Cardiorenal damages in mice at early phase after intervention induced by angiotensin II, nephrectomy, and salt intake
The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients...
Saved in:
Published in | Experimental Animals Vol. 73; no. 1; pp. 11 - 19 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Association for Laboratory Animal Science
2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1341-1357 1881-7122 |
DOI | 10.1538/expanim.23-0071 |
Cover
Loading…
Abstract | The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients with cardiorenal syndrome. Despite its growing recognition as global health issues, still little is known on pathophysiological evaluation between the two organs. Previously, we established a preclinical murine model with cardiac hypertrophy and fibrosis, and impaired kidney function with renal enlargement and increased urinary albumin levels induced by co-treatment with vasopressor angiotensin II (A), unilateral nephrectomy (N), and salt loading (S) (defined as ANS treatment) for 4 weeks. However, how both tissues, heart and kidney, are initially affected by ANS treatment during the progression of tissue damages remains to be determined. Here, at one week after ANS treatment, we found that cardiac function in ANS-treated mice (ANS mice) are sustained despite hypertrophy. On the other hand, kidney dysfunction is evident in ANS mice, associated with high blood pressure, enlarged glomeruli, increased levels of urinary albumin and urinary neutrophil gelatinase-associated lipocalin, and reduced creatinine clearance. Our results suggest that cardiorenal tissues become damaged at one week after ANS treatment and that ANS mice are useful as a model causing transition from early to late-stage damages of cardiorenal tissues. |
---|---|
AbstractList | The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients with cardiorenal syndrome. Despite its growing recognition as global health issues, still little is known on pathophysiological evaluation between the two organs. Previously, we established a preclinical murine model with cardiac hypertrophy and fibrosis, and impaired kidney function with renal enlargement and increased urinary albumin levels induced by co-treatment with vasopressor angiotensin II (A), unilateral nephrectomy (N), and salt loading (S) (defined as ANS treatment) for 4 weeks. However, how both tissues, heart and kidney, are initially affected by ANS treatment during the progression of tissue damages remains to be determined. Here, at one week after ANS treatment, we found that cardiac function in ANS-treated mice (ANS mice) are sustained despite hypertrophy. On the other hand, kidney dysfunction is evident in ANS mice, associated with high blood pressure, enlarged glomeruli, increased levels of urinary albumin and urinary neutrophil gelatinase-associated lipocalin, and reduced creatinine clearance. Our results suggest that cardiorenal tissues become damaged at one week after ANS treatment and that ANS mice are useful as a model causing transition from early to late-stage damages of cardiorenal tissues. The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients with cardiorenal syndrome. Despite its growing recognition as global health issues, still little is known on pathophysiological evaluation between the two organs. Previously, we established a preclinical murine model with cardiac hypertrophy and fibrosis, and impaired kidney function with renal enlargement and increased urinary albumin levels induced by co-treatment with vasopressor angiotensin II (A), unilateral nephrectomy (N), and salt loading (S) (defined as ANS treatment) for 4 weeks. However, how both tissues, heart and kidney, are initially affected by ANS treatment during the progression of tissue damages remains to be determined. Here, at one week after ANS treatment, we found that cardiac function in ANS-treated mice (ANS mice) are sustained despite hypertrophy. On the other hand, kidney dysfunction is evident in ANS mice, associated with high blood pressure, enlarged glomeruli, increased levels of urinary albumin and urinary neutrophil gelatinase-associated lipocalin, and reduced creatinine clearance. Our results suggest that cardiorenal tissues become damaged at one week after ANS treatment and that ANS mice are useful as a model causing transition from early to late-stage damages of cardiorenal tissues. |
ArticleNumber | 23-0071 |
Author | Ishida, Junji Noguchi, Kazuyuki Akiyama, Tomoki Maruhashi, Syunsuke Muromachi, Naoto Fukamizu, Akiyoshi Yamagata, Kunihiro Motomura, Kaori Usui, Joichi |
Author_xml | – sequence: 1 fullname: Motomura, Kaori organization: Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan – sequence: 1 fullname: Usui, Joichi organization: Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan – sequence: 1 fullname: Akiyama, Tomoki organization: Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan – sequence: 1 fullname: Ishida, Junji organization: Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan – sequence: 1 fullname: Muromachi, Naoto organization: Doctoral Program in Life and Agricultural Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan – sequence: 1 fullname: Fukamizu, Akiyoshi organization: AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan – sequence: 1 fullname: Maruhashi, Syunsuke organization: Master’s Program in Agro-Bioresources Sciences and Technology, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8572, Japan – sequence: 1 fullname: Noguchi, Kazuyuki organization: Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan – sequence: 1 fullname: Yamagata, Kunihiro organization: Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37460310$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtv1DAQjlARfcCZG4rEtWn9iOPkhNCqwEqVuMDZmjiTXS-JHWyn6v57HO0SAQcuY4--x4zmu84urLOYZW8puaOC1_f4PIE14x3jBSGSvsiuaF3TQlLGLtKfl7SgXMjL7DqEAyFMSta8yi65LCvCKbnK5g34zjiPFoa8gxF2GHJj89FozCHmCH445tMeQmr7iD6BqT6hjcbZ1HSzxi5vjznYnXERbUjq7fY2tzjtPeroxuNtArs8wBAXNfzA19nLHoaAb87vTfb908O3zZfi8evn7ebjY6ErTmNRYyWSewMEOOMta9q6E61skGpkoiYEqroVQpR9Tznr-ko0beIzQqjuUVB-k304-U5zO2Kn09YeBjV5M4I_KgdG_Y1Ys1c796QoqaWkokwO788O3v2cMUR1cLNPxwqKE1FKJpqqSqx3f85ZB_y-cyLcnwjauxA89iuFErUkqc5JKsbVkmRSiH8U2kRYjp4WNcN_dA8n3SHEFOY6B3w0esCVL7miSznrVlzvwSu0_BeLkMA2 |
CitedBy_id | crossref_primary_10_1093_ehjopen_oead098 |
Cites_doi | 10.1096/fj.03-0321fje 10.1172/JCI40295 10.1111/jcmm.13349 10.1038/ki.2010.483 10.1038/ki.2014.220 10.1016/j.freeradbiomed.2012.06.027 10.1016/j.ijcard.2012.12.065 10.1016/j.jss.2008.05.002 10.1073/pnas.2001336117 10.1007/s10157-010-0374-0 10.1681/ASN.2014080750 10.1152/ajpheart.00349.2013 10.1016/j.jacbts.2019.06.005 10.1053/j.ajkd.2016.05.018 10.1016/j.pcad.2016.12.003 10.1097/01.ASN.0000145895.62896.98 10.1159/000313846 10.1093/eurheartj/ehu254 10.1073/pnas.1909124117 10.1152/ajprenal.00392.2012 10.1152/japplphysiol.00556.2012 10.1016/S0735-1097(03)00471-6 10.1126/science.274.5289.995 10.1097/01.ASN.0000064946.94590.46 10.1080/00365519950185724 10.1016/j.jep.2021.114568 10.1056/NEJMoa1611391 10.1152/ajpendo.1992.262.6.E763 10.1161/01.HYP.0000118521.06245.b8 |
ContentType | Journal Article |
Copyright | 2024 Japanese Association for Laboratory Animal Science 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Japanese Association for Laboratory Animal Science 2024 |
Copyright_xml | – notice: 2024 Japanese Association for Laboratory Animal Science – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Japanese Association for Laboratory Animal Science 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 RC3 5PM |
DOI | 10.1538/expanim.23-0071 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Public Health |
EISSN | 1881-7122 |
EndPage | 19 |
ExternalDocumentID | PMC10877154 37460310 10_1538_expanim_23_0071 article_expanim_73_1_73_23_0071_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29G 2WC 3O- 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EMOBN GX1 HYE JSF JSH KQ8 M48 OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 X7M XSB AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c631t-8e65ced9a0a323b29b8d5b79e1ce25800a68b5554ff132df659bced2001cfe513 |
IEDL.DBID | M48 |
ISSN | 1341-1357 |
IngestDate | Thu Aug 21 18:35:24 EDT 2025 Mon Jun 30 16:42:42 EDT 2025 Wed Feb 19 02:08:55 EST 2025 Thu Apr 24 23:05:26 EDT 2025 Tue Jul 01 01:21:04 EDT 2025 Wed Sep 03 06:31:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | pathogenesis at early phase of cardiorenal damage cardiac hypertrophy and fibrosis animal models for cardiorenal damages: ANS mice cardiorenal damages kidney dysfunction with proteinuria |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c631t-8e65ced9a0a323b29b8d5b79e1ce25800a68b5554ff132df659bced2001cfe513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1538/expanim.23-0071 |
PMID | 37460310 |
PQID | 3054725966 |
PQPubID | 2048505 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10877154 proquest_journals_3054725966 pubmed_primary_37460310 crossref_primary_10_1538_expanim_23_0071 crossref_citationtrail_10_1538_expanim_23_0071 jstage_primary_article_expanim_73_1_73_23_0071_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Experimental Animals |
PublicationTitleAlternate | Exp Anim |
PublicationYear | 2024 |
Publisher | Japanese Association for Laboratory Animal Science Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Association for Laboratory Animal Science – name: Japan Science and Technology Agency |
References | 8. van Dokkum RP, Eijkelkamp WB, Kluppel AC, Henning RH, van Goor H, Citgez M, et al. Myocardial infarction enhances progressive renal damage in an experimental model for cardio-renal interaction. J Am Soc Nephrol. 2004; 15: 3103–3110. 11. Noguchi K, Ishida J, Kim JD, Muromachi N, Kako K, Mizukami H, et al. Histamine receptor agonist alleviates severe cardiorenal damages by eliciting anti-inflammatory programming. Proc Natl Acad Sci USA. 2020; 117: 3150–3156. 29. Sumida M, Doi K, Ogasawara E, Yamashita T, Hamasaki Y, Kariya T, et al. Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J Am Soc Nephrol. 2015; 26: 2378–2387. 13. Saito T, Ishida J, Takimoto-Ohnishi E, Takamine S, Shimizu T, Sugaya T, et al. An essential role for angiotensin II type 1a receptor in pregnancy-associated hypertension with intrauterine growth retardation. FASEB J. 2004; 18: 388–390. 7. Bongartz LG, Cramer MJ, Braam B. The cardiorenal connection. Hypertension. 2004; 43: e14. 9. Richards DA, Bao W, Rambo MV, Burgert M, Jucker BM, Lenhard SC. Examining the relationship between exercise tolerance and isoproterenol-based cardiac reserve in murine models of heart failure. J Appl Physiol. 2013; 114: 1202–1210. 1. Boudoulas KD, Triposkiadis F, Parissis J, Butler J, Boudoulas H. The cardio-renal interrelationship. Prog Cardiovasc Dis. 2017; 59: 636–648. 17. Liu S, Wang BH, Kelly DJ, Krum H, Kompa AR. Chronic kidney disease with comorbid cardiac dysfunction exacerbates cardiac and renal damage. J Cell Mol Med. 2018; 22: 628–645. 3. Eriguchi M, Tsuruya K, Haruyama N, Yamada S, Tanaka S, Suehiro T, et al. Renal denervation has blood pressure-independent protective effects on kidney and heart in a rat model of chronic kidney disease. Kidney Int. 2015; 87: 116–127. 23. Dikow R, Schmidt U, Kihm LP, Schaier M, Schwenger V, Gross ML, et al. Uremia aggravates left ventricular remodeling after myocardial infarction. Am J Nephrol. 2010; 32: 13–22. 22. Kimura K, Nishio I. Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats. Scand J Clin Lab Invest. 1999; 59: 199–204. 16. Gori M, Senni M, Gupta DK, Charytan DM, Kraigher-Krainer E, Pieske B, et al.PARAMOUNT Investigators. Association between renal function and cardiovascular structure and function in heart failure with preserved ejection fraction. Eur Heart J. 2014; 35: 3442–3451. 19. Bongartz LG, Braam B, Gaillard CA, Cramer MJ, Goldschmeding R, Verhaar MC, et al. Target organ cross talk in cardiorenal syndrome: animal models. Am J Physiol Renal Physiol. 2012; 303: F1253–F1263. 26. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL. AWARE Investigators. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017; 376: 11–20. 6. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011; 80: 17–28. 25. Sawhney S, Marks A, Fluck N, Levin A, Prescott G, Black C. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based cohort study. Am J Kidney Dis. 2017; 69: 18–28. 4. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol. 2003; 41: 2164–2171. 18. Tsukamoto Y, Mano T, Sakata Y, Ohtani T, Takeda Y, Tamaki S, et al. A novel heart failure mice model of hypertensive heart disease by angiotensin II infusion, nephrectomy, and salt loading. Am J Physiol Heart Circ Physiol. 2013; 305: H1658–H1667. 20. Liu S, Kompa AR, Kumfu S, Nishijima F, Kelly DJ, Krum H, et al. Subtotal nephrectomy accelerates pathological cardiac remodeling post-myocardial infarction: implications for cardiorenal syndrome. Int J Cardiol. 2013; 168: 1866–1880. 24. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010; 120: 254–265. 15. Meeh K. Oberflächenmessungen des menschlichen Körpers. Z Biol (Münch). 1879; 15: 425–458. 12. Takimoto E, Ishida J, Sugiyama F, Horiguchi H, Murakami K, Fukamizu A. Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science. 1996; 274: 995–998. 14. Cheung MC, Spalding PB, Gutierrez JC, Balkan W, Namias N, Koniaris LG, et al. Body surface area prediction in normal, hypermuscular, and obese mice. J Surg Res. 2009; 153: 326–331. 10. Babelova A, Avaniadi D, Jung O, Fork C, Beckmann J, Kosowski J, et al. Role of Nox4 in murine models of kidney disease. Free Radic Biol Med. 2012; 53: 842–853. 5. Nitta K. Pathogenesis and therapeutic implications of cardiorenal syndrome. Clin Exp Nephrol. 2011; 15: 187–194. 28. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003; 14: 1549–1558. 27. Prud’homme M, Coutrot M, Michel T, Boutin L, Genest M, Poirier F, et al. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci. 2019; 4: 717–732. 30. Tharaux PL. Histamine provides an original vista on cardiorenal syndrome. Proc Natl Acad Sci USA. 2020; 117: 5550–5552. 2. Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992; 262: E763–E778. 21. Souto CGRG, Lorençone BR, Marques AAM, Palozi RAC, Romão PVM, Guarnier LP, et al. Cardioprotective effects of Talinum paniculatum (Jacq.) Gaertn. in doxorubicin-induced cardiotoxicity in hypertensive rats. J Ethnopharmacol. 2021; 281: 114568. 22 23 24 25 26 27 28 29 30 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 14. Cheung MC, Spalding PB, Gutierrez JC, Balkan W, Namias N, Koniaris LG, et al. Body surface area prediction in normal, hypermuscular, and obese mice. J Surg Res. 2009; 153: 326–331. – reference: 6. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011; 80: 17–28. – reference: 26. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL. AWARE Investigators. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017; 376: 11–20. – reference: 8. van Dokkum RP, Eijkelkamp WB, Kluppel AC, Henning RH, van Goor H, Citgez M, et al. Myocardial infarction enhances progressive renal damage in an experimental model for cardio-renal interaction. J Am Soc Nephrol. 2004; 15: 3103–3110. – reference: 24. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010; 120: 254–265. – reference: 21. Souto CGRG, Lorençone BR, Marques AAM, Palozi RAC, Romão PVM, Guarnier LP, et al. Cardioprotective effects of Talinum paniculatum (Jacq.) Gaertn. in doxorubicin-induced cardiotoxicity in hypertensive rats. J Ethnopharmacol. 2021; 281: 114568. – reference: 10. Babelova A, Avaniadi D, Jung O, Fork C, Beckmann J, Kosowski J, et al. Role of Nox4 in murine models of kidney disease. Free Radic Biol Med. 2012; 53: 842–853. – reference: 9. Richards DA, Bao W, Rambo MV, Burgert M, Jucker BM, Lenhard SC. Examining the relationship between exercise tolerance and isoproterenol-based cardiac reserve in murine models of heart failure. J Appl Physiol. 2013; 114: 1202–1210. – reference: 23. Dikow R, Schmidt U, Kihm LP, Schaier M, Schwenger V, Gross ML, et al. Uremia aggravates left ventricular remodeling after myocardial infarction. Am J Nephrol. 2010; 32: 13–22. – reference: 20. Liu S, Kompa AR, Kumfu S, Nishijima F, Kelly DJ, Krum H, et al. Subtotal nephrectomy accelerates pathological cardiac remodeling post-myocardial infarction: implications for cardiorenal syndrome. Int J Cardiol. 2013; 168: 1866–1880. – reference: 2. Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992; 262: E763–E778. – reference: 28. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003; 14: 1549–1558. – reference: 5. Nitta K. Pathogenesis and therapeutic implications of cardiorenal syndrome. Clin Exp Nephrol. 2011; 15: 187–194. – reference: 3. Eriguchi M, Tsuruya K, Haruyama N, Yamada S, Tanaka S, Suehiro T, et al. Renal denervation has blood pressure-independent protective effects on kidney and heart in a rat model of chronic kidney disease. Kidney Int. 2015; 87: 116–127. – reference: 16. Gori M, Senni M, Gupta DK, Charytan DM, Kraigher-Krainer E, Pieske B, et al.PARAMOUNT Investigators. Association between renal function and cardiovascular structure and function in heart failure with preserved ejection fraction. Eur Heart J. 2014; 35: 3442–3451. – reference: 1. Boudoulas KD, Triposkiadis F, Parissis J, Butler J, Boudoulas H. The cardio-renal interrelationship. Prog Cardiovasc Dis. 2017; 59: 636–648. – reference: 22. Kimura K, Nishio I. Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats. Scand J Clin Lab Invest. 1999; 59: 199–204. – reference: 18. Tsukamoto Y, Mano T, Sakata Y, Ohtani T, Takeda Y, Tamaki S, et al. A novel heart failure mice model of hypertensive heart disease by angiotensin II infusion, nephrectomy, and salt loading. Am J Physiol Heart Circ Physiol. 2013; 305: H1658–H1667. – reference: 7. Bongartz LG, Cramer MJ, Braam B. The cardiorenal connection. Hypertension. 2004; 43: e14. – reference: 13. Saito T, Ishida J, Takimoto-Ohnishi E, Takamine S, Shimizu T, Sugaya T, et al. An essential role for angiotensin II type 1a receptor in pregnancy-associated hypertension with intrauterine growth retardation. FASEB J. 2004; 18: 388–390. – reference: 19. Bongartz LG, Braam B, Gaillard CA, Cramer MJ, Goldschmeding R, Verhaar MC, et al. Target organ cross talk in cardiorenal syndrome: animal models. Am J Physiol Renal Physiol. 2012; 303: F1253–F1263. – reference: 17. Liu S, Wang BH, Kelly DJ, Krum H, Kompa AR. Chronic kidney disease with comorbid cardiac dysfunction exacerbates cardiac and renal damage. J Cell Mol Med. 2018; 22: 628–645. – reference: 30. Tharaux PL. Histamine provides an original vista on cardiorenal syndrome. Proc Natl Acad Sci USA. 2020; 117: 5550–5552. – reference: 15. Meeh K. Oberflächenmessungen des menschlichen Körpers. Z Biol (Münch). 1879; 15: 425–458. – reference: 12. Takimoto E, Ishida J, Sugiyama F, Horiguchi H, Murakami K, Fukamizu A. Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science. 1996; 274: 995–998. – reference: 4. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol. 2003; 41: 2164–2171. – reference: 11. Noguchi K, Ishida J, Kim JD, Muromachi N, Kako K, Mizukami H, et al. Histamine receptor agonist alleviates severe cardiorenal damages by eliciting anti-inflammatory programming. Proc Natl Acad Sci USA. 2020; 117: 3150–3156. – reference: 29. Sumida M, Doi K, Ogasawara E, Yamashita T, Hamasaki Y, Kariya T, et al. Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J Am Soc Nephrol. 2015; 26: 2378–2387. – reference: 25. Sawhney S, Marks A, Fluck N, Levin A, Prescott G, Black C. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based cohort study. Am J Kidney Dis. 2017; 69: 18–28. – reference: 27. Prud’homme M, Coutrot M, Michel T, Boutin L, Genest M, Poirier F, et al. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci. 2019; 4: 717–732. – ident: 13 doi: 10.1096/fj.03-0321fje – ident: 24 doi: 10.1172/JCI40295 – ident: 17 doi: 10.1111/jcmm.13349 – ident: 6 doi: 10.1038/ki.2010.483 – ident: 3 doi: 10.1038/ki.2014.220 – ident: 10 doi: 10.1016/j.freeradbiomed.2012.06.027 – ident: 20 doi: 10.1016/j.ijcard.2012.12.065 – ident: 14 doi: 10.1016/j.jss.2008.05.002 – ident: 30 doi: 10.1073/pnas.2001336117 – ident: 5 doi: 10.1007/s10157-010-0374-0 – ident: 29 doi: 10.1681/ASN.2014080750 – ident: 18 doi: 10.1152/ajpheart.00349.2013 – ident: 27 doi: 10.1016/j.jacbts.2019.06.005 – ident: 25 doi: 10.1053/j.ajkd.2016.05.018 – ident: 1 doi: 10.1016/j.pcad.2016.12.003 – ident: 8 doi: 10.1097/01.ASN.0000145895.62896.98 – ident: 23 doi: 10.1159/000313846 – ident: 16 doi: 10.1093/eurheartj/ehu254 – ident: 11 doi: 10.1073/pnas.1909124117 – ident: 19 doi: 10.1152/ajprenal.00392.2012 – ident: 15 – ident: 9 doi: 10.1152/japplphysiol.00556.2012 – ident: 4 doi: 10.1016/S0735-1097(03)00471-6 – ident: 12 doi: 10.1126/science.274.5289.995 – ident: 28 doi: 10.1097/01.ASN.0000064946.94590.46 – ident: 22 doi: 10.1080/00365519950185724 – ident: 21 doi: 10.1016/j.jep.2021.114568 – ident: 26 doi: 10.1056/NEJMoa1611391 – ident: 2 doi: 10.1152/ajpendo.1992.262.6.E763 – ident: 7 doi: 10.1161/01.HYP.0000118521.06245.b8 |
SSID | ssj0027729 |
Score | 2.3268185 |
Snippet | The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11 |
SubjectTerms | Albumin Albumins Angiotensin Angiotensin II Animal models animal models for cardiorenal damages: ANS mice Animals Blood pressure Body organs cardiac hypertrophy and fibrosis Cardio-Renal Syndrome - drug therapy cardiorenal damages Creatinine Fibrosis Gelatinase Global health Glomerulus Heart Homeostasis Humans Hypertension Hypertrophy Kidney Kidney diseases kidney dysfunction with proteinuria Kidneys Leukocytes (neutrophilic) Lipocalin Mice Nephrectomy Nephrectomy - adverse effects Organs Original pathogenesis at early phase of cardiorenal damage Public health Renal function Salt loading Sodium Chloride, Dietary - adverse effects Tissue |
Title | Cardiorenal damages in mice at early phase after intervention induced by angiotensin II, nephrectomy, and salt intake |
URI | https://www.jstage.jst.go.jp/article/expanim/73/1/73_23-0071/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/37460310 https://www.proquest.com/docview/3054725966 https://pubmed.ncbi.nlm.nih.gov/PMC10877154 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental Animals, 2024, Vol.73(1), pp.11-19 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoAYkLKq8SaCsfOHColySOXwdAVdXSIm3FgZVWXCLbcdrAbrbsplL33zN2smkXLSculiKPncjj8cxYk-9D6J2UWvGSOxJTGZPMOUWUVpQkTBjwMLy0ATJ_eMHPRtnXMRvf0QF1C7jYmNp5PqnRfDK4_b38DAb_MbD3UPnB3YLhVNNBSon3mFvoIbgl4a10mMm77EsEyjIPYEYSykSH87NhgjUX9egnRGmXblMA-ncd5T3HdLqDnnYRJT5qt8Az9MDVz9HjH7NwX_4C3RyHitO580KFnsJbFriqsaehx7rBziMc4-sr8GY4EIbj6l4ZJDwUoPwCmyXW9WU1CwXvNT4_P8S18xvBNrPp8hA6C7zQk8aP1r_cSzQ6Pfl-fEY6rgViOU0aIh1nMJvSsaYpNakysmBGKJdYlzKIKjWXhkHsUZaQvxYlZ8qAvK_IsqVjCX2FtutZ7V4jbNO4FEKWgluZFdaojGknqEyNMgbysQgNVsub2w6I3PNhTHKfkIA-8k4feUpzr48Ive8HXLcYHP8W_dTqqxfsDLAXFDRPfNMN6Pv9T25wUkRob6XnfLUZczgTMwF5IucR2m1V3s9PReaJuuMIybXN0At4_O71nrq6CjjeiQdjhBD2zf9-9Fv0JIVYq70Z2kPbzfzG7UOs1JgDtPVlnBwES4D24tvwDw-dGzQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiorenal+damages+in+mice+at+early+phase+after+intervention+induced+by+angiotensin+II%2C+nephrectomy%2C+and+salt+intake&rft.jtitle=Experimental+Animals&rft.au=Motomura%2C+Kaori&rft.au=Usui%2C+Joichi&rft.au=Akiyama%2C+Tomoki&rft.au=Ishida%2C+Junji&rft.date=2024&rft.pub=Japanese+Association+for+Laboratory+Animal+Science&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=73&rft.issue=1&rft.spage=11&rft.epage=19&rft_id=info:doi/10.1538%2Fexpanim.23-0071&rft.externalDocID=article_expanim_73_1_73_23_0071_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon |