Timing the impact of literacy on visual processing
Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonst...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 49; pp. E5233 - E5242 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
09.12.2014
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1417347111 |
Cover
Loading…
Abstract | Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.
Significance How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and either remained illiterate or acquired partial literacy during adulthood (ex-illiterates). By recording event-related brain responses, we obtained a high-temporal resolution description of how illiterate and literate adults differ in terms of early visual responses. The results show that learning to read dramatically enhances the magnitude, precision, and invariance of early visual coding, within 200 ms of stimulus onset, and also enhances later neural activity. Literacy effects were found not only for the expected category of expertise (letter strings), but also extended to other visual stimuli, confirming the benefits of literacy on early visual processing. |
---|---|
AbstractList | Significance How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and either remained illiterate or acquired partial literacy during adulthood (ex-illiterates). By recording event-related brain responses, we obtained a high-temporal resolution description of how illiterate and literate adults differ in terms of early visual responses. The results show that learning to read dramatically enhances the magnitude, precision, and invariance of early visual coding, within 200 ms of stimulus onset, and also enhances later neural activity. Literacy effects were found not only for the expected category of expertise (letter strings), but also extended to other visual stimuli, confirming the benefits of literacy on early visual processing. How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and either remained illiterate or acquired partial literacy during adulthood (ex-illiterates). By recording event-related brain responses, we obtained a high-temporal resolution description of how illiterate and literate adults differ in terms of early visual responses. The results show that learning to read dramatically enhances the magnitude, precision, and invariance of early visual coding, within 200 ms of stimulus onset, and also enhances later neural activity. Literacy effects were found not only for the expected category of expertise (letter strings), but also extended to other visual stimuli, confirming the benefits of literacy on early visual processing. Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. Significance How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and either remained illiterate or acquired partial literacy during adulthood (ex-illiterates). By recording event-related brain responses, we obtained a high-temporal resolution description of how illiterate and literate adults differ in terms of early visual responses. The results show that learning to read dramatically enhances the magnitude, precision, and invariance of early visual coding, within 200 ms of stimulus onset, and also enhances later neural activity. Literacy effects were found not only for the expected category of expertise (letter strings), but also extended to other visual stimuli, confirming the benefits of literacy on early visual processing. Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ~100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. |
Author | Enio Comerlato Fabricio Ventura Kimihiro Nakamura José Morais Lucia W. Braga Marco Buiatti Stanislas Dehaene Ghislaine Dehaene-Lambertz Régine Kolinsky Antoinette Jobert Paulo Ventura Laurent Cohen Felipe Pegado |
Author_xml | – sequence: 1 givenname: Felipe surname: Pegado fullname: Pegado, Felipe organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France;, Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium – sequence: 2 givenname: Enio surname: Comerlato fullname: Comerlato, Enio organization: SARAH Network, International Center for Neurosciences and Rehabilitation, 71.535-005 Brasilia, Brazil – sequence: 3 givenname: Fabricio surname: Ventura fullname: Ventura, Fabricio organization: SARAH Network, International Center for Neurosciences and Rehabilitation, 71.535-005 Brasilia, Brazil – sequence: 4 givenname: Antoinette surname: Jobert fullname: Jobert, Antoinette organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France – sequence: 5 givenname: Kimihiro surname: Nakamura fullname: Nakamura, Kimihiro organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France;, Collège de France, 75005 Paris, France – sequence: 6 givenname: Marco surname: Buiatti fullname: Buiatti, Marco organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France – sequence: 7 givenname: Paulo surname: Ventura fullname: Ventura, Paulo organization: Faculty of Psychology, University of Lisbon, 1649-013 Lisbon, Portugal – sequence: 8 givenname: Ghislaine surname: Dehaene-Lambertz fullname: Dehaene-Lambertz, Ghislaine organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France – sequence: 9 givenname: Régine surname: Kolinsky fullname: Kolinsky, Régine organization: Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium;, Fonds de la Recherche Scientifique, B-1000 Brussels, Belgium; and – sequence: 10 givenname: José surname: Morais fullname: Morais, José organization: Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium – sequence: 11 givenname: Lucia W. surname: Braga fullname: Braga, Lucia W. organization: SARAH Network, International Center for Neurosciences and Rehabilitation, 71.535-005 Brasilia, Brazil – sequence: 12 givenname: Laurent surname: Cohen fullname: Cohen, Laurent organization: INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), F-75013 Paris, France – sequence: 13 givenname: Stanislas surname: Dehaene fullname: Dehaene, Stanislas organization: Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, 91191 Gif sur Yvette, France;, Neurospin Center, Commissariat à l'énergie atomique (CEA), Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), 91191 Gif sur Yvette, France;, University Paris 11, 91405 Orsay, France;, Collège de France, 75005 Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25422460$$D View this record in MEDLINE/PubMed https://hal.science/hal-04043729$$DView record in HAL |
BookMark | eNqNkkFv1DAQhS1URLeFMzeIxIUe0s7YTmxfkKqqUKSVONCercFxdl0l8RInK_Xfk2i3ha6E4GTJ873n8Zs5YUdd7DxjbxHOEZS42HSUzlGiElIh4gu2QDCYl9LAEVsAcJVryeUxO0npHgBMoeEVO-aF5FyWsGD8NrShW2XD2meh3ZAbslhnTRh8T-4hi122DWmkJtv00fmUJvY1e1lTk_yb_XnK7j5f317d5MtvX75eXS5zVwoccq28R1VLRRXXXmni6LwkEmQ41SXyQjmqKknaGEdU1wqFrDxUstS1gVKcsk873834o_WV893QU2M3fWipf7CRgn1e6cLaruLWSl4qYeRkcLYzWB_Ibi6Xdr4DCVIobrY4sR_3j_Xx5-jTYNuQnG8a6nwck0UNArnWQv8bLUUBCIWaO_hwgN7Hse-m1GaqRKOLovgfipuJevdnHE8fepzlBBQ7wPUxpd7X1oWBhhDndEJjEey8M3beGft7ZybdxYHu0frvimzfylx4ohGtNPa64EJMyPsdUlO0tOpDsnffOWAJgNNsJqtfWsLUkQ |
CitedBy_id | crossref_primary_10_1177_0165025417714063 crossref_primary_10_1111_cdev_12550 crossref_primary_10_1016_j_jecp_2020_104830 crossref_primary_10_1111_mila_12159 crossref_primary_10_1073_pnas_1603205113 crossref_primary_10_3917_lf_199_0017 crossref_primary_10_1007_s41809_020_00059_0 crossref_primary_10_1007_s41809_023_00118_2 crossref_primary_10_1016_j_tine_2024_100233 crossref_primary_10_1016_j_cogdev_2016_02_005 crossref_primary_10_1016_j_cub_2020_11_031 crossref_primary_10_1016_j_neuroimage_2020_117028 crossref_primary_10_1073_pnas_1803003115 crossref_primary_10_1002_rrq_439 crossref_primary_10_1371_journal_pone_0242619 crossref_primary_10_1002_dys_1724 crossref_primary_10_1016_j_cortex_2016_05_016 crossref_primary_10_1016_j_neuroimage_2020_117148 crossref_primary_10_1016_j_neuroimage_2017_04_027 crossref_primary_10_1016_j_cedpsych_2018_12_002 crossref_primary_10_1038_nrn3924 crossref_primary_10_1007_s00429_017_1516_x crossref_primary_10_1016_j_dcn_2019_100717 crossref_primary_10_1007_s41809_017_0007_1 crossref_primary_10_1080_23273798_2017_1313436 crossref_primary_10_1016_j_neuroimage_2022_119394 crossref_primary_10_1016_j_cognition_2019_03_012 crossref_primary_10_1016_j_neulet_2016_10_037 crossref_primary_10_1016_j_cortex_2018_01_002 crossref_primary_10_3389_fpsyg_2023_996012 crossref_primary_10_1038_srep26902 crossref_primary_10_1016_j_tics_2015_01_003 crossref_primary_10_1007_s12144_021_01753_0 crossref_primary_10_1016_j_neuropsychologia_2016_09_014 crossref_primary_10_1016_j_cortex_2021_03_039 crossref_primary_10_1016_j_neuroimage_2020_116722 crossref_primary_10_1016_j_dcn_2017_01_002 crossref_primary_10_1016_j_neuroimage_2019_01_046 crossref_primary_10_1111_mbe_12143 crossref_primary_10_1007_s00429_021_02370_0 crossref_primary_10_1016_j_actpsy_2019_102951 crossref_primary_10_1111_desc_12684 crossref_primary_10_1111_desc_12682 crossref_primary_10_1016_j_neuroimage_2022_119383 crossref_primary_10_1007_s11125_017_9394_9 crossref_primary_10_1016_j_neuroscience_2020_10_040 crossref_primary_10_3389_fpsyg_2021_733494 crossref_primary_10_1073_pnas_2104779118 crossref_primary_10_1111_psyp_14147 crossref_primary_10_1080_23273798_2017_1283424 crossref_primary_10_3389_fpsyg_2019_00830 crossref_primary_10_3389_fpsyg_2017_01453 crossref_primary_10_1177_0165025417727871 crossref_primary_10_1371_journal_pbio_2004103 crossref_primary_10_1111_desc_13447 crossref_primary_10_1371_journal_pbio_1002196 crossref_primary_10_1007_s00146_017_0785_5 crossref_primary_10_3389_fnhum_2022_819956 crossref_primary_10_1027_2151_2604_a000263 crossref_primary_10_3389_fnins_2022_898800 crossref_primary_10_1016_j_cortex_2018_03_010 crossref_primary_10_1371_journal_pone_0158312 crossref_primary_10_1016_j_dcn_2018_09_003 crossref_primary_10_1016_j_tics_2015_05_006 crossref_primary_10_3389_fnins_2018_00219 crossref_primary_10_3389_fnhum_2023_1199366 crossref_primary_10_1167_jov_23_13_9 crossref_primary_10_1093_arclin_acae081 crossref_primary_10_1038_s41598_017_01075_x crossref_primary_10_1007_s10548_017_0562_2 crossref_primary_10_1016_j_cortex_2022_07_017 crossref_primary_10_1016_j_dcn_2024_101418 crossref_primary_10_1038_s41598_024_82350_6 crossref_primary_10_1016_j_xpro_2021_100712 |
Cites_doi | 10.1097/00001756-199511000-00014 10.1016/j.neuropsychologia.2011.03.018 10.1073/pnas.0703300104 10.1016/j.neuroimage.2004.05.004 10.1016/S0896-6273(03)00197-1 10.3758/CABN.8.2.222 10.1111/j.1460-9568.2007.05701.x 10.1016/j.neuropsychologia.2013.02.006 10.1016/j.neuroimage.2011.01.073 10.1016/S0960-9822(95)00108-4 10.3389/fpsyg.2014.00478 10.1162/jocn.2006.18.10.1631 10.1093/cercor/12.3.297 10.1177/0956797614531026 10.1038/nrn3476 10.1016/j.neuron.2012.08.026 10.1111/j.1467-7687.2011.01102.x 10.1111/j.1749-818X.2008.00121.x 10.1016/j.neuron.2007.05.019 10.1073/pnas.0904402107 10.1080/01690960701579839 10.1207/s15326942dn3101_4 10.1111/j.0956-7976.2004.00674.x 10.1016/j.tics.2005.05.004 10.3758/BF03193980 10.1162/jocn.2008.20125 10.1093/cercor/bhs383 10.1126/science.287.5457.1506 10.1162/jocn.1991.3.4.304 10.1111/mbe.12017 10.1016/j.neuroimage.2012.02.035 10.1038/71163 10.1037/a0022168 10.1016/j.neuroimage.2003.07.010 10.1093/brain/121.6.1053 10.1037/a0033198 10.1126/science.1194908 10.1016/j.neuroimage.2010.11.043 10.1093/cercor/bhs228 10.1093/cercor/bhr008 10.1162/0898929054021166 10.1037/a0029503 10.1126/science.1194140 10.1093/cercor/bhp175 10.1016/j.neuroimage.2010.10.079 10.1162/jocn.2009.21184 10.1093/cercor/bhs158 10.1038/nn1255 10.1016/j.tics.2011.04.001 10.1093/cercor/bhs365 10.1155/2011/879716 10.1523/JNEUROSCI.4448-09.2010 10.1093/brain/awq199 10.1111/j.1467-9280.2006.01821.x 10.1038/nn1065 10.1038/89551 10.1016/j.neuron.2007.10.004 10.1080/01690960600652471 10.3389/fpsyg.2014.00703 10.1038/72979 10.1016/S0896-6273(04)00196-5 10.1016/j.neuroimage.2009.09.024 10.1037/a0016888 10.1093/brain/123.2.291 10.1038/ncomms2220 10.1093/cercor/9.5.415 10.1111/desc.12102 10.1186/1475-925X-9-45 10.1016/j.neuron.2005.05.014 10.1093/cercor/bhq078 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Dec 9, 2014 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright National Academy of Sciences Dec 9, 2014 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 1XC 5PM |
DOI | 10.1073/pnas.1417347111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Education |
DocumentTitleAlternate | Timing the impact of literacy on visual processing |
EISSN | 1091-6490 |
EndPage | E5242 |
ExternalDocumentID | PMC4267394 oai_HAL_hal_04043729v1 3526097711 3526098081 25422460 10_1073_pnas_1417347111 111_49_E5233 US201600139417 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC AAYXX ABXSQ ACHIC ADQXQ ADXHL AQVQM CITATION IPSME CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 1XC UMC 5PM |
ID | FETCH-LOGICAL-c631t-87ee17f47ad28e78a21ce4aa3a92af61257cadd4a899caaff7134de0d468f9063 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:41:39 EDT 2025 Fri May 09 12:22:25 EDT 2025 Fri Sep 05 03:33:05 EDT 2025 Thu Sep 04 20:43:16 EDT 2025 Sat Aug 16 22:22:07 EDT 2025 Sat Aug 16 23:12:05 EDT 2025 Thu Apr 03 06:51:36 EDT 2025 Tue Jul 01 01:53:17 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Wed Nov 11 00:29:54 EST 2020 Wed Dec 27 19:14:47 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | reading brain plasticity education |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c631t-87ee17f47ad28e78a21ce4aa3a92af61257cadd4a899caaff7134de0d468f9063 |
Notes | http://dx.doi.org/10.1073/pnas.1417347111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Contributed by Stanislas Dehaene, October 23, 2014 (sent for review June 4, 2014) Author contributions: F.P., P.V., G.D.-L., R.K., J.M., L.W.B., L.C., and S.D. designed research; F.P., E.C., F.V., and A.J. performed research; F.P., K.N., M.B., and S.D. analyzed data; and F.P., R.K., J.M., L.C., and S.D. wrote the paper. |
ORCID | 0000-0002-7418-8275 0000-0003-2221-9081 0000-0001-9203-8687 |
OpenAccessLink | https://www.pnas.org/content/pnas/111/49/E5233.full.pdf |
PMID | 25422460 |
PQID | 1636198529 |
PQPubID | 42026 |
ParticipantIDs | proquest_miscellaneous_1803128838 fao_agris_US201600139417 proquest_journals_1636198529 pubmed_primary_25422460 crossref_citationtrail_10_1073_pnas_1417347111 crossref_primary_10_1073_pnas_1417347111 hal_primary_oai_HAL_hal_04043729v1 proquest_miscellaneous_1635010574 proquest_journals_1636198555 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4267394 pnas_primary_111_49_E5233 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-09 |
PublicationDateYYYYMMDD | 2014-12-09 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_71_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_70_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 Laszlo S (e_1_3_3_58_2) 2014; 29 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 24760145 - Psychol Sci. 2014 Jun;25(6):1275-80 15156149 - Nat Neurosci. 2004 Jun;7(6):651-7 14642472 - Neuroimage. 2003 Nov;20(3):1609-24 24954966 - Lang Cogn Process. 2014;29(5):642-661 20515197 - J Exp Psychol Hum Percept Perform. 2010 Jun;36(3):673-88 20392945 - J Neurosci. 2010 Apr 14;30(15):5229-33 7583105 - Curr Biol. 1995 May 1;5(5):552-63 21051642 - Science. 2010 Nov 5;330(6005):845-51 21111052 - Neuroimage. 2011 Mar 15;55(2):742-9 20395549 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7939-44 17964253 - Neuron. 2007 Oct 25;56(2):384-98 17553419 - Neuron. 2007 Jun 7;54(5):677-96 21296170 - Neuroimage. 2011 May 1;56(1):330-44 17502592 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):9087-92 15951224 - Trends Cogn Sci. 2005 Jul;9(7):335-41 20819204 - Biomed Eng Online. 2010;9:45 19590754 - Lang Cogn Process. 2008;23(1):183-200 22251300 - Dev Sci. 2012 Jan;15(1):139-49 12741994 - Neuron. 2003 May 8;38(3):487-97 10700259 - Nat Neurosci. 2000 Mar;3(3):264-9 17651423 - Eur J Neurosci. 2007 Aug;26(3):791-9 20688811 - Brain. 2010 Nov;133(11):3385-95 21549634 - Trends Cogn Sci. 2011 Jun;15(6):246-53 15924867 - Neuron. 2005 Jun 2;46(5):823-35 21280970 - J Exp Psychol Gen. 2011 May;140(2):210-38 22387166 - Neuroimage. 2012 May 15;61(1):258-74 23172772 - Cereb Cortex. 2014 Mar;24(3):817-25 22866684 - J Exp Psychol Gen. 2013 May;142(2):348-58 15969912 - J Cogn Neurosci. 2005 Jun;17(6):954-68 21584256 - Comput Intell Neurosci. 2011;2011:879716 17305438 - Dev Neuropsychol. 2007;31(1):61-77 10450888 - Cereb Cortex. 1999 Jul-Aug;9(5):415-30 9648541 - Brain. 1998 Jun;121 ( Pt 6):1053-63 23141074 - Neuron. 2012 Nov 8;76(3):640-52 15091345 - Neuron. 2004 Apr 22;42(2):311-22 23236205 - Cereb Cortex. 2014 Apr;24(4):989-95 17201781 - Psychol Sci. 2006 Dec;17(12):1021-6 23773157 - J Exp Psychol Gen. 2014 Apr;143(2):887-94 11839603 - Cereb Cortex. 2002 Mar;12(3):297-305 23462239 - Neuropsychologia. 2013 Apr;51(5):950-9 21056672 - Neuroimage. 2011 Feb 14;54(4):3004-9 17014368 - J Cogn Neurosci. 2006 Oct;18(10):1631-43 17201369 - Psychon Bull Rev. 2006 Aug;13(4):674-81 18370600 - J Cogn Neurosci. 2008 Oct;20(10):1878-91 24904491 - Front Psychol. 2014 May 21;5:478 18163153 - Lang Cogn Process. 2007 Jan;22(3):337-376 10688803 - Science. 2000 Feb 25;287(5457):1506-8 21439991 - Neuropsychologia. 2011 Jun;49(7):1910-22 19770045 - Neuroimage. 2010 Jan 15;49(2):1837-48 11426233 - Nat Neurosci. 2001 Jul;4(7):752-8 19750025 - Lang Linguist Compass. 2009 Jan 1;3(1):128-156 22693338 - Cereb Cortex. 2013 Jul;23(7):1673-84 19199416 - J Cogn Neurosci. 2010 Jan;22(1):48-66 24273596 - Mind Brain Educ. 2013 Jun 1;7(2):null 22875868 - Cereb Cortex. 2013 Oct;23(10):2370-9 21368088 - Cereb Cortex. 2011 Oct;21(10):2307-12 24341976 - Dev Sci. 2014 Jan;17(1):125-41 10607401 - Nat Neurosci. 2000 Jan;3(1):91-6 8595192 - Neuroreport. 1995 Nov 13;6(16):2153-7 19684250 - Cereb Cortex. 2010 May;20(5):1153-63 23967809 - J Cogn Neurosci. 1991 Fall;3(4):304-12 15275938 - Neuroimage. 2004 Aug;22(4):1819-25 23250414 - Nat Commun. 2012;3:1284 15102139 - Psychol Sci. 2004 May;15(5):307-13 18589511 - Cogn Affect Behav Neurosci. 2008 Jun;8(2):222-8 10648437 - Brain. 2000 Feb;123 ( Pt 2):291-307 20457691 - Cereb Cortex. 2011 Jan;21(1):191-9 23595013 - Nat Rev Neurosci. 2013 May;14(5):350-63 21071632 - Science. 2010 Dec 3;330(6009):1359-64 12754516 - Nat Neurosci. 2003 Jul;6(7):767-73 25071669 - Front Psychol. 2014 Jul 10;5:703 |
References_xml | – volume: 29 start-page: 642 year: 2014 ident: e_1_3_3_58_2 article-title: Never seem to find the time: Evaluating the physiological time course of visual word recognition with regression analysis of single item ERPs publication-title: Lang Cogn Process – ident: e_1_3_3_52_2 doi: 10.1097/00001756-199511000-00014 – ident: e_1_3_3_57_2 doi: 10.1016/j.neuropsychologia.2011.03.018 – ident: e_1_3_3_6_2 doi: 10.1073/pnas.0703300104 – ident: e_1_3_3_10_2 doi: 10.1016/j.neuroimage.2004.05.004 – ident: e_1_3_3_49_2 doi: 10.1016/S0896-6273(03)00197-1 – ident: e_1_3_3_35_2 doi: 10.3758/CABN.8.2.222 – ident: e_1_3_3_17_2 doi: 10.1111/j.1460-9568.2007.05701.x – ident: e_1_3_3_42_2 doi: 10.1016/j.neuropsychologia.2013.02.006 – ident: e_1_3_3_2_2 doi: 10.1016/j.neuroimage.2011.01.073 – ident: e_1_3_3_21_2 doi: 10.1016/S0960-9822(95)00108-4 – ident: e_1_3_3_29_2 doi: 10.3389/fpsyg.2014.00478 – ident: e_1_3_3_55_2 doi: 10.1162/jocn.2006.18.10.1631 – ident: e_1_3_3_50_2 doi: 10.1093/cercor/12.3.297 – ident: e_1_3_3_63_2 doi: 10.1177/0956797614531026 – ident: e_1_3_3_65_2 doi: 10.1038/nrn3476 – ident: e_1_3_3_46_2 doi: 10.1016/j.neuron.2012.08.026 – ident: e_1_3_3_69_2 doi: 10.1111/j.1467-7687.2011.01102.x – ident: e_1_3_3_53_2 doi: 10.1111/j.1749-818X.2008.00121.x – ident: e_1_3_3_64_2 doi: 10.1016/j.neuron.2007.05.019 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.0904402107 – ident: e_1_3_3_36_2 doi: 10.1080/01690960701579839 – ident: e_1_3_3_22_2 doi: 10.1207/s15326942dn3101_4 – ident: e_1_3_3_40_2 doi: 10.1111/j.0956-7976.2004.00674.x – ident: e_1_3_3_32_2 doi: 10.1016/j.tics.2005.05.004 – ident: e_1_3_3_59_2 doi: 10.3758/BF03193980 – ident: e_1_3_3_37_2 doi: 10.1162/jocn.2008.20125 – ident: e_1_3_3_68_2 doi: 10.1093/cercor/bhs383 – ident: e_1_3_3_20_2 doi: 10.1126/science.287.5457.1506 – ident: e_1_3_3_34_2 doi: 10.1162/jocn.1991.3.4.304 – ident: e_1_3_3_24_2 doi: 10.1111/mbe.12017 – ident: e_1_3_3_38_2 doi: 10.1016/j.neuroimage.2012.02.035 – ident: e_1_3_3_4_2 doi: 10.1038/71163 – ident: e_1_3_3_25_2 doi: 10.1037/a0022168 – ident: e_1_3_3_45_2 doi: 10.1016/j.neuroimage.2003.07.010 – ident: e_1_3_3_16_2 doi: 10.1093/brain/121.6.1053 – ident: e_1_3_3_23_2 doi: 10.1037/a0033198 – ident: e_1_3_3_19_2 doi: 10.1126/science.1194908 – ident: e_1_3_3_27_2 doi: 10.1016/j.neuroimage.2010.11.043 – ident: e_1_3_3_51_2 doi: 10.1093/cercor/bhs228 – ident: e_1_3_3_47_2 doi: 10.1093/cercor/bhr008 – ident: e_1_3_3_5_2 doi: 10.1162/0898929054021166 – ident: e_1_3_3_43_2 doi: 10.1037/a0029503 – ident: e_1_3_3_1_2 doi: 10.1126/science.1194140 – ident: e_1_3_3_11_2 doi: 10.1093/cercor/bhp175 – ident: e_1_3_3_39_2 doi: 10.1016/j.neuroimage.2010.10.079 – ident: e_1_3_3_12_2 doi: 10.1162/jocn.2009.21184 – ident: e_1_3_3_41_2 doi: 10.1093/cercor/bhs158 – ident: e_1_3_3_62_2 doi: 10.1038/nn1255 – ident: e_1_3_3_33_2 doi: 10.1016/j.tics.2011.04.001 – ident: e_1_3_3_67_2 doi: 10.1093/cercor/bhs365 – ident: e_1_3_3_70_2 doi: 10.1155/2011/879716 – ident: e_1_3_3_66_2 doi: 10.1523/JNEUROSCI.4448-09.2010 – ident: e_1_3_3_15_2 doi: 10.1093/brain/awq199 – ident: e_1_3_3_54_2 doi: 10.1111/j.1467-9280.2006.01821.x – ident: e_1_3_3_3_2 doi: 10.1038/nn1065 – ident: e_1_3_3_7_2 doi: 10.1038/89551 – ident: e_1_3_3_18_2 doi: 10.1016/j.neuron.2007.10.004 – ident: e_1_3_3_56_2 doi: 10.1080/01690960600652471 – ident: e_1_3_3_26_2 doi: 10.3389/fpsyg.2014.00703 – ident: e_1_3_3_30_2 doi: 10.1038/72979 – ident: e_1_3_3_14_2 doi: 10.1016/S0896-6273(04)00196-5 – ident: e_1_3_3_28_2 doi: 10.1016/j.neuroimage.2009.09.024 – ident: e_1_3_3_61_2 doi: 10.1037/a0016888 – ident: e_1_3_3_8_2 doi: 10.1093/brain/123.2.291 – ident: e_1_3_3_48_2 doi: 10.1038/ncomms2220 – ident: e_1_3_3_9_2 doi: 10.1093/cercor/9.5.415 – ident: e_1_3_3_60_2 doi: 10.1111/desc.12102 – ident: e_1_3_3_71_2 doi: 10.1186/1475-925X-9-45 – ident: e_1_3_3_31_2 doi: 10.1016/j.neuron.2005.05.014 – ident: e_1_3_3_44_2 doi: 10.1093/cercor/bhq078 – reference: 11426233 - Nat Neurosci. 2001 Jul;4(7):752-8 – reference: 23462239 - Neuropsychologia. 2013 Apr;51(5):950-9 – reference: 21051642 - Science. 2010 Nov 5;330(6005):845-51 – reference: 17651423 - Eur J Neurosci. 2007 Aug;26(3):791-9 – reference: 10648437 - Brain. 2000 Feb;123 ( Pt 2):291-307 – reference: 12741994 - Neuron. 2003 May 8;38(3):487-97 – reference: 22251300 - Dev Sci. 2012 Jan;15(1):139-49 – reference: 8595192 - Neuroreport. 1995 Nov 13;6(16):2153-7 – reference: 24904491 - Front Psychol. 2014 May 21;5:478 – reference: 17305438 - Dev Neuropsychol. 2007;31(1):61-77 – reference: 24760145 - Psychol Sci. 2014 Jun;25(6):1275-80 – reference: 21111052 - Neuroimage. 2011 Mar 15;55(2):742-9 – reference: 23236205 - Cereb Cortex. 2014 Apr;24(4):989-95 – reference: 20395549 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7939-44 – reference: 20688811 - Brain. 2010 Nov;133(11):3385-95 – reference: 10700259 - Nat Neurosci. 2000 Mar;3(3):264-9 – reference: 17014368 - J Cogn Neurosci. 2006 Oct;18(10):1631-43 – reference: 22693338 - Cereb Cortex. 2013 Jul;23(7):1673-84 – reference: 18163153 - Lang Cogn Process. 2007 Jan;22(3):337-376 – reference: 20392945 - J Neurosci. 2010 Apr 14;30(15):5229-33 – reference: 24273596 - Mind Brain Educ. 2013 Jun 1;7(2):null – reference: 9648541 - Brain. 1998 Jun;121 ( Pt 6):1053-63 – reference: 22387166 - Neuroimage. 2012 May 15;61(1):258-74 – reference: 18589511 - Cogn Affect Behav Neurosci. 2008 Jun;8(2):222-8 – reference: 17201369 - Psychon Bull Rev. 2006 Aug;13(4):674-81 – reference: 23967809 - J Cogn Neurosci. 1991 Fall;3(4):304-12 – reference: 21280970 - J Exp Psychol Gen. 2011 May;140(2):210-38 – reference: 17964253 - Neuron. 2007 Oct 25;56(2):384-98 – reference: 21549634 - Trends Cogn Sci. 2011 Jun;15(6):246-53 – reference: 22866684 - J Exp Psychol Gen. 2013 May;142(2):348-58 – reference: 20457691 - Cereb Cortex. 2011 Jan;21(1):191-9 – reference: 18370600 - J Cogn Neurosci. 2008 Oct;20(10):1878-91 – reference: 21056672 - Neuroimage. 2011 Feb 14;54(4):3004-9 – reference: 22875868 - Cereb Cortex. 2013 Oct;23(10):2370-9 – reference: 24341976 - Dev Sci. 2014 Jan;17(1):125-41 – reference: 19750025 - Lang Linguist Compass. 2009 Jan 1;3(1):128-156 – reference: 25071669 - Front Psychol. 2014 Jul 10;5:703 – reference: 17502592 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):9087-92 – reference: 21071632 - Science. 2010 Dec 3;330(6009):1359-64 – reference: 23141074 - Neuron. 2012 Nov 8;76(3):640-52 – reference: 23172772 - Cereb Cortex. 2014 Mar;24(3):817-25 – reference: 17553419 - Neuron. 2007 Jun 7;54(5):677-96 – reference: 14642472 - Neuroimage. 2003 Nov;20(3):1609-24 – reference: 19770045 - Neuroimage. 2010 Jan 15;49(2):1837-48 – reference: 23250414 - Nat Commun. 2012;3:1284 – reference: 21296170 - Neuroimage. 2011 May 1;56(1):330-44 – reference: 24954966 - Lang Cogn Process. 2014;29(5):642-661 – reference: 10450888 - Cereb Cortex. 1999 Jul-Aug;9(5):415-30 – reference: 15102139 - Psychol Sci. 2004 May;15(5):307-13 – reference: 15091345 - Neuron. 2004 Apr 22;42(2):311-22 – reference: 21439991 - Neuropsychologia. 2011 Jun;49(7):1910-22 – reference: 20515197 - J Exp Psychol Hum Percept Perform. 2010 Jun;36(3):673-88 – reference: 12754516 - Nat Neurosci. 2003 Jul;6(7):767-73 – reference: 15969912 - J Cogn Neurosci. 2005 Jun;17(6):954-68 – reference: 15275938 - Neuroimage. 2004 Aug;22(4):1819-25 – reference: 11839603 - Cereb Cortex. 2002 Mar;12(3):297-305 – reference: 10607401 - Nat Neurosci. 2000 Jan;3(1):91-6 – reference: 19684250 - Cereb Cortex. 2010 May;20(5):1153-63 – reference: 21584256 - Comput Intell Neurosci. 2011;2011:879716 – reference: 15156149 - Nat Neurosci. 2004 Jun;7(6):651-7 – reference: 7583105 - Curr Biol. 1995 May 1;5(5):552-63 – reference: 19199416 - J Cogn Neurosci. 2010 Jan;22(1):48-66 – reference: 20819204 - Biomed Eng Online. 2010;9:45 – reference: 15924867 - Neuron. 2005 Jun 2;46(5):823-35 – reference: 15951224 - Trends Cogn Sci. 2005 Jul;9(7):335-41 – reference: 23773157 - J Exp Psychol Gen. 2014 Apr;143(2):887-94 – reference: 10688803 - Science. 2000 Feb 25;287(5457):1506-8 – reference: 23595013 - Nat Rev Neurosci. 2013 May;14(5):350-63 – reference: 21368088 - Cereb Cortex. 2011 Oct;21(10):2307-12 – reference: 17201781 - Psychol Sci. 2006 Dec;17(12):1021-6 – reference: 19590754 - Lang Cogn Process. 2008;23(1):183-200 |
SSID | ssj0009580 |
Score | 2.4524364 |
Snippet | Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual... How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and either remained... Significance How does learning to read affect visual processing? We addressed this issue by scanning adults who could not attend school during childhood and... |
SourceID | pubmedcentral hal proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E5233 |
SubjectTerms | Adult adulthood adults Aged Behavior Biological Sciences brain Brain - pathology Brain Mapping childhood Cognition & reasoning Cognitive science Education Educational Status Electrophysiology Evoked Potentials Female Humans Image Processing, Computer-Assisted Impact analysis Learning Literacy Magnetic Resonance Imaging - methods Male Middle Aged Neuronal Plasticity NMR Nuclear magnetic resonance Photic Stimulation PNAS Plus Reading Regression Analysis Social Sciences Software Temporal Lobe - pathology Time Factors Visual Perception Visual task performance Visualization |
Title | Timing the impact of literacy on visual processing |
URI | http://www.pnas.org/content/111/49/E5233.abstract https://www.ncbi.nlm.nih.gov/pubmed/25422460 https://www.proquest.com/docview/1636198529 https://www.proquest.com/docview/1636198555 https://www.proquest.com/docview/1635010574 https://www.proquest.com/docview/1803128838 https://hal.science/hal-04043729 https://pubmed.ncbi.nlm.nih.gov/PMC4267394 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZYeeEFsXFZ2EAB8TBUZeRu57FCraoJqkqsqG-RYztbpS2p1m4S_HrOsZ2knboJeImq-JLU5_O5OOdCyCfQcoVkifRkIEIvZop7hZCFlwmZlkWYyaTAL7rfJ-l4Fp_Nk3nnkKmjS9bFqfi9M67kf6gK94CuGCX7D5RtJ4Ub8BvoC1egMFz_jsZYkstEO3XRjiaoWPzCzwB3i5UOtTLRAI2UsrrotJVdq8ZTYNIcDQ66QBO7-1d9rz-ddGWLp-qCS33OOlJXi2WLD2AweESoqzP1h5Vx88KGn1q8aV11xAtgv13TmXbvtrkMatB7G_cjexwR6KSHvmF6yrBQ0EC8NDZFQFseazmqAZNJUmpZ5hBM4WgnMwfugxWIK74Cfh7QCOSomWaDtMtrTVswczEznt9JtdbXsGnaI09DMCV0eY95sJGYmflNyicafbn3NMwVbcdvKS57Ja_heonOsz0cs8tAue9nu6G4nL8gz63F4Q4MfPbJE1UdYLFu69hzQPYbCrsnNgn555ckNNhyARWuwZZbl26DLbeuXIMtt8PWKzIbDc-_jj1bX8MTaRSsQRAqFdAyplyGTFHGw0ComPOIZyEvUfWlADYZc7DJBedliXHHUvkyTlmZgW77mvSqulKHxKVhUcooSlgmKB5PMyzgBba38KksAt93yGmzeLmwyeexBspVrp0gaJTjIubdwjvkpB2wNHlXHu56CNTI-QVIxXz2I8SciWjYQAeHfAQStRNgKvXx4FuO93xMKwWW5R2Md_SM7WPAJI6zXOPSIccNWXO78eHRaZQGGUvC7NHmJHHIh7YZuDZ-iuOVqm91nwRr09L4kT4MBC4WA2cOeWOA1L5jA0qH0C2Ibf3V7ZZqcamzx4NKTmFx3j445xF51m3sY9Jb39yqd6B5r4v3euv8AaIu04w |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Timing+the+impact+of+literacy+on+visual+processing&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Pegado%2C+Felipe&rft.au=Comerlato%2C+Enio&rft.au=Ventura%2C+Fabricio&rft.au=Jobert%2C+Antoinette&rft.date=2014-12-09&rft.eissn=1091-6490&rft.volume=111&rft.issue=49&rft.spage=E5233&rft_id=info:doi/10.1073%2Fpnas.1417347111&rft_id=info%3Apmid%2F25422460&rft.externalDocID=25422460 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F49.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F49.cover.gif |