Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation
In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific human aorta. Velocity and geometry measurements using magnetic resonance imaging (MRI) are taken as input to the model to provide accurate boundary condi...
Saved in:
Published in | Medical engineering & physics Vol. 34; no. 8; pp. 1139 - 1148 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific human aorta. Velocity and geometry measurements using magnetic resonance imaging (MRI) are taken as input to the model to provide accurate boundary conditions and to assure the physiological relevance. In total, 50 consecutive cardiac cycles were simulated from which a phase average was computed to get a statistically reliable result. A decomposition similar to Reynolds decomposition is introduced, where the WSS signal is divided into a pulsating part (due to the mass flow rate) and a fluctuating part (originating from the disturbed flow). Oscillatory shear index (OSI) is plotted against time-averaged WSS in a novel way, and locations on the aortic wall where elevated values existed could easily be found. In general, high and oscillating WSS values were found in the vicinity of the branches in the aortic arch, while low and oscillating WSS were present in the inner curvature of the descending aorta. The decomposition of WSS into a pulsating and a fluctuating part increases the understanding of how WSS affects the aortic wall, which enables both qualitative and quantitative comparisons. |
---|---|
AbstractList | In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific human aorta. Velocity and geometry measurements using magnetic resonance imaging (MRI) are taken as input to the model to provide accurate boundary conditions and to assure the physiological relevance. In total, 50 consecutive cardiac cycles were simulated from which a phase average was computed to get a statistically reliable result. A decomposition similar to Reynolds decomposition is introduced, where the WSS signal is divided into a pulsating part (due to the mass flow rate) and a fluctuating part (originating from the disturbed flow). Oscillatory shear index (OSI) is plotted against time-averaged WSS in a novel way, and locations on the aortic wall where elevated values existed could easily be found. In general, high and oscillating WSS values were found in the vicinity of the branches in the aortic arch, while low and oscillating WSS were present in the inner curvature of the descending aorta. The decomposition of WSS into a pulsating and a fluctuating part increases the understanding of how WSS affects the aortic wall, which enables both qualitative and quantitative comparisons.In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific human aorta. Velocity and geometry measurements using magnetic resonance imaging (MRI) are taken as input to the model to provide accurate boundary conditions and to assure the physiological relevance. In total, 50 consecutive cardiac cycles were simulated from which a phase average was computed to get a statistically reliable result. A decomposition similar to Reynolds decomposition is introduced, where the WSS signal is divided into a pulsating part (due to the mass flow rate) and a fluctuating part (originating from the disturbed flow). Oscillatory shear index (OSI) is plotted against time-averaged WSS in a novel way, and locations on the aortic wall where elevated values existed could easily be found. In general, high and oscillating WSS values were found in the vicinity of the branches in the aortic arch, while low and oscillating WSS were present in the inner curvature of the descending aorta. The decomposition of WSS into a pulsating and a fluctuating part increases the understanding of how WSS affects the aortic wall, which enables both qualitative and quantitative comparisons. In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific human aorta. Velocity and geometry measurements using magnetic resonance imaging (MRI) are taken as input to the model to provide accurate boundary conditions and to assure the physiological relevance. In total, 50 consecutive cardiac cycles were simulated from which a phase average was computed to get a statistically reliable result. A decomposition similar to Reynolds decomposition is introduced, where the WSS signal is divided into a pulsating part (due to the mass flow rate) and a fluctuating part (originating from the disturbed flow). Oscillatory shear index (OSI) is plotted against time-averaged WSS in a novel way, and locations on the aortic wall where elevated values existed could easily be found. In general, high and oscillating WSS values were found in the vicinity of the branches in the aortic arch, while low and oscillating WSS were present in the inner curvature of the descending aorta. The decomposition of WSS into a pulsating and a fluctuating part increases the understanding of how WSS affects the aortic wall, which enables both qualitative and quantitative comparisons. Abstract In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific human aorta. Velocity and geometry measurements using magnetic resonance imaging (MRI) are taken as input to the model to provide accurate boundary conditions and to assure the physiological relevance. In total, 50 consecutive cardiac cycles were simulated from which a phase average was computed to get a statistically reliable result. A decomposition similar to Reynolds decomposition is introduced, where the WSS signal is divided into a pulsating part (due to the mass flow rate) and a fluctuating part (originating from the disturbed flow). Oscillatory shear index (OSI) is plotted against time-averaged WSS in a novel way, and locations on the aortic wall where elevated values existed could easily be found. In general, high and oscillating WSS values were found in the vicinity of the branches in the aortic arch, while low and oscillating WSS were present in the inner curvature of the descending aorta. The decomposition of WSS into a pulsating and a fluctuating part increases the understanding of how WSS affects the aortic wall, which enables both qualitative and quantitative comparisons. |
Author | Lantz, Jonas Gårdhagen, Roland Karlsson, Matts |
Author_xml | – sequence: 1 givenname: Jonas surname: Lantz fullname: Lantz, Jonas email: jonas.lantz@liu.se – sequence: 2 givenname: Roland surname: Gårdhagen fullname: Gårdhagen, Roland email: roland.gardhagen@liu.se – sequence: 3 givenname: Matts surname: Karlsson fullname: Karlsson, Matts email: matts.karlsson@liu.se |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26355306$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22209366$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-84887$$DView record from Swedish Publication Index |
BookMark | eNqNkltvEzEQhVeoiLaBvwB-QeKBhLG9680-AIpablIlhLiIN8vrHScOjjfYa6r8-3pJWqRKqH2yJX_nzHjmnBZHvvdYFM8ozChQ8Wo922CHfrld7WYMKJ1RNgNgD4oTOq_5tAQOR_nOK5iWFefHxWmMawAoS8EfFceMMWi4ECcFfknKD9bsrF-SIYU2OfQDuVTOkbhCFUgcAsZIrCeKxNSuUQ8kblFbYzVZpY3KD30YFElx9HAqLJFg1-1ItJvk1GB7_7h4aJSL-ORwTorv7999O_s4vfj84dPZ4mKqBafDtK1YbcpWGEEFbVVXKa6pQY2qbjoA7BpVGypKbuYKmsbMGRpqOOQJMBAU-KR4ufeNl7hNrdwGu1FhJ3tl5bn9sZB9WEpnk5yX8zynSfFij29D_zthHOTGRo3OKY99ipJSVrGSNqy8GwVei0qUMLo-PaCpzVu6aeJ66Bl4fgBU1MqZoLy28R8neFVxGLnXe06HPsaARmo7_J3nEJR1uaYcwyDX8iYMcgyDpEzmMGR9fUt_XeJu5WKvxLysPxaDjNqi19jZkPcvu97ew-PNLQ_trLf5w79wh3Hdp-BzFiSVMQvk1zGsY1YpBeBU_MwGb_9vcK8WrgBEiv69 |
CitedBy_id | crossref_primary_10_1016_j_medengphy_2014_12_011 crossref_primary_10_1038_s41598_025_86983_z crossref_primary_10_1016_j_jbiomech_2015_11_040 crossref_primary_10_1007_s13239_021_00536_9 crossref_primary_10_3389_fcvm_2023_1103751 crossref_primary_10_1038_srep39773 crossref_primary_10_1038_srep46618 crossref_primary_10_1016_j_compbiomed_2023_107603 crossref_primary_10_3390_fluids6010011 crossref_primary_10_1016_j_jbiomech_2015_05_006 crossref_primary_10_1016_j_compbiomed_2013_05_016 crossref_primary_10_1016_j_jbiomech_2020_109691 crossref_primary_10_3389_fbioe_2022_836611 crossref_primary_10_1049_iet_smt_2014_0264 crossref_primary_10_1016_j_ijnonlinmec_2023_104517 crossref_primary_10_1002_cnm_3345 crossref_primary_10_1007_s13239_015_0218_x crossref_primary_10_1007_s12553_021_00530_0 crossref_primary_10_1038_s41746_024_01216_3 crossref_primary_10_1038_s41598_019_45097_z crossref_primary_10_1109_ACCESS_2019_2955742 crossref_primary_10_1080_10255842_2023_2279938 crossref_primary_10_1177_09544119221126270 crossref_primary_10_1115_1_4054459 crossref_primary_10_1007_s13239_024_00731_4 crossref_primary_10_1016_j_jmbbm_2023_105922 crossref_primary_10_1016_j_compbiomed_2013_05_008 crossref_primary_10_3390_bioengineering10030316 crossref_primary_10_1016_j_jbiomech_2016_11_064 crossref_primary_10_1016_j_medengphy_2014_06_018 crossref_primary_10_1038_s41598_025_85522_0 crossref_primary_10_1063_5_0203658 crossref_primary_10_1016_j_jbiomech_2019_01_016 crossref_primary_10_1016_j_compbiomed_2024_108123 crossref_primary_10_1007_s13239_015_0243_9 crossref_primary_10_1063_1_4923311 crossref_primary_10_1007_s10237_023_01784_5 crossref_primary_10_3760_cma_j_issn_0366_6999_20113080 crossref_primary_10_1111_cgf_12803 crossref_primary_10_1186_s40643_014_0028_2 crossref_primary_10_1002_mrm_25698 crossref_primary_10_1007_s13239_019_00441_2 crossref_primary_10_1002_mrm_25772 crossref_primary_10_1007_s10237_015_0692_y crossref_primary_10_1016_j_jbiomech_2021_110793 crossref_primary_10_1016_j_jbiomech_2015_07_038 crossref_primary_10_1002_cjce_23991 crossref_primary_10_1002_mrm_26308 crossref_primary_10_1371_journal_pone_0073485 crossref_primary_10_1080_10255842_2022_2128672 crossref_primary_10_1007_s13239_015_0239_5 crossref_primary_10_1016_j_compbiomed_2014_03_006 crossref_primary_10_1186_s12964_023_01089_1 crossref_primary_10_1038_s41598_017_06681_3 crossref_primary_10_15446_ing_investig_v37n3_59761 crossref_primary_10_1115_1_4053942 crossref_primary_10_1007_s13239_013_0146_6 crossref_primary_10_1016_j_mri_2018_11_003 crossref_primary_10_1016_j_ijheatfluidflow_2024_109340 |
Cites_doi | 10.1063/1.857877 10.1016/0021-9290(83)90096-9 10.1016/0021-9290(83)90065-9 10.1115/1.4003782 10.1115/1.1798055 10.1080/07853890802186921 10.1002/jmri.22512 10.1161/01.ATV.5.3.293 10.1067/mva.2003.66 10.1115/1.2401182 10.1115/1.2978992 10.1115/1.2400864 10.1161/01.STR.0000111597.34179.47 10.1023/A:1009995426001 10.1007/s003480050144 10.1017/S0022112007005848 10.1115/1.4001075 10.1186/1471-2342-10-1 10.1007/s10439-010-0124-1 10.1016/j.jbiomech.2011.01.024 10.1115/1.2800832 10.1161/01.CIR.88.5.2235 10.1002/jmri.21790 10.1142/S1758825111001226 10.1016/j.jtcvs.2003.10.042 10.1161/CIRCULATIONAHA.105.590018 10.1016/0021-9290(84)90123-4 10.1115/1.1589774 10.1115/1.2795948 |
ContentType | Journal Article |
Copyright | 2011 IPEM IPEM 2015 INIST-CNRS Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2011 IPEM – notice: IPEM – notice: 2015 INIST-CNRS – notice: Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
DOI | 10.1016/j.medengphy.2011.12.002 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 1148 |
ExternalDocumentID | oai_DiVA_org_liu_84887 22209366 26355306 10_1016_j_medengphy_2011_12_002 S135045331100316X 1_s2_0_S135045331100316X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
ID | FETCH-LOGICAL-c631t-b527f4b6f6161bad5a3c1fecea79d00ed9a7f1643f8a099f82ef1f30201206103 |
IEDL.DBID | .~1 |
ISSN | 1350-4533 1873-4030 |
IngestDate | Thu Aug 21 06:56:32 EDT 2025 Mon Jul 21 09:19:04 EDT 2025 Sun Aug 24 04:09:54 EDT 2025 Thu Apr 03 07:01:46 EDT 2025 Mon Jul 21 09:14:38 EDT 2025 Tue Jul 01 04:24:46 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Fri Feb 23 02:29:20 EST 2024 Sun Feb 23 10:19:59 EST 2025 Tue Aug 26 16:32:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Wall shear stress Scale resolving turbulence model Reynolds decomposition Computational fluid dynamics Human aorta Atherosclerosis Human Turbulence Cardiovascular disease Artery Vascular disease Large eddy simulation Mechanical stress Blood vessel Shear stress Aorta Models Circulatory system Biomedical engineering |
Language | English |
License | CC BY 4.0 Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c631t-b527f4b6f6161bad5a3c1fecea79d00ed9a7f1643f8a099f82ef1f30201206103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-84887 |
PMID | 22209366 |
PQID | 1037656407 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_84887 proquest_miscellaneous_1125241924 proquest_miscellaneous_1037656407 pubmed_primary_22209366 pascalfrancis_primary_26355306 crossref_citationtrail_10_1016_j_medengphy_2011_12_002 crossref_primary_10_1016_j_medengphy_2011_12_002 elsevier_sciencedirect_doi_10_1016_j_medengphy_2011_12_002 elsevier_clinicalkeyesjournals_1_s2_0_S135045331100316X elsevier_clinicalkey_doi_10_1016_j_medengphy_2011_12_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-01 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Banks, Bressloff (bib0045) 2007; 129 Peacock, Jones, Tock, Lutz (bib0120) 1998; 24 Frydrychowicz, Stalder, Russe, Bock, Bauer, Harloff (bib0130) 2009; 30 Liu, Fan, Deng, Zhan (bib0145) 2011; 44 Ahmed, Giddens (bib0030) 1984; 17 Heiberg, Sjögren, Ugander, Carlsson, Engblom, Arheden (bib0075) 2010; 10 Nakamura, Wada, Yamaguchi (bib0115) 2006; 128 Tan, Wood, Tabor, Xu (bib0060) 2011; 133 Gårdhagen, Lantz, Carlsson, Karlsson (bib0070) 2010; 132 Tan, Soloperto, Bashford, Wood, Thom, Hughes (bib0050) 2008; 130 Passerini, Milsted, Rittgers (bib0015) 2003; 37 He, Ku (bib0095) 1996; 118 Ahmed, Giddens (bib0025) 1983; 16 Varghese, Frankel, Fischer (bib0065) 2007; 582 Chiu, Usami, Chien (bib0005) 2009; 41 Ryval, Straatman, Steinman (bib0040) 2004; 126 Cheng, Tempel, van Haperen, van der Baan, Grosveld, Daemen (bib0125) 2006; 113 Brereton, Reynolds (bib0090) 1991; 3 Kvitting, Ebbers, Wigstrom, Engvall, Olin, Bolger (bib0110) 2004; 127 Ahmed, Giddens (bib0020) 1983; 16 Lantz, Renner, Karlsson (bib0080) 2011; 3 Ku, Giddens, Zarins, Glagov (bib0010) 1985; 5 Stalder, Frydrychowicz, Russe, Korvink, Hennig, Li (bib0100) 2011; 33 Varghese, Frankel, Fischer (bib0055) 2008; 130 Nicoud, Ducros (bib0085) 1999; 62 Tang, Fonte, Chan, Tsao, Feinstein, Taylor (bib0140) 2011; 39 Irace, Cortese, Fiaschi, Carallo, Farinaro, Gnasso (bib0135) 2004; 35 Kilner, Yang, Mohiaddin, Firmin, Longmore (bib0105) 1993; 88 Varghese, Frankel (bib0035) 2003; 125 He (10.1016/j.medengphy.2011.12.002_bib0095) 1996; 118 Chiu (10.1016/j.medengphy.2011.12.002_bib0005) 2009; 41 Ahmed (10.1016/j.medengphy.2011.12.002_bib0030) 1984; 17 Tan (10.1016/j.medengphy.2011.12.002_bib0050) 2008; 130 Banks (10.1016/j.medengphy.2011.12.002_bib0045) 2007; 129 Ryval (10.1016/j.medengphy.2011.12.002_bib0040) 2004; 126 Tan (10.1016/j.medengphy.2011.12.002_bib0060) 2011; 133 Lantz (10.1016/j.medengphy.2011.12.002_bib0080) 2011; 3 Liu (10.1016/j.medengphy.2011.12.002_bib0145) 2011; 44 Kilner (10.1016/j.medengphy.2011.12.002_bib0105) 1993; 88 Nicoud (10.1016/j.medengphy.2011.12.002_bib0085) 1999; 62 Nakamura (10.1016/j.medengphy.2011.12.002_bib0115) 2006; 128 Gårdhagen (10.1016/j.medengphy.2011.12.002_bib0070) 2010; 132 Cheng (10.1016/j.medengphy.2011.12.002_bib0125) 2006; 113 Varghese (10.1016/j.medengphy.2011.12.002_bib0065) 2007; 582 Ahmed (10.1016/j.medengphy.2011.12.002_bib0020) 1983; 16 Irace (10.1016/j.medengphy.2011.12.002_bib0135) 2004; 35 Ahmed (10.1016/j.medengphy.2011.12.002_bib0025) 1983; 16 Frydrychowicz (10.1016/j.medengphy.2011.12.002_bib0130) 2009; 30 Ku (10.1016/j.medengphy.2011.12.002_bib0010) 1985; 5 Stalder (10.1016/j.medengphy.2011.12.002_bib0100) 2011; 33 Peacock (10.1016/j.medengphy.2011.12.002_bib0120) 1998; 24 Heiberg (10.1016/j.medengphy.2011.12.002_bib0075) 2010; 10 Brereton (10.1016/j.medengphy.2011.12.002_bib0090) 1991; 3 Passerini (10.1016/j.medengphy.2011.12.002_bib0015) 2003; 37 Tang (10.1016/j.medengphy.2011.12.002_bib0140) 2011; 39 Varghese (10.1016/j.medengphy.2011.12.002_bib0035) 2003; 125 Varghese (10.1016/j.medengphy.2011.12.002_bib0055) 2008; 130 Kvitting (10.1016/j.medengphy.2011.12.002_bib0110) 2004; 127 |
References_xml | – volume: 128 start-page: 837 year: 2006 end-page: 843 ident: bib0115 article-title: Computational analysis of blood flow in an integrated model of the left ventricle and the aorta publication-title: J Biomech Eng – volume: 16 start-page: 505 year: 1983 end-page: 516 ident: bib0020 article-title: Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers publication-title: J Biomech – volume: 133 start-page: 051001 year: 2011 ident: bib0060 article-title: Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model publication-title: J Biomech Eng – volume: 113 start-page: 2744 year: 2006 end-page: 2753 ident: bib0125 article-title: Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress publication-title: Circulation – volume: 582 start-page: 253 year: 2007 end-page: 280 ident: bib0065 article-title: Direct numerical simulation of stenotic flows. Part 1. Steady flow publication-title: J Fluid Mech – volume: 10 start-page: 1 year: 2010 ident: bib0075 article-title: Design and validation of segment-freely available software for cardiovascular image analysis publication-title: BMC Med Imaging – volume: 126 start-page: 625 year: 2004 end-page: 635 ident: bib0040 article-title: Two-equation turbulence modeling of pulsatile flow in a stenosed tube publication-title: J Biomech Eng – volume: 41 start-page: 19 year: 2009 end-page: 28 ident: bib0005 article-title: Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis publication-title: Ann Med – volume: 39 start-page: 347 year: 2011 end-page: 358 ident: bib0140 article-title: Three-dimensional hemodynamics in the human pulmonary arteries under resting and exercise conditions publication-title: Ann Biomed Eng – volume: 125 start-page: 445 year: 2003 end-page: 460 ident: bib0035 article-title: Numerical modeling of pulsatile turbulent flow in stenotic vessels publication-title: J Biomech Eng – volume: 3 year: 2011 ident: bib0080 article-title: Wall shear stress in a subject specific human aorta – influence of fluid-structure interaction publication-title: Int. J. Appl. Mech. – volume: 88 start-page: 2235 year: 1993 end-page: 2247 ident: bib0105 article-title: Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping publication-title: Circulation – volume: 44 start-page: 1123 year: 2011 end-page: 1131 ident: bib0145 article-title: Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta publication-title: J Biomech – volume: 17 start-page: 695 year: 1984 end-page: 705 ident: bib0030 article-title: Pulsatile poststenotic flow studies with laser Doppler anemometry publication-title: J Biomech – volume: 37 start-page: 182 year: 2003 end-page: 190 ident: bib0015 article-title: Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells publication-title: J Vasc Surg – volume: 130 start-page: 014503 year: 2008 ident: bib0055 article-title: Modeling transition to turbulence in eccentric stenotic flows publication-title: J Biomech Eng – volume: 3 start-page: 178 year: 1991 end-page: 187 ident: bib0090 article-title: Dynamic response of boundary-layer turbulence to oscillatory shear publication-title: Phys Fluids A: Fluid Dynam – volume: 129 start-page: 40 year: 2007 end-page: 50 ident: bib0045 article-title: Turbulence modeling in three-dimensional stenosed arterial bifurcations publication-title: J Biomech Eng – volume: 33 start-page: 839 year: 2011 end-page: 846 ident: bib0100 article-title: Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI publication-title: J Magn Reson Imaging – volume: 127 start-page: 1602 year: 2004 end-page: 1607 ident: bib0110 article-title: Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery publication-title: J Thorac Cardiovasc Surg – volume: 5 start-page: 293 year: 1985 end-page: 302 ident: bib0010 article-title: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress publication-title: Arteriosclerosis – volume: 118 start-page: 74 year: 1996 end-page: 82 ident: bib0095 article-title: Pulsatile flow in the human left coronary artery bifurcation: average conditions publication-title: J Biomech Eng – volume: 62 start-page: 183 year: 1999 end-page: 200 ident: bib0085 article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor publication-title: Flow Turbul Combust – volume: 24 start-page: 1 year: 1998 end-page: 9 ident: bib0120 article-title: The onset of turbulence in physiological pulsatile flow in a straight tube publication-title: Exp Fluids – volume: 30 start-page: 77 year: 2009 end-page: 84 ident: bib0130 article-title: Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI publication-title: J Magn Reson Imaging – volume: 16 start-page: 955 year: 1983 end-page: 963 ident: bib0025 article-title: Flow disturbance measurements through a constricted tube at moderate Reynolds numbers publication-title: J Biomech – volume: 132 start-page: 061002 year: 2010 ident: bib0070 article-title: Quantifying turbulent wall shear stress in a stenosed pipe using large eddy simulation publication-title: J Biomech Eng – volume: 130 start-page: 061008 year: 2008 ident: bib0050 article-title: Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models publication-title: J Biomech Eng – volume: 35 start-page: 464 year: 2004 end-page: 468 ident: bib0135 article-title: Wall shear stress is associated with intima-media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk publication-title: Stroke – volume: 3 start-page: 178 issue: 1 year: 1991 ident: 10.1016/j.medengphy.2011.12.002_bib0090 article-title: Dynamic response of boundary-layer turbulence to oscillatory shear publication-title: Phys Fluids A: Fluid Dynam doi: 10.1063/1.857877 – volume: 16 start-page: 955 year: 1983 ident: 10.1016/j.medengphy.2011.12.002_bib0025 article-title: Flow disturbance measurements through a constricted tube at moderate Reynolds numbers publication-title: J Biomech doi: 10.1016/0021-9290(83)90096-9 – volume: 16 start-page: 505 year: 1983 ident: 10.1016/j.medengphy.2011.12.002_bib0020 article-title: Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers publication-title: J Biomech doi: 10.1016/0021-9290(83)90065-9 – volume: 133 start-page: 051001 issue: May year: 2011 ident: 10.1016/j.medengphy.2011.12.002_bib0060 article-title: Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model publication-title: J Biomech Eng doi: 10.1115/1.4003782 – volume: 126 start-page: 625 issue: October year: 2004 ident: 10.1016/j.medengphy.2011.12.002_bib0040 article-title: Two-equation turbulence modeling of pulsatile flow in a stenosed tube publication-title: J Biomech Eng doi: 10.1115/1.1798055 – volume: 41 start-page: 19 year: 2009 ident: 10.1016/j.medengphy.2011.12.002_bib0005 article-title: Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis publication-title: Ann Med doi: 10.1080/07853890802186921 – volume: 33 start-page: 839 issue: April year: 2011 ident: 10.1016/j.medengphy.2011.12.002_bib0100 article-title: Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22512 – volume: 5 start-page: 293 year: 1985 ident: 10.1016/j.medengphy.2011.12.002_bib0010 article-title: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress publication-title: Arteriosclerosis doi: 10.1161/01.ATV.5.3.293 – volume: 37 start-page: 182 issue: January year: 2003 ident: 10.1016/j.medengphy.2011.12.002_bib0015 article-title: Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells publication-title: J Vasc Surg doi: 10.1067/mva.2003.66 – volume: 129 start-page: 40 issue: February year: 2007 ident: 10.1016/j.medengphy.2011.12.002_bib0045 article-title: Turbulence modeling in three-dimensional stenosed arterial bifurcations publication-title: J Biomech Eng doi: 10.1115/1.2401182 – volume: 130 start-page: 061008 issue: December year: 2008 ident: 10.1016/j.medengphy.2011.12.002_bib0050 article-title: Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models publication-title: J Biomech Eng doi: 10.1115/1.2978992 – volume: 128 start-page: 837 issue: December year: 2006 ident: 10.1016/j.medengphy.2011.12.002_bib0115 article-title: Computational analysis of blood flow in an integrated model of the left ventricle and the aorta publication-title: J Biomech Eng doi: 10.1115/1.2400864 – volume: 35 start-page: 464 issue: February year: 2004 ident: 10.1016/j.medengphy.2011.12.002_bib0135 article-title: Wall shear stress is associated with intima-media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk publication-title: Stroke doi: 10.1161/01.STR.0000111597.34179.47 – volume: 62 start-page: 183 year: 1999 ident: 10.1016/j.medengphy.2011.12.002_bib0085 article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor publication-title: Flow Turbul Combust doi: 10.1023/A:1009995426001 – volume: 24 start-page: 1 year: 1998 ident: 10.1016/j.medengphy.2011.12.002_bib0120 article-title: The onset of turbulence in physiological pulsatile flow in a straight tube publication-title: Exp Fluids doi: 10.1007/s003480050144 – volume: 582 start-page: 253 year: 2007 ident: 10.1016/j.medengphy.2011.12.002_bib0065 article-title: Direct numerical simulation of stenotic flows. Part 1. Steady flow publication-title: J Fluid Mech doi: 10.1017/S0022112007005848 – volume: 132 start-page: 061002 issue: June year: 2010 ident: 10.1016/j.medengphy.2011.12.002_bib0070 article-title: Quantifying turbulent wall shear stress in a stenosed pipe using large eddy simulation publication-title: J Biomech Eng doi: 10.1115/1.4001075 – volume: 10 start-page: 1 year: 2010 ident: 10.1016/j.medengphy.2011.12.002_bib0075 article-title: Design and validation of segment-freely available software for cardiovascular image analysis publication-title: BMC Med Imaging doi: 10.1186/1471-2342-10-1 – volume: 39 start-page: 347 issue: January year: 2011 ident: 10.1016/j.medengphy.2011.12.002_bib0140 article-title: Three-dimensional hemodynamics in the human pulmonary arteries under resting and exercise conditions publication-title: Ann Biomed Eng doi: 10.1007/s10439-010-0124-1 – volume: 44 start-page: 1123 issue: April year: 2011 ident: 10.1016/j.medengphy.2011.12.002_bib0145 article-title: Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.01.024 – volume: 130 start-page: 014503 issue: February year: 2008 ident: 10.1016/j.medengphy.2011.12.002_bib0055 article-title: Modeling transition to turbulence in eccentric stenotic flows publication-title: J Biomech Eng doi: 10.1115/1.2800832 – volume: 88 start-page: 2235 issue: November year: 1993 ident: 10.1016/j.medengphy.2011.12.002_bib0105 article-title: Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping publication-title: Circulation doi: 10.1161/01.CIR.88.5.2235 – volume: 30 start-page: 77 issue: July year: 2009 ident: 10.1016/j.medengphy.2011.12.002_bib0130 article-title: Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21790 – volume: 3 issue: 4 year: 2011 ident: 10.1016/j.medengphy.2011.12.002_bib0080 article-title: Wall shear stress in a subject specific human aorta – influence of fluid-structure interaction publication-title: Int. J. Appl. Mech. doi: 10.1142/S1758825111001226 – volume: 127 start-page: 1602 issue: June year: 2004 ident: 10.1016/j.medengphy.2011.12.002_bib0110 article-title: Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery publication-title: J Thorac Cardiovasc Surg doi: 10.1016/j.jtcvs.2003.10.042 – volume: 113 start-page: 2744 issue: June year: 2006 ident: 10.1016/j.medengphy.2011.12.002_bib0125 article-title: Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.590018 – volume: 17 start-page: 695 year: 1984 ident: 10.1016/j.medengphy.2011.12.002_bib0030 article-title: Pulsatile poststenotic flow studies with laser Doppler anemometry publication-title: J Biomech doi: 10.1016/0021-9290(84)90123-4 – volume: 125 start-page: 445 issue: August year: 2003 ident: 10.1016/j.medengphy.2011.12.002_bib0035 article-title: Numerical modeling of pulsatile turbulent flow in stenotic vessels publication-title: J Biomech Eng doi: 10.1115/1.1589774 – volume: 118 start-page: 74 issue: February year: 1996 ident: 10.1016/j.medengphy.2011.12.002_bib0095 article-title: Pulsatile flow in the human left coronary artery bifurcation: average conditions publication-title: J Biomech Eng doi: 10.1115/1.2795948 |
SSID | ssj0004463 |
Score | 2.2618172 |
Snippet | In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific human aorta.... Abstract In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific... |
SourceID | swepub proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1139 |
SubjectTerms | Aorta Aorta - physiology Aortic arch Atherosclerosis Atherosclerosis (general aspects, experimental research) Biological and medical sciences Blood and lymphatic vessels Blood Circulation Boundaries Cardiology. Vascular system Computational fluid dynamics Computer Simulation Decomposition Heart Heart - physiology Hemorheology Human aorta Humans Hydrodynamics Magnetic Resonance Imaging Male Mechanical stimuli Medical sciences Radiology Reynolds decomposition Scale resolving turbulence model Spatio-Temporal Analysis Stress, Mechanical TECHNOLOGY TEKNIKVETENSKAP Wall shear stress |
Title | Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S135045331100316X https://www.clinicalkey.es/playcontent/1-s2.0-S135045331100316X https://dx.doi.org/10.1016/j.medengphy.2011.12.002 https://www.ncbi.nlm.nih.gov/pubmed/22209366 https://www.proquest.com/docview/1037656407 https://www.proquest.com/docview/1125241924 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-84887 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA_HCeohouvH1Y8lgj7WbZsmbX1bVo9VuQPRk30LSZosldpdrlvEF_92Z_qx5-riCb62GfI1yfyS_GaGkOcZcypXlvtCawEHlCz1tdaRr1NuWBqHeW7QUfj0TMzP43cLvjggs8EXBmmV_d7f7entbt1_mfSjOVkXxeRjyDjgEcYw6BkLxQI92OMEtfzlj0uaBxx3WpI9FPax9A7HCwyOrZbQny6WJ94L9vcreyzUrbWqYdxcl_BiHyL9Ldxoa6JO7pDbPbak0675d8mBrUbkxmxI6TYiR79EHxyR66f9u_o9Yj80CllD6PNEwQjpBo0R_abKktaY85p2PiW0qKiidaPx9oailyYyjWib6I8qRPIUifRLWiLBnNo8_07r4mufIuw-OT9582k29_sEDL4RLNz4mkeJi7VwAnChVjlXzITOGquSLA8Cm2cqcXDeYi5VgDRdGlkXOgYINIwAJwTsATmsVpU9JhSGV3MTpYJpFevc6EAYk1mBrrGGx8ojYhh0afro5Jgko5QDDe2L3M6WxNmSYSRhtjwSbAXXXYCOq0XSYVbl4H8KO6YEI3K1aLJP1Nb9yq9lKGsoKf_QTo-82kruKPi_VTveUb5tTzGUEIdTn0eeDdooQafw0UdVdtVAewIwIRyfa_9SBlBuhHSA2CMPO1W-rCGKgowJqOFFp9vbPxiY_HXxeSpXF0tZFo1MwRgkj_6nn4_JTdSdjiz5hBxuLhr7FEDfRo_bVT0m16Zv38_PfgLY1llK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTmIghKAMKD-GkeAxahInbsJbVZg6tlZCbKhvlu04VVBJp6UR4r_nrnE6ChVD4jXxyfH54vtsf3cH8CblucqUjT2htcANSpp4WuvQ00lseBIFWWYoUHgyFeOL6OMsnu3BqI2FIVqlW_ubNX29WrsnfafN_mVR9D8HPEY8wjklPeOBmN2CfcpOFXdgf3hyOp5eh0dG64Jq1N4jgS2aF_ocW85xSE06TzoadEcsO5zUvUtVoerypubFLlD6W8bRtZc6fgD3Hbxkw2YED2HPll04GLVV3bpw95cEhF24PXFX64_AfqoVEYco7ImhH9I1-SP2XS0WrKKy16wJK2FFyRSrak0HOIwCNYlsxNa1_pgiMM-ISz9nC-KYM5tlP1hVfHNVwg7h4vjD-WjsuRoMnhE8WHk6Dgd5pEUuEBpqlcWKmyC3xqpBmvm-zVI1yHHLxfNEIdjMk9DmQc4RhAYhQgWfP4ZOuSztU2CoXh2bMBFcq0hnRvvCmNQKio41caR6IFqlS-MSlFOdjIVsmWhf5Wa2JM2WDEKJs9UDfyN42eTouFkkaWdVtiGouGhK9CM3iw52idrK_fyVDGSFLeUfBtqDdxvJLRv_t26PtoxvM1LKJhTjxq8Hr1trlGhTdO-jSrus8Xt89CIx3dj-pQ0C3ZAYAVEPnjSmfN1DGPopF9jD28a2N28oN_n74stQLq_mclHUMkF_MHj2P-N8BQfj88mZPDuZnj6HO2RHDXfyBXRWV7V9iRhwpY_cP_4Te4Bb-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+turbulent+wall+shear+stress+in+a+subject+specific+human+aorta+using+large+eddy+simulation&rft.jtitle=Medical+engineering+%26+physics&rft.au=Lantz%2C+Jonas&rft.au=G%C3%A5rdhagen%2C+Roland&rft.au=Karlsson%2C+Matts&rft.date=2012-10-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.volume=34&rft.issue=8&rft.spage=1139&rft.epage=1148&rft_id=info:doi/10.1016%2Fj.medengphy.2011.12.002&rft.externalDocID=S135045331100316X |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453312X00080%2Fcov150h.gif |