three-stage model of deductive reasoning.
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2006.18.3.320
– volume: 119 (Pt 5)
  start-page: 1763
  year: 1996
  ident: ref42
  article-title: Brain development, gender and IQ in children. A volumetric imaging study.
  publication-title: Brain
  doi: 10.1093/brain/119.5.1763
– volume: 14
  start-page: R372
  year: 2004
  ident: ref57
  article-title: Animal cognition.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2004.05.008
– volume: 359
  start-page: 1748
  year: 2002
  ident: ref61
  article-title: Diffusion tensor imaging in refractory epilepsy.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)08615-4
– volume: 355
  start-page: 25
  year: 2004
  ident: ref13
  article-title: Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network?
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2003.10.063
– volume: 2
  start-page: 353
  year: 2004
  ident: ref38
  article-title: Clustered organization of cortical connectivity.
  publication-title: Neuroinformatics
  doi: 10.1385/NI:2:3:353
– volume: 48
  start-page: 360
  year: 1992
  ident: ref78
  article-title: The relationship between intellectual ability and adult performance on the Trail Making Test and the Symbol Digit Modalities Test.
  publication-title: J Clin Psychol
  doi: 10.1002/1097-4679(199205)48:3<360::AID-JCLP2270480314>3.0.CO;2-P
– volume: 30
  start-page: 135
  year: 2007
  ident: ref11
  article-title: The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence.
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X07001185
– volume: 393
  start-page: 440
  year: 1998
  ident: ref18
  article-title: Collective dynamics of ‘small-world’ networks.
  publication-title: Nature
  doi: 10.1038/30918
– volume: 230
  start-page: 77
  year: 2004
  ident: ref36
  article-title: Fiber tract-based atlas of human white matter anatomy.
  publication-title: Radiology
  doi: 10.1148/radiol.2301021640
– volume: 25
  start-page: 1175
  year: 2005
  ident: ref50
  article-title: Voxel-based morphometry and stereology provide convergent evidence of the importance of medial prefrontal cortex for fluid intelligence in healthy adults.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.044
– volume: 25
  start-page: 320
  year: 2005
  ident: ref4
  article-title: The neuroanatomy of general intelligence: sex matters.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.11.019
– volume: 150B
  start-page: 375
  year: 2008
  ident: ref62
  article-title: COMT val158met modulates association between brain white matter architecture and IQ.
  publication-title: Am J Med Genet B Neuropsychiatr Genet
  doi: 10.1002/ajmg.b.30825
– volume: 4
  start-page: 1153
  year: 2001
  ident: ref43
  article-title: Genes, brain and cognition.
  publication-title: Nat Neurosci
  doi: 10.1038/nn1201-1153
– volume: 23
  start-page: 800
  year: 2004
  ident: ref49
  article-title: Mapping IQ and gray matter density in healthy young people.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.05.027
– volume: 47
  start-page: 215
  year: 2002
  ident: ref33
  article-title: Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking.
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10074
– volume: 131
  start-page: 945
  year: 2008
  ident: ref75
  article-title: Disrupted small-world networks in schizophrenia.
  publication-title: Brain
  doi: 10.1093/brain/awn018
– volume: 296
  start-page: 910
  year: 2002
  ident: ref76
  article-title: Specificity and stability in topology of protein networks.
  publication-title: Science
  doi: 10.1126/science.1065103
– volume: 28
  start-page: 231
  year: 1992
  ident: ref7
  article-title: Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism.
  publication-title: Cortex
  doi: 10.1016/S0010-9452(13)80051-2
– volume: 15
  start-page: 468
  year: 2002
  ident: ref71
  article-title: Fiber tracking: principles and strategies - a technical review.
  publication-title: NMR Biomed
  doi: 10.1002/nbm.781
– volume: 59
  start-page: 95
  year: 2005
  ident: ref79
  article-title: Comparison of cognition abilities between groups of children with specific learning disability having average, bright normal and superior nonverbal intelligence.
  publication-title: Indian J Med Sci
  doi: 10.4103/0019-5359.15085
– volume: 40
  start-page: 1533
  year: 2008
  ident: ref34
  article-title: White matter tract integrity and intelligence in patients with mental retardation and healthy adults.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.063
– volume: 18
  start-page: 306
  year: 2003
  ident: ref68
  article-title: White matter tractography using diffusion tensor deflection.
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10102
– volume: 23
  start-page: 425
  year: 2004
  ident: ref3
  article-title: Structural brain variation and general intelligence.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.04.025
– volume: 15
  start-page: 1332
  year: 2005
  ident: ref15
  article-title: Neurophysiological architecture of functional magnetic resonance images of human brain.
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhi016
– volume: 112 (Pt 3)
  start-page: 799
  year: 1989
  ident: ref35
  article-title: Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study.
  publication-title: Brain
  doi: 10.1093/brain/112.3.799
– volume: 122 (Pt 5)
  start-page: 963
  year: 1999
  ident: ref8
  article-title: Context-dependent, neural system-specific neurophysiological concomitants of ageing: mapping PET correlates during cognitive activation.
  publication-title: Brain
  doi: 10.1093/brain/122.5.963
– volume: 17
  start-page: 92
  year: 2007
  ident: ref17
  article-title: Small-world networks and functional connectivity in Alzheimer's disease.
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhj127
– volume: 40
  start-page: 1064
  year: 2008
  ident: ref31
  article-title: Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.060
– volume: 6
  start-page: 316
  year: 2003
  ident: ref2
  article-title: Neural mechanisms of general fluid intelligence.
  publication-title: Nat Neurosci
  doi: 10.1038/nn1014
– volume: 2
  start-page: e597
  year: 2007
  ident: ref29
  article-title: Mapping human whole-brain structural networks with diffusion MRI.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000597
– volume: 29
  start-page: 578
  year: 2006
  ident: ref10
  article-title: Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.07.036
– volume: 9
  start-page: 250
  year: 2005
  ident: ref54
  article-title: Evolution of the brain and intelligence.
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2005.03.005
– volume: 59
  start-page: 10
  year: 2002
  ident: ref56
  article-title: Evolution of human intelligence: the roles of brain size and mental construction.
  publication-title: Brain Behav Evol
  doi: 10.1159/000063730
– start-page: 249
  year: 1999
  ident: ref67
  article-title: Tensorlines: advection-diffusion based propagation through diffusion tensor fields.
  publication-title: IEEE Visualization Proc, San Francisco
– volume: 20
  start-page: 202
  year: 2003
  ident: ref48
  article-title: Bright spots: correlations of gray matter volume with IQ in a normal pediatric population.
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00199-X
– volume: 26
  start-page: 63
  year: 2006
  ident: ref16
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3874-05.2006
– volume: 28
  start-page: 9239
  year: 2008
  ident: ref21
  article-title: Hierarchical organization of human cortical networks in health and schizophrenia.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1929-08.2008
– volume: 402
  start-page: 273
  year: 2006
  ident: ref19
  article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis.
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2006.04.006
– volume: 84
  start-page: 207
  year: 2001
  ident: ref59
  article-title: Principles underlying mammalian neocortical scaling.
  publication-title: Biol Cybern
  doi: 10.1007/s004220000205
– start-page: 482
  year: 2000
  ident: ref69
  article-title: Axon tractography with tensorlines.
– volume: 289
  start-page: 457
  year: 2000
  ident: ref51
  article-title: A neural basis for general intelligence.
  publication-title: Science
  doi: 10.1126/science.289.5478.457
– volume: 94
  start-page: 018102
  year: 2005
  ident: ref14
  article-title: Scale-free brain functional networks.
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.94.018102
– volume: 97
  start-page: 5621
  year: 2000
  ident: ref58
  article-title: A universal scaling law between gray matter and white matter of cerebral cortex.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.090504197
– volume: 24
  start-page: 524
  year: 2005
  ident: ref81
  article-title: Bootstrap white matter tractography (BOOT-TRAC).
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.08.050
– volume: 4
  start-page: 1253
  year: 2001
  ident: ref47
  article-title: Genetic influences on brain structure.
  publication-title: Nat Neurosci
  doi: 10.1038/nn758
– year: 1982
  ident: ref63
  article-title: Manual of modified Wechsler Adult Intelligence Scale (WAIS-RC) (in Chinese)
– year: 1995
  ident: ref55
  article-title: The Thinking Ape: Evolutionary Origins of Intelligence
– volume: 424
  start-page: 175
  year: 2006
  ident: ref72
  article-title: Complex networks: structure and dynamics.
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2005.10.009
– volume: 17
  start-page: 2407
  year: 2007
  ident: ref20
  article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI.
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhl149
– volume: 45
  start-page: 265
  year: 1999
  ident: ref23
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging.
  publication-title: Ann Neurol
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 4
  start-page: 469
  year: 2003
  ident: ref28
  article-title: Looking into the functional architecture of the brain with diffusion MRI.
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1119
– volume: 47
  start-page: 967
  year: 2002
  ident: ref26
  article-title: White matter mapping using diffusion tensor MRI.
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10144
– volume: 16
  start-page: 241
  year: 2002
  ident: ref24
  article-title: An investigation of functional and anatomical connectivity using magnetic resonance imaging.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.1052
– volume: 129
  start-page: 386
  year: 2006
  ident: ref46
  article-title: Intelligence and brain size in 100 postmortem brains: sex, lateralization and age factors.
  publication-title: Brain
  doi: 10.1093/brain/awh696
– volume: 87
  start-page: 198701
  year: 2001
  ident: ref74
  article-title: Efficient behavior of small-world networks.
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.87.198701
– volume: 101
  start-page: 3747
  year: 2004
  ident: ref73
  article-title: The architecture of complex weighted networks.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0400087101
– volume: 96
  start-page: 10422
  year: 1999
  ident: ref22
  article-title: Tracking neuronal fiber pathways in the living human brain.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.18.10422
– volume: 150
  start-page: 130
  year: 1993
  ident: ref41
  article-title: Intelligence and brain structure in normal individuals.
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.150.1.130
– volume: 12
  start-page: 512
  year: 2006
  ident: ref40
  article-title: Small-world brain networks.
  publication-title: Neuroscientist
  doi: 10.1177/1073858406293182
– volume: 6
  start-page: 750
  year: 2003
  ident: ref27
  article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging.
  publication-title: Nat Neurosci
  doi: 10.1038/nn1075
– volume: 36
  start-page: 645
  year: 2007
  ident: ref39
  article-title: Characterizing brain anatomical connections using diffusion weighted MRI and graph theory.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.012
– volume: 31
  start-page: 1359
  year: 2006
  ident: ref5
  article-title: Distributed brain sites for the g-factor of intelligence.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.006
– volume: 56
  start-page: 969
  year: 2001
  ident: ref44
  article-title: Head size and cognitive ability in nondemented older adults are related.
  publication-title: Neurology
  doi: 10.1212/WNL.56.7.969
– start-page: 506
  year: 2001
  ident: ref70
  article-title: Error analysis of white matter tracking algorithms (streamline and tensorlines) for DT-MRI.
– volume: 19
  start-page: 524
  year: 2009
  ident: ref32
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography.
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn102
– volume: 2
  start-page: e95
  year: 2006
  ident: ref53
  article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020095
– volume: 2
  start-page: 145
  year: 2004
  ident: ref12
  article-title: The small world of the cerebral cortex.
  publication-title: Neuroinformatics
  doi: 10.1385/NI:2:2:145
– volume: 29
  start-page: 868
  year: 2006
  ident: ref66
  article-title: Application of Brodmann's area templates for ROI selection in white matter tractography studies.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.051
– volume: 81
  start-page: 106
  year: 2006
  ident: ref64
  article-title: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking.
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2005.08.004
– volume: 15
  start-page: 273
  year: 2002
  ident: ref65
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 34
  start-page: 144
  year: 2007
  ident: ref80
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 410
  start-page: 268
  year: 2001
  ident: ref37
  article-title: Exploring complex networks.
  publication-title: Nature
  doi: 10.1038/35065725
– volume: 41
  start-page: 1168
  year: 2008
  ident: ref6
  article-title: Brain spontaneous functional connectivity and intelligence.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.036
– volume: 3
  start-page: e17
  year: 2007
  ident: ref52
  article-title: Efficiency and cost of economical brain functional networks.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030017
– volume: 6
  start-page: e159
  year: 2008
  ident: ref30
  article-title: Mapping the structural core of human cerebral cortex.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060159
– volume: 33
  start-page: 43
  year: 1997
  ident: ref1
  article-title: Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test.
  publication-title: Cognit Psychol
  doi: 10.1006/cogp.1997.0659
– volume: 124
  start-page: 617
  year: 2001
  ident: ref60
  article-title: Diffusion tensor imaging in patients with epilepsy and malformations of cortical development.
  publication-title: Brain
  doi: 10.1093/brain/124.3.617
– volume: 298
  start-page: 824
  year: 2002
  ident: ref77
  article-title: Network motifs: simple building blocks of complex networks.
  publication-title: Science
  doi: 10.1126/science.298.5594.824
– volume: 15
  start-page: 797
  year: 2002
  ident: ref25
  article-title: Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0994
– volume: 42
  start-page: 1118
  year: 2004
  ident: ref45
  article-title: Head size and intelligence, learning, nutritional status and brain development. Head, IQ, learning, nutrition and brain.
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2003.11.022
– reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89
– reference: 11988575 - Science. 2002 May 3;296(5569):910-3
– reference: 17611629 - PLoS One. 2007;2(7):e597
– reference: 16122946 - Neuroimage. 2006 Jan 15;29(2):578-86
– reference: 11969331 - Neuroimage. 2002 May;16(1):241-50
– reference: 11694885 - Nat Neurosci. 2001 Dec;4(12):1253-8
– reference: 9623998 - Nature. 1998 Jun 4;393(6684):440-2
– reference: 15325390 - Neuroimage. 2004 Sep;23(1):425-33
– reference: 11810663 - Magn Reson Med. 2002 Feb;47(2):215-23
– reference: 15007165 - Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3747-52
– reference: 15734366 - Neuroimage. 2005 Mar;25(1):320-7
– reference: 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72
– reference: 16848638 - PLoS Comput Biol. 2006 Jul 21;2(7):e95
– reference: 11294939 - Neurology. 2001 Apr 10;56(7):969-71
– reference: 12399590 - Science. 2002 Oct 25;298(5594):824-7
– reference: 17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17
– reference: 12632468 - Hum Brain Mapp. 2003 Apr;18(4):306-21
– reference: 16243544 - Neuroimage. 2006 Feb 1;29(3):868-78
– reference: 9212721 - Cogn Psychol. 1997 Jun;33(1):43-63
– reference: 16452642 - Cereb Cortex. 2007 Jan;17(1):92-9
– reference: 10792049 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5621-6
– reference: 12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80
– reference: 18434203 - Neuroimage. 2008 Jul 1;41(3):1168-76
– reference: 12778119 - Nat Rev Neurosci. 2003 Jun;4(6):469-80
– reference: 10355679 - Brain. 1999 May;122 ( Pt 5):963-79
– reference: 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42
– reference: 18299296 - Brain. 2008 Apr;131(Pt 4):945-61
– reference: 15528081 - Neuroimage. 2004 Nov;23(3):800-5
– reference: 17466539 - Neuroimage. 2007 Jul 1;36(3):645-60
– reference: 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159
– reference: 12097857 - Brain Behav Evol. 2002;59(1-2):10-20
– reference: 1602026 - J Clin Psychol. 1992 May;48(3):360-3
– reference: 11252638 - Biol Cybern. 2001 Mar;84(3):207-15
– reference: 11723454 - Nat Neurosci. 2001 Dec;4(12):1153-4
– reference: 16513370 - Neuroimage. 2006 Jul 1;31(3):1359-65
– reference: 16512999 - J Cogn Neurosci. 2006 Mar;18(3):320-34
– reference: 11258382 - Nature. 2001 Mar 8;410(6825):268-76
– reference: 16678344 - Neurosci Lett. 2006 Jul 24;402(3):273-7
– reference: 15365196 - Neuroinformatics. 2004;2(3):353-60
– reference: 14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8
– reference: 1499309 - Cortex. 1992 Jun;28(2):231-9
– reference: 8931596 - Brain. 1996 Oct;119 ( Pt 5):1763-74
– reference: 12049867 - Lancet. 2002 May 18;359(9319):1748-51
– reference: 11222460 - Brain. 2001 Mar;124(Pt 3):617-26
– reference: 15866152 - Trends Cogn Sci. 2005 May;9(5):250-7
– reference: 12808459 - Nat Neurosci. 2003 Jul;6(7):750-7
– reference: 15093150 - Neuropsychologia. 2004;42(8):1118-31
– reference: 15186759 - Curr Biol. 2004 May 25;14(10):R372-5
– reference: 14645885 - Radiology. 2004 Jan;230(1):77-87
– reference: 17079517 - Neuroscientist. 2006 Dec;12(6):512-23
– reference: 10903207 - Science. 2000 Jul 21;289(5478):457-60
– reference: 18272400 - Neuroimage. 2008 Apr 15;40(3):1064-76
– reference: 15805679 - Indian J Med Sci. 2005 Mar;59(3):95-103
– reference: 14527581 - Neuroimage. 2003 Sep;20(1):202-15
– reference: 15319512 - Neuroinformatics. 2004;2(2):145-62
– reference: 8417555 - Am J Psychiatry. 1993 Jan;150(1):130-4
– reference: 12592404 - Nat Neurosci. 2003 Mar;6(3):316-22
– reference: 17655784 - Behav Brain Sci. 2007 Apr;30(2):135-54; discussion 154-87
– reference: 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48
– reference: 11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701
– reference: 9989633 - Ann Neurol. 1999 Feb;45(2):265-9
– reference: 17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19
– reference: 16413083 - Comput Methods Programs Biomed. 2006 Feb;81(2):106-16
– reference: 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102
– reference: 18615479 - Am J Med Genet B Neuropsychiatr Genet. 2009 Apr 5;150B(3):375-80
– reference: 15627594 - Neuroimage. 2005 Jan 15;24(2):524-32
– reference: 11906221 - Neuroimage. 2002 Apr;15(4):797-809
– reference: 17070705 - Neuroimage. 2007 Jan 1;34(1):144-55
– reference: 18353685 - Neuroimage. 2008 May 1;40(4):1533-41
– reference: 15850735 - Neuroimage. 2005 May 1;25(4):1175-86
– reference: 10468624 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10422-7
– reference: 2731030 - Brain. 1989 Jun;112 ( Pt 3):799-835
– reference: 11979576 - Magn Reson Med. 2002 May;47(5):967-72
– reference: 18567609 - Cereb Cortex. 2009 Mar;19(3):524-36
– reference: 16339797 - Brain. 2006 Feb;129(Pt 2):386-98
SSID ssj0035896
Score 2.4759665
Snippet Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported...
  Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000395
SubjectTerms Adolescent
Adult
Brain
Brain - anatomy & histology
Brain - physiology
Brain Mapping
Cluster Analysis
Computational Biology/Computational Neuroscience
Diffusion Magnetic Resonance Imaging
Female
Humans
Intellect
Intelligence - physiology
Intelligence levels
Intelligence Tests
Male
Models, Neurological
Nerve Net - anatomy & histology
Neural circuitry
Neural Pathways - anatomy & histology
Neuroscience/Cognitive Neuroscience
NMR
Nuclear magnetic resonance
Physiological aspects
Radiology and Medical Imaging/Magnetic Resonance Imaging
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEOWrKQUihIQ4hK7Xjj-OLaIqSPQARdqb5fgDVqqyK7J76L9nxvYuGwTqhWsyOczLxH6jjN8j5HXbAakWwNws9AINDzY22k51I7330PzQEJLz3OdLcfGNf5q38z2rL5wJy_LAGbiToBVvo46upRbY-UwBBWdOSI2NQ4xJ5xP2vG0zlddg1qrkzIWmOI1kfF4OzTFJT8o7erdy3QJnBKYMvSX2NqWk3b9boSer6-XwN_r55xTl3rZ0_oDcL3yyPs15HJA7oX9I7maHyZtH5O0ZWkDUtofeOgkD1H2e-4ZLvl7s6XE-JlfnH67eXzTFHaFxgtF146nTmlMa0TcseCEs7wKzDpYgqzp0RXfeUq-V9oqK1lMurYVGGAgY51yyJ2TSL_twSGoPOAbp_FRZx6PXlgXFuhgCbP9WR1URtkXHuKIcjgYW1yb9DpPQQeRkDWJqCqYVaXZPrbJyxi3xZwj8LhZ1r9MFqAZTqsHcVg0VeYWvzaCyRY-jM9_tZhjMx6-X5nSW6CHT038GfRkFvSlBcQnJOluOKwBkqJg1ijweRcL36Ua3D7GEtjkPgAByKkiEV-TltqwMPoXzbn1YbgactoOVUuiKPM1F9htCzfUM-tCKyFH5jXAb3-kXP5Ju-EwA3Zbt0f8A-hm5l_-r4ejnMZmsf27Cc6Bn6-5F-hJ_AUbTNDQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Brain Anatomical Network and Intelligence
URI https://www.ncbi.nlm.nih.gov/pubmed/19492086
https://www.proquest.com/docview/67317969
https://pubmed.ncbi.nlm.nih.gov/PMC2683575
https://doaj.org/article/e9845f9fc51a499288623c6799249ff3
http://dx.doi.org/10.1371/journal.pcbi.1000395
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEB0Sh0IvpelX1KauKYXSg4LlXWm1h1LsNm5aiClpAr6J1X4kBiO5lg3Nv-_MSnaiktBLLzZIs4Z93o_3tKN5AO_iHEl1gsxNoRYIuVUulKovQ2GMQfETWeud504nyckF_z6Npzuw8WxtAKzulHbkJ3WxnB_9_nX9CSf8R-_aIKJNo6OFzmd06t9nMt6FPdybBHkanPLtuQKLU-_YRWY5oWB82rxMd9-vtDYrX9N_u3J3FvOyuouW_p1deWu7Gj-GRw3P7A3rgbEPO7Z4Ag9q58nrp_BhRNYQPVWg5vYFA3pFnQ-Ol0xvdqtO5zM4Hx-ffz4JG9eEUCcsWoUm0lLyKHLkJ2ZNkiieW6Y0Lk0qzcktXRsVGZlKk0ZJbCIulEKBjMSMcy7Yc-gUZWEPoGekc1Zo00-V5s5IxWzKcmct0gIlXRoA26CT6aaiOBlbzDN_TCZQWdSdzQjTrME0gHDbalFX1PhH_IiA38ZSPWx_oVxeZs30yqxMeeyk03GkUMMNUhRqTCdCkrx0jgXwlv62jCpeFJRSc6nWVZV9-znJhgNPG5ns3xt01gp63wS5EjurVfMaA0JGlbRakYetSJy3unX7gIbQps8VIkBcCzvCA3izGVYZtaI8uMKW64qy8HAFTWQAL-pBdgOh5HKA-jQA0Rp-Ldzad4rZla8nPkiQhov45f8A-hU8rM_bKCX0EDqr5dq-Rtq2yruwK6YCP9Px1y7sDUdfRmP8Hh1Pfpx1_aOQrp-rfwDnIkTC
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+anatomical+network+and+intelligence&rft.jtitle=PLoS+computational+biology&rft.au=Yonghui+Li&rft.au=Yong+Liu&rft.au=Jun+Li&rft.au=Wen+Qin&rft.date=2009-05-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=5&rft.issue=5&rft.spage=e1000395&rft_id=info:doi/10.1371%2Fjournal.pcbi.1000395&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e9845f9fc51a499288623c6799249ff3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon