Cardiorenal damages in mice at early phase after intervention induced by angiotensin II, nephrectomy, and salt intake

The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients...

Full description

Saved in:
Bibliographic Details
Published inExperimental Animals Vol. 73; no. 1; pp. 11 - 19
Main Authors Motomura, Kaori, Usui, Joichi, Akiyama, Tomoki, Ishida, Junji, Muromachi, Naoto, Fukamizu, Akiyoshi, Maruhashi, Syunsuke, Noguchi, Kazuyuki, Yamagata, Kunihiro
Format Journal Article
LanguageEnglish
Published Japan Japanese Association for Laboratory Animal Science 2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1341-1357
1881-7122
DOI10.1538/expanim.23-0071

Cover

Loading…
Abstract The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients with cardiorenal syndrome. Despite its growing recognition as global health issues, still little is known on pathophysiological evaluation between the two organs. Previously, we established a preclinical murine model with cardiac hypertrophy and fibrosis, and impaired kidney function with renal enlargement and increased urinary albumin levels induced by co-treatment with vasopressor angiotensin II (A), unilateral nephrectomy (N), and salt loading (S) (defined as ANS treatment) for 4 weeks. However, how both tissues, heart and kidney, are initially affected by ANS treatment during the progression of tissue damages remains to be determined. Here, at one week after ANS treatment, we found that cardiac function in ANS-treated mice (ANS mice) are sustained despite hypertrophy. On the other hand, kidney dysfunction is evident in ANS mice, associated with high blood pressure, enlarged glomeruli, increased levels of urinary albumin and urinary neutrophil gelatinase-associated lipocalin, and reduced creatinine clearance. Our results suggest that cardiorenal tissues become damaged at one week after ANS treatment and that ANS mice are useful as a model causing transition from early to late-stage damages of cardiorenal tissues.
AbstractList The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients with cardiorenal syndrome. Despite its growing recognition as global health issues, still little is known on pathophysiological evaluation between the two organs. Previously, we established a preclinical murine model with cardiac hypertrophy and fibrosis, and impaired kidney function with renal enlargement and increased urinary albumin levels induced by co-treatment with vasopressor angiotensin II (A), unilateral nephrectomy (N), and salt loading (S) (defined as ANS treatment) for 4 weeks. However, how both tissues, heart and kidney, are initially affected by ANS treatment during the progression of tissue damages remains to be determined. Here, at one week after ANS treatment, we found that cardiac function in ANS-treated mice (ANS mice) are sustained despite hypertrophy. On the other hand, kidney dysfunction is evident in ANS mice, associated with high blood pressure, enlarged glomeruli, increased levels of urinary albumin and urinary neutrophil gelatinase-associated lipocalin, and reduced creatinine clearance. Our results suggest that cardiorenal tissues become damaged at one week after ANS treatment and that ANS mice are useful as a model causing transition from early to late-stage damages of cardiorenal tissues.
The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients with cardiorenal syndrome. Despite its growing recognition as global health issues, still little is known on pathophysiological evaluation between the two organs. Previously, we established a preclinical murine model with cardiac hypertrophy and fibrosis, and impaired kidney function with renal enlargement and increased urinary albumin levels induced by co-treatment with vasopressor angiotensin II (A), unilateral nephrectomy (N), and salt loading (S) (defined as ANS treatment) for 4 weeks. However, how both tissues, heart and kidney, are initially affected by ANS treatment during the progression of tissue damages remains to be determined. Here, at one week after ANS treatment, we found that cardiac function in ANS-treated mice (ANS mice) are sustained despite hypertrophy. On the other hand, kidney dysfunction is evident in ANS mice, associated with high blood pressure, enlarged glomeruli, increased levels of urinary albumin and urinary neutrophil gelatinase-associated lipocalin, and reduced creatinine clearance. Our results suggest that cardiorenal tissues become damaged at one week after ANS treatment and that ANS mice are useful as a model causing transition from early to late-stage damages of cardiorenal tissues.
ArticleNumber 23-0071
Author Ishida, Junji
Noguchi, Kazuyuki
Akiyama, Tomoki
Maruhashi, Syunsuke
Muromachi, Naoto
Fukamizu, Akiyoshi
Yamagata, Kunihiro
Motomura, Kaori
Usui, Joichi
Author_xml – sequence: 1
  fullname: Motomura, Kaori
  organization: Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan
– sequence: 1
  fullname: Usui, Joichi
  organization: Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Akiyama, Tomoki
  organization: Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Ishida, Junji
  organization: Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan
– sequence: 1
  fullname: Muromachi, Naoto
  organization: Doctoral Program in Life and Agricultural Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan
– sequence: 1
  fullname: Fukamizu, Akiyoshi
  organization: AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
– sequence: 1
  fullname: Maruhashi, Syunsuke
  organization: Master’s Program in Agro-Bioresources Sciences and Technology, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8572, Japan
– sequence: 1
  fullname: Noguchi, Kazuyuki
  organization: Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Yamagata, Kunihiro
  organization: Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37460310$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtv1DAQjlARfcCZG4rEtWn9iOPkhNCqwEqVuMDZmjiTXS-JHWyn6v57HO0SAQcuY4--x4zmu84urLOYZW8puaOC1_f4PIE14x3jBSGSvsiuaF3TQlLGLtKfl7SgXMjL7DqEAyFMSta8yi65LCvCKbnK5g34zjiPFoa8gxF2GHJj89FozCHmCH445tMeQmr7iD6BqT6hjcbZ1HSzxi5vjznYnXERbUjq7fY2tzjtPeroxuNtArs8wBAXNfzA19nLHoaAb87vTfb908O3zZfi8evn7ebjY6ErTmNRYyWSewMEOOMta9q6E61skGpkoiYEqroVQpR9Tznr-ko0beIzQqjuUVB-k304-U5zO2Kn09YeBjV5M4I_KgdG_Y1Ys1c796QoqaWkokwO788O3v2cMUR1cLNPxwqKE1FKJpqqSqx3f85ZB_y-cyLcnwjauxA89iuFErUkqc5JKsbVkmRSiH8U2kRYjp4WNcN_dA8n3SHEFOY6B3w0esCVL7miSznrVlzvwSu0_BeLkMA2
CitedBy_id crossref_primary_10_1093_ehjopen_oead098
Cites_doi 10.1096/fj.03-0321fje
10.1172/JCI40295
10.1111/jcmm.13349
10.1038/ki.2010.483
10.1038/ki.2014.220
10.1016/j.freeradbiomed.2012.06.027
10.1016/j.ijcard.2012.12.065
10.1016/j.jss.2008.05.002
10.1073/pnas.2001336117
10.1007/s10157-010-0374-0
10.1681/ASN.2014080750
10.1152/ajpheart.00349.2013
10.1016/j.jacbts.2019.06.005
10.1053/j.ajkd.2016.05.018
10.1016/j.pcad.2016.12.003
10.1097/01.ASN.0000145895.62896.98
10.1159/000313846
10.1093/eurheartj/ehu254
10.1073/pnas.1909124117
10.1152/ajprenal.00392.2012
10.1152/japplphysiol.00556.2012
10.1016/S0735-1097(03)00471-6
10.1126/science.274.5289.995
10.1097/01.ASN.0000064946.94590.46
10.1080/00365519950185724
10.1016/j.jep.2021.114568
10.1056/NEJMoa1611391
10.1152/ajpendo.1992.262.6.E763
10.1161/01.HYP.0000118521.06245.b8
ContentType Journal Article
Copyright 2024 Japanese Association for Laboratory Animal Science
2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Japanese Association for Laboratory Animal Science 2024
Copyright_xml – notice: 2024 Japanese Association for Laboratory Animal Science
– notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Japanese Association for Laboratory Animal Science 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
RC3
5PM
DOI 10.1538/expanim.23-0071
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Genetics Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Public Health
EISSN 1881-7122
EndPage 19
ExternalDocumentID PMC10877154
37460310
10_1538_expanim_23_0071
article_expanim_73_1_73_23_0071_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29G
2WC
3O-
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EMOBN
GX1
HYE
JSF
JSH
KQ8
M48
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c631t-8e65ced9a0a323b29b8d5b79e1ce25800a68b5554ff132df659bced2001cfe513
IEDL.DBID M48
ISSN 1341-1357
IngestDate Thu Aug 21 18:35:24 EDT 2025
Mon Jun 30 16:42:42 EDT 2025
Wed Feb 19 02:08:55 EST 2025
Thu Apr 24 23:05:26 EDT 2025
Tue Jul 01 01:21:04 EDT 2025
Wed Sep 03 06:31:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords pathogenesis at early phase of cardiorenal damage
cardiac hypertrophy and fibrosis
animal models for cardiorenal damages: ANS mice
cardiorenal damages
kidney dysfunction with proteinuria
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-8e65ced9a0a323b29b8d5b79e1ce25800a68b5554ff132df659bced2001cfe513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1538/expanim.23-0071
PMID 37460310
PQID 3054725966
PQPubID 2048505
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10877154
proquest_journals_3054725966
pubmed_primary_37460310
crossref_primary_10_1538_expanim_23_0071
crossref_citationtrail_10_1538_expanim_23_0071
jstage_primary_article_expanim_73_1_73_23_0071_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Experimental Animals
PublicationTitleAlternate Exp Anim
PublicationYear 2024
Publisher Japanese Association for Laboratory Animal Science
Japan Science and Technology Agency
Publisher_xml – name: Japanese Association for Laboratory Animal Science
– name: Japan Science and Technology Agency
References 8. van Dokkum RP, Eijkelkamp WB, Kluppel AC, Henning RH, van Goor H, Citgez M, et al. Myocardial infarction enhances progressive renal damage in an experimental model for cardio-renal interaction. J Am Soc Nephrol. 2004; 15: 3103–3110.
11. Noguchi K, Ishida J, Kim JD, Muromachi N, Kako K, Mizukami H, et al. Histamine receptor agonist alleviates severe cardiorenal damages by eliciting anti-inflammatory programming. Proc Natl Acad Sci USA. 2020; 117: 3150–3156.
29. Sumida M, Doi K, Ogasawara E, Yamashita T, Hamasaki Y, Kariya T, et al. Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J Am Soc Nephrol. 2015; 26: 2378–2387.
13. Saito T, Ishida J, Takimoto-Ohnishi E, Takamine S, Shimizu T, Sugaya T, et al. An essential role for angiotensin II type 1a receptor in pregnancy-associated hypertension with intrauterine growth retardation. FASEB J. 2004; 18: 388–390.
7. Bongartz LG, Cramer MJ, Braam B. The cardiorenal connection. Hypertension. 2004; 43: e14.
9. Richards DA, Bao W, Rambo MV, Burgert M, Jucker BM, Lenhard SC. Examining the relationship between exercise tolerance and isoproterenol-based cardiac reserve in murine models of heart failure. J Appl Physiol. 2013; 114: 1202–1210.
1. Boudoulas KD, Triposkiadis F, Parissis J, Butler J, Boudoulas H. The cardio-renal interrelationship. Prog Cardiovasc Dis. 2017; 59: 636–648.
17. Liu S, Wang BH, Kelly DJ, Krum H, Kompa AR. Chronic kidney disease with comorbid cardiac dysfunction exacerbates cardiac and renal damage. J Cell Mol Med. 2018; 22: 628–645.
3. Eriguchi M, Tsuruya K, Haruyama N, Yamada S, Tanaka S, Suehiro T, et al. Renal denervation has blood pressure-independent protective effects on kidney and heart in a rat model of chronic kidney disease. Kidney Int. 2015; 87: 116–127.
23. Dikow R, Schmidt U, Kihm LP, Schaier M, Schwenger V, Gross ML, et al. Uremia aggravates left ventricular remodeling after myocardial infarction. Am J Nephrol. 2010; 32: 13–22.
22. Kimura K, Nishio I. Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats. Scand J Clin Lab Invest. 1999; 59: 199–204.
16. Gori M, Senni M, Gupta DK, Charytan DM, Kraigher-Krainer E, Pieske B, et al.PARAMOUNT Investigators. Association between renal function and cardiovascular structure and function in heart failure with preserved ejection fraction. Eur Heart J. 2014; 35: 3442–3451.
19. Bongartz LG, Braam B, Gaillard CA, Cramer MJ, Goldschmeding R, Verhaar MC, et al. Target organ cross talk in cardiorenal syndrome: animal models. Am J Physiol Renal Physiol. 2012; 303: F1253–F1263.
26. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL. AWARE Investigators. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017; 376: 11–20.
6. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011; 80: 17–28.
25. Sawhney S, Marks A, Fluck N, Levin A, Prescott G, Black C. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based cohort study. Am J Kidney Dis. 2017; 69: 18–28.
4. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol. 2003; 41: 2164–2171.
18. Tsukamoto Y, Mano T, Sakata Y, Ohtani T, Takeda Y, Tamaki S, et al. A novel heart failure mice model of hypertensive heart disease by angiotensin II infusion, nephrectomy, and salt loading. Am J Physiol Heart Circ Physiol. 2013; 305: H1658–H1667.
20. Liu S, Kompa AR, Kumfu S, Nishijima F, Kelly DJ, Krum H, et al. Subtotal nephrectomy accelerates pathological cardiac remodeling post-myocardial infarction: implications for cardiorenal syndrome. Int J Cardiol. 2013; 168: 1866–1880.
24. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010; 120: 254–265.
15. Meeh K. Oberflächenmessungen des menschlichen Körpers. Z Biol (Münch). 1879; 15: 425–458.
12. Takimoto E, Ishida J, Sugiyama F, Horiguchi H, Murakami K, Fukamizu A. Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science. 1996; 274: 995–998.
14. Cheung MC, Spalding PB, Gutierrez JC, Balkan W, Namias N, Koniaris LG, et al. Body surface area prediction in normal, hypermuscular, and obese mice. J Surg Res. 2009; 153: 326–331.
10. Babelova A, Avaniadi D, Jung O, Fork C, Beckmann J, Kosowski J, et al. Role of Nox4 in murine models of kidney disease. Free Radic Biol Med. 2012; 53: 842–853.
5. Nitta K. Pathogenesis and therapeutic implications of cardiorenal syndrome. Clin Exp Nephrol. 2011; 15: 187–194.
28. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003; 14: 1549–1558.
27. Prud’homme M, Coutrot M, Michel T, Boutin L, Genest M, Poirier F, et al. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci. 2019; 4: 717–732.
30. Tharaux PL. Histamine provides an original vista on cardiorenal syndrome. Proc Natl Acad Sci USA. 2020; 117: 5550–5552.
2. Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992; 262: E763–E778.
21. Souto CGRG, Lorençone BR, Marques AAM, Palozi RAC, Romão PVM, Guarnier LP, et al. Cardioprotective effects of Talinum paniculatum (Jacq.) Gaertn. in doxorubicin-induced cardiotoxicity in hypertensive rats. J Ethnopharmacol. 2021; 281: 114568.
22
23
24
25
26
27
28
29
30
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 14. Cheung MC, Spalding PB, Gutierrez JC, Balkan W, Namias N, Koniaris LG, et al. Body surface area prediction in normal, hypermuscular, and obese mice. J Surg Res. 2009; 153: 326–331.
– reference: 6. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011; 80: 17–28.
– reference: 26. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL. AWARE Investigators. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017; 376: 11–20.
– reference: 8. van Dokkum RP, Eijkelkamp WB, Kluppel AC, Henning RH, van Goor H, Citgez M, et al. Myocardial infarction enhances progressive renal damage in an experimental model for cardio-renal interaction. J Am Soc Nephrol. 2004; 15: 3103–3110.
– reference: 24. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010; 120: 254–265.
– reference: 21. Souto CGRG, Lorençone BR, Marques AAM, Palozi RAC, Romão PVM, Guarnier LP, et al. Cardioprotective effects of Talinum paniculatum (Jacq.) Gaertn. in doxorubicin-induced cardiotoxicity in hypertensive rats. J Ethnopharmacol. 2021; 281: 114568.
– reference: 10. Babelova A, Avaniadi D, Jung O, Fork C, Beckmann J, Kosowski J, et al. Role of Nox4 in murine models of kidney disease. Free Radic Biol Med. 2012; 53: 842–853.
– reference: 9. Richards DA, Bao W, Rambo MV, Burgert M, Jucker BM, Lenhard SC. Examining the relationship between exercise tolerance and isoproterenol-based cardiac reserve in murine models of heart failure. J Appl Physiol. 2013; 114: 1202–1210.
– reference: 23. Dikow R, Schmidt U, Kihm LP, Schaier M, Schwenger V, Gross ML, et al. Uremia aggravates left ventricular remodeling after myocardial infarction. Am J Nephrol. 2010; 32: 13–22.
– reference: 20. Liu S, Kompa AR, Kumfu S, Nishijima F, Kelly DJ, Krum H, et al. Subtotal nephrectomy accelerates pathological cardiac remodeling post-myocardial infarction: implications for cardiorenal syndrome. Int J Cardiol. 2013; 168: 1866–1880.
– reference: 2. Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992; 262: E763–E778.
– reference: 28. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003; 14: 1549–1558.
– reference: 5. Nitta K. Pathogenesis and therapeutic implications of cardiorenal syndrome. Clin Exp Nephrol. 2011; 15: 187–194.
– reference: 3. Eriguchi M, Tsuruya K, Haruyama N, Yamada S, Tanaka S, Suehiro T, et al. Renal denervation has blood pressure-independent protective effects on kidney and heart in a rat model of chronic kidney disease. Kidney Int. 2015; 87: 116–127.
– reference: 16. Gori M, Senni M, Gupta DK, Charytan DM, Kraigher-Krainer E, Pieske B, et al.PARAMOUNT Investigators. Association between renal function and cardiovascular structure and function in heart failure with preserved ejection fraction. Eur Heart J. 2014; 35: 3442–3451.
– reference: 1. Boudoulas KD, Triposkiadis F, Parissis J, Butler J, Boudoulas H. The cardio-renal interrelationship. Prog Cardiovasc Dis. 2017; 59: 636–648.
– reference: 22. Kimura K, Nishio I. Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats. Scand J Clin Lab Invest. 1999; 59: 199–204.
– reference: 18. Tsukamoto Y, Mano T, Sakata Y, Ohtani T, Takeda Y, Tamaki S, et al. A novel heart failure mice model of hypertensive heart disease by angiotensin II infusion, nephrectomy, and salt loading. Am J Physiol Heart Circ Physiol. 2013; 305: H1658–H1667.
– reference: 7. Bongartz LG, Cramer MJ, Braam B. The cardiorenal connection. Hypertension. 2004; 43: e14.
– reference: 13. Saito T, Ishida J, Takimoto-Ohnishi E, Takamine S, Shimizu T, Sugaya T, et al. An essential role for angiotensin II type 1a receptor in pregnancy-associated hypertension with intrauterine growth retardation. FASEB J. 2004; 18: 388–390.
– reference: 19. Bongartz LG, Braam B, Gaillard CA, Cramer MJ, Goldschmeding R, Verhaar MC, et al. Target organ cross talk in cardiorenal syndrome: animal models. Am J Physiol Renal Physiol. 2012; 303: F1253–F1263.
– reference: 17. Liu S, Wang BH, Kelly DJ, Krum H, Kompa AR. Chronic kidney disease with comorbid cardiac dysfunction exacerbates cardiac and renal damage. J Cell Mol Med. 2018; 22: 628–645.
– reference: 30. Tharaux PL. Histamine provides an original vista on cardiorenal syndrome. Proc Natl Acad Sci USA. 2020; 117: 5550–5552.
– reference: 15. Meeh K. Oberflächenmessungen des menschlichen Körpers. Z Biol (Münch). 1879; 15: 425–458.
– reference: 12. Takimoto E, Ishida J, Sugiyama F, Horiguchi H, Murakami K, Fukamizu A. Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science. 1996; 274: 995–998.
– reference: 4. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol. 2003; 41: 2164–2171.
– reference: 11. Noguchi K, Ishida J, Kim JD, Muromachi N, Kako K, Mizukami H, et al. Histamine receptor agonist alleviates severe cardiorenal damages by eliciting anti-inflammatory programming. Proc Natl Acad Sci USA. 2020; 117: 3150–3156.
– reference: 29. Sumida M, Doi K, Ogasawara E, Yamashita T, Hamasaki Y, Kariya T, et al. Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J Am Soc Nephrol. 2015; 26: 2378–2387.
– reference: 25. Sawhney S, Marks A, Fluck N, Levin A, Prescott G, Black C. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based cohort study. Am J Kidney Dis. 2017; 69: 18–28.
– reference: 27. Prud’homme M, Coutrot M, Michel T, Boutin L, Genest M, Poirier F, et al. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci. 2019; 4: 717–732.
– ident: 13
  doi: 10.1096/fj.03-0321fje
– ident: 24
  doi: 10.1172/JCI40295
– ident: 17
  doi: 10.1111/jcmm.13349
– ident: 6
  doi: 10.1038/ki.2010.483
– ident: 3
  doi: 10.1038/ki.2014.220
– ident: 10
  doi: 10.1016/j.freeradbiomed.2012.06.027
– ident: 20
  doi: 10.1016/j.ijcard.2012.12.065
– ident: 14
  doi: 10.1016/j.jss.2008.05.002
– ident: 30
  doi: 10.1073/pnas.2001336117
– ident: 5
  doi: 10.1007/s10157-010-0374-0
– ident: 29
  doi: 10.1681/ASN.2014080750
– ident: 18
  doi: 10.1152/ajpheart.00349.2013
– ident: 27
  doi: 10.1016/j.jacbts.2019.06.005
– ident: 25
  doi: 10.1053/j.ajkd.2016.05.018
– ident: 1
  doi: 10.1016/j.pcad.2016.12.003
– ident: 8
  doi: 10.1097/01.ASN.0000145895.62896.98
– ident: 23
  doi: 10.1159/000313846
– ident: 16
  doi: 10.1093/eurheartj/ehu254
– ident: 11
  doi: 10.1073/pnas.1909124117
– ident: 19
  doi: 10.1152/ajprenal.00392.2012
– ident: 15
– ident: 9
  doi: 10.1152/japplphysiol.00556.2012
– ident: 4
  doi: 10.1016/S0735-1097(03)00471-6
– ident: 12
  doi: 10.1126/science.274.5289.995
– ident: 28
  doi: 10.1097/01.ASN.0000064946.94590.46
– ident: 22
  doi: 10.1080/00365519950185724
– ident: 21
  doi: 10.1016/j.jep.2021.114568
– ident: 26
  doi: 10.1056/NEJMoa1611391
– ident: 2
  doi: 10.1152/ajpendo.1992.262.6.E763
– ident: 7
  doi: 10.1161/01.HYP.0000118521.06245.b8
SSID ssj0027729
Score 2.3268185
Snippet The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Albumin
Albumins
Angiotensin
Angiotensin II
Animal models
animal models for cardiorenal damages: ANS mice
Animals
Blood pressure
Body organs
cardiac hypertrophy and fibrosis
Cardio-Renal Syndrome - drug therapy
cardiorenal damages
Creatinine
Fibrosis
Gelatinase
Global health
Glomerulus
Heart
Homeostasis
Humans
Hypertension
Hypertrophy
Kidney
Kidney diseases
kidney dysfunction with proteinuria
Kidneys
Leukocytes (neutrophilic)
Lipocalin
Mice
Nephrectomy
Nephrectomy - adverse effects
Organs
Original
pathogenesis at early phase of cardiorenal damage
Public health
Renal function
Salt loading
Sodium Chloride, Dietary - adverse effects
Tissue
Title Cardiorenal damages in mice at early phase after intervention induced by angiotensin II, nephrectomy, and salt intake
URI https://www.jstage.jst.go.jp/article/expanim/73/1/73_23-0071/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/37460310
https://www.proquest.com/docview/3054725966
https://pubmed.ncbi.nlm.nih.gov/PMC10877154
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental Animals, 2024, Vol.73(1), pp.11-19
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoAYkLKq8SaCsfOHColySOXwdAVdXSIm3FgZVWXCLbcdrAbrbsplL33zN2smkXLSculiKPncjj8cxYk-9D6J2UWvGSOxJTGZPMOUWUVpQkTBjwMLy0ATJ_eMHPRtnXMRvf0QF1C7jYmNp5PqnRfDK4_b38DAb_MbD3UPnB3YLhVNNBSon3mFvoIbgl4a10mMm77EsEyjIPYEYSykSH87NhgjUX9egnRGmXblMA-ncd5T3HdLqDnnYRJT5qt8Az9MDVz9HjH7NwX_4C3RyHitO580KFnsJbFriqsaehx7rBziMc4-sr8GY4EIbj6l4ZJDwUoPwCmyXW9WU1CwXvNT4_P8S18xvBNrPp8hA6C7zQk8aP1r_cSzQ6Pfl-fEY6rgViOU0aIh1nMJvSsaYpNakysmBGKJdYlzKIKjWXhkHsUZaQvxYlZ8qAvK_IsqVjCX2FtutZ7V4jbNO4FEKWgluZFdaojGknqEyNMgbysQgNVsub2w6I3PNhTHKfkIA-8k4feUpzr48Ive8HXLcYHP8W_dTqqxfsDLAXFDRPfNMN6Pv9T25wUkRob6XnfLUZczgTMwF5IucR2m1V3s9PReaJuuMIybXN0At4_O71nrq6CjjeiQdjhBD2zf9-9Fv0JIVYq70Z2kPbzfzG7UOs1JgDtPVlnBwES4D24tvwDw-dGzQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiorenal+damages+in+mice+at+early+phase+after+intervention+induced+by+angiotensin+II%2C+nephrectomy%2C+and+salt+intake&rft.jtitle=Experimental+Animals&rft.au=Motomura%2C+Kaori&rft.au=Usui%2C+Joichi&rft.au=Akiyama%2C+Tomoki&rft.au=Ishida%2C+Junji&rft.date=2024&rft.pub=Japanese+Association+for+Laboratory+Animal+Science&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=73&rft.issue=1&rft.spage=11&rft.epage=19&rft_id=info:doi/10.1538%2Fexpanim.23-0071&rft.externalDocID=article_expanim_73_1_73_23_0071_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon