Brain Anatomical Network and Intelligence
Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in i...
Saved in:
Published in | PLoS computational biology Vol. 5; no. 5; p. e1000395 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.05.2009
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. |
---|---|
AbstractList | Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.
Networks of interconnected brain regions coordinate brain activities. Information is processed in the grey matter (cortex and subcortical structures) and passed along the network via whitish, fatty-coated fiber bundles, the white matter. Using maps of these white matter tracks, we provided evidence that higher intelligence may result from more efficient information transfer. Specifically, we hypothesized that higher IQ derives from higher global efficiency of the brain anatomical network. Seventy-nine healthy young adults were divided into general and high IQ groups. We used diffusion tensor tractography, which maps brain white matter fibers, to construct anatomical brain networks for each subject and calculated the network properties using both binary and weighted networks. We consistently found that the high intelligence group's brain network was significantly more efficient than was the general intelligence group's. Moreover, IQ scores were significantly correlated with network properties, such as shorter path lengths and higher overall efficiency, indicating that the information transfer in the brain was more efficient. These converging evidences support the hypothesis that the efficiency of the organization of the brain structure may be an important biological basis for intelligence. Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. |
Audience | Academic |
Author | Li, Jun Yu, Chunshui Jiang, Tianzi Li, Kuncheng Qin, Wen Li, Yonghui Liu, Yong |
AuthorAffiliation | 1 LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China Indiana University, United States of America 2 National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China 3 Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China |
AuthorAffiliation_xml | – name: 1 LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China – name: Indiana University, United States of America – name: 3 Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China – name: 2 National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China |
Author_xml | – sequence: 1 givenname: Yonghui surname: Li fullname: Li, Yonghui – sequence: 2 givenname: Yong surname: Liu fullname: Liu, Yong – sequence: 3 givenname: Jun surname: Li fullname: Li, Jun – sequence: 4 givenname: Wen surname: Qin fullname: Qin, Wen – sequence: 5 givenname: Kuncheng surname: Li fullname: Li, Kuncheng – sequence: 6 givenname: Chunshui surname: Yu fullname: Yu, Chunshui – sequence: 7 givenname: Tianzi surname: Jiang fullname: Jiang, Tianzi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19492086$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl2L1DAUhousuB_6D0QHBGEvZuxJ0jTxQhgXPwaWFXTvw5k0rRk7yZikfvx7M0532YoIkouE5HnfJOe8p8WR884UxWMoF0BreLHxQ3DYL3Z6bRdQliWV1b3iBKqKzmtaiaM76-PiNMZNRioh-YPiGCSTpBT8pDh_HdC62dJh8lursZ9dmfTdhy8zdM1s5ZLpe9sZp83D4n6LfTSPxvmsuH775vri_fzyw7vVxfJyrjmFNG9AS8kAWlkTahrOka0NRU1AoliTklDdIDRSyEYArxpgNWLNCHDKGKvpWfH0YLvrfVTjJ6MCCoQxKRjLxOpANB43ahfsFsNP5dGq3xs-dApDsro3ymRB1cpWV4BMSiIEz_fzOi-ZbFuavV6Ntw3rrWm0cSlgPzGdnjj7WXX-myJc0KqussHz0SD4r4OJSW1t1Llo6IwfouI1hVpymcFnB7DD_DDrWp_99B5WS1LmTgGVZaYWf6HyaEzuTg5Aa_P-RHA-EWQmmR-pwyFGtfr08T_Yqyn75G5hbityk5wMvDwAOvgYg2mVtgmT9fs62V5BqfYxvemg2sdUjTHNYvaH-Nb_X7Jf8ybpdQ |
CitedBy_id | crossref_primary_10_3390_e22090917 crossref_primary_10_1111_epi_12350 crossref_primary_10_1016_j_neuroimage_2016_08_041 crossref_primary_10_1002_brb3_2241 crossref_primary_10_1038_s41598_022_08521_5 crossref_primary_10_1523_JNEUROSCI_1415_20_2020 crossref_primary_10_3389_fnana_2017_00012 crossref_primary_10_1016_j_neurobiolaging_2019_09_006 crossref_primary_10_1016_j_nicl_2013_03_007 crossref_primary_10_1109_ACCESS_2018_2879487 crossref_primary_10_1371_journal_pone_0068910 crossref_primary_10_1016_j_ynirp_2023_100165 crossref_primary_10_1016_j_jad_2013_03_004 crossref_primary_10_1016_j_neuroimage_2012_01_059 crossref_primary_10_1007_s11682_019_00090_y crossref_primary_10_1002_brb3_2112 crossref_primary_10_1002_hbm_25301 crossref_primary_10_1016_j_brainres_2022_147922 crossref_primary_10_1002_hbm_23242 crossref_primary_10_1016_j_clinph_2012_01_011 crossref_primary_10_1063_5_0008289 crossref_primary_10_1371_journal_pone_0117295 crossref_primary_10_1002_jsc_2202 crossref_primary_10_2337_db12_1644 crossref_primary_10_1016_j_psiq_2011_05_001 crossref_primary_10_1089_brain_2013_0209 crossref_primary_10_1177_1073858413503712 crossref_primary_10_1089_brain_2013_0202 crossref_primary_10_3389_fnhum_2016_00114 crossref_primary_10_1016_j_neuroimage_2017_09_025 crossref_primary_10_1016_j_neuroimage_2012_02_070 crossref_primary_10_1016_j_neuroimage_2017_02_037 crossref_primary_10_1093_cercor_bhab307 crossref_primary_10_1016_j_nicl_2015_07_003 crossref_primary_10_1016_j_neuroimage_2013_04_087 crossref_primary_10_1016_j_neuroimage_2024_120844 crossref_primary_10_1371_journal_pone_0131493 crossref_primary_10_1007_s11682_016_9559_9 crossref_primary_10_1016_j_neuroimage_2010_12_012 crossref_primary_10_1002_hbm_22177 crossref_primary_10_1016_j_neuroimage_2014_05_065 crossref_primary_10_1002_hbm_23017 crossref_primary_10_1111_jcpp_13184 crossref_primary_10_1371_journal_pone_0074125 crossref_primary_10_3389_fnagi_2021_637002 crossref_primary_10_1002_hbm_21030 crossref_primary_10_3389_fnana_2015_00152 crossref_primary_10_1002_hbm_23452 crossref_primary_10_1016_j_intell_2016_11_001 crossref_primary_10_1093_cercor_bht333 crossref_primary_10_3390_brainsci10090578 crossref_primary_10_1016_j_brainres_2020_147176 crossref_primary_10_1016_j_tine_2019_04_001 crossref_primary_10_1016_j_neuroimage_2015_07_048 crossref_primary_10_1038_nrn2793 crossref_primary_10_1093_cercor_bhr388 crossref_primary_10_1371_journal_pone_0088451 crossref_primary_10_1093_cercor_bhq058 crossref_primary_10_1109_TCDS_2020_2965135 crossref_primary_10_1002_hbm_24896 crossref_primary_10_3389_fncom_2014_00126 crossref_primary_10_19066_cogsci_2017_28_4_004 crossref_primary_10_1371_journal_pone_0301599 crossref_primary_10_3182_20130902_3_CN_3020_00078 crossref_primary_10_1016_j_neuroimage_2017_11_015 crossref_primary_10_1097_YCO_0b013e32834591f8 crossref_primary_10_1007_s00429_021_02388_4 crossref_primary_10_1016_j_neuroimage_2010_03_011 crossref_primary_10_53841_bpsadm_2019_11_4_28 crossref_primary_10_1007_s10548_014_0356_8 crossref_primary_10_1162_NECO_a_00925 crossref_primary_10_1002_hbm_23798 crossref_primary_10_1016_j_neuroimage_2013_08_011 crossref_primary_10_1097_NMD_0000000000001001 crossref_primary_10_1016_j_neuroimage_2014_12_046 crossref_primary_10_3389_fncom_2022_836532 crossref_primary_10_1002_hbm_21297 crossref_primary_10_1155_2018_6142898 crossref_primary_10_1016_j_ijpsycho_2014_04_001 crossref_primary_10_1093_cercor_bhr298 crossref_primary_10_1073_pnas_1220826110 crossref_primary_10_1016_j_heliyon_2021_e06268 crossref_primary_10_1016_j_mehy_2017_12_003 crossref_primary_10_1038_s41467_024_52479_z crossref_primary_10_1016_j_jad_2023_01_116 crossref_primary_10_1007_s11571_024_10148_3 crossref_primary_10_1016_j_biosystems_2009_10_010 crossref_primary_10_1016_j_nicl_2015_06_007 crossref_primary_10_1002_hbm_21169 crossref_primary_10_1038_s41598_017_02304_z crossref_primary_10_1038_s41598_020_76528_x crossref_primary_10_1007_s00429_019_01914_9 crossref_primary_10_3389_fnagi_2022_788661 crossref_primary_10_1111_dmcn_13487 crossref_primary_10_1002_hbm_23343 crossref_primary_10_1016_j_intell_2021_101545 crossref_primary_10_1371_journal_pone_0058921 crossref_primary_10_1016_j_neuroimage_2012_03_071 crossref_primary_10_1016_j_brainres_2012_09_014 crossref_primary_10_1371_journal_pone_0086258 crossref_primary_10_3389_fnins_2022_814477 crossref_primary_10_1073_pnas_1111738109 crossref_primary_10_1007_s12474_011_0002_0 crossref_primary_10_1016_j_neubiorev_2016_08_024 crossref_primary_10_1093_nop_npad044 crossref_primary_10_1016_j_bbr_2024_115222 crossref_primary_10_1016_j_neuroimage_2013_04_056 crossref_primary_10_1016_j_neuroimage_2012_09_004 crossref_primary_10_1523_JNEUROSCI_4085_10_2011 crossref_primary_10_1002_hbm_21232 crossref_primary_10_1017_S0033291721004244 crossref_primary_10_1111_odi_12314 crossref_primary_10_1093_cercor_bhaa391 crossref_primary_10_1016_j_intell_2016_04_002 crossref_primary_10_1080_02688697_2016_1208809 crossref_primary_10_1089_brain_2012_0106 crossref_primary_10_3389_fnhum_2017_00189 crossref_primary_10_1155_2015_495375 crossref_primary_10_1002_hbm_23887 crossref_primary_10_1371_journal_pone_0033540 crossref_primary_10_1002_hbm_23885 crossref_primary_10_3934_mbe_2022416 crossref_primary_10_3389_fpsyt_2020_497116 crossref_primary_10_1002_hbm_22550 crossref_primary_10_1162_netn_a_00318 crossref_primary_10_1007_s11682_012_9220_1 crossref_primary_10_3389_fninf_2022_859309 crossref_primary_10_1016_j_nicl_2015_05_008 crossref_primary_10_1002_per_2217 crossref_primary_10_1016_j_celrep_2019_10_067 crossref_primary_10_1146_annurev_clinpsy_040510_143934 crossref_primary_10_5406_19398298_136_1_04 crossref_primary_10_5498_wjp_v2_i1_1 crossref_primary_10_1038_srep10057 crossref_primary_10_1002_hbm_21332 crossref_primary_10_1212_WNL_0b013e31828c2ee5 crossref_primary_10_1016_j_neuroimage_2010_06_041 crossref_primary_10_1002_hbm_22428 crossref_primary_10_1093_cercor_bhac111 crossref_primary_10_1371_journal_pone_0055347 crossref_primary_10_3389_fncom_2016_00012 crossref_primary_10_1016_j_neubiorev_2018_08_013 crossref_primary_10_1016_j_neuroimage_2017_01_079 crossref_primary_10_1093_comnet_cnac037 crossref_primary_10_1016_j_tics_2016_03_001 crossref_primary_10_1007_s00422_014_0641_3 crossref_primary_10_1089_brain_2012_0127 crossref_primary_10_1259_bjr_20140086 crossref_primary_10_1089_brain_2012_0122 crossref_primary_10_3389_fnhum_2017_00169 crossref_primary_10_1371_journal_pone_0024239 crossref_primary_10_1371_journal_pone_0031029 crossref_primary_10_1111_nyas_12833 crossref_primary_10_1016_j_intell_2011_02_004 crossref_primary_10_1016_j_neuroimage_2018_03_077 crossref_primary_10_1016_j_plrev_2022_03_001 crossref_primary_10_1007_s11065_021_09512_5 crossref_primary_10_1016_j_neuropsychologia_2022_108285 crossref_primary_10_1016_j_neuroimage_2018_09_041 crossref_primary_10_3233_JIFS_223819 crossref_primary_10_1016_j_neuroimage_2018_01_018 crossref_primary_10_1016_j_neuroimage_2013_01_013 crossref_primary_10_1016_j_neulet_2010_11_046 crossref_primary_10_1016_j_ssci_2021_105261 crossref_primary_10_1089_brain_2018_0622 crossref_primary_10_1371_journal_pone_0067354 crossref_primary_10_1016_j_nicl_2016_12_005 crossref_primary_10_1016_j_tics_2013_09_012 crossref_primary_10_1186_s12859_021_03973_4 crossref_primary_10_1016_j_jneumeth_2010_01_014 crossref_primary_10_1016_j_neuroimage_2020_117027 crossref_primary_10_1371_journal_pcbi_1012870 crossref_primary_10_3389_fninf_2016_00046 crossref_primary_10_1002_hbm_22751 crossref_primary_10_1038_nrn3801 crossref_primary_10_3389_fnagi_2019_00310 crossref_primary_10_1371_journal_pone_0053199 crossref_primary_10_3389_fnhum_2018_00070 crossref_primary_10_1016_j_neuroimage_2023_120160 crossref_primary_10_1089_brain_2018_0615 crossref_primary_10_1007_s11682_019_00175_8 crossref_primary_10_1089_brain_2018_0616 crossref_primary_10_1093_brain_aww297 crossref_primary_10_3389_fpsyt_2020_00658 crossref_primary_10_1016_j_neuroimage_2018_02_066 crossref_primary_10_1093_schbul_sbv174 crossref_primary_10_1002_hbm_22988 crossref_primary_10_1016_j_bandc_2022_105943 crossref_primary_10_1002_hbm_23833 crossref_primary_10_1109_TMI_2015_2416271 crossref_primary_10_1016_j_neulet_2013_02_062 crossref_primary_10_1515_RNS_2011_039 crossref_primary_10_1093_bioinformatics_btx050 crossref_primary_10_1111_ejn_14883 crossref_primary_10_3389_fnagi_2017_00361 crossref_primary_10_1016_j_euroneuro_2010_03_008 crossref_primary_10_1093_brain_awx050 crossref_primary_10_1093_cercor_bhq111 crossref_primary_10_1371_journal_pone_0048846 crossref_primary_10_1002_hbm_23501 crossref_primary_10_1016_j_neuroimage_2010_12_046 crossref_primary_10_1073_pnas_1502052112 crossref_primary_10_1016_j_neuroscience_2010_11_039 crossref_primary_10_1007_s12264_012_1245_3 crossref_primary_10_1111_ejn_14535 crossref_primary_10_1016_j_bpsc_2016_01_002 crossref_primary_10_1016_j_physrep_2019_12_004 crossref_primary_10_1007_s12264_013_1300_8 crossref_primary_10_3390_life12030416 crossref_primary_10_1093_brain_aww194 crossref_primary_10_1007_s00429_016_1243_8 crossref_primary_10_3389_fnsys_2020_00058 crossref_primary_10_1016_j_intell_2018_12_003 crossref_primary_10_1080_17588928_2011_628383 crossref_primary_10_1111_j_1748_6653_2011_02004_x crossref_primary_10_1162_NETN_a_00010 crossref_primary_10_1002_hbm_22524 crossref_primary_10_1016_j_neunet_2013_01_007 crossref_primary_10_1016_j_intell_2015_04_009 crossref_primary_10_1016_j_neuroscience_2011_11_048 crossref_primary_10_1002_brb3_70386 crossref_primary_10_1016_j_intell_2015_12_002 crossref_primary_10_1016_j_dcn_2018_03_003 crossref_primary_10_1016_j_neuroimage_2010_09_083 crossref_primary_10_1371_journal_pone_0141840 crossref_primary_10_1227_NEU_0b013e318258e9ff crossref_primary_10_1038_s41598_024_64845_4 crossref_primary_10_3389_fnins_2021_549322 crossref_primary_10_1016_j_neuroimage_2011_11_055 crossref_primary_10_1016_j_bpsc_2019_09_004 crossref_primary_10_1007_s12017_014_8316_8 crossref_primary_10_1016_j_neuroimage_2014_08_048 crossref_primary_10_3389_fnagi_2019_00113 crossref_primary_10_1016_j_neuroimage_2019_116233 crossref_primary_10_1073_pnas_1109038108 crossref_primary_10_1007_s11434_014_0716_5 crossref_primary_10_1371_journal_pone_0218201 crossref_primary_10_3389_fnhum_2015_00059 crossref_primary_10_18699_VJGB_22_22 crossref_primary_10_2147_PRBM_S357138 crossref_primary_10_3233_JAD_150311 crossref_primary_10_4018_jkdb_2012010102 crossref_primary_10_1016_j_neuroimage_2015_09_012 crossref_primary_10_1002_mds_25314 crossref_primary_10_1007_s11571_015_9327_3 crossref_primary_10_1162_netn_a_00151 crossref_primary_10_1093_cercor_bhw109 crossref_primary_10_3389_fnhum_2015_00061 crossref_primary_10_1212_WNL_0b013e31829a33f8 crossref_primary_10_1371_journal_pcbi_1002937 crossref_primary_10_1093_cercor_bhv050 crossref_primary_10_1007_s00429_014_0849_y crossref_primary_10_1088_1741_2560_10_6_066017 crossref_primary_10_1017_nws_2014_26 crossref_primary_10_1016_j_bpsc_2022_09_005 crossref_primary_10_1016_j_neuroimage_2016_11_006 crossref_primary_10_3389_fnagi_2021_625931 crossref_primary_10_1007_s11065_014_9248_7 crossref_primary_10_1016_j_biopsych_2010_08_022 crossref_primary_10_1109_TPAMI_2024_3442811 crossref_primary_10_3389_fnins_2018_00233 crossref_primary_10_3171_2015_4_JNS142683 crossref_primary_10_1002_hbm_23941 crossref_primary_10_1016_j_pnpbp_2014_01_005 crossref_primary_10_1093_schbul_sbt162 crossref_primary_10_18632_oncotarget_19104 crossref_primary_10_1007_s00429_021_02249_0 crossref_primary_10_1038_s41598_019_55818_z crossref_primary_10_1016_j_neures_2018_07_005 crossref_primary_10_1016_j_neuroimage_2014_09_055 crossref_primary_10_1016_j_neuroimage_2013_07_045 crossref_primary_10_1016_j_neuroimage_2022_119659 crossref_primary_10_3389_fnhum_2014_00409 crossref_primary_10_1016_j_neulet_2010_04_032 crossref_primary_10_1016_j_nicl_2022_103133 crossref_primary_10_1016_j_tine_2019_02_006 crossref_primary_10_1016_j_biopsych_2022_11_012 crossref_primary_10_1162_jocn_a_01830 crossref_primary_10_1038_s41598_024_51333_y crossref_primary_10_1089_brain_2014_0306 crossref_primary_10_1002_hbm_26286 crossref_primary_10_1016_j_ibneur_2024_06_005 crossref_primary_10_1016_j_conb_2010_03_002 crossref_primary_10_1371_journal_pone_0072654 crossref_primary_10_1093_braincomms_fcaa062 crossref_primary_10_1177_1745691612447308 crossref_primary_10_1523_JNEUROSCI_4136_10_2010 crossref_primary_10_1016_j_neuroimage_2016_05_047 crossref_primary_10_1371_journal_pone_0014801 crossref_primary_10_1007_s11071_023_08968_9 crossref_primary_10_1016_j_intell_2011_11_001 crossref_primary_10_1016_j_jpsychires_2023_10_019 crossref_primary_10_3174_ajnr_A4975 crossref_primary_10_1016_j_paid_2016_06_037 crossref_primary_10_1016_j_neuroimage_2018_08_075 crossref_primary_10_1016_j_eplepsyres_2015_12_002 crossref_primary_10_1016_j_jhevol_2011_11_013 crossref_primary_10_1017_pen_2018_4 crossref_primary_10_1111_nyas_13338 crossref_primary_10_1002_brb3_721 crossref_primary_10_1007_s11548_014_0977_0 crossref_primary_10_1371_journal_pone_0013701 crossref_primary_10_1007_s00117_023_01146_3 crossref_primary_10_1371_journal_pone_0212901 crossref_primary_10_1371_journal_pone_0071229 crossref_primary_10_3390_brainsci12050596 crossref_primary_10_1146_annurev_bioeng_071516_044511 crossref_primary_10_1186_s40708_020_00114_0 crossref_primary_10_3389_fnbeh_2016_00194 crossref_primary_10_1093_cercor_bhw059 crossref_primary_10_3389_fnins_2016_00452 crossref_primary_10_1016_j_bbi_2015_12_011 crossref_primary_10_1016_j_neuroimage_2011_09_035 crossref_primary_10_1162_jocn_a_00821 crossref_primary_10_1542_peds_2015_0608 crossref_primary_10_1162_netn_a_00291 crossref_primary_10_7759_cureus_14996 crossref_primary_10_1093_brain_awr223 crossref_primary_10_1111_jcpp_12365 crossref_primary_10_1016_j_neuroimage_2013_04_024 crossref_primary_10_1073_pnas_2018784118 crossref_primary_10_1016_j_neuroimage_2017_04_029 crossref_primary_10_1016_j_neuroimage_2010_09_006 crossref_primary_10_1093_cercor_bhs167 crossref_primary_10_1038_s41598_017_15926_0 crossref_primary_10_1016_j_archger_2023_104992 crossref_primary_10_1097_WCO_0b013e32833aa567 crossref_primary_10_1212_WNL_0000000000000627 crossref_primary_10_1089_brain_2015_0401 crossref_primary_10_1016_j_cobme_2017_03_003 crossref_primary_10_1016_j_neuroimage_2015_07_006 crossref_primary_10_1155_2016_2947136 crossref_primary_10_1038_s41598_017_11593_3 crossref_primary_10_1111_j_1749_6632_2010_05888_x crossref_primary_10_3390_app13042129 crossref_primary_10_1016_j_neubiorev_2017_03_018 crossref_primary_10_1089_brain_2011_0055 crossref_primary_10_1371_journal_pone_0072332 crossref_primary_10_3389_fpsyg_2016_01637 crossref_primary_10_1142_S0129065718500235 crossref_primary_10_1002_hbm_26598 crossref_primary_10_1109_JBHI_2021_3139701 crossref_primary_10_1016_j_schres_2016_01_025 crossref_primary_10_1093_cercor_bhs034 crossref_primary_10_1038_srep38890 crossref_primary_10_1002_hbm_26591 crossref_primary_10_1093_cercor_bhs270 crossref_primary_10_1523_JNEUROSCI_2874_10_2010 crossref_primary_10_1016_j_bbr_2012_01_037 crossref_primary_10_1016_j_bbr_2016_08_046 crossref_primary_10_1002_brb3_504 crossref_primary_10_1016_j_neuroimage_2012_10_007 crossref_primary_10_1038_nrn3214 crossref_primary_10_1016_j_neuroimage_2018_11_043 crossref_primary_10_1038_npp_2013_18 crossref_primary_10_1016_j_jagp_2013_10_004 crossref_primary_10_1016_j_cogpsych_2014_07_002 crossref_primary_10_1016_j_neuroimage_2013_08_064 crossref_primary_10_1371_journal_pone_0111262 crossref_primary_10_1038_srep26209 crossref_primary_10_1088_1742_5468_2011_11_P11018 crossref_primary_10_1162_netn_a_00091 crossref_primary_10_1016_j_neucom_2015_09_085 crossref_primary_10_3389_fnagi_2021_605158 crossref_primary_10_1016_j_neurobiolaging_2015_04_015 crossref_primary_10_1089_brain_2011_0025 crossref_primary_10_1016_j_neuroimage_2012_12_066 crossref_primary_10_1017_S1355617715000867 crossref_primary_10_1002_hbm_23291 crossref_primary_10_1016_j_neuroimage_2013_05_033 crossref_primary_10_1097_CCO_0000000000000126 crossref_primary_10_1016_j_jad_2015_11_041 crossref_primary_10_1016_j_neuroimage_2015_09_046 crossref_primary_10_1371_journal_pcbi_1002040 crossref_primary_10_1016_j_neuroimage_2011_01_016 crossref_primary_10_1038_nrn3000 crossref_primary_10_1155_2015_908917 crossref_primary_10_1016_j_bbadis_2011_08_003 crossref_primary_10_1016_j_jneumeth_2016_08_011 crossref_primary_10_1016_j_compbiomed_2019_103384 crossref_primary_10_1016_j_jneumeth_2011_09_031 crossref_primary_10_1016_j_neuroimage_2022_119553 crossref_primary_10_1002_brb3_3488 crossref_primary_10_1093_cercor_bhu133 crossref_primary_10_1523_JNEUROSCI_4858_10_2011 crossref_primary_10_1016_j_yebeh_2023_109101 crossref_primary_10_1007_s12264_020_00580_w crossref_primary_10_1016_j_intell_2023_101727 crossref_primary_10_1016_j_ntt_2015_02_002 crossref_primary_10_1038_s41598_024_63716_2 crossref_primary_10_1523_JNEUROSCI_4854_12_2013 crossref_primary_10_1371_journal_pone_0073577 crossref_primary_10_1007_s11060_019_03327_4 crossref_primary_10_1016_j_brainres_2014_02_033 crossref_primary_10_1007_s12264_014_1518_0 crossref_primary_10_1016_j_clinph_2020_04_174 crossref_primary_10_1016_j_neuroimage_2012_04_053 crossref_primary_10_1016_j_jneumeth_2015_06_016 crossref_primary_10_1002_hbm_23198 crossref_primary_10_1093_cercor_bhv255 crossref_primary_10_1016_j_neuron_2013_09_015 crossref_primary_10_1093_ijnp_pyy100 crossref_primary_10_1016_j_bandc_2014_08_006 crossref_primary_10_1371_journal_pone_0050122 crossref_primary_10_1089_brain_2011_0062 crossref_primary_10_1259_bjr_20160656 crossref_primary_10_1523_JNEUROSCI_0964_10_2011 crossref_primary_10_1523_JNEUROSCI_0440_11_2011 crossref_primary_10_1016_j_schres_2018_03_033 crossref_primary_10_1093_cercor_bhw335 crossref_primary_10_1016_j_neuroimage_2014_07_027 crossref_primary_10_1016_j_tics_2013_10_007 crossref_primary_10_1093_cercor_bht064 crossref_primary_10_1371_journal_pone_0063310 crossref_primary_10_1038_srep15129 |
Cites_doi | 10.1162/jocn.2006.18.3.320 10.1093/brain/119.5.1763 10.1016/j.cub.2004.05.008 10.1016/S0140-6736(02)08615-4 10.1016/j.neulet.2003.10.063 10.1385/NI:2:3:353 10.1002/1097-4679(199205)48:3<360::AID-JCLP2270480314>3.0.CO;2-P 10.1017/S0140525X07001185 10.1038/30918 10.1148/radiol.2301021640 10.1016/j.neuroimage.2004.12.044 10.1016/j.neuroimage.2004.11.019 10.1002/ajmg.b.30825 10.1038/nn1201-1153 10.1016/j.neuroimage.2004.05.027 10.1002/mrm.10074 10.1093/brain/awn018 10.1126/science.1065103 10.1016/S0010-9452(13)80051-2 10.1002/nbm.781 10.4103/0019-5359.15085 10.1016/j.neuroimage.2008.01.063 10.1002/hbm.10102 10.1016/j.neuroimage.2004.04.025 10.1093/cercor/bhi016 10.1093/brain/112.3.799 10.1093/brain/122.5.963 10.1093/cercor/bhj127 10.1016/j.neuroimage.2007.10.060 10.1038/nn1014 10.1371/journal.pone.0000597 10.1016/j.neuroimage.2005.07.036 10.1016/j.tics.2005.03.005 10.1159/000063730 10.1016/S1053-8119(03)00199-X 10.1523/JNEUROSCI.3874-05.2006 10.1523/JNEUROSCI.1929-08.2008 10.1016/j.neulet.2006.04.006 10.1007/s004220000205 10.1126/science.289.5478.457 10.1103/PhysRevLett.94.018102 10.1073/pnas.090504197 10.1016/j.neuroimage.2004.08.050 10.1038/nn758 10.1016/j.physrep.2005.10.009 10.1093/cercor/bhl149 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1038/nrn1119 10.1002/mrm.10144 10.1006/nimg.2001.1052 10.1093/brain/awh696 10.1103/PhysRevLett.87.198701 10.1073/pnas.0400087101 10.1073/pnas.96.18.10422 10.1176/ajp.150.1.130 10.1177/1073858406293182 10.1038/nn1075 10.1016/j.neuroimage.2007.02.012 10.1016/j.neuroimage.2006.01.006 10.1212/WNL.56.7.969 10.1093/cercor/bhn102 10.1371/journal.pcbi.0020095 10.1385/NI:2:2:145 10.1016/j.neuroimage.2005.08.051 10.1016/j.cmpb.2005.08.004 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2006.09.018 10.1038/35065725 10.1016/j.neuroimage.2008.02.036 10.1371/journal.pcbi.0030017 10.1371/journal.pbio.0060159 10.1006/cogp.1997.0659 10.1093/brain/124.3.617 10.1126/science.298.5594.824 10.1006/nimg.2001.0994 10.1016/j.neuropsychologia.2003.11.022 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2009 Public Library of Science Li et al. 2009 2009 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Li Y, Liu Y, Li J, Qin W, Li K, et al. (2009) Brain Anatomical Network and Intelligence. PLoS Comput Biol 5(5): e1000395. doi:10.1371/journal.pcbi.1000395 |
Copyright_xml | – notice: COPYRIGHT 2009 Public Library of Science – notice: Li et al. 2009 – notice: 2009 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Li Y, Liu Y, Li J, Qin W, Li K, et al. (2009) Brain Anatomical Network and Intelligence. PLoS Comput Biol 5(5): e1000395. doi:10.1371/journal.pcbi.1000395 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1000395 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Brain Anatomical Network and Intelligence |
EISSN | 1553-7358 |
ExternalDocumentID | 1312449844 oai_doaj_org_article_e9845f9fc51a499288623c6799249ff3 PMC2683575 A201551390 19492086 10_1371_journal_pcbi_1000395 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR IPNFZ ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M CGR CUY CVF ECM EIF H13 NPM PV9 RZL WOQ PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO 3V. AAPBV ABPTK M0N M~E |
ID | FETCH-LOGICAL-c631t-d1c99411f9723ed66a4be3ac219a8b2023cda1d989d8165d147aa74216344473 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Sun Oct 01 00:20:31 EDT 2023 Wed Aug 27 01:02:22 EDT 2025 Thu Aug 21 18:15:19 EDT 2025 Fri Jul 11 00:28:41 EDT 2025 Tue Jun 17 22:06:44 EDT 2025 Tue Jun 10 21:12:40 EDT 2025 Fri Jun 27 06:01:16 EDT 2025 Fri Jun 27 05:44:28 EDT 2025 Thu Apr 03 07:05:52 EDT 2025 Tue Jul 01 04:23:35 EDT 2025 Thu Apr 24 23:13:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Brain Intelligence Humans Male Neural Pathways Intelligence Tests Nerve Net Adolescent Diffusion Magnetic Resonance Imaging Brain Mapping Adult Female Models, Neurological Cluster Analysis |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c631t-d1c99411f9723ed66a4be3ac219a8b2023cda1d989d8165d147aa74216344473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: Y. Li Y. Liu CY TJ. Analyzed the data: Y. Li Y. Liu JL CY. Contributed reagents/materials/analysis tools: WQ KL. Wrote the paper: Y. Li Y. Liu CY TJ. Data collection: Y. Liu JL WQ KL CY. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1000395 |
PMID | 19492086 |
PQID | 67317969 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1312449844 doaj_primary_oai_doaj_org_article_e9845f9fc51a499288623c6799249ff3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2683575 proquest_miscellaneous_67317969 gale_infotracmisc_A201551390 gale_infotracacademiconefile_A201551390 gale_incontextgauss_ISR_A201551390 gale_incontextgauss_ISN_A201551390 pubmed_primary_19492086 crossref_citationtrail_10_1371_journal_pcbi_1000395 crossref_primary_10_1371_journal_pcbi_1000395 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-05-01 |
PublicationDateYYYYMMDD | 2009-05-01 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2009 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | R Plomin (ref43) 2001; 4 BW Waldmann (ref78) 1992; 48 YX Gong (ref63) 1982 G Esposito (ref8) 1999; 122 (Pt 5) R Milo (ref77) 2002; 298 PM Thompson (ref47) 2001; 4 M Lazar (ref81) 2005; 24 S Frangou (ref49) 2004; 23 M Song (ref6) 2008; 41 R Byrne (ref55) 1995 DJ Watts (ref18) 1998; 393 S Mori (ref23) 1999; 45 NC Andreasen (ref41) 1993; 150 QY Gong (ref50) 2005; 25 P Thottakara (ref66) 2006; 29 SH Eriksson (ref60) 2001; 124 S Achard (ref16) 2006; 26 S Boccaletti (ref72) 2006; 424 S Mori (ref33) 2002; 47 H Jiang (ref64) 2006; 81 D Le Bihan (ref28) 2003; 4 FJ Rugg-Gunn (ref61) 2002; 359 CC Hilgetag (ref38) 2004; 2 S Mori (ref71) 2002; 15 RJ Haier (ref4) 2005; 25 DM Weinstein (ref67) 1999 P Hagmann (ref30) 2008; 6 V Latora (ref74) 2001; 87 GJ Parker (ref25) 2002; 15 DS Bassett (ref21) 2008; 28 RE Jung (ref11) 2007; 30 MA Changizi (ref59) 2001; 84 M Lazar (ref69) 2000 SF Witelson (ref35) 1989; 112 (Pt 3) S Micheloyannis (ref19) 2006; 402 R Salvador (ref15) 2005; 15 TE Conturo (ref22) 1999; 96 VM Eguiluz (ref14) 2005; 94 CR Tench (ref26) 2002; 47 MA Koch (ref24) 2002; 16 SH Strogatz (ref37) 2001; 410 P Hagmann (ref29) 2007; 2 V Prabhakaran (ref1) 1997; 33 JL Gould (ref57) 2004; 14 SF Witelson (ref46) 2006; 129 JR Gray (ref2) 2003; 6 J Li (ref62) 2008; 150B Y Iturria-Medina (ref39) 2007; 36 J Duncan (ref51) 2000; 289 M Lazar (ref70) 2001 KH Lee (ref10) 2006; 29 N Tzourio-Mazoyer (ref65) 2002; 15 CJ Stam (ref17) 2007; 17 AL Reiss (ref42) 1996; 119 (Pt 5) G Roth (ref54) 2005; 9 Y Iturria-Medina (ref31) 2008; 40 DJ Tisserand (ref44) 2001; 56 Y He (ref20) 2007; 17 S Karande (ref79) 2005; 59 S Maslov (ref76) 2002; 296 O Sporns (ref12) 2004; 2 M Kaiser (ref53) 2006; 2 K Zhang (ref58) 2000; 97 R Colom (ref5) 2006; 31 T Fangmeier (ref9) 2006; 18 G Gong (ref32) 2009; 19 Y Liu (ref75) 2008; 131 KR Gibson (ref56) 2002; 59 DS Bassett (ref40) 2006; 12 A Barrat (ref73) 2004; 101 C Yu (ref34) 2008; 40 M Wilke (ref48) 2003; 20 DM Ivanovic (ref45) 2004; 42 MJ Boivin (ref7) 1992; 28 S Wakana (ref36) 2004; 230 M Lazar (ref68) 2003; 18 RJ Haier (ref3) 2004; 23 TE Behrens (ref27) 2003; 6 CJ Stam (ref13) 2004; 355 S Achard (ref52) 2007; 3 TE Behrens (ref80) 2007; 34 16848638 - PLoS Comput Biol. 2006 Jul 21;2(7):e95 16243544 - Neuroimage. 2006 Feb 1;29(3):868-78 12049867 - Lancet. 2002 May 18;359(9319):1748-51 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48 16122946 - Neuroimage. 2006 Jan 15;29(2):578-86 16339797 - Brain. 2006 Feb;129(Pt 2):386-98 11969331 - Neuroimage. 2002 May;16(1):241-50 9212721 - Cogn Psychol. 1997 Jun;33(1):43-63 9989633 - Ann Neurol. 1999 Feb;45(2):265-9 16512999 - J Cogn Neurosci. 2006 Mar;18(3):320-34 18299296 - Brain. 2008 Apr;131(Pt 4):945-61 15325390 - Neuroimage. 2004 Sep;23(1):425-33 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42 11979576 - Magn Reson Med. 2002 May;47(5):967-72 1499309 - Cortex. 1992 Jun;28(2):231-9 11988575 - Science. 2002 May 3;296(5569):910-3 10792049 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5621-6 17611629 - PLoS One. 2007;2(7):e597 18434203 - Neuroimage. 2008 Jul 1;41(3):1168-76 11723454 - Nat Neurosci. 2001 Dec;4(12):1153-4 14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8 11694885 - Nat Neurosci. 2001 Dec;4(12):1253-8 8931596 - Brain. 1996 Oct;119 ( Pt 5):1763-74 18567609 - Cereb Cortex. 2009 Mar;19(3):524-36 12592404 - Nat Neurosci. 2003 Mar;6(3):316-22 12778119 - Nat Rev Neurosci. 2003 Jun;4(6):469-80 16513370 - Neuroimage. 2006 Jul 1;31(3):1359-65 15866152 - Trends Cogn Sci. 2005 May;9(5):250-7 15627594 - Neuroimage. 2005 Jan 15;24(2):524-32 15365196 - Neuroinformatics. 2004;2(3):353-60 12097857 - Brain Behav Evol. 2002;59(1-2):10-20 15186759 - Curr Biol. 2004 May 25;14(10):R372-5 12808459 - Nat Neurosci. 2003 Jul;6(7):750-7 17655784 - Behav Brain Sci. 2007 Apr;30(2):135-54; discussion 154-87 18272400 - Neuroimage. 2008 Apr 15;40(3):1064-76 11906221 - Neuroimage. 2002 Apr;15(4):797-809 17079517 - Neuroscientist. 2006 Dec;12(6):512-23 18353685 - Neuroimage. 2008 May 1;40(4):1533-41 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72 12399590 - Science. 2002 Oct 25;298(5594):824-7 1602026 - J Clin Psychol. 1992 May;48(3):360-3 11294939 - Neurology. 2001 Apr 10;56(7):969-71 10903207 - Science. 2000 Jul 21;289(5478):457-60 15734366 - Neuroimage. 2005 Mar;25(1):320-7 11258382 - Nature. 2001 Mar 8;410(6825):268-76 16413083 - Comput Methods Programs Biomed. 2006 Feb;81(2):106-16 16678344 - Neurosci Lett. 2006 Jul 24;402(3):273-7 10355679 - Brain. 1999 May;122 ( Pt 5):963-79 15093150 - Neuropsychologia. 2004;42(8):1118-31 18615479 - Am J Med Genet B Neuropsychiatr Genet. 2009 Apr 5;150B(3):375-80 15850735 - Neuroimage. 2005 May 1;25(4):1175-86 9623998 - Nature. 1998 Jun 4;393(6684):440-2 12632468 - Hum Brain Mapp. 2003 Apr;18(4):306-21 15319512 - Neuroinformatics. 2004;2(2):145-62 11222460 - Brain. 2001 Mar;124(Pt 3):617-26 11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701 17070705 - Neuroimage. 2007 Jan 1;34(1):144-55 8417555 - Am J Psychiatry. 1993 Jan;150(1):130-4 15805679 - Indian J Med Sci. 2005 Mar;59(3):95-103 14527581 - Neuroimage. 2003 Sep;20(1):202-15 11252638 - Biol Cybern. 2001 Mar;84(3):207-15 15528081 - Neuroimage. 2004 Nov;23(3):800-5 2731030 - Brain. 1989 Jun;112 ( Pt 3):799-835 15007165 - Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3747-52 17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17 17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19 11810663 - Magn Reson Med. 2002 Feb;47(2):215-23 14645885 - Radiology. 2004 Jan;230(1):77-87 16452642 - Cereb Cortex. 2007 Jan;17(1):92-9 11771995 - Neuroimage. 2002 Jan;15(1):273-89 12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80 10468624 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10422-7 17466539 - Neuroimage. 2007 Jul 1;36(3):645-60 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159 |
References_xml | – volume: 18 start-page: 320 year: 2006 ident: ref9 article-title: FMRI evidence for a three-stage model of deductive reasoning. publication-title: J Cogn Neurosci doi: 10.1162/jocn.2006.18.3.320 – volume: 119 (Pt 5) start-page: 1763 year: 1996 ident: ref42 article-title: Brain development, gender and IQ in children. A volumetric imaging study. publication-title: Brain doi: 10.1093/brain/119.5.1763 – volume: 14 start-page: R372 year: 2004 ident: ref57 article-title: Animal cognition. publication-title: Curr Biol doi: 10.1016/j.cub.2004.05.008 – volume: 359 start-page: 1748 year: 2002 ident: ref61 article-title: Diffusion tensor imaging in refractory epilepsy. publication-title: Lancet doi: 10.1016/S0140-6736(02)08615-4 – volume: 355 start-page: 25 year: 2004 ident: ref13 article-title: Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? publication-title: Neurosci Lett doi: 10.1016/j.neulet.2003.10.063 – volume: 2 start-page: 353 year: 2004 ident: ref38 article-title: Clustered organization of cortical connectivity. publication-title: Neuroinformatics doi: 10.1385/NI:2:3:353 – volume: 48 start-page: 360 year: 1992 ident: ref78 article-title: The relationship between intellectual ability and adult performance on the Trail Making Test and the Symbol Digit Modalities Test. publication-title: J Clin Psychol doi: 10.1002/1097-4679(199205)48:3<360::AID-JCLP2270480314>3.0.CO;2-P – volume: 30 start-page: 135 year: 2007 ident: ref11 article-title: The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. publication-title: Behav Brain Sci doi: 10.1017/S0140525X07001185 – volume: 393 start-page: 440 year: 1998 ident: ref18 article-title: Collective dynamics of ‘small-world’ networks. publication-title: Nature doi: 10.1038/30918 – volume: 230 start-page: 77 year: 2004 ident: ref36 article-title: Fiber tract-based atlas of human white matter anatomy. publication-title: Radiology doi: 10.1148/radiol.2301021640 – volume: 25 start-page: 1175 year: 2005 ident: ref50 article-title: Voxel-based morphometry and stereology provide convergent evidence of the importance of medial prefrontal cortex for fluid intelligence in healthy adults. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.044 – volume: 25 start-page: 320 year: 2005 ident: ref4 article-title: The neuroanatomy of general intelligence: sex matters. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.11.019 – volume: 150B start-page: 375 year: 2008 ident: ref62 article-title: COMT val158met modulates association between brain white matter architecture and IQ. publication-title: Am J Med Genet B Neuropsychiatr Genet doi: 10.1002/ajmg.b.30825 – volume: 4 start-page: 1153 year: 2001 ident: ref43 article-title: Genes, brain and cognition. publication-title: Nat Neurosci doi: 10.1038/nn1201-1153 – volume: 23 start-page: 800 year: 2004 ident: ref49 article-title: Mapping IQ and gray matter density in healthy young people. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.05.027 – volume: 47 start-page: 215 year: 2002 ident: ref33 article-title: Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. publication-title: Magn Reson Med doi: 10.1002/mrm.10074 – volume: 131 start-page: 945 year: 2008 ident: ref75 article-title: Disrupted small-world networks in schizophrenia. publication-title: Brain doi: 10.1093/brain/awn018 – volume: 296 start-page: 910 year: 2002 ident: ref76 article-title: Specificity and stability in topology of protein networks. publication-title: Science doi: 10.1126/science.1065103 – volume: 28 start-page: 231 year: 1992 ident: ref7 article-title: Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism. publication-title: Cortex doi: 10.1016/S0010-9452(13)80051-2 – volume: 15 start-page: 468 year: 2002 ident: ref71 article-title: Fiber tracking: principles and strategies - a technical review. publication-title: NMR Biomed doi: 10.1002/nbm.781 – volume: 59 start-page: 95 year: 2005 ident: ref79 article-title: Comparison of cognition abilities between groups of children with specific learning disability having average, bright normal and superior nonverbal intelligence. publication-title: Indian J Med Sci doi: 10.4103/0019-5359.15085 – volume: 40 start-page: 1533 year: 2008 ident: ref34 article-title: White matter tract integrity and intelligence in patients with mental retardation and healthy adults. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.063 – volume: 18 start-page: 306 year: 2003 ident: ref68 article-title: White matter tractography using diffusion tensor deflection. publication-title: Hum Brain Mapp doi: 10.1002/hbm.10102 – volume: 23 start-page: 425 year: 2004 ident: ref3 article-title: Structural brain variation and general intelligence. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.04.025 – volume: 15 start-page: 1332 year: 2005 ident: ref15 article-title: Neurophysiological architecture of functional magnetic resonance images of human brain. publication-title: Cereb Cortex doi: 10.1093/cercor/bhi016 – volume: 112 (Pt 3) start-page: 799 year: 1989 ident: ref35 article-title: Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. publication-title: Brain doi: 10.1093/brain/112.3.799 – volume: 122 (Pt 5) start-page: 963 year: 1999 ident: ref8 article-title: Context-dependent, neural system-specific neurophysiological concomitants of ageing: mapping PET correlates during cognitive activation. publication-title: Brain doi: 10.1093/brain/122.5.963 – volume: 17 start-page: 92 year: 2007 ident: ref17 article-title: Small-world networks and functional connectivity in Alzheimer's disease. publication-title: Cereb Cortex doi: 10.1093/cercor/bhj127 – volume: 40 start-page: 1064 year: 2008 ident: ref31 article-title: Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.060 – volume: 6 start-page: 316 year: 2003 ident: ref2 article-title: Neural mechanisms of general fluid intelligence. publication-title: Nat Neurosci doi: 10.1038/nn1014 – volume: 2 start-page: e597 year: 2007 ident: ref29 article-title: Mapping human whole-brain structural networks with diffusion MRI. publication-title: PLoS ONE doi: 10.1371/journal.pone.0000597 – volume: 29 start-page: 578 year: 2006 ident: ref10 article-title: Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.07.036 – volume: 9 start-page: 250 year: 2005 ident: ref54 article-title: Evolution of the brain and intelligence. publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2005.03.005 – volume: 59 start-page: 10 year: 2002 ident: ref56 article-title: Evolution of human intelligence: the roles of brain size and mental construction. publication-title: Brain Behav Evol doi: 10.1159/000063730 – start-page: 249 year: 1999 ident: ref67 article-title: Tensorlines: advection-diffusion based propagation through diffusion tensor fields. publication-title: IEEE Visualization Proc, San Francisco – volume: 20 start-page: 202 year: 2003 ident: ref48 article-title: Bright spots: correlations of gray matter volume with IQ in a normal pediatric population. publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00199-X – volume: 26 start-page: 63 year: 2006 ident: ref16 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3874-05.2006 – volume: 28 start-page: 9239 year: 2008 ident: ref21 article-title: Hierarchical organization of human cortical networks in health and schizophrenia. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1929-08.2008 – volume: 402 start-page: 273 year: 2006 ident: ref19 article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. publication-title: Neurosci Lett doi: 10.1016/j.neulet.2006.04.006 – volume: 84 start-page: 207 year: 2001 ident: ref59 article-title: Principles underlying mammalian neocortical scaling. publication-title: Biol Cybern doi: 10.1007/s004220000205 – start-page: 482 year: 2000 ident: ref69 article-title: Axon tractography with tensorlines. – volume: 289 start-page: 457 year: 2000 ident: ref51 article-title: A neural basis for general intelligence. publication-title: Science doi: 10.1126/science.289.5478.457 – volume: 94 start-page: 018102 year: 2005 ident: ref14 article-title: Scale-free brain functional networks. publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.94.018102 – volume: 97 start-page: 5621 year: 2000 ident: ref58 article-title: A universal scaling law between gray matter and white matter of cerebral cortex. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.090504197 – volume: 24 start-page: 524 year: 2005 ident: ref81 article-title: Bootstrap white matter tractography (BOOT-TRAC). publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.08.050 – volume: 4 start-page: 1253 year: 2001 ident: ref47 article-title: Genetic influences on brain structure. publication-title: Nat Neurosci doi: 10.1038/nn758 – year: 1982 ident: ref63 article-title: Manual of modified Wechsler Adult Intelligence Scale (WAIS-RC) (in Chinese) – year: 1995 ident: ref55 article-title: The Thinking Ape: Evolutionary Origins of Intelligence – volume: 424 start-page: 175 year: 2006 ident: ref72 article-title: Complex networks: structure and dynamics. publication-title: Physics Reports doi: 10.1016/j.physrep.2005.10.009 – volume: 17 start-page: 2407 year: 2007 ident: ref20 article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. publication-title: Cereb Cortex doi: 10.1093/cercor/bhl149 – volume: 45 start-page: 265 year: 1999 ident: ref23 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. publication-title: Ann Neurol doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – volume: 4 start-page: 469 year: 2003 ident: ref28 article-title: Looking into the functional architecture of the brain with diffusion MRI. publication-title: Nat Rev Neurosci doi: 10.1038/nrn1119 – volume: 47 start-page: 967 year: 2002 ident: ref26 article-title: White matter mapping using diffusion tensor MRI. publication-title: Magn Reson Med doi: 10.1002/mrm.10144 – volume: 16 start-page: 241 year: 2002 ident: ref24 article-title: An investigation of functional and anatomical connectivity using magnetic resonance imaging. publication-title: Neuroimage doi: 10.1006/nimg.2001.1052 – volume: 129 start-page: 386 year: 2006 ident: ref46 article-title: Intelligence and brain size in 100 postmortem brains: sex, lateralization and age factors. publication-title: Brain doi: 10.1093/brain/awh696 – volume: 87 start-page: 198701 year: 2001 ident: ref74 article-title: Efficient behavior of small-world networks. publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.87.198701 – volume: 101 start-page: 3747 year: 2004 ident: ref73 article-title: The architecture of complex weighted networks. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0400087101 – volume: 96 start-page: 10422 year: 1999 ident: ref22 article-title: Tracking neuronal fiber pathways in the living human brain. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.18.10422 – volume: 150 start-page: 130 year: 1993 ident: ref41 article-title: Intelligence and brain structure in normal individuals. publication-title: Am J Psychiatry doi: 10.1176/ajp.150.1.130 – volume: 12 start-page: 512 year: 2006 ident: ref40 article-title: Small-world brain networks. publication-title: Neuroscientist doi: 10.1177/1073858406293182 – volume: 6 start-page: 750 year: 2003 ident: ref27 article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. publication-title: Nat Neurosci doi: 10.1038/nn1075 – volume: 36 start-page: 645 year: 2007 ident: ref39 article-title: Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.012 – volume: 31 start-page: 1359 year: 2006 ident: ref5 article-title: Distributed brain sites for the g-factor of intelligence. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.006 – volume: 56 start-page: 969 year: 2001 ident: ref44 article-title: Head size and cognitive ability in nondemented older adults are related. publication-title: Neurology doi: 10.1212/WNL.56.7.969 – start-page: 506 year: 2001 ident: ref70 article-title: Error analysis of white matter tracking algorithms (streamline and tensorlines) for DT-MRI. – volume: 19 start-page: 524 year: 2009 ident: ref32 article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. publication-title: Cereb Cortex doi: 10.1093/cercor/bhn102 – volume: 2 start-page: e95 year: 2006 ident: ref53 article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020095 – volume: 2 start-page: 145 year: 2004 ident: ref12 article-title: The small world of the cerebral cortex. publication-title: Neuroinformatics doi: 10.1385/NI:2:2:145 – volume: 29 start-page: 868 year: 2006 ident: ref66 article-title: Application of Brodmann's area templates for ROI selection in white matter tractography studies. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.051 – volume: 81 start-page: 106 year: 2006 ident: ref64 article-title: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2005.08.004 – volume: 15 start-page: 273 year: 2002 ident: ref65 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 34 start-page: 144 year: 2007 ident: ref80 article-title: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.018 – volume: 410 start-page: 268 year: 2001 ident: ref37 article-title: Exploring complex networks. publication-title: Nature doi: 10.1038/35065725 – volume: 41 start-page: 1168 year: 2008 ident: ref6 article-title: Brain spontaneous functional connectivity and intelligence. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.036 – volume: 3 start-page: e17 year: 2007 ident: ref52 article-title: Efficiency and cost of economical brain functional networks. publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030017 – volume: 6 start-page: e159 year: 2008 ident: ref30 article-title: Mapping the structural core of human cerebral cortex. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060159 – volume: 33 start-page: 43 year: 1997 ident: ref1 article-title: Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. publication-title: Cognit Psychol doi: 10.1006/cogp.1997.0659 – volume: 124 start-page: 617 year: 2001 ident: ref60 article-title: Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. publication-title: Brain doi: 10.1093/brain/124.3.617 – volume: 298 start-page: 824 year: 2002 ident: ref77 article-title: Network motifs: simple building blocks of complex networks. publication-title: Science doi: 10.1126/science.298.5594.824 – volume: 15 start-page: 797 year: 2002 ident: ref25 article-title: Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. publication-title: Neuroimage doi: 10.1006/nimg.2001.0994 – volume: 42 start-page: 1118 year: 2004 ident: ref45 article-title: Head size and intelligence, learning, nutritional status and brain development. Head, IQ, learning, nutrition and brain. publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2003.11.022 – reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89 – reference: 11988575 - Science. 2002 May 3;296(5569):910-3 – reference: 17611629 - PLoS One. 2007;2(7):e597 – reference: 16122946 - Neuroimage. 2006 Jan 15;29(2):578-86 – reference: 11969331 - Neuroimage. 2002 May;16(1):241-50 – reference: 11694885 - Nat Neurosci. 2001 Dec;4(12):1253-8 – reference: 9623998 - Nature. 1998 Jun 4;393(6684):440-2 – reference: 15325390 - Neuroimage. 2004 Sep;23(1):425-33 – reference: 11810663 - Magn Reson Med. 2002 Feb;47(2):215-23 – reference: 15007165 - Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3747-52 – reference: 15734366 - Neuroimage. 2005 Mar;25(1):320-7 – reference: 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72 – reference: 16848638 - PLoS Comput Biol. 2006 Jul 21;2(7):e95 – reference: 11294939 - Neurology. 2001 Apr 10;56(7):969-71 – reference: 12399590 - Science. 2002 Oct 25;298(5594):824-7 – reference: 17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17 – reference: 12632468 - Hum Brain Mapp. 2003 Apr;18(4):306-21 – reference: 16243544 - Neuroimage. 2006 Feb 1;29(3):868-78 – reference: 9212721 - Cogn Psychol. 1997 Jun;33(1):43-63 – reference: 16452642 - Cereb Cortex. 2007 Jan;17(1):92-9 – reference: 10792049 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5621-6 – reference: 12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80 – reference: 18434203 - Neuroimage. 2008 Jul 1;41(3):1168-76 – reference: 12778119 - Nat Rev Neurosci. 2003 Jun;4(6):469-80 – reference: 10355679 - Brain. 1999 May;122 ( Pt 5):963-79 – reference: 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42 – reference: 18299296 - Brain. 2008 Apr;131(Pt 4):945-61 – reference: 15528081 - Neuroimage. 2004 Nov;23(3):800-5 – reference: 17466539 - Neuroimage. 2007 Jul 1;36(3):645-60 – reference: 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159 – reference: 12097857 - Brain Behav Evol. 2002;59(1-2):10-20 – reference: 1602026 - J Clin Psychol. 1992 May;48(3):360-3 – reference: 11252638 - Biol Cybern. 2001 Mar;84(3):207-15 – reference: 11723454 - Nat Neurosci. 2001 Dec;4(12):1153-4 – reference: 16513370 - Neuroimage. 2006 Jul 1;31(3):1359-65 – reference: 16512999 - J Cogn Neurosci. 2006 Mar;18(3):320-34 – reference: 11258382 - Nature. 2001 Mar 8;410(6825):268-76 – reference: 16678344 - Neurosci Lett. 2006 Jul 24;402(3):273-7 – reference: 15365196 - Neuroinformatics. 2004;2(3):353-60 – reference: 14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8 – reference: 1499309 - Cortex. 1992 Jun;28(2):231-9 – reference: 8931596 - Brain. 1996 Oct;119 ( Pt 5):1763-74 – reference: 12049867 - Lancet. 2002 May 18;359(9319):1748-51 – reference: 11222460 - Brain. 2001 Mar;124(Pt 3):617-26 – reference: 15866152 - Trends Cogn Sci. 2005 May;9(5):250-7 – reference: 12808459 - Nat Neurosci. 2003 Jul;6(7):750-7 – reference: 15093150 - Neuropsychologia. 2004;42(8):1118-31 – reference: 15186759 - Curr Biol. 2004 May 25;14(10):R372-5 – reference: 14645885 - Radiology. 2004 Jan;230(1):77-87 – reference: 17079517 - Neuroscientist. 2006 Dec;12(6):512-23 – reference: 10903207 - Science. 2000 Jul 21;289(5478):457-60 – reference: 18272400 - Neuroimage. 2008 Apr 15;40(3):1064-76 – reference: 15805679 - Indian J Med Sci. 2005 Mar;59(3):95-103 – reference: 14527581 - Neuroimage. 2003 Sep;20(1):202-15 – reference: 15319512 - Neuroinformatics. 2004;2(2):145-62 – reference: 8417555 - Am J Psychiatry. 1993 Jan;150(1):130-4 – reference: 12592404 - Nat Neurosci. 2003 Mar;6(3):316-22 – reference: 17655784 - Behav Brain Sci. 2007 Apr;30(2):135-54; discussion 154-87 – reference: 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48 – reference: 11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701 – reference: 9989633 - Ann Neurol. 1999 Feb;45(2):265-9 – reference: 17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19 – reference: 16413083 - Comput Methods Programs Biomed. 2006 Feb;81(2):106-16 – reference: 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102 – reference: 18615479 - Am J Med Genet B Neuropsychiatr Genet. 2009 Apr 5;150B(3):375-80 – reference: 15627594 - Neuroimage. 2005 Jan 15;24(2):524-32 – reference: 11906221 - Neuroimage. 2002 Apr;15(4):797-809 – reference: 17070705 - Neuroimage. 2007 Jan 1;34(1):144-55 – reference: 18353685 - Neuroimage. 2008 May 1;40(4):1533-41 – reference: 15850735 - Neuroimage. 2005 May 1;25(4):1175-86 – reference: 10468624 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10422-7 – reference: 2731030 - Brain. 1989 Jun;112 ( Pt 3):799-835 – reference: 11979576 - Magn Reson Med. 2002 May;47(5):967-72 – reference: 18567609 - Cereb Cortex. 2009 Mar;19(3):524-36 – reference: 16339797 - Brain. 2006 Feb;129(Pt 2):386-98 |
SSID | ssj0035896 |
Score | 2.4759665 |
Snippet | Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported... Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1000395 |
SubjectTerms | Adolescent Adult Brain Brain - anatomy & histology Brain - physiology Brain Mapping Cluster Analysis Computational Biology/Computational Neuroscience Diffusion Magnetic Resonance Imaging Female Humans Intellect Intelligence - physiology Intelligence levels Intelligence Tests Male Models, Neurological Nerve Net - anatomy & histology Neural circuitry Neural Pathways - anatomy & histology Neuroscience/Cognitive Neuroscience NMR Nuclear magnetic resonance Physiological aspects Radiology and Medical Imaging/Magnetic Resonance Imaging Studies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEOWrKQUihIQ4hK7Xjj-OLaIqSPQARdqb5fgDVqqyK7J76L9nxvYuGwTqhWsyOczLxH6jjN8j5HXbAakWwNws9AINDzY22k51I7330PzQEJLz3OdLcfGNf5q38z2rL5wJy_LAGbiToBVvo46upRbY-UwBBWdOSI2NQ4xJ5xP2vG0zlddg1qrkzIWmOI1kfF4OzTFJT8o7erdy3QJnBKYMvSX2NqWk3b9boSer6-XwN_r55xTl3rZ0_oDcL3yyPs15HJA7oX9I7maHyZtH5O0ZWkDUtofeOgkD1H2e-4ZLvl7s6XE-JlfnH67eXzTFHaFxgtF146nTmlMa0TcseCEs7wKzDpYgqzp0RXfeUq-V9oqK1lMurYVGGAgY51yyJ2TSL_twSGoPOAbp_FRZx6PXlgXFuhgCbP9WR1URtkXHuKIcjgYW1yb9DpPQQeRkDWJqCqYVaXZPrbJyxi3xZwj8LhZ1r9MFqAZTqsHcVg0VeYWvzaCyRY-jM9_tZhjMx6-X5nSW6CHT038GfRkFvSlBcQnJOluOKwBkqJg1ijweRcL36Ua3D7GEtjkPgAByKkiEV-TltqwMPoXzbn1YbgactoOVUuiKPM1F9htCzfUM-tCKyFH5jXAb3-kXP5Ju-EwA3Zbt0f8A-hm5l_-r4ejnMZmsf27Cc6Bn6-5F-hJ_AUbTNDQ priority: 102 providerName: Directory of Open Access Journals |
Title | Brain Anatomical Network and Intelligence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19492086 https://www.proquest.com/docview/67317969 https://pubmed.ncbi.nlm.nih.gov/PMC2683575 https://doaj.org/article/e9845f9fc51a499288623c6799249ff3 http://dx.doi.org/10.1371/journal.pcbi.1000395 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEB0Sh0IvpelX1KauKYXSg4LlXWm1h1LsNm5aiClpAr6J1X4kBiO5lg3Nv-_MSnaiktBLLzZIs4Z93o_3tKN5AO_iHEl1gsxNoRYIuVUulKovQ2GMQfETWeud504nyckF_z6Npzuw8WxtAKzulHbkJ3WxnB_9_nX9CSf8R-_aIKJNo6OFzmd06t9nMt6FPdybBHkanPLtuQKLU-_YRWY5oWB82rxMd9-vtDYrX9N_u3J3FvOyuouW_p1deWu7Gj-GRw3P7A3rgbEPO7Z4Ag9q58nrp_BhRNYQPVWg5vYFA3pFnQ-Ol0xvdqtO5zM4Hx-ffz4JG9eEUCcsWoUm0lLyKHLkJ2ZNkiieW6Y0Lk0qzcktXRsVGZlKk0ZJbCIulEKBjMSMcy7Yc-gUZWEPoGekc1Zo00-V5s5IxWzKcmct0gIlXRoA26CT6aaiOBlbzDN_TCZQWdSdzQjTrME0gHDbalFX1PhH_IiA38ZSPWx_oVxeZs30yqxMeeyk03GkUMMNUhRqTCdCkrx0jgXwlv62jCpeFJRSc6nWVZV9-znJhgNPG5ns3xt01gp63wS5EjurVfMaA0JGlbRakYetSJy3unX7gIbQps8VIkBcCzvCA3izGVYZtaI8uMKW64qy8HAFTWQAL-pBdgOh5HKA-jQA0Rp-Ldzad4rZla8nPkiQhov45f8A-hU8rM_bKCX0EDqr5dq-Rtq2yruwK6YCP9Px1y7sDUdfRmP8Hh1Pfpx1_aOQrp-rfwDnIkTC |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+anatomical+network+and+intelligence&rft.jtitle=PLoS+computational+biology&rft.au=Yonghui+Li&rft.au=Yong+Liu&rft.au=Jun+Li&rft.au=Wen+Qin&rft.date=2009-05-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=5&rft.issue=5&rft.spage=e1000395&rft_id=info:doi/10.1371%2Fjournal.pcbi.1000395&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e9845f9fc51a499288623c6799249ff3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |