Timing the impact of literacy on visual processing

Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonst...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 49; pp. E5233 - E5242
Main Authors Pegado, Felipe, Comerlato, Enio, Ventura, Fabricio, Jobert, Antoinette, Nakamura, Kimihiro, Buiatti, Marco, Ventura, Paulo, Dehaene-Lambertz, Ghislaine, Kolinsky, Régine, Morais, José, Braga, Lucia W., Cohen, Laurent, Dehaene, Stanislas
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.12.2014
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1417347111

Cover

Loading…
Abstract Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. Significance How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and either remained illiterate or acquired partial literacy during adulthood (ex-illiterates). By recording event-related brain responses, we obtained a high-temporal resolution description of how illiterate and literate adults differ in terms of early visual responses. The results show that learning to read dramatically enhances the magnitude, precision, and invariance of early visual coding, within 200 ms of stimulus onset, and also enhances later neural activity. Literacy effects were found not only for the expected category of expertise (letter strings), but also extended to other visual stimuli, confirming the benefits of literacy on early visual processing.
AbstractList Significance How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and either remained illiterate or acquired partial literacy during adulthood (ex-illiterates). By recording event-related brain responses, we obtained a high-temporal resolution description of how illiterate and literate adults differ in terms of early visual responses. The results show that learning to read dramatically enhances the magnitude, precision, and invariance of early visual coding, within 200 ms of stimulus onset, and also enhances later neural activity. Literacy effects were found not only for the expected category of expertise (letter strings), but also extended to other visual stimuli, confirming the benefits of literacy on early visual processing.
How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and either remained illiterate or acquired partial literacy during adulthood (ex-illiterates). By recording event-related brain responses, we obtained a high-temporal resolution description of how illiterate and literate adults differ in terms of early visual responses. The results show that learning to read dramatically enhances the magnitude, precision, and invariance of early visual coding, within 200 ms of stimulus onset, and also enhances later neural activity. Literacy effects were found not only for the expected category of expertise (letter strings), but also extended to other visual stimuli, confirming the benefits of literacy on early visual processing. Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.
Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.
Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. Significance How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and either remained illiterate or acquired partial literacy during adulthood (ex-illiterates). By recording event-related brain responses, we obtained a high-temporal resolution description of how illiterate and literate adults differ in terms of early visual responses. The results show that learning to read dramatically enhances the magnitude, precision, and invariance of early visual coding, within 200 ms of stimulus onset, and also enhances later neural activity. Literacy effects were found not only for the expected category of expertise (letter strings), but also extended to other visual stimuli, confirming the benefits of literacy on early visual processing.
Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.
Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.
Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ~100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.
Author Enio Comerlato
Fabricio Ventura
Kimihiro Nakamura
José Morais
Lucia W. Braga
Marco Buiatti
Stanislas Dehaene
Ghislaine Dehaene-Lambertz
Régine Kolinsky
Antoinette Jobert
Paulo Ventura
Laurent Cohen
Felipe Pegado
Author_xml – sequence: 1
  givenname: Felipe
  surname: Pegado
  fullname: Pegado, Felipe
  organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France;, Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium
– sequence: 2
  givenname: Enio
  surname: Comerlato
  fullname: Comerlato, Enio
  organization: SARAH Network, International Center for Neurosciences and Rehabilitation, 71.535-005 Brasilia, Brazil
– sequence: 3
  givenname: Fabricio
  surname: Ventura
  fullname: Ventura, Fabricio
  organization: SARAH Network, International Center for Neurosciences and Rehabilitation, 71.535-005 Brasilia, Brazil
– sequence: 4
  givenname: Antoinette
  surname: Jobert
  fullname: Jobert, Antoinette
  organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France
– sequence: 5
  givenname: Kimihiro
  surname: Nakamura
  fullname: Nakamura, Kimihiro
  organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France;, Collège de France, 75005 Paris, France
– sequence: 6
  givenname: Marco
  surname: Buiatti
  fullname: Buiatti, Marco
  organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France
– sequence: 7
  givenname: Paulo
  surname: Ventura
  fullname: Ventura, Paulo
  organization: Faculty of Psychology, University of Lisbon, 1649-013 Lisbon, Portugal
– sequence: 8
  givenname: Ghislaine
  surname: Dehaene-Lambertz
  fullname: Dehaene-Lambertz, Ghislaine
  organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France
– sequence: 9
  givenname: Régine
  surname: Kolinsky
  fullname: Kolinsky, Régine
  organization: Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium;, Fonds de la Recherche Scientifique, B-1000 Brussels, Belgium; and
– sequence: 10
  givenname: José
  surname: Morais
  fullname: Morais, José
  organization: Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
– sequence: 11
  givenname: Lucia W.
  surname: Braga
  fullname: Braga, Lucia W.
  organization: SARAH Network, International Center for Neurosciences and Rehabilitation, 71.535-005 Brasilia, Brazil
– sequence: 12
  givenname: Laurent
  surname: Cohen
  fullname: Cohen, Laurent
  organization: INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), F-75013 Paris, France
– sequence: 13
  givenname: Stanislas
  surname: Dehaene
  fullname: Dehaene, Stanislas
  organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France;, Collège de France, 75005 Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25422460$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04043729$$DView record in HAL
BookMark eNqNkkFv1DAQhS1URLeFMzeIxIUe0s7YTmxfkKqqUKSVONCercFxdl0l8RInK_Xfk2i3ha6E4GTJ873n8Zs5YUdd7DxjbxHOEZS42HSUzlGiElIh4gu2QDCYl9LAEVsAcJVryeUxO0npHgBMoeEVO-aF5FyWsGD8NrShW2XD2meh3ZAbslhnTRh8T-4hi122DWmkJtv00fmUJvY1e1lTk_yb_XnK7j5f317d5MtvX75eXS5zVwoccq28R1VLRRXXXmni6LwkEmQ41SXyQjmqKknaGEdU1wqFrDxUstS1gVKcsk873834o_WV893QU2M3fWipf7CRgn1e6cLaruLWSl4qYeRkcLYzWB_Ibi6Xdr4DCVIobrY4sR_3j_Xx5-jTYNuQnG8a6nwck0UNArnWQv8bLUUBCIWaO_hwgN7Hse-m1GaqRKOLovgfipuJevdnHE8fepzlBBQ7wPUxpd7X1oWBhhDndEJjEey8M3beGft7ZybdxYHu0frvimzfylx4ohGtNPa64EJMyPsdUlO0tOpDsnffOWAJgNNsJqtfWsLUkQ
CitedBy_id crossref_primary_10_1177_0165025417714063
crossref_primary_10_1111_cdev_12550
crossref_primary_10_1016_j_jecp_2020_104830
crossref_primary_10_1111_mila_12159
crossref_primary_10_1073_pnas_1603205113
crossref_primary_10_3917_lf_199_0017
crossref_primary_10_1007_s41809_020_00059_0
crossref_primary_10_1007_s41809_023_00118_2
crossref_primary_10_1016_j_tine_2024_100233
crossref_primary_10_1016_j_cogdev_2016_02_005
crossref_primary_10_1016_j_cub_2020_11_031
crossref_primary_10_1016_j_neuroimage_2020_117028
crossref_primary_10_1073_pnas_1803003115
crossref_primary_10_1002_rrq_439
crossref_primary_10_1371_journal_pone_0242619
crossref_primary_10_1002_dys_1724
crossref_primary_10_1016_j_cortex_2016_05_016
crossref_primary_10_1016_j_neuroimage_2020_117148
crossref_primary_10_1016_j_neuroimage_2017_04_027
crossref_primary_10_1016_j_cedpsych_2018_12_002
crossref_primary_10_1038_nrn3924
crossref_primary_10_1007_s00429_017_1516_x
crossref_primary_10_1016_j_dcn_2019_100717
crossref_primary_10_1007_s41809_017_0007_1
crossref_primary_10_1080_23273798_2017_1313436
crossref_primary_10_1016_j_neuroimage_2022_119394
crossref_primary_10_1016_j_cognition_2019_03_012
crossref_primary_10_1016_j_neulet_2016_10_037
crossref_primary_10_1016_j_cortex_2018_01_002
crossref_primary_10_3389_fpsyg_2023_996012
crossref_primary_10_1038_srep26902
crossref_primary_10_1016_j_tics_2015_01_003
crossref_primary_10_1007_s12144_021_01753_0
crossref_primary_10_1016_j_neuropsychologia_2016_09_014
crossref_primary_10_1016_j_cortex_2021_03_039
crossref_primary_10_1016_j_neuroimage_2020_116722
crossref_primary_10_1016_j_dcn_2017_01_002
crossref_primary_10_1016_j_neuroimage_2019_01_046
crossref_primary_10_1111_mbe_12143
crossref_primary_10_1007_s00429_021_02370_0
crossref_primary_10_1016_j_actpsy_2019_102951
crossref_primary_10_1111_desc_12684
crossref_primary_10_1111_desc_12682
crossref_primary_10_1016_j_neuroimage_2022_119383
crossref_primary_10_1007_s11125_017_9394_9
crossref_primary_10_1016_j_neuroscience_2020_10_040
crossref_primary_10_3389_fpsyg_2021_733494
crossref_primary_10_1073_pnas_2104779118
crossref_primary_10_1111_psyp_14147
crossref_primary_10_1080_23273798_2017_1283424
crossref_primary_10_3389_fpsyg_2019_00830
crossref_primary_10_3389_fpsyg_2017_01453
crossref_primary_10_1177_0165025417727871
crossref_primary_10_1371_journal_pbio_2004103
crossref_primary_10_1111_desc_13447
crossref_primary_10_1371_journal_pbio_1002196
crossref_primary_10_1007_s00146_017_0785_5
crossref_primary_10_3389_fnhum_2022_819956
crossref_primary_10_1027_2151_2604_a000263
crossref_primary_10_3389_fnins_2022_898800
crossref_primary_10_1016_j_cortex_2018_03_010
crossref_primary_10_1371_journal_pone_0158312
crossref_primary_10_1016_j_dcn_2018_09_003
crossref_primary_10_1016_j_tics_2015_05_006
crossref_primary_10_3389_fnins_2018_00219
crossref_primary_10_3389_fnhum_2023_1199366
crossref_primary_10_1167_jov_23_13_9
crossref_primary_10_1093_arclin_acae081
crossref_primary_10_1038_s41598_017_01075_x
crossref_primary_10_1007_s10548_017_0562_2
crossref_primary_10_1016_j_cortex_2022_07_017
crossref_primary_10_1016_j_dcn_2024_101418
crossref_primary_10_1038_s41598_024_82350_6
crossref_primary_10_1016_j_xpro_2021_100712
Cites_doi 10.1097/00001756-199511000-00014
10.1016/j.neuropsychologia.2011.03.018
10.1073/pnas.0703300104
10.1016/j.neuroimage.2004.05.004
10.1016/S0896-6273(03)00197-1
10.3758/CABN.8.2.222
10.1111/j.1460-9568.2007.05701.x
10.1016/j.neuropsychologia.2013.02.006
10.1016/j.neuroimage.2011.01.073
10.1016/S0960-9822(95)00108-4
10.3389/fpsyg.2014.00478
10.1162/jocn.2006.18.10.1631
10.1093/cercor/12.3.297
10.1177/0956797614531026
10.1038/nrn3476
10.1016/j.neuron.2012.08.026
10.1111/j.1467-7687.2011.01102.x
10.1111/j.1749-818X.2008.00121.x
10.1016/j.neuron.2007.05.019
10.1073/pnas.0904402107
10.1080/01690960701579839
10.1207/s15326942dn3101_4
10.1111/j.0956-7976.2004.00674.x
10.1016/j.tics.2005.05.004
10.3758/BF03193980
10.1162/jocn.2008.20125
10.1093/cercor/bhs383
10.1126/science.287.5457.1506
10.1162/jocn.1991.3.4.304
10.1111/mbe.12017
10.1016/j.neuroimage.2012.02.035
10.1038/71163
10.1037/a0022168
10.1016/j.neuroimage.2003.07.010
10.1093/brain/121.6.1053
10.1037/a0033198
10.1126/science.1194908
10.1016/j.neuroimage.2010.11.043
10.1093/cercor/bhs228
10.1093/cercor/bhr008
10.1162/0898929054021166
10.1037/a0029503
10.1126/science.1194140
10.1093/cercor/bhp175
10.1016/j.neuroimage.2010.10.079
10.1162/jocn.2009.21184
10.1093/cercor/bhs158
10.1038/nn1255
10.1016/j.tics.2011.04.001
10.1093/cercor/bhs365
10.1155/2011/879716
10.1523/JNEUROSCI.4448-09.2010
10.1093/brain/awq199
10.1111/j.1467-9280.2006.01821.x
10.1038/nn1065
10.1038/89551
10.1016/j.neuron.2007.10.004
10.1080/01690960600652471
10.3389/fpsyg.2014.00703
10.1038/72979
10.1016/S0896-6273(04)00196-5
10.1016/j.neuroimage.2009.09.024
10.1037/a0016888
10.1093/brain/123.2.291
10.1038/ncomms2220
10.1093/cercor/9.5.415
10.1111/desc.12102
10.1186/1475-925X-9-45
10.1016/j.neuron.2005.05.014
10.1093/cercor/bhq078
ContentType Journal Article
Copyright Copyright National Academy of Sciences Dec 9, 2014
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright National Academy of Sciences Dec 9, 2014
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
1XC
5PM
DOI 10.1073/pnas.1417347111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA

MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Education
DocumentTitleAlternate Timing the impact of literacy on visual processing
EISSN 1091-6490
EndPage E5242
ExternalDocumentID PMC4267394
oai_HAL_hal_04043729v1
3526097711
3526098081
25422460
10_1073_pnas_1417347111
111_49_E5233
US201600139417
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
CITATION
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
1XC
UMC
5PM
ID FETCH-LOGICAL-c631t-87ee17f47ad28e78a21ce4aa3a92af61257cadd4a899caaff7134de0d468f9063
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:41:39 EDT 2025
Fri May 09 12:22:25 EDT 2025
Fri Sep 05 03:33:05 EDT 2025
Thu Sep 04 20:43:16 EDT 2025
Sat Aug 16 22:22:07 EDT 2025
Sat Aug 16 23:12:05 EDT 2025
Thu Apr 03 06:51:36 EDT 2025
Tue Jul 01 01:53:17 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Wed Nov 11 00:29:54 EST 2020
Wed Dec 27 19:14:47 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords reading
brain plasticity
education
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c631t-87ee17f47ad28e78a21ce4aa3a92af61257cadd4a899caaff7134de0d468f9063
Notes http://dx.doi.org/10.1073/pnas.1417347111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Contributed by Stanislas Dehaene, October 23, 2014 (sent for review June 4, 2014)
Author contributions: F.P., P.V., G.D.-L., R.K., J.M., L.W.B., L.C., and S.D. designed research; F.P., E.C., F.V., and A.J. performed research; F.P., K.N., M.B., and S.D. analyzed data; and F.P., R.K., J.M., L.C., and S.D. wrote the paper.
ORCID 0000-0002-7418-8275
0000-0003-2221-9081
0000-0001-9203-8687
OpenAccessLink https://www.pnas.org/content/pnas/111/49/E5233.full.pdf
PMID 25422460
PQID 1636198529
PQPubID 42026
ParticipantIDs proquest_miscellaneous_1803128838
fao_agris_US201600139417
proquest_journals_1636198529
pubmed_primary_25422460
crossref_citationtrail_10_1073_pnas_1417347111
crossref_primary_10_1073_pnas_1417347111
hal_primary_oai_HAL_hal_04043729v1
proquest_miscellaneous_1635010574
proquest_journals_1636198555
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4267394
pnas_primary_111_49_E5233
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-09
PublicationDateYYYYMMDD 2014-12-09
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_71_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
Laszlo S (e_1_3_3_58_2) 2014; 29
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
24760145 - Psychol Sci. 2014 Jun;25(6):1275-80
15156149 - Nat Neurosci. 2004 Jun;7(6):651-7
14642472 - Neuroimage. 2003 Nov;20(3):1609-24
24954966 - Lang Cogn Process. 2014;29(5):642-661
20515197 - J Exp Psychol Hum Percept Perform. 2010 Jun;36(3):673-88
20392945 - J Neurosci. 2010 Apr 14;30(15):5229-33
7583105 - Curr Biol. 1995 May 1;5(5):552-63
21051642 - Science. 2010 Nov 5;330(6005):845-51
21111052 - Neuroimage. 2011 Mar 15;55(2):742-9
20395549 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7939-44
17964253 - Neuron. 2007 Oct 25;56(2):384-98
17553419 - Neuron. 2007 Jun 7;54(5):677-96
21296170 - Neuroimage. 2011 May 1;56(1):330-44
17502592 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):9087-92
15951224 - Trends Cogn Sci. 2005 Jul;9(7):335-41
20819204 - Biomed Eng Online. 2010;9:45
19590754 - Lang Cogn Process. 2008;23(1):183-200
22251300 - Dev Sci. 2012 Jan;15(1):139-49
12741994 - Neuron. 2003 May 8;38(3):487-97
10700259 - Nat Neurosci. 2000 Mar;3(3):264-9
17651423 - Eur J Neurosci. 2007 Aug;26(3):791-9
20688811 - Brain. 2010 Nov;133(11):3385-95
21549634 - Trends Cogn Sci. 2011 Jun;15(6):246-53
15924867 - Neuron. 2005 Jun 2;46(5):823-35
21280970 - J Exp Psychol Gen. 2011 May;140(2):210-38
22387166 - Neuroimage. 2012 May 15;61(1):258-74
23172772 - Cereb Cortex. 2014 Mar;24(3):817-25
22866684 - J Exp Psychol Gen. 2013 May;142(2):348-58
15969912 - J Cogn Neurosci. 2005 Jun;17(6):954-68
21584256 - Comput Intell Neurosci. 2011;2011:879716
17305438 - Dev Neuropsychol. 2007;31(1):61-77
10450888 - Cereb Cortex. 1999 Jul-Aug;9(5):415-30
9648541 - Brain. 1998 Jun;121 ( Pt 6):1053-63
23141074 - Neuron. 2012 Nov 8;76(3):640-52
15091345 - Neuron. 2004 Apr 22;42(2):311-22
23236205 - Cereb Cortex. 2014 Apr;24(4):989-95
17201781 - Psychol Sci. 2006 Dec;17(12):1021-6
23773157 - J Exp Psychol Gen. 2014 Apr;143(2):887-94
11839603 - Cereb Cortex. 2002 Mar;12(3):297-305
23462239 - Neuropsychologia. 2013 Apr;51(5):950-9
21056672 - Neuroimage. 2011 Feb 14;54(4):3004-9
17014368 - J Cogn Neurosci. 2006 Oct;18(10):1631-43
17201369 - Psychon Bull Rev. 2006 Aug;13(4):674-81
18370600 - J Cogn Neurosci. 2008 Oct;20(10):1878-91
24904491 - Front Psychol. 2014 May 21;5:478
18163153 - Lang Cogn Process. 2007 Jan;22(3):337-376
10688803 - Science. 2000 Feb 25;287(5457):1506-8
21439991 - Neuropsychologia. 2011 Jun;49(7):1910-22
19770045 - Neuroimage. 2010 Jan 15;49(2):1837-48
11426233 - Nat Neurosci. 2001 Jul;4(7):752-8
19750025 - Lang Linguist Compass. 2009 Jan 1;3(1):128-156
22693338 - Cereb Cortex. 2013 Jul;23(7):1673-84
19199416 - J Cogn Neurosci. 2010 Jan;22(1):48-66
24273596 - Mind Brain Educ. 2013 Jun 1;7(2):null
22875868 - Cereb Cortex. 2013 Oct;23(10):2370-9
21368088 - Cereb Cortex. 2011 Oct;21(10):2307-12
24341976 - Dev Sci. 2014 Jan;17(1):125-41
10607401 - Nat Neurosci. 2000 Jan;3(1):91-6
8595192 - Neuroreport. 1995 Nov 13;6(16):2153-7
19684250 - Cereb Cortex. 2010 May;20(5):1153-63
23967809 - J Cogn Neurosci. 1991 Fall;3(4):304-12
15275938 - Neuroimage. 2004 Aug;22(4):1819-25
23250414 - Nat Commun. 2012;3:1284
15102139 - Psychol Sci. 2004 May;15(5):307-13
18589511 - Cogn Affect Behav Neurosci. 2008 Jun;8(2):222-8
10648437 - Brain. 2000 Feb;123 ( Pt 2):291-307
20457691 - Cereb Cortex. 2011 Jan;21(1):191-9
23595013 - Nat Rev Neurosci. 2013 May;14(5):350-63
21071632 - Science. 2010 Dec 3;330(6009):1359-64
12754516 - Nat Neurosci. 2003 Jul;6(7):767-73
25071669 - Front Psychol. 2014 Jul 10;5:703
References_xml – volume: 29
  start-page: 642
  year: 2014
  ident: e_1_3_3_58_2
  article-title: Never seem to find the time: Evaluating the physiological time course of visual word recognition with regression analysis of single item ERPs
  publication-title: Lang Cogn Process
– ident: e_1_3_3_52_2
  doi: 10.1097/00001756-199511000-00014
– ident: e_1_3_3_57_2
  doi: 10.1016/j.neuropsychologia.2011.03.018
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.0703300104
– ident: e_1_3_3_10_2
  doi: 10.1016/j.neuroimage.2004.05.004
– ident: e_1_3_3_49_2
  doi: 10.1016/S0896-6273(03)00197-1
– ident: e_1_3_3_35_2
  doi: 10.3758/CABN.8.2.222
– ident: e_1_3_3_17_2
  doi: 10.1111/j.1460-9568.2007.05701.x
– ident: e_1_3_3_42_2
  doi: 10.1016/j.neuropsychologia.2013.02.006
– ident: e_1_3_3_2_2
  doi: 10.1016/j.neuroimage.2011.01.073
– ident: e_1_3_3_21_2
  doi: 10.1016/S0960-9822(95)00108-4
– ident: e_1_3_3_29_2
  doi: 10.3389/fpsyg.2014.00478
– ident: e_1_3_3_55_2
  doi: 10.1162/jocn.2006.18.10.1631
– ident: e_1_3_3_50_2
  doi: 10.1093/cercor/12.3.297
– ident: e_1_3_3_63_2
  doi: 10.1177/0956797614531026
– ident: e_1_3_3_65_2
  doi: 10.1038/nrn3476
– ident: e_1_3_3_46_2
  doi: 10.1016/j.neuron.2012.08.026
– ident: e_1_3_3_69_2
  doi: 10.1111/j.1467-7687.2011.01102.x
– ident: e_1_3_3_53_2
  doi: 10.1111/j.1749-818X.2008.00121.x
– ident: e_1_3_3_64_2
  doi: 10.1016/j.neuron.2007.05.019
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.0904402107
– ident: e_1_3_3_36_2
  doi: 10.1080/01690960701579839
– ident: e_1_3_3_22_2
  doi: 10.1207/s15326942dn3101_4
– ident: e_1_3_3_40_2
  doi: 10.1111/j.0956-7976.2004.00674.x
– ident: e_1_3_3_32_2
  doi: 10.1016/j.tics.2005.05.004
– ident: e_1_3_3_59_2
  doi: 10.3758/BF03193980
– ident: e_1_3_3_37_2
  doi: 10.1162/jocn.2008.20125
– ident: e_1_3_3_68_2
  doi: 10.1093/cercor/bhs383
– ident: e_1_3_3_20_2
  doi: 10.1126/science.287.5457.1506
– ident: e_1_3_3_34_2
  doi: 10.1162/jocn.1991.3.4.304
– ident: e_1_3_3_24_2
  doi: 10.1111/mbe.12017
– ident: e_1_3_3_38_2
  doi: 10.1016/j.neuroimage.2012.02.035
– ident: e_1_3_3_4_2
  doi: 10.1038/71163
– ident: e_1_3_3_25_2
  doi: 10.1037/a0022168
– ident: e_1_3_3_45_2
  doi: 10.1016/j.neuroimage.2003.07.010
– ident: e_1_3_3_16_2
  doi: 10.1093/brain/121.6.1053
– ident: e_1_3_3_23_2
  doi: 10.1037/a0033198
– ident: e_1_3_3_19_2
  doi: 10.1126/science.1194908
– ident: e_1_3_3_27_2
  doi: 10.1016/j.neuroimage.2010.11.043
– ident: e_1_3_3_51_2
  doi: 10.1093/cercor/bhs228
– ident: e_1_3_3_47_2
  doi: 10.1093/cercor/bhr008
– ident: e_1_3_3_5_2
  doi: 10.1162/0898929054021166
– ident: e_1_3_3_43_2
  doi: 10.1037/a0029503
– ident: e_1_3_3_1_2
  doi: 10.1126/science.1194140
– ident: e_1_3_3_11_2
  doi: 10.1093/cercor/bhp175
– ident: e_1_3_3_39_2
  doi: 10.1016/j.neuroimage.2010.10.079
– ident: e_1_3_3_12_2
  doi: 10.1162/jocn.2009.21184
– ident: e_1_3_3_41_2
  doi: 10.1093/cercor/bhs158
– ident: e_1_3_3_62_2
  doi: 10.1038/nn1255
– ident: e_1_3_3_33_2
  doi: 10.1016/j.tics.2011.04.001
– ident: e_1_3_3_67_2
  doi: 10.1093/cercor/bhs365
– ident: e_1_3_3_70_2
  doi: 10.1155/2011/879716
– ident: e_1_3_3_66_2
  doi: 10.1523/JNEUROSCI.4448-09.2010
– ident: e_1_3_3_15_2
  doi: 10.1093/brain/awq199
– ident: e_1_3_3_54_2
  doi: 10.1111/j.1467-9280.2006.01821.x
– ident: e_1_3_3_3_2
  doi: 10.1038/nn1065
– ident: e_1_3_3_7_2
  doi: 10.1038/89551
– ident: e_1_3_3_18_2
  doi: 10.1016/j.neuron.2007.10.004
– ident: e_1_3_3_56_2
  doi: 10.1080/01690960600652471
– ident: e_1_3_3_26_2
  doi: 10.3389/fpsyg.2014.00703
– ident: e_1_3_3_30_2
  doi: 10.1038/72979
– ident: e_1_3_3_14_2
  doi: 10.1016/S0896-6273(04)00196-5
– ident: e_1_3_3_28_2
  doi: 10.1016/j.neuroimage.2009.09.024
– ident: e_1_3_3_61_2
  doi: 10.1037/a0016888
– ident: e_1_3_3_8_2
  doi: 10.1093/brain/123.2.291
– ident: e_1_3_3_48_2
  doi: 10.1038/ncomms2220
– ident: e_1_3_3_9_2
  doi: 10.1093/cercor/9.5.415
– ident: e_1_3_3_60_2
  doi: 10.1111/desc.12102
– ident: e_1_3_3_71_2
  doi: 10.1186/1475-925X-9-45
– ident: e_1_3_3_31_2
  doi: 10.1016/j.neuron.2005.05.014
– ident: e_1_3_3_44_2
  doi: 10.1093/cercor/bhq078
– reference: 11426233 - Nat Neurosci. 2001 Jul;4(7):752-8
– reference: 23462239 - Neuropsychologia. 2013 Apr;51(5):950-9
– reference: 21051642 - Science. 2010 Nov 5;330(6005):845-51
– reference: 17651423 - Eur J Neurosci. 2007 Aug;26(3):791-9
– reference: 10648437 - Brain. 2000 Feb;123 ( Pt 2):291-307
– reference: 12741994 - Neuron. 2003 May 8;38(3):487-97
– reference: 22251300 - Dev Sci. 2012 Jan;15(1):139-49
– reference: 8595192 - Neuroreport. 1995 Nov 13;6(16):2153-7
– reference: 24904491 - Front Psychol. 2014 May 21;5:478
– reference: 17305438 - Dev Neuropsychol. 2007;31(1):61-77
– reference: 24760145 - Psychol Sci. 2014 Jun;25(6):1275-80
– reference: 21111052 - Neuroimage. 2011 Mar 15;55(2):742-9
– reference: 23236205 - Cereb Cortex. 2014 Apr;24(4):989-95
– reference: 20395549 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7939-44
– reference: 20688811 - Brain. 2010 Nov;133(11):3385-95
– reference: 10700259 - Nat Neurosci. 2000 Mar;3(3):264-9
– reference: 17014368 - J Cogn Neurosci. 2006 Oct;18(10):1631-43
– reference: 22693338 - Cereb Cortex. 2013 Jul;23(7):1673-84
– reference: 18163153 - Lang Cogn Process. 2007 Jan;22(3):337-376
– reference: 20392945 - J Neurosci. 2010 Apr 14;30(15):5229-33
– reference: 24273596 - Mind Brain Educ. 2013 Jun 1;7(2):null
– reference: 9648541 - Brain. 1998 Jun;121 ( Pt 6):1053-63
– reference: 22387166 - Neuroimage. 2012 May 15;61(1):258-74
– reference: 18589511 - Cogn Affect Behav Neurosci. 2008 Jun;8(2):222-8
– reference: 17201369 - Psychon Bull Rev. 2006 Aug;13(4):674-81
– reference: 23967809 - J Cogn Neurosci. 1991 Fall;3(4):304-12
– reference: 21280970 - J Exp Psychol Gen. 2011 May;140(2):210-38
– reference: 17964253 - Neuron. 2007 Oct 25;56(2):384-98
– reference: 21549634 - Trends Cogn Sci. 2011 Jun;15(6):246-53
– reference: 22866684 - J Exp Psychol Gen. 2013 May;142(2):348-58
– reference: 20457691 - Cereb Cortex. 2011 Jan;21(1):191-9
– reference: 18370600 - J Cogn Neurosci. 2008 Oct;20(10):1878-91
– reference: 21056672 - Neuroimage. 2011 Feb 14;54(4):3004-9
– reference: 22875868 - Cereb Cortex. 2013 Oct;23(10):2370-9
– reference: 24341976 - Dev Sci. 2014 Jan;17(1):125-41
– reference: 19750025 - Lang Linguist Compass. 2009 Jan 1;3(1):128-156
– reference: 25071669 - Front Psychol. 2014 Jul 10;5:703
– reference: 17502592 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):9087-92
– reference: 21071632 - Science. 2010 Dec 3;330(6009):1359-64
– reference: 23141074 - Neuron. 2012 Nov 8;76(3):640-52
– reference: 23172772 - Cereb Cortex. 2014 Mar;24(3):817-25
– reference: 17553419 - Neuron. 2007 Jun 7;54(5):677-96
– reference: 14642472 - Neuroimage. 2003 Nov;20(3):1609-24
– reference: 19770045 - Neuroimage. 2010 Jan 15;49(2):1837-48
– reference: 23250414 - Nat Commun. 2012;3:1284
– reference: 21296170 - Neuroimage. 2011 May 1;56(1):330-44
– reference: 24954966 - Lang Cogn Process. 2014;29(5):642-661
– reference: 10450888 - Cereb Cortex. 1999 Jul-Aug;9(5):415-30
– reference: 15102139 - Psychol Sci. 2004 May;15(5):307-13
– reference: 15091345 - Neuron. 2004 Apr 22;42(2):311-22
– reference: 21439991 - Neuropsychologia. 2011 Jun;49(7):1910-22
– reference: 20515197 - J Exp Psychol Hum Percept Perform. 2010 Jun;36(3):673-88
– reference: 12754516 - Nat Neurosci. 2003 Jul;6(7):767-73
– reference: 15969912 - J Cogn Neurosci. 2005 Jun;17(6):954-68
– reference: 15275938 - Neuroimage. 2004 Aug;22(4):1819-25
– reference: 11839603 - Cereb Cortex. 2002 Mar;12(3):297-305
– reference: 10607401 - Nat Neurosci. 2000 Jan;3(1):91-6
– reference: 19684250 - Cereb Cortex. 2010 May;20(5):1153-63
– reference: 21584256 - Comput Intell Neurosci. 2011;2011:879716
– reference: 15156149 - Nat Neurosci. 2004 Jun;7(6):651-7
– reference: 7583105 - Curr Biol. 1995 May 1;5(5):552-63
– reference: 19199416 - J Cogn Neurosci. 2010 Jan;22(1):48-66
– reference: 20819204 - Biomed Eng Online. 2010;9:45
– reference: 15924867 - Neuron. 2005 Jun 2;46(5):823-35
– reference: 15951224 - Trends Cogn Sci. 2005 Jul;9(7):335-41
– reference: 23773157 - J Exp Psychol Gen. 2014 Apr;143(2):887-94
– reference: 10688803 - Science. 2000 Feb 25;287(5457):1506-8
– reference: 23595013 - Nat Rev Neurosci. 2013 May;14(5):350-63
– reference: 21368088 - Cereb Cortex. 2011 Oct;21(10):2307-12
– reference: 17201781 - Psychol Sci. 2006 Dec;17(12):1021-6
– reference: 19590754 - Lang Cogn Process. 2008;23(1):183-200
SSID ssj0009580
Score 2.4524364
Snippet Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual...
How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and either remained...
Significance How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E5233
SubjectTerms Adult
adulthood
adults
Aged
Behavior
Biological Sciences
brain
Brain - pathology
Brain Mapping
childhood
Cognition & reasoning
Cognitive science
Education
Educational Status
Electrophysiology
Evoked Potentials
Female
Humans
Image Processing, Computer-Assisted
Impact analysis
Learning
Literacy
Magnetic Resonance Imaging - methods
Male
Middle Aged
Neuronal Plasticity
NMR
Nuclear magnetic resonance
Photic Stimulation
PNAS Plus
Reading
Regression Analysis
Social Sciences
Software
Temporal Lobe - pathology
Time Factors
Visual Perception
Visual task performance
Visualization
Title Timing the impact of literacy on visual processing
URI http://www.pnas.org/content/111/49/E5233.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25422460
https://www.proquest.com/docview/1636198529
https://www.proquest.com/docview/1636198555
https://www.proquest.com/docview/1635010574
https://www.proquest.com/docview/1803128838
https://hal.science/hal-04043729
https://pubmed.ncbi.nlm.nih.gov/PMC4267394
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZYeeEFsXFZ2EAB8TBUZeRu57FCraoJqkqsqG-RYztbpS2p1m4S_HrOsZ2knboJeImq-JLU5_O5OOdCyCfQcoVkifRkIEIvZop7hZCFlwmZlkWYyaTAL7rfJ-l4Fp_Nk3nnkKmjS9bFqfi9M67kf6gK94CuGCX7D5RtJ4Ub8BvoC1egMFz_jsZYkstEO3XRjiaoWPzCzwB3i5UOtTLRAI2UsrrotJVdq8ZTYNIcDQ66QBO7-1d9rz-ddGWLp-qCS33OOlJXi2WLD2AweESoqzP1h5Vx88KGn1q8aV11xAtgv13TmXbvtrkMatB7G_cjexwR6KSHvmF6yrBQ0EC8NDZFQFseazmqAZNJUmpZ5hBM4WgnMwfugxWIK74Cfh7QCOSomWaDtMtrTVswczEznt9JtdbXsGnaI09DMCV0eY95sJGYmflNyicafbn3NMwVbcdvKS57Ja_heonOsz0cs8tAue9nu6G4nL8gz63F4Q4MfPbJE1UdYLFu69hzQPYbCrsnNgn555ckNNhyARWuwZZbl26DLbeuXIMtt8PWKzIbDc-_jj1bX8MTaRSsQRAqFdAyplyGTFHGw0ComPOIZyEvUfWlADYZc7DJBedliXHHUvkyTlmZgW77mvSqulKHxKVhUcooSlgmKB5PMyzgBba38KksAt93yGmzeLmwyeexBspVrp0gaJTjIubdwjvkpB2wNHlXHu56CNTI-QVIxXz2I8SciWjYQAeHfAQStRNgKvXx4FuO93xMKwWW5R2Md_SM7WPAJI6zXOPSIccNWXO78eHRaZQGGUvC7NHmJHHIh7YZuDZ-iuOVqm91nwRr09L4kT4MBC4WA2cOeWOA1L5jA0qH0C2Ibf3V7ZZqcamzx4NKTmFx3j445xF51m3sY9Jb39yqd6B5r4v3euv8AaIu04w
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Timing+the+impact+of+literacy+on+visual+processing&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Pegado%2C+Felipe&rft.au=Comerlato%2C+Enio&rft.au=Ventura%2C+Fabricio&rft.au=Jobert%2C+Antoinette&rft.date=2014-12-09&rft.eissn=1091-6490&rft.volume=111&rft.issue=49&rft.spage=E5233&rft_id=info:doi/10.1073%2Fpnas.1417347111&rft_id=info%3Apmid%2F25422460&rft.externalDocID=25422460
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F49.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F49.cover.gif