Fine structural human phantom in dentistry and instance tooth segmentation

In this study, we present the development of a fine structural human phantom designed specifically for applications in dentistry. This research focused on assessing the viability of applying medical computer vision techniques to the task of segmenting individual teeth within a phantom. Using a virtu...

Full description

Saved in:
Bibliographic Details
Published inScientific Reports Vol. 14; no. 1; pp. 12630 - 9
Main Authors Takeya, Atsushi, Watanabe, Keiichiro, Haga, Akihiro
Format Journal Article
LanguageEnglish
Published London Springer Science and Business Media LLC 02.06.2024
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-63319-x

Cover

Abstract In this study, we present the development of a fine structural human phantom designed specifically for applications in dentistry. This research focused on assessing the viability of applying medical computer vision techniques to the task of segmenting individual teeth within a phantom. Using a virtual cone-beam computed tomography (CBCT) system, we generated over 170,000 training datasets. These datasets were produced by varying the elemental densities and tooth sizes within the human phantom, as well as varying the X-ray spectrum, noise intensity, and projection cutoff intensity in the virtual CBCT system. The deep-learning (DL) based tooth segmentation model was trained using the generated datasets. The results demonstrate an agreement with manual contouring when applied to clinical CBCT data. Specifically, the Dice similarity coefficient exceeded 0.87, indicating the robust performance of the developed segmentation model even when virtual imaging was used. The present results show the practical utility of virtual imaging techniques in dentistry and highlight the potential of medical computer vision for enhancing precision and efficiency in dental imaging processes.
AbstractList In this study, we present the development of a fine structural human phantom designed specifically for applications in dentistry. This research focused on assessing the viability of applying medical computer vision techniques to the task of segmenting individual teeth within a phantom. Using a virtual cone-beam computed tomography (CBCT) system, we generated over 170,000 training datasets. These datasets were produced by varying the elemental densities and tooth sizes within the human phantom, as well as varying the X-ray spectrum, noise intensity, and projection cutoff intensity in the virtual CBCT system. The deep-learning (DL) based tooth segmentation model was trained using the generated datasets. The results demonstrate an agreement with manual contouring when applied to clinical CBCT data. Specifically, the Dice similarity coefficient exceeded 0.87, indicating the robust performance of the developed segmentation model even when virtual imaging was used. The present results show the practical utility of virtual imaging techniques in dentistry and highlight the potential of medical computer vision for enhancing precision and efficiency in dental imaging processes.
In this study, we present the development of a fine structural human phantom designed specifically for applications in dentistry. This research focused on assessing the viability of applying medical computer vision techniques to the task of segmenting individual teeth within a phantom. Using a virtual cone-beam computed tomography (CBCT) system, we generated over 170,000 training datasets. These datasets were produced by varying the elemental densities and tooth sizes within the human phantom, as well as varying the X-ray spectrum, noise intensity, and projection cutoff intensity in the virtual CBCT system. The deep-learning (DL) based tooth segmentation model was trained using the generated datasets. The results demonstrate an agreement with manual contouring when applied to clinical CBCT data. Specifically, the Dice similarity coefficient exceeded 0.87, indicating the robust performance of the developed segmentation model even when virtual imaging was used. The present results show the practical utility of virtual imaging techniques in dentistry and highlight the potential of medical computer vision for enhancing precision and efficiency in dental imaging processes.In this study, we present the development of a fine structural human phantom designed specifically for applications in dentistry. This research focused on assessing the viability of applying medical computer vision techniques to the task of segmenting individual teeth within a phantom. Using a virtual cone-beam computed tomography (CBCT) system, we generated over 170,000 training datasets. These datasets were produced by varying the elemental densities and tooth sizes within the human phantom, as well as varying the X-ray spectrum, noise intensity, and projection cutoff intensity in the virtual CBCT system. The deep-learning (DL) based tooth segmentation model was trained using the generated datasets. The results demonstrate an agreement with manual contouring when applied to clinical CBCT data. Specifically, the Dice similarity coefficient exceeded 0.87, indicating the robust performance of the developed segmentation model even when virtual imaging was used. The present results show the practical utility of virtual imaging techniques in dentistry and highlight the potential of medical computer vision for enhancing precision and efficiency in dental imaging processes.
Abstract In this study, we present the development of a fine structural human phantom designed specifically for applications in dentistry. This research focused on assessing the viability of applying medical computer vision techniques to the task of segmenting individual teeth within a phantom. Using a virtual cone-beam computed tomography (CBCT) system, we generated over 170,000 training datasets. These datasets were produced by varying the elemental densities and tooth sizes within the human phantom, as well as varying the X-ray spectrum, noise intensity, and projection cutoff intensity in the virtual CBCT system. The deep-learning (DL) based tooth segmentation model was trained using the generated datasets. The results demonstrate an agreement with manual contouring when applied to clinical CBCT data. Specifically, the Dice similarity coefficient exceeded 0.87, indicating the robust performance of the developed segmentation model even when virtual imaging was used. The present results show the practical utility of virtual imaging techniques in dentistry and highlight the potential of medical computer vision for enhancing precision and efficiency in dental imaging processes.
ArticleNumber 12630
Author Atsushi Takeya
Akihiro Haga
Keiichiro Watanabe
Author_xml – sequence: 1
  givenname: Atsushi
  surname: Takeya
  fullname: Takeya, Atsushi
  organization: Graduate School of Biomedical Sciences, Tokushima University
– sequence: 2
  givenname: Keiichiro
  surname: Watanabe
  fullname: Watanabe, Keiichiro
  organization: Graduate School of Biomedical Sciences, Tokushima University
– sequence: 3
  givenname: Akihiro
  surname: Haga
  fullname: Haga, Akihiro
  email: haga@tokushima-u.ac.jp
  organization: Graduate School of Biomedical Sciences, Tokushima University
BackLink https://cir.nii.ac.jp/crid/1871992116467451008$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/38824210$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhiNURC_0BVigSLBgE_A99gqhipaiSmxgbTn25BxXiX2wHdS-PT5NKS0LNr7MfP_vsT3HzUGIAZrmFUbvMaLyQ2aYK9khwjpBKVbdzbPmiCDGO0IJOXi0PmxOc_ZD3VYMSfSiOaRSEkYwOmq-nvsAbS5psWVJZmq3y2xCu9uaUOLc-tA6CMVX4LY1wdVALiZYaEuMZdtm2Mw1b4qP4WXzfDRThtP7-aT5cf75-9mX7urbxeXZp6vOCopLJ4mDfhSKjM4pB2wEZSnmlo89Eo70bBBADLWcg2I9CGY5tYIMrldW4d7Qk-Zy9XXRXOtd8rNJtzoar-8CMW20ScXbCTRmlg6AkGGAGQMnlZRYcqlGa8RAbfX6uHrtlmEGZ-td6iM8MX2aCX6rN_GXxrgaEkKqw7t7hxR_LpCLnn22ME0mQFyypkhQJqToeUXf_INexyWF-lZ7iihea0OVev24pIda_vxZBcgK2BRzTjA-IBjpfW_otTd07Q191xv6poroKsoVDhtIf8_-r-rtqgrea-v3I5Y9VopgLJjoGccISfobWaHGww
Cites_doi 10.1016/j.compbiomed.2020.103720
10.1111/etp.12067
10.3390/jimaging9070134
10.4329/wjr.v6.i10.794
10.1259/dmfr.20140225
10.3390/ijerph17249428
10.1038/s41467-022-29637-2
10.1259/dmfr.20150079
10.1088/1361-6560/ac7bcd
10.2196/26151
10.1002/adem.201801013
10.1016/j.ejmp.2021.07.038
10.1109/ACCESS.2019.2924262
10.1109/ACCESS.2021.3086020
10.5334/jbr-btr.662
10.1088/1361-6560/ac9174
10.1038/sj.bdj.2015.914
10.5453/jhps.45.357
10.1002/mp.13300
10.1016/j.ejmp.2023.102648
10.3389/fmedt.2021.767836
10.1597/15-036
10.1364/JOSAA.1.000612
10.1088/0031-9155/27/3/009
10.1109/TPAMI.2021.3086072
10.1007/978-3-031-43898-1_67
10.1109/ISBI45749.2020.9098542
10.1109/CVPR.2019.00653
10.1016/j.neucom.2023.126629
10.1007/s11517-023-02889-w
10.1118/1.4955438
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-63319-x
DatabaseName CiNii Complete
Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Dentistry
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_14c3be00a4e144ed898818589fca6b3c
PMC11144222
38824210
10_1038_s41598_024_63319_x
Genre Journal Article
GrantInformation_xml – fundername: JST A-STEP
  grantid: JPMJTM22E4
– fundername: Japan Society for the Promotion of Science
  grantid: 23K07084
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: 23K07084
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
RYH
SNYQT
UKHRP
3V.
88A
ACSMW
AJTQC
M0L
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c631t-82de7f692fdd9de4fe9c315c5f706d274b6e2a3c55e947e64c53c62bd79c917a3
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:19 EDT 2025
Thu Aug 21 18:33:40 EDT 2025
Thu Sep 04 22:04:59 EDT 2025
Wed Aug 13 08:19:39 EDT 2025
Mon Jul 21 06:02:21 EDT 2025
Tue Jul 01 01:01:46 EDT 2025
Fri Feb 21 02:39:38 EST 2025
Thu Jun 26 21:16:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-82de7f692fdd9de4fe9c315c5f706d274b6e2a3c55e947e64c53c62bd79c917a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-024-63319-x
PMID 38824210
PQID 3062958180
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_14c3be00a4e144ed898818589fca6b3c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11144222
proquest_miscellaneous_3063468675
proquest_journals_3062958180
pubmed_primary_38824210
crossref_primary_10_1038_s41598_024_63319_x
springer_journals_10_1038_s41598_024_63319_x
nii_cinii_1871992116467451008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-02
PublicationDateYYYYMMDD 2024-06-02
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific Reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Springer Science and Business Media LLC
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Springer Science and Business Media LLC
– name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhu (CR24) 2019; 46.2
Jacobs (CR4) 2011; 94
Impellizzeri (CR8) 2020; 17.24
CR18
CR17
Angelone (CR2) 2023; 97
Lin (CR10) 2019; 21.6
CR15
Tian (CR19) 2019; 7
Abadi (CR30) 2018; 38.6
Wu, FitzGerald, Zhang, Segars, Yu, Xu, De Man (CR37) 2022; 67.19
CR35
CR12
Shimomura (CR23) 2023; 113
CR34
CR11
CR32
Nikolov (CR25) 2021; 23.7
Li (CR27) 2021; 89
Zou (CR14) 2017; 8.4
Chalmers (CR3) 2016; 53
Fujiwara (CR26) 2022; 67.15
Vallaeys (CR13) 2015; 44
Horner (CR5) 2015; 44.1
CR7
CR29
Dawood (CR9) 2015; 219.11
CR28
Todd (CR6) 2014; 31
Feldkamp, Davis, Kress (CR31) 1984; 1
CR20
Zankl (CR22) 2010; 45
Chung (CR16) 2020; 120
Cui, Fang, Mei, Zhang, Yu, Liu, Jiang, Sun, Ma, Huang, Liu, Zhao, Lian, Ding, Zhu, Shen (CR36) 2022; 13
Shah, Bansal, Logani (CR1) 2014; 6
Siddique (CR33) 2021; 9
Luo (CR21) 2024; 3
F Angelone (63319_CR2) 2023; 97
63319_CR32
S Nikolov (63319_CR25) 2021; 23.7
R Jacobs (63319_CR4) 2011; 94
M Chung (63319_CR16) 2020; 120
A Impellizzeri (63319_CR8) 2020; 17.24
M Zankl (63319_CR22) 2010; 45
LA Feldkamp (63319_CR31) 1984; 1
63319_CR35
63319_CR12
63319_CR34
63319_CR11
Z Cui (63319_CR36) 2022; 13
63319_CR18
D Fujiwara (63319_CR26) 2022; 67.15
N Shah (63319_CR1) 2014; 6
K Horner (63319_CR5) 2015; 44.1
K Vallaeys (63319_CR13) 2015; 44
63319_CR17
63319_CR15
D Luo (63319_CR21) 2024; 3
R Todd (63319_CR6) 2014; 31
W Zhu (63319_CR24) 2019; 46.2
N Siddique (63319_CR33) 2021; 9
63319_CR20
T Shimomura (63319_CR23) 2023; 113
Z Zou (63319_CR14) 2017; 8.4
63319_CR7
K-W Li (63319_CR27) 2021; 89
EV Chalmers (63319_CR3) 2016; 53
S Tian (63319_CR19) 2019; 7
E Abadi (63319_CR30) 2018; 38.6
A Dawood (63319_CR9) 2015; 219.11
63319_CR29
63319_CR28
L Lin (63319_CR10) 2019; 21.6
M Wu (63319_CR37) 2022; 67.19
References_xml – volume: 120
  start-page: 103720
  year: 2020
  ident: CR16
  article-title: Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103720
– volume: 38.6
  start-page: 1457
  year: 2018
  end-page: 1465
  ident: CR30
  article-title: DukeSim: A realistic, rapid, and scanner-specific simulation framework in computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 31
  start-page: 36
  issue: 1
  year: 2014
  end-page: 52
  ident: CR6
  article-title: Dental imaging-2 D to 3 D: A historic, current, and future view of projection radiography
  publication-title: Endod. Top.
  doi: 10.1111/etp.12067
– ident: CR18
– volume: 97
  start-page: 134
  year: 2023
  ident: CR2
  article-title: Diagnostic applications of intraoral scanners: A systematic review
  publication-title: J. Imaging
  doi: 10.3390/jimaging9070134
– volume: 6
  start-page: 794
  issue: 10
  year: 2014
  ident: CR1
  article-title: Recent advances in imaging technologies in dentistry
  publication-title: World J. Radiol.
  doi: 10.4329/wjr.v6.i10.794
– volume: 44.1
  start-page: 20140225
  year: 2015
  ident: CR5
  article-title: Guidelines for clinical use of CBCT: A review
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20140225
– ident: CR12
– volume: 17.24
  start-page: 9428
  year: 2020
  ident: CR8
  article-title: CBCT and intra-oral scanner: The advantages of 3D technologies in orthodontic treatment
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17249428
– volume: 13
  start-page: 2096
  year: 2022
  ident: CR36
  article-title: A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29637-2
– volume: 44
  start-page: 20150079
  issue: 8
  year: 2015
  ident: CR13
  article-title: 3D dento-maxillary osteolytic lesion and active contour segmentation pilot study in CBCT: Semi-automatic vs manual methods
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20150079
– volume: 67.15
  start-page: 155008
  year: 2022
  ident: CR26
  article-title: Virtual computed-tomography system for deep-learning-based material decomposition
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ac7bcd
– ident: CR35
– ident: CR29
– volume: 23.7
  start-page: e26151
  year: 2021
  ident: CR25
  article-title: Clinically applicable segmentation of head and neck anatomy for radiotherapy: deep learning algorithm development and validation study
  publication-title: J. Med. Internet Res.
  doi: 10.2196/26151
– volume: 21.6
  start-page: 1801013
  year: 2019
  ident: CR10
  article-title: 3D printing and digital processing techniques in dentistry: A review of literature
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201801013
– volume: 89
  start-page: 182
  year: 2021
  end-page: 192
  ident: CR27
  article-title: kV–kV and kV–MV DECT based estimation of proton stopping power ratio—A simulation study
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2021.07.038
– volume: 7
  start-page: 84817
  year: 2019
  end-page: 84828
  ident: CR19
  article-title: Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924262
– volume: 9
  start-page: 82031
  year: 2021
  end-page: 82057
  ident: CR33
  article-title: U-net and its variants for medical image segmentation: A review of theory and applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3086020
– volume: 94
  start-page: 254
  issue: 5
  year: 2011
  end-page: 265
  ident: CR4
  article-title: Dental cone beam CT and its justified use in oral health care
  publication-title: J. Belgian Soc. Radiol.
  doi: 10.5334/jbr-btr.662
– volume: 67.19
  start-page: 194002
  year: 2022
  ident: CR37
  article-title: XCIST-an open access x-ray/CT simulation toolkit
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ac9174
– ident: CR15
– ident: CR17
– volume: 219.11
  start-page: 521
  year: 2015
  end-page: 529
  ident: CR9
  article-title: 3D printing in dentistry
  publication-title: Br. Dent. J.
  doi: 10.1038/sj.bdj.2015.914
– ident: CR11
– volume: 45
  start-page: 357
  issue: 4
  year: 2010
  end-page: 369
  ident: CR22
  article-title: Adult male and female reference computational phantoms (ICRP Publication 110)
  publication-title: Jpn. J. Health Phys.
  doi: 10.5453/jhps.45.357
– volume: 46.2
  start-page: 576
  year: 2019
  end-page: 589
  ident: CR24
  article-title: AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy
  publication-title: Med. Phys
  doi: 10.1002/mp.13300
– ident: CR32
– volume: 113
  start-page: 102648
  year: 2023
  ident: CR23
  article-title: Virtual cone-beam computed tomography simulator with human phantom library and its application to the elemental material decomposition
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2023.102648
– ident: CR34
– ident: CR7
– volume: 3
  start-page: 767836
  year: 2024
  ident: CR21
  article-title: Deep learning for automatic image segmentation in dentistry and its clinical application
  publication-title: Front. Med. Technol.
  doi: 10.3389/fmedt.2021.767836
– ident: CR28
– volume: 53
  start-page: 568
  issue: 5
  year: 2016
  end-page: 577
  ident: CR3
  article-title: Intraoral 3D scanning or dental impressions for the assessment of dental arch relationships in cleft care: which is superior?
  publication-title: Cleft Palate Craniofac. J.
  doi: 10.1597/15-036
– volume: 1
  start-page: 612
  issue: 6
  year: 1984
  end-page: 619
  ident: CR31
  article-title: Practical cone-beam algorithm
  publication-title: JOSA A
  doi: 10.1364/JOSAA.1.000612
– ident: CR20
– volume: 8.4
  start-page: 774
  year: 2017
  end-page: 783
  ident: CR14
  article-title: A semi-automatic segmentation for tooth on cone beam CT volume following the anatomic guidance
  publication-title: J. Inf. Hiding Multim. Signal Process.
– ident: 63319_CR32
  doi: 10.1088/0031-9155/27/3/009
– volume: 17.24
  start-page: 9428
  year: 2020
  ident: 63319_CR8
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17249428
– volume: 219.11
  start-page: 521
  year: 2015
  ident: 63319_CR9
  publication-title: Br. Dent. J.
  doi: 10.1038/sj.bdj.2015.914
– volume: 46.2
  start-page: 576
  year: 2019
  ident: 63319_CR24
  publication-title: Med. Phys
  doi: 10.1002/mp.13300
– volume: 89
  start-page: 182
  year: 2021
  ident: 63319_CR27
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2021.07.038
– volume: 44.1
  start-page: 20140225
  year: 2015
  ident: 63319_CR5
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20140225
– ident: 63319_CR17
  doi: 10.1109/TPAMI.2021.3086072
– ident: 63319_CR18
  doi: 10.1007/978-3-031-43898-1_67
– volume: 67.19
  start-page: 194002
  year: 2022
  ident: 63319_CR37
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ac9174
– volume: 45
  start-page: 357
  issue: 4
  year: 2010
  ident: 63319_CR22
  publication-title: Jpn. J. Health Phys.
  doi: 10.5453/jhps.45.357
– volume: 21.6
  start-page: 1801013
  year: 2019
  ident: 63319_CR10
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201801013
– volume: 31
  start-page: 36
  issue: 1
  year: 2014
  ident: 63319_CR6
  publication-title: Endod. Top.
  doi: 10.1111/etp.12067
– volume: 7
  start-page: 84817
  year: 2019
  ident: 63319_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924262
– ident: 63319_CR35
  doi: 10.1109/ISBI45749.2020.9098542
– volume: 53
  start-page: 568
  issue: 5
  year: 2016
  ident: 63319_CR3
  publication-title: Cleft Palate Craniofac. J.
  doi: 10.1597/15-036
– ident: 63319_CR7
– ident: 63319_CR15
  doi: 10.1109/CVPR.2019.00653
– volume: 13
  start-page: 2096
  year: 2022
  ident: 63319_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29637-2
– ident: 63319_CR20
  doi: 10.1016/j.neucom.2023.126629
– volume: 97
  start-page: 134
  year: 2023
  ident: 63319_CR2
  publication-title: J. Imaging
  doi: 10.3390/jimaging9070134
– volume: 23.7
  start-page: e26151
  year: 2021
  ident: 63319_CR25
  publication-title: J. Med. Internet Res.
  doi: 10.2196/26151
– volume: 67.15
  start-page: 155008
  year: 2022
  ident: 63319_CR26
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ac7bcd
– volume: 44
  start-page: 20150079
  issue: 8
  year: 2015
  ident: 63319_CR13
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20150079
– volume: 1
  start-page: 612
  issue: 6
  year: 1984
  ident: 63319_CR31
  publication-title: JOSA A
  doi: 10.1364/JOSAA.1.000612
– volume: 38.6
  start-page: 1457
  year: 2018
  ident: 63319_CR30
  publication-title: IEEE Trans. Med. Imaging
– volume: 94
  start-page: 254
  issue: 5
  year: 2011
  ident: 63319_CR4
  publication-title: J. Belgian Soc. Radiol.
  doi: 10.5334/jbr-btr.662
– volume: 8.4
  start-page: 774
  year: 2017
  ident: 63319_CR14
  publication-title: J. Inf. Hiding Multim. Signal Process.
– ident: 63319_CR29
– volume: 113
  start-page: 102648
  year: 2023
  ident: 63319_CR23
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2023.102648
– volume: 120
  start-page: 103720
  year: 2020
  ident: 63319_CR16
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103720
– volume: 9
  start-page: 82031
  year: 2021
  ident: 63319_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3086020
– volume: 3
  start-page: 767836
  year: 2024
  ident: 63319_CR21
  publication-title: Front. Med. Technol.
  doi: 10.3389/fmedt.2021.767836
– volume: 6
  start-page: 794
  issue: 10
  year: 2014
  ident: 63319_CR1
  publication-title: World J. Radiol.
  doi: 10.4329/wjr.v6.i10.794
– ident: 63319_CR34
– ident: 63319_CR11
– ident: 63319_CR12
  doi: 10.1007/s11517-023-02889-w
– ident: 63319_CR28
  doi: 10.1118/1.4955438
SSID ssib045319080
ssib045319113
ssib045318930
ssib045319110
ssib045318929
ssib045318928
ssj0000529419
ssib045319075
Score 2.4311032
Snippet In this study, we present the development of a fine structural human phantom designed specifically for applications in dentistry. This research focused on...
Abstract In this study, we present the development of a fine structural human phantom designed specifically for applications in dentistry. This research...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 12630
SubjectTerms 631/57/2266
692/308
692/700/3032
Computed tomography
Computer vision
Cone-Beam Computed Tomography - methods
Datasets
Deep Learning
Dentistry
Dentistry - methods
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Medicine
multidisciplinary
Phantoms, Imaging
Q
R
Science
Science (multidisciplinary)
Segmentation
Teeth
Tooth - anatomy & histology
Tooth - diagnostic imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hSpW4IKB8BFpkJG4QNfFX7CNUrKpK5USl3qzEntAcmq20W6n8e2ac7NLlQ1y45JDk4LxnZ-bFmTcA77RMyhqFJakrLLVLtmx7Eq6mb1TSfU-8cKHw-Rd7eqHPLs3lvVZf_E_YZA88AXdc66g6rKpWI-X-mJx3HGOc72NrOxX57Vv56p6Ymly9pde1n6tkKuWOVxSpuJpM6tIqrty524lE2bCf4ss4DH_KNX__ZfKXfdMcjhaP4dGcR4qP0_ifwAMcn8L-1Fny-wGcLSh7FJM5LBtriNyLT9xccc_gazGMIhfocqc30Y6JTnCWGFGsl0SdWOG367koaXwGF4vPX09Oy7ltQhmtqtelkwmb3nrZp-QT6h59VLWJBH9lE6nQzqJsVTQGvW7Q6mhUtLJLjY8k3lr1HPbG5YgvQVQqplqmLsqu0RZrh6onCZQMsYsx2QLebyAMN5M7Rsi72sqFCfBAgIcMeLgr4BOjvL2Tna3zCeI7zHyHf_FdwBFxFOLAx5rknvekYS03TTFsVFTA4Ya9MC_HVSBdJL3hsvYC3m4v00Li3ZF2xOVtvkdp60hAFfBiIns7UkU6RJM4LsDtTIOdR9m9Mg5X2aybYonmz2wFfNjMmJ_j-jtWr_4HVq_hoeQJzx-N5CHs0aTDI8qh1t2bvFx-ABjfFhk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgE4ILgvFV2FCQuEG113w1OSEGe5omMSHEpN2iNkm3HtY-9t6k8d9jt-mbHl-XHtIcEtuJ_bNjG-Ct5EFoJWKO6Crm0gSdVw0CV9WUIsimQb5QovCXE310Ko_P1FlyuC3Ts8rpThwu6tB78pHvo2nLraLM5A-LHzl1jaLoamqhcRe28Qo2KOfbB4cnX7-tvSwUx5KFTdkyM2H2l6ixKKuMy1wLyuC52dBIQ-F-1DNd2_7N5vzz6eRv8dNBLc0fwcNkT7KPowA8hjux24F7Y4fJnztw_zO9BqKGbk_geI4WJRsLxlKxDTb052OLC-ojfMnajoVpMqu6gANkOfrIVj2yky3j-WVKVOqewun88Punozy1Usi9FsUqNzzEstGWNyHYEGUTrReF8siSmQ6ITGsdeSW8UtHKMmrplfCa16G0HgFdJZ7BVtd38QWwmfCh4KH2vC6ljoWJokFYFBRyPPqgM3g3kdMtxooZboh0C-NG4jskvhuI724yOCCKr2dStethoL86d-nwIDzxoo6zWSUj4r8YjDVkZxjb-ErXwmewh_xyvqVvgRDQWsS1mhqpKCpelMHuxEmXjujS3QpUBm_Wv_FwUcSk6mJ_PcwRUhsEVRk8Hxm_XqlAbCIRMGdgNkRiYyubf7r2YijgjfpFkustg_eT9Nyu69-0evn_bbyCB5zEmlxEfBe2UJziHlpMq_p1Oha_AFXJEr0
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUhcEG8CLTISNwhs_Ip9QAgQq6pSObFSb1FiT9pINFu6i9T-e2acZNHCcuCSg-1Izjw089mZ-QBeaRmVNQpzQleYaxdtXrcEXE1bqqjblvTChcInX-3RQh-fmtM9mOiORgGudkI75pNaXH1_e_3j5gM5_PuhZNy9W1EQ4kIxqXOruCiHcspbFJksg7GTMd0fen1Lrws_1s7sfnUrPqU2_hR1-q7blYH-_SPlH7epKUjN78HdMbsUHwdzuA972D-A2wPf5M1DOJ5TTimGlrHcbkMkhj5xec5Mwhei60Uq22X-N1H3kQY4dwwo1ktSqFjh2cVYqtQ_gsX8y7fPR_lIppAHq4p17mTEsrVetjH6iLpFH1RhAillZiNh08airFUwBr0u0epgVLCyiaUPBOlq9Rj2-2WPT0HMVIiFjE2QTaktFg5VS8AoGtI5hmgzeD2JsLocemZU6a5buWoQeEUCr5LAq-sMPrGUNyu533UaWF6dVaP7EEAJqsHZrNZICBCj844zDefbUNtGhQwOSUdV6PhZEAj0npCtZSoVw-2LMjiYtFdNNlYRWpLecLF7Bi830-RefGdS97j8mdYobR3BqgyeDMre7FQROtEEmTNwW2aw9SnbM313nlp4U4TRfPiWwZvJYn7v69-yevZ_y5_DHcmmzYdG8gD2ybzwkHKodfMiOcYvizsVfg
  priority: 102
  providerName: Scholars Portal
Title Fine structural human phantom in dentistry and instance tooth segmentation
URI https://cir.nii.ac.jp/crid/1871992116467451008
https://link.springer.com/article/10.1038/s41598-024-63319-x
https://www.ncbi.nlm.nih.gov/pubmed/38824210
https://www.proquest.com/docview/3062958180
https://www.proquest.com/docview/3063468675
https://pubmed.ncbi.nlm.nih.gov/PMC11144222
https://doaj.org/article/14c3be00a4e144ed898818589fca6b3c
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6lMFexr7rrQ0a7G0zsyVZlh7T0FACLWNbIW_Cls6tH-qUJYPtv99JtjOydQ97kUGSQb6TfPe7090BvJPcC1UITAldYSq1V2nVEHAtmlJ42TTElxAofHGpzq_kclWsDoCPsTDx0n5MaRl_0-PtsI8bEjQhGIzLVIkQeEN646Em8ccncDibLb8sd5aV4LuSuRkiZDKh73l5TwrFZP0kW7q2vU_P_Pu65B8-0yiKFk_g8aBDslm_6qdwgN0zeNhXlfz5HJYL0hxZnxg2JNVgsQ4fu7sJ9YJvWduxGJwbqryxqvPUETREh2y7JraxDV7fDgFJ3Qu4Wpx9nZ-nQ8mE1CmRb1PNPZaNMrzx3niUDRon8sIR6TPlCYHWCnklXFGgkSUq6QrhFK99aRwBt0q8hEm37vAIWCacz7mvHa9LqTDXKBqCP74gzqLzKoH3IwntXZ8Zw0aPttC2J7glgttIcPsjgdNA5d3MkNU6dqy_XduBywRDnKgxyyqJhPPQa6ODPqFN4ypVC5fACfHIuja0OUE9Ywi_qlAwpQhJihI4Hrlnh6O4sYSJuClCSHsCb3fDdIiCZ6TqcP09zhFSaQJPCbzqmb1bqSAMIgkYJ6D3tsHep-yPdO1NTNRNckQGE1sCH8Yd83td_6bV6_-b_gYe8bC1g2mIH8OEtheekKa0rafwoFyV0-GA0PP07PLTZ-qdq_k0Wh-ovZD6F3KEEmE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVC5ICivQAtGghNETWzHGx8QorSr7WuFUCv1ZhLbaXNosrCLaP8Uv5GZPLZaXrde9pBYK2dm7JnP45kP4JXkTqhE-BDRlQ9l6lSYFQhck2IonCwK1AsVCh9N1PhE7p8mpyvws6-FoWuV_Z7YbNSutnRGvoWhLdcJVSa_n34NiTWKsqs9hUZrFgf-6gdCttm7vR3U72vOR7vHH8dhxyoQWiXieZhy54eF0rxwTjsvC6-tiBOLs4uUQ5CWK88zYZPEazn0StpEWMVzN9QWsU0m8H9vwaqkitYBrG7vTj59XpzqUN5MxrqrzolEujVDD0lVbFyGSlDF0OWSB2yIAtCvVWX5txj3z6uav-VrGzc4ugd3u_iVfWgN7j6s-GodbreMllfrsLZDt4-IQO4B7I8wgmVtg1pq7sEaPkA2PSfe4gtWVsz1g1lWOXxAkar1bF6j-bCZP7voCqOqh3ByI0J-BIOqrvwTYJGwLuYutzwfSuXj1IsCYZhL0MK8dSqAN704zbTt0GGazLpITSt8g8I3jfDNZQDbJPHFSOqu3Tyov52ZbrEiHLIi91GUSY9407tUpxTXpLqwmcqFDWAT9WVsSb8xQk6tEUcrIm5JqFlSABu9Jk23JczMtQEH8HLxGhczZWiyytffmzFCqhRBXACPW8UvZioQC0kE6AGkSyax9CnLb6ryvGkYjv5M0lFfAG9767me179l9fT_n_EC1sbHR4fmcG9y8AzucDJxOp7iGzBA0_KbGK3N8-fdEmHw5aZX5S8_kFB2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJRHAy0YCU4QNbEdJz4gRNmu-oBVhajUm0lsp82h2S27iPav8euYyWOr5XXrJQfHipx5eObzeGYAXkruhEqEDxFd-VBmToV5icA1KVPhZFkiXyhR-NNY7R7J_ePkeAV-9rkwdK2y3xObjdpNLJ2Rb6Fry3XSZCaX3bWIw-Ho3fQ8pA5SFGnt22m0InLgL38gfJu93Rsir19xPtr58mE37DoMhFaJeB5m3Pm0VJqXzmnnZem1FXFicaWRcgjYCuV5LmySeC1Tr6RNhFW8cKm2iHNygd-9AaspWkU5gNXtnfHh58UJD8XQZKy7TJ1IZFsztJaU0cZlqARlD10sWcOmaQDauLqq_ubv_nlt87fYbWMSR_fgbufLsvet8N2HFV-vwc22u-XlGtwe0k0kaib3APZH6M2ytlgtFfpgTW9ANj2lHsZnrKqZ6yezvHY4QF6r9Ww-QVFiM39y1iVJ1Q_h6FqI_AgG9aT268AiYV3MXWF5kUrl48yLEiGZS1DavHUqgNc9Oc20rdZhmii7yExLfIPENw3xzUUA20TxxUyqtN0MTL6dmE5xERpZUfgoyqVH7OldpjPycTJd2lwVwgawifwytqJnjPBTa8TUipq4JFQ4KYCNnpOm2x5m5kqYA3ixeI2KTdGavPaT780cIVWGgC6Axy3jFysViIskgvUAsiWRWPqV5Td1ddoUD0fbJunYL4A3vfRcrevftHry_994DrdQG83HvfHBU7jDScLppIpvwAAly2-i4zYvnnUawuDrdSvlL91fVKI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+structural+human+phantom+in+dentistry+and+instance+tooth+segmentation&rft.jtitle=Scientific+reports&rft.au=Takeya%2C+Atsushi&rft.au=Watanabe%2C+Keiichiro&rft.au=Haga%2C+Akihiro&rft.date=2024-06-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-63319-x&rft.externalDocID=10_1038_s41598_024_63319_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon