Inhibition of lysosome degradation on autophagosome formation and responses to GMI, an immunomodulatory protein from Ganoderma microsporum
BACKGROUND AND PURPOSE Autophagic cell death is considered a self‐destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant fungal immunomodulatory protein cloned from Ganoderma microsporum, induced autophagic cell death in lung cancer cells. T...
Saved in:
Published in | British journal of pharmacology Vol. 167; no. 6; pp. 1287 - 1300 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.11.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0007-1188 1476-5381 1476-5381 |
DOI | 10.1111/j.1476-5381.2012.02073.x |
Cover
Loading…
Abstract | BACKGROUND AND PURPOSE Autophagic cell death is considered a self‐destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant fungal immunomodulatory protein cloned from Ganoderma microsporum, induced autophagic cell death in lung cancer cells. The aim of this study was to examine the role of autophagosome accumulation in GMI‐mediated cell death.
EXPERIMENTAL APPROACH Western blot analysis, flow cytometry and confocal microscopy were used to evaluate the effects of different treatments, including silencing of ATP6V0A1 by use of short hairpin RNAi, on GMI‐mediated cell death, lung cancer cell viability and autophagosome accumulation in vitro.
KEY RESULTS Lysosome inhibitors bafilomycin‐A1 and chloroquine increased GMI‐mediated autophagic cell death. GMI and bafilomycin‐A1 co‐treatment induced the accumulation of large amounts of autophagosomes, but did not significantly induce apoptosis. GMI elicited autophagy through the PKB (Akt)/mammalian target of rapamycin signalling pathway. Silencing of ATP6V0A1, one subunit of vesicular H+‐ATPases (V‐ATPases) that mediates lysosome acidification, spontaneously induced autophagosome accumulation, but did not affect lysosome acidity. GMI‐mediated autophagosome accumulation and cytotoxicity was increased in shATP6V0A1 lung cancer cells. Furthermore, ATP6V0A1 silencing decreased autophagosome and lysosome fusion in GMI‐treated CaLu‐1/GFP‐LC3 lung cancer cells.
CONCLUSION AND IMPLICATIONS We demonstrated that autophagosome accumulation induces autophagic cell death in a GMI treatment model, and ATP6V0A1 plays an important role in mediating autophagosome‐lysosome fusion. Our findings provide new insights into the mechanisms involved in the induction of autophagic cell death. |
---|---|
AbstractList | Autophagic cell death is considered a self-destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant fungal immunomodulatory protein cloned from Ganoderma microsporum, induced autophagic cell death in lung cancer cells. The aim of this study was to examine the role of autophagosome accumulation in GMI-mediated cell death.BACKGROUND AND PURPOSEAutophagic cell death is considered a self-destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant fungal immunomodulatory protein cloned from Ganoderma microsporum, induced autophagic cell death in lung cancer cells. The aim of this study was to examine the role of autophagosome accumulation in GMI-mediated cell death.Western blot analysis, flow cytometry and confocal microscopy were used to evaluate the effects of different treatments, including silencing of ATP6V0A1 by use of short hairpin RNAi, on GMI-mediated cell death, lung cancer cell viability and autophagosome accumulation in vitro.EXPERIMENTAL APPROACHWestern blot analysis, flow cytometry and confocal microscopy were used to evaluate the effects of different treatments, including silencing of ATP6V0A1 by use of short hairpin RNAi, on GMI-mediated cell death, lung cancer cell viability and autophagosome accumulation in vitro.Lysosome inhibitors bafilomycin-A1 and chloroquine increased GMI-mediated autophagic cell death. GMI and bafilomycin-A1 co-treatment induced the accumulation of large amounts of autophagosomes, but did not significantly induce apoptosis. GMI elicited autophagy through the PKB (Akt)/mammalian target of rapamycin signalling pathway. Silencing of ATP6V0A1, one subunit of vesicular H(+)-ATPases (V-ATPases) that mediates lysosome acidification, spontaneously induced autophagosome accumulation, but did not affect lysosome acidity. GMI-mediated autophagosome accumulation and cytotoxicity was increased in shATP6V0A1 lung cancer cells. Furthermore, ATP6V0A1 silencing decreased autophagosome and lysosome fusion in GMI-treated CaLu-1/GFP-LC3 lung cancer cells.KEY RESULTSLysosome inhibitors bafilomycin-A1 and chloroquine increased GMI-mediated autophagic cell death. GMI and bafilomycin-A1 co-treatment induced the accumulation of large amounts of autophagosomes, but did not significantly induce apoptosis. GMI elicited autophagy through the PKB (Akt)/mammalian target of rapamycin signalling pathway. Silencing of ATP6V0A1, one subunit of vesicular H(+)-ATPases (V-ATPases) that mediates lysosome acidification, spontaneously induced autophagosome accumulation, but did not affect lysosome acidity. GMI-mediated autophagosome accumulation and cytotoxicity was increased in shATP6V0A1 lung cancer cells. Furthermore, ATP6V0A1 silencing decreased autophagosome and lysosome fusion in GMI-treated CaLu-1/GFP-LC3 lung cancer cells.We demonstrated that autophagosome accumulation induces autophagic cell death in a GMI treatment model, and ATP6V0A1 plays an important role in mediating autophagosome-lysosome fusion. Our findings provide new insights into the mechanisms involved in the induction of autophagic cell death.CONCLUSION AND IMPLICATIONSWe demonstrated that autophagosome accumulation induces autophagic cell death in a GMI treatment model, and ATP6V0A1 plays an important role in mediating autophagosome-lysosome fusion. Our findings provide new insights into the mechanisms involved in the induction of autophagic cell death. Autophagic cell death is considered a self-destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant fungal immunomodulatory protein cloned from Ganoderma microsporum, induced autophagic cell death in lung cancer cells. The aim of this study was to examine the role of autophagosome accumulation in GMI-mediated cell death. Western blot analysis, flow cytometry and confocal microscopy were used to evaluate the effects of different treatments, including silencing of ATP6V0A1 by use of short hairpin RNAi, on GMI-mediated cell death, lung cancer cell viability and autophagosome accumulation in vitro. Lysosome inhibitors bafilomycin-A1 and chloroquine increased GMI-mediated autophagic cell death. GMI and bafilomycin-A1 co-treatment induced the accumulation of large amounts of autophagosomes, but did not significantly induce apoptosis. GMI elicited autophagy through the PKB (Akt)/mammalian target of rapamycin signalling pathway. Silencing of ATP6V0A1, one subunit of vesicular H(+)-ATPases (V-ATPases) that mediates lysosome acidification, spontaneously induced autophagosome accumulation, but did not affect lysosome acidity. GMI-mediated autophagosome accumulation and cytotoxicity was increased in shATP6V0A1 lung cancer cells. Furthermore, ATP6V0A1 silencing decreased autophagosome and lysosome fusion in GMI-treated CaLu-1/GFP-LC3 lung cancer cells. We demonstrated that autophagosome accumulation induces autophagic cell death in a GMI treatment model, and ATP6V0A1 plays an important role in mediating autophagosome-lysosome fusion. Our findings provide new insights into the mechanisms involved in the induction of autophagic cell death. BACKGROUND AND PURPOSE Autophagic cell death is considered a self‐destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant fungal immunomodulatory protein cloned from Ganoderma microsporum, induced autophagic cell death in lung cancer cells. The aim of this study was to examine the role of autophagosome accumulation in GMI‐mediated cell death. EXPERIMENTAL APPROACH Western blot analysis, flow cytometry and confocal microscopy were used to evaluate the effects of different treatments, including silencing of ATP6V0A1 by use of short hairpin RNAi, on GMI‐mediated cell death, lung cancer cell viability and autophagosome accumulation in vitro. KEY RESULTS Lysosome inhibitors bafilomycin‐A1 and chloroquine increased GMI‐mediated autophagic cell death. GMI and bafilomycin‐A1 co‐treatment induced the accumulation of large amounts of autophagosomes, but did not significantly induce apoptosis. GMI elicited autophagy through the PKB (Akt)/mammalian target of rapamycin signalling pathway. Silencing of ATP6V0A1, one subunit of vesicular H+‐ATPases (V‐ATPases) that mediates lysosome acidification, spontaneously induced autophagosome accumulation, but did not affect lysosome acidity. GMI‐mediated autophagosome accumulation and cytotoxicity was increased in shATP6V0A1 lung cancer cells. Furthermore, ATP6V0A1 silencing decreased autophagosome and lysosome fusion in GMI‐treated CaLu‐1/GFP‐LC3 lung cancer cells. CONCLUSION AND IMPLICATIONS We demonstrated that autophagosome accumulation induces autophagic cell death in a GMI treatment model, and ATP6V0A1 plays an important role in mediating autophagosome‐lysosome fusion. Our findings provide new insights into the mechanisms involved in the induction of autophagic cell death. BACKGROUND AND PURPOSE Autophagic cell death is considered a self-destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant fungal immunomodulatory protein cloned from Ganoderma microsporum, induced autophagic cell death in lung cancer cells. The aim of this study was to examine the role of autophagosome accumulation in GMI-mediated cell death. EXPERIMENTAL APPROACH Western blot analysis, flow cytometry and confocal microscopy were used to evaluate the effects of different treatments, including silencing of ATP6V0A1 by use of short hairpin RNAi, on GMI-mediated cell death, lung cancer cell viability and autophagosome accumulation in vitro. KEY RESULTS Lysosome inhibitors bafilomycin-A1 and chloroquine increased GMI-mediated autophagic cell death. GMI and bafilomycin-A1 co-treatment induced the accumulation of large amounts of autophagosomes, but did not significantly induce apoptosis. GMI elicited autophagy through the PKB (Akt)/mammalian target of rapamycin signalling pathway. Silencing of ATP6V0A1, one subunit of vesicular H super(+)-ATPases (V-ATPases) that mediates lysosome acidification, spontaneously induced autophagosome accumulation, but did not affect lysosome acidity. GMI-mediated autophagosome accumulation and cytotoxicity was increased in shATP6V0A1 lung cancer cells. Furthermore, ATP6V0A1 silencing decreased autophagosome and lysosome fusion in GMI-treated CaLu-1/GFP-LC3 lung cancer cells. CONCLUSION AND IMPLICATIONS We demonstrated that autophagosome accumulation induces autophagic cell death in a GMI treatment model, and ATP6V0A1 plays an important role in mediating autophagosome-lysosome fusion. Our findings provide new insights into the mechanisms involved in the induction of autophagic cell death. BACKGROUND AND PURPOSE Autophagic cell death is considered a self-destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant fungal immunomodulatory protein cloned from Ganoderma microsporum, induced autophagic cell death in lung cancer cells. The aim of this study was to examine the role of autophagosome accumulation in GMI-mediated cell death. EXPERIMENTAL APPROACH Western blot analysis, flow cytometry and confocal microscopy were used to evaluate the effects of different treatments, including silencing of ATP6V0A1 by use of short hairpin RNAi, on GMI-mediated cell death, lung cancer cell viability and autophagosome accumulation in vitro. KEY RESULTS Lysosome inhibitors bafilomycin-A1 and chloroquine increased GMI-mediated autophagic cell death. GMI and bafilomycin-A1 co-treatment induced the accumulation of large amounts of autophagosomes, but did not significantly induce apoptosis. GMI elicited autophagy through the PKB (Akt)/mammalian target of rapamycin signalling pathway. Silencing of ATP6V0A1, one subunit of vesicular H+-ATPases (V-ATPases) that mediates lysosome acidification, spontaneously induced autophagosome accumulation, but did not affect lysosome acidity. GMI-mediated autophagosome accumulation and cytotoxicity was increased in shATP6V0A1 lung cancer cells. Furthermore, ATP6V0A1 silencing decreased autophagosome and lysosome fusion in GMI-treated CaLu-1/GFP-LC3 lung cancer cells. CONCLUSION AND IMPLICATIONS We demonstrated that autophagosome accumulation induces autophagic cell death in a GMI treatment model, and ATP6V0A1 plays an important role in mediating autophagosome-lysosome fusion. Our findings provide new insights into the mechanisms involved in the induction of autophagic cell death. BACKGROUND AND PURPOSE Autophagic cell death is considered a self‐destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant fungal immunomodulatory protein cloned from Ganoderma microsporum , induced autophagic cell death in lung cancer cells. The aim of this study was to examine the role of autophagosome accumulation in GMI‐mediated cell death. EXPERIMENTAL APPROACH Western blot analysis, flow cytometry and confocal microscopy were used to evaluate the effects of different treatments, including silencing of ATP6V0A1 by use of short hairpin RNAi, on GMI‐mediated cell death, lung cancer cell viability and autophagosome accumulation in vitro . KEY RESULTS Lysosome inhibitors bafilomycin‐A1 and chloroquine increased GMI‐mediated autophagic cell death. GMI and bafilomycin‐A1 co‐treatment induced the accumulation of large amounts of autophagosomes, but did not significantly induce apoptosis. GMI elicited autophagy through the PKB (Akt)/mammalian target of rapamycin signalling pathway. Silencing of ATP6V0A1, one subunit of vesicular H + ‐ATPases (V‐ATPases) that mediates lysosome acidification, spontaneously induced autophagosome accumulation, but did not affect lysosome acidity. GMI‐mediated autophagosome accumulation and cytotoxicity was increased in shATP6V0A1 lung cancer cells. Furthermore, ATP6V0A1 silencing decreased autophagosome and lysosome fusion in GMI‐treated CaLu‐1/GFP‐LC3 lung cancer cells. CONCLUSION AND IMPLICATIONS We demonstrated that autophagosome accumulation induces autophagic cell death in a GMI treatment model, and ATP6V0A1 plays an important role in mediating autophagosome‐lysosome fusion. Our findings provide new insights into the mechanisms involved in the induction of autophagic cell death. |
Author | Sheu, Gwo‐Tarng Hsin, I‐Lun Ko, Jiunn‐Liang Wu, Tzu‐Chin Lue, Ko‐Huang Jan, Ming‐Shiou Sun, Hai‐Lun Chiu, Ling‐Yen |
Author_xml | – sequence: 1 givenname: I‐Lun surname: Hsin fullname: Hsin, I‐Lun – sequence: 2 givenname: Gwo‐Tarng surname: Sheu fullname: Sheu, Gwo‐Tarng – sequence: 3 givenname: Ming‐Shiou surname: Jan fullname: Jan, Ming‐Shiou – sequence: 4 givenname: Hai‐Lun surname: Sun fullname: Sun, Hai‐Lun – sequence: 5 givenname: Tzu‐Chin surname: Wu fullname: Wu, Tzu‐Chin – sequence: 6 givenname: Ling‐Yen surname: Chiu fullname: Chiu, Ling‐Yen – sequence: 7 givenname: Ko‐Huang surname: Lue fullname: Lue, Ko‐Huang – sequence: 8 givenname: Jiunn‐Liang surname: Ko fullname: Ko, Jiunn‐Liang |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26561634$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22708544$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUt1uFCEYJabG_ugrGBJj4oW78jfAXGiijW43qdELvSYMw-yyGWCFGe2-gk8t09222hvLDeQ75zvA-c4pOAoxWAAgRnNc1pvNHDPBZxWVeE4QJnNEkKDzq0fg5BY4AicIITHDWMpjcJrzBqECiuoJOCZEIFkxdgJ-L8PaNW5wMcDYwX6XY47ewtaukm71vh6gHoe4XevVHuxi8ntIhxYmm7cxZJvhEOHi8_J1qULn_Riij-3Y6yGmHdymOFgXYJeihwsdYmuLCPTOpFj60-ifgsed7rN9dtjPwPdPH7-dX8wuvyyW5-8vZ4ZTTGekwk1luBHGIFbV0hrMaMcaXhuLqa2pFI3pGtNYgdviCpFCm87imklBKWnpGXi3192OjbetsWFIulfb5LxOOxW1U_8iwa3VKv5UtEKsrlkReHUQSPHHaPOgvMvG9r0ONo5ZYSE4Z7Kq0f-phNaoKlMhhfriHnUTxxSKE0WQ80pyguvCev73429ffTPRQnh5IOhsdN8lHYzLdzxeccwpu3Nh8j8n2ynjhuuhlj-7XmGkpqipjZoSpaZEqSlq6jpq6qoIyHsCN3c8oPXtvvWX6-3uwX3qw9eL6UT_APyg7bc |
CODEN | BJPCBM |
CitedBy_id | crossref_primary_10_1080_17460441_2020_1773429 crossref_primary_10_1371_journal_pone_0134676 crossref_primary_10_2147_CMAR_S228718 crossref_primary_10_3390_ijms22136854 crossref_primary_10_1016_j_drudis_2018_09_014 crossref_primary_10_1016_j_jaut_2020_102576 crossref_primary_10_1016_j_biocon_2019_06_021 crossref_primary_10_1177_1534735419833795 crossref_primary_10_1007_s00253_022_11839_9 crossref_primary_10_1016_j_tiv_2019_104690 crossref_primary_10_1073_pnas_1413764111 crossref_primary_10_1186_s11658_017_0053_1 crossref_primary_10_3168_jds_2021_20892 crossref_primary_10_1016_j_antiviral_2017_11_017 crossref_primary_10_3389_fcell_2022_810272 crossref_primary_10_1016_j_lfs_2023_122255 crossref_primary_10_1016_j_antiviral_2018_10_011 crossref_primary_10_1016_j_plefa_2018_02_002 crossref_primary_10_1080_07388551_2020_1808581 crossref_primary_10_3390_ijms20010007 crossref_primary_10_1002_tox_22489 crossref_primary_10_1016_j_canlet_2023_216458 crossref_primary_10_3390_ijms19030855 crossref_primary_10_3892_mmr_2019_10279 crossref_primary_10_1016_j_jcmgh_2022_05_006 crossref_primary_10_3390_ijms25137493 crossref_primary_10_1002_jcb_24630 crossref_primary_10_3233_JPD_202138 crossref_primary_10_3389_fphar_2018_01217 crossref_primary_10_1016_j_ijbiomac_2025_142179 crossref_primary_10_1021_mp500840z crossref_primary_10_1016_j_mcn_2022_103735 crossref_primary_10_1016_j_toxrep_2022_05_013 crossref_primary_10_1002_jcp_27991 crossref_primary_10_1002_tox_24399 crossref_primary_10_1371_journal_pone_0190597 crossref_primary_10_1080_14786419_2018_1512994 crossref_primary_10_1002_jcp_29924 crossref_primary_10_1186_s13024_018_0273_5 crossref_primary_10_1002_tox_22582 crossref_primary_10_1016_j_phymed_2022_154215 crossref_primary_10_1080_17460441_2017_1349751 crossref_primary_10_1016_j_bcp_2017_07_018 crossref_primary_10_1038_s41416_020_0885_8 crossref_primary_10_1097_CMR_0000000000000137 crossref_primary_10_1016_j_taap_2025_117233 crossref_primary_10_1016_j_phymed_2018_06_023 crossref_primary_10_1016_j_ijbiomac_2024_129291 crossref_primary_10_1080_0028825X_2024_2375996 crossref_primary_10_1371_journal_pone_0125774 crossref_primary_10_1016_j_ijbiomac_2022_05_136 crossref_primary_10_1016_j_cbi_2022_110177 crossref_primary_10_1016_j_yexcr_2022_113222 crossref_primary_10_1016_j_phymed_2016_09_003 |
Cites_doi | 10.1271/bbb.60232 10.1016/j.cell.2011.07.030 10.1016/j.molcel.2011.04.024 10.1038/446745a 10.4161/auto.6845 10.1016/j.cmet.2007.11.001 10.1038/emboj.2011.335 10.1038/jid.2009.80 10.1038/emboj.2011.355 10.4161/auto.7.5.14226 10.1016/j.molcel.2006.12.009 10.1021/jf103068w 10.1038/nrclinonc.2011.71 10.1016/j.procbio.2010.06.006 10.1158/0008-5472.CAN-10-1626 10.1016/j.bcp.2007.07.025 10.1016/j.ceca.2011.04.001 10.1126/scisignal.2001017 10.1002/mc.20161 10.4161/auto.7.8.15698 10.1083/jcb.200212004 10.1038/emboj.2011.257 10.1038/ncb1730 10.1247/csf.23.33 10.1158/1078-0432.CCR-10-1948 10.1093/carcin/bgr031 10.4161/auto.5939 10.1038/nrm2239 10.1152/physiol.00005.2004 10.1038/ncb0910-814 10.1016/j.cell.2010.01.028 10.1074/jbc.274.19.12951 10.1016/j.cell.2008.04.037 10.1016/S1387-2656(07)13010-6 10.1016/j.fct.2008.01.044 10.1158/0008-5472.CAN-09-2190 10.4161/auto.1.2.1697 10.4161/auto.5338 10.1038/cdd.2010.53 |
ContentType | Journal Article |
Copyright | 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society 2015 INIST-CNRS 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society. 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society 2012 |
Copyright_xml | – notice: 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society – notice: 2015 INIST-CNRS – notice: 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society. – notice: 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7TK K9. NAPCQ 7X8 7T5 H94 M7N 5PM |
DOI | 10.1111/j.1476-5381.2012.02073.x |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1476-5381 |
EndPage | 1300 |
ExternalDocumentID | PMC3504994 3957591871 22708544 26561634 10_1111_j_1476_5381_2012_02073_x BPH2073 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 3V. 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ PROAC PSQYO Q.N Q2X QB0 RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- AAFWJ AAYXX AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QP 7TK K9. 1OB 7X8 7T5 H94 M7N 5PM |
ID | FETCH-LOGICAL-c6313-251b5c6c7cc04598ec143f4b69ce13e9387bcfbcbe71d073287acfe19487332d3 |
ISSN | 0007-1188 1476-5381 |
IngestDate | Thu Aug 21 18:29:37 EDT 2025 Fri Jul 11 09:20:22 EDT 2025 Sun Aug 24 04:03:13 EDT 2025 Fri Jul 25 19:38:08 EDT 2025 Mon Jul 21 05:51:02 EDT 2025 Mon Jul 21 09:15:04 EDT 2025 Tue Jul 01 02:54:19 EDT 2025 Thu Apr 24 23:05:53 EDT 2025 Wed Jan 22 17:10:14 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | autophagic flux GMI autophagic cell death autophagy Enzyme PKB Adenosinetriphosphatase Lysosome immunomodulatory protein Microsporum Basidiomycota Fungi Immunomodulator Cell death V-ATPases Mammalian target of rapamycin mTOR Hydrolases Fungi Imperfecti Ganoderma ATP6V0A1 |
Language | English |
License | CC BY 4.0 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c6313-251b5c6c7cc04598ec143f4b69ce13e9387bcfbcbe71d073287acfe19487332d3 |
Notes | The two corresponding authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1476-5381.2012.02073.x |
PMID | 22708544 |
PQID | 1766586219 |
PQPubID | 42104 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3504994 proquest_miscellaneous_1776648590 proquest_miscellaneous_1239054772 proquest_journals_1766586219 pubmed_primary_22708544 pascalfrancis_primary_26561634 crossref_citationtrail_10_1111_j_1476_5381_2012_02073_x crossref_primary_10_1111_j_1476_5381_2012_02073_x wiley_primary_10_1111_j_1476_5381_2012_02073_x_BPH2073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2012 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: November 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Basingstoke – name: England – name: London |
PublicationTitle | British journal of pharmacology |
PublicationTitleAlternate | Br J Pharmacol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Nature Publishing Group |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing Group |
References | 2010; 12 2006; 70 2009; 69 2008a; 4 2007; 446 2010; 17 2010a; 58 2011; 30 2011; 32 2008; 10 2010; 140 2007; 74 2008; 4 2011; 17 2007; 13 2011; 8 1998; 23 2011; 7 2008b; 4 2011; 146 2006; 45 2004; 19 2011; 50 2003; 162 1999; 274 2011; 42 2007; 8 2007; 6 2008; 46 2005; 1 2010; 3 2009; 129 2010; 70 2008; 133 2010b; 45 2007; 25 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_20_1 Geng Y (e_1_2_8_9_1) 2010; 12 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 21062993 - Sci Signal. 2010;3(147):ra81 18454141 - Nat Cell Biol. 2008 Jun;10(6):676-87 12876274 - J Cell Biol. 2003 Jul 21;162(2):211-22 15304635 - Physiology (Bethesda). 2004 Aug;19:207-15 21490426 - Autophagy. 2011 Aug;7(8):873-82 22009224 - EMBO J. 2011 Oct 19;30(20):4113-5 18188003 - Autophagy. 2008 Feb;4(2):151-75 18758232 - Autophagy. 2008 Oct;4(7):849-50 20508647 - Cell Death Differ. 2010 Dec;17(12):1867-81 21587219 - Nat Rev Clin Oncol. 2011 Sep;8(9):528-39 21884931 - Cell. 2011 Sep 2;146(5):682-95 18054315 - Cell Metab. 2007 Dec;6(6):458-71 18510934 - Cell. 2008 May 30;133(5):916-27 17875480 - Biotechnol Annu Rev. 2007;13:265-301 20144757 - Cell. 2010 Feb 5;140(3):313-26 19920197 - Cancer Res. 2009 Dec 1;69(23):8967-76 18376137 - Autophagy. 2008 Jul;4(5):621-8 21934648 - EMBO J. 2011 Oct 19;30(20):4126-41 17090952 - Biosci Biotechnol Biochem. 2006 Nov;70(11):2627-34 20876807 - Cancer Res. 2010 Oct 1;70(19):7699-709 21690574 - Clin Cancer Res. 2011 Aug 15;17(16):5353-66 17720143 - Biochem Pharmacol. 2007 Nov 15;74(10):1541-54 20406898 - Neuro Oncol. 2010 May;12(5):473-81 21317301 - Carcinogenesis. 2011 Jul;32(7):955-63 21571367 - Cell Calcium. 2011 Sep;50(3):242-50 17244528 - Mol Cell. 2007 Jan 26;25(2):193-205 10224039 - J Biol Chem. 1999 May 7;274(19):12951-4 16402390 - Mol Carcinog. 2006 Apr;45(4):220-9 16874052 - Autophagy. 2005 Jul;1(2):84-91 18329152 - Food Chem Toxicol. 2008 May;46(5):1851-9 21150268 - Autophagy. 2011 May;7(5):457-65 17717517 - Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52 9639028 - Cell Struct Funct. 1998 Feb;23(1):33-42 21700220 - Mol Cell. 2011 Jun 24;42(6):731-43 21028821 - J Agric Food Chem. 2010 Nov 24;58(22):12014-21 21804531 - EMBO J. 2011 Aug 17;30(16):3242-58 19357706 - J Invest Dermatol. 2009 Oct;129(10):2419-26 20811353 - Nat Cell Biol. 2010 Sep;12(9):814-22 17429391 - Nature. 2007 Apr 12;446(7137):745-7 |
References_xml | – volume: 140 start-page: 313 year: 2010 end-page: 326 article-title: Methods in mammalian autophagy research publication-title: Cell – volume: 70 start-page: 7699 year: 2010 end-page: 7709 article-title: Inhibition of autophagy enhances anticancer effects of atorvastatin in digestive malignancies publication-title: Cancer Res – volume: 19 start-page: 207 year: 2004 end-page: 215 article-title: The pH of the secretory pathway: measurement, determinants, and regulation publication-title: Physiology (Bethesda) – volume: 129 start-page: 2419 year: 2009 end-page: 2426 article-title: Hydroxychloroquine modulates metabolic activity and proliferation and induces autophagic cell death of human dermal fibroblasts publication-title: J Invest Dermatol – volume: 32 start-page: 955 year: 2011 end-page: 963 article-title: The multiple roles of autophagy in cancer publication-title: Carcinogenesis – volume: 12 start-page: 814 year: 2010 end-page: 822 article-title: Eaten alive: a history of macroautophagy publication-title: Nat Cell Biol – volume: 70 start-page: 2627 year: 2006 end-page: 2634 article-title: Functional expression of FIP‐gts, a fungal immunomodulatory protein from Ganoderma tsugae in Sf21 insect cells publication-title: Biosci Biotechnol Biochem – volume: 10 start-page: 676 year: 2008 end-page: 687 article-title: Regulation of autophagy by cytoplasmic p53 publication-title: Nat Cell Biol – volume: 17 start-page: 1867 year: 2010 end-page: 1881 article-title: Arsenic trioxide induces a beclin‐1‐independent autophagic pathway via modulation of SnoN/SkiL expression in ovarian carcinoma cells publication-title: Cell Death Differ – volume: 23 start-page: 33 year: 1998 end-page: 42 article-title: Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H‐4‐II‐E cells publication-title: Cell Struct Funct – volume: 50 start-page: 242 year: 2011 end-page: 250 article-title: A dual role for Ca(2+) in autophagy regulation publication-title: Cell Calcium – volume: 42 start-page: 731 year: 2011 end-page: 743 article-title: Distinct autophagosomal‐lysosomal fusion mechanism revealed by thapsigargin‐induced autophagy arrest publication-title: Mol Cell – volume: 4 start-page: 621 year: 2008 end-page: 628 article-title: Utilizing flow cytometry to monitor autophagy in living mammalian cells publication-title: Autophagy – volume: 45 start-page: 220 year: 2006 end-page: 229 article-title: Transcriptionally mediated inhibition of telomerase of fungal immunomodulatory protein from in A549 human lung adenocarcinoma cell line publication-title: Mol Carcinog – volume: 12 start-page: 473 year: 2010 end-page: 481 article-title: Chloroquine‐induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent publication-title: Neuro Oncol – volume: 17 start-page: 5353 year: 2011 end-page: 5366 article-title: PM02734 (elisidepsin) induces caspase‐independent cell death associated with features of autophagy, inhibition of the Akt/mTOR signaling pathway, and activation of death‐associated protein kinase publication-title: Clin Cancer Res – volume: 30 start-page: 3242 year: 2011 end-page: 3258 article-title: Regulation of TFEB and V‐ATPases by mTORC1 publication-title: EMBO J – volume: 8 start-page: 741 year: 2007 end-page: 752 article-title: Self‐eating and self‐killing: crosstalk between autophagy and apoptosis publication-title: Nat Rev Mol Cell Biol – volume: 74 start-page: 1541 year: 2007 end-page: 1554 article-title: Nuclear translocation of telomerase reverse transcriptase and calcium signaling in repression of telomerase activity in human lung cancer cells by fungal immunomodulatory protein from publication-title: Biochem Pharmacol – volume: 7 start-page: 873 year: 2011 end-page: 882 article-title: GMI, an immunomodulatory protein from , induces autophagy in non‐small cell lung cancer cells publication-title: Autophagy – volume: 1 start-page: 84 year: 2005 end-page: 91 article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy publication-title: Autophagy – volume: 30 start-page: 4126 year: 2011 end-page: 4141 article-title: The V‐ATPase proteolipid cylinder promotes the lipid‐mixing stage of SNARE‐dependent fusion of yeast vacuoles publication-title: EMBO J – volume: 3 start-page: ra81 year: 2010 article-title: Akt and autophagy cooperate to promote survival of drug‐resistant glioma publication-title: Sci Signal – volume: 146 start-page: 682 year: 2011 end-page: 695 article-title: Autophagy and aging publication-title: Cell – volume: 7 start-page: 457 year: 2011 end-page: 465 article-title: Autophagic cell death: Loch Ness monster or endangered species? publication-title: Autophagy – volume: 446 start-page: 745 year: 2007 end-page: 747 article-title: Cell biology: autophagy and cancer publication-title: Nature – volume: 4 start-page: 151 year: 2008a end-page: 175 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes publication-title: Autophagy – volume: 58 start-page: 12014 year: 2010a end-page: 12021 article-title: GMI, a Ganoderma immunomodulatory protein, down‐regulates tumor necrosis factor alpha‐induced expression of matrix metalloproteinase 9 via NF‐kappaB pathway in human alveolar epithelial A549 cells publication-title: J Agric Food Chem – volume: 133 start-page: 916 year: 2008 end-page: 927 article-title: Live imaging of neuronal degradation by microglia reveals a role for v0‐ATPase a1 in phagosomal fusion publication-title: Cell – volume: 4 start-page: 849 year: 2008b end-page: 950 article-title: Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? publication-title: Autophagy – volume: 45 start-page: 1537 year: 2010b end-page: 1542 article-title: A new immunomodulatory protein from inhibits epidermal growth factor mediated migration and invasion in A549 lung cancer cells publication-title: Process Biochem – volume: 274 start-page: 12951 year: 1999 end-page: 12954 article-title: Structure and properties of the vacuolar (H+)‐ATPases publication-title: J Biol Chem – volume: 162 start-page: 211 year: 2003 end-page: 222 article-title: Vacuole membrane fusion: V0 functions after trans‐SNARE pairing and is coupled to the Ca2+‐releasing channel publication-title: J Cell Biol – volume: 13 start-page: 265 year: 2007 end-page: 301 article-title: Ganoderma lucidum and its pharmaceutically active compounds publication-title: Biotechnol Annu Rev – volume: 69 start-page: 8967 year: 2009 end-page: 8976 article-title: Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy publication-title: Cancer Res – volume: 46 start-page: 1851 year: 2008 end-page: 1859 article-title: Induction of premature senescence in human lung cancer by fungal immunomodulatory protein from publication-title: Food Chem Toxicol – volume: 6 start-page: 458 year: 2007 end-page: 471 article-title: FoxO3 controls autophagy in skeletal muscle publication-title: Cell Metab – volume: 30 start-page: 4113 year: 2011 end-page: 4115 article-title: Duelling functions of the V‐ATPase publication-title: EMBO J – volume: 25 start-page: 193 year: 2007 end-page: 205 article-title: Control of macroautophagy by calcium, calmodulin‐dependent kinase kinase‐beta, and Bcl‐2 publication-title: Mol Cell – volume: 8 start-page: 528 year: 2011 end-page: 539 article-title: Autophagy as a target for anticancer therapy publication-title: Nat Rev Clin Oncol – ident: e_1_2_8_13_1 doi: 10.1271/bbb.60232 – ident: e_1_2_8_31_1 doi: 10.1016/j.cell.2011.07.030 – ident: e_1_2_8_8_1 doi: 10.1016/j.molcel.2011.04.024 – ident: e_1_2_8_16_1 doi: 10.1038/446745a – ident: e_1_2_8_15_1 doi: 10.4161/auto.6845 – ident: e_1_2_8_24_1 doi: 10.1016/j.cmet.2007.11.001 – ident: e_1_2_8_36_1 doi: 10.1038/emboj.2011.335 – ident: e_1_2_8_29_1 doi: 10.1038/jid.2009.80 – ident: e_1_2_8_32_1 doi: 10.1038/emboj.2011.355 – ident: e_1_2_8_33_1 doi: 10.4161/auto.7.5.14226 – ident: e_1_2_8_10_1 doi: 10.1016/j.molcel.2006.12.009 – ident: e_1_2_8_20_1 doi: 10.1021/jf103068w – ident: e_1_2_8_12_1 doi: 10.1038/nrclinonc.2011.71 – ident: e_1_2_8_21_1 doi: 10.1016/j.procbio.2010.06.006 – ident: e_1_2_8_40_1 doi: 10.1158/0008-5472.CAN-10-1626 – ident: e_1_2_8_18_1 doi: 10.1016/j.bcp.2007.07.025 – ident: e_1_2_8_4_1 doi: 10.1016/j.ceca.2011.04.001 – ident: e_1_2_8_5_1 doi: 10.1126/scisignal.2001017 – ident: e_1_2_8_17_1 doi: 10.1002/mc.20161 – ident: e_1_2_8_11_1 doi: 10.4161/auto.7.8.15698 – ident: e_1_2_8_2_1 doi: 10.1083/jcb.200212004 – ident: e_1_2_8_27_1 doi: 10.1038/emboj.2011.257 – ident: e_1_2_8_38_1 doi: 10.1038/ncb1730 – ident: e_1_2_8_39_1 doi: 10.1247/csf.23.33 – ident: e_1_2_8_22_1 doi: 10.1158/1078-0432.CCR-10-1948 – ident: e_1_2_8_30_1 doi: 10.1093/carcin/bgr031 – ident: e_1_2_8_34_1 doi: 10.4161/auto.5939 – ident: e_1_2_8_23_1 doi: 10.1038/nrm2239 – ident: e_1_2_8_26_1 doi: 10.1152/physiol.00005.2004 – ident: e_1_2_8_41_1 doi: 10.1038/ncb0910-814 – ident: e_1_2_8_25_1 doi: 10.1016/j.cell.2010.01.028 – ident: e_1_2_8_6_1 doi: 10.1074/jbc.274.19.12951 – ident: e_1_2_8_28_1 doi: 10.1016/j.cell.2008.04.037 – ident: e_1_2_8_3_1 doi: 10.1016/S1387-2656(07)13010-6 – ident: e_1_2_8_19_1 doi: 10.1016/j.fct.2008.01.044 – volume: 12 start-page: 473 year: 2010 ident: e_1_2_8_9_1 article-title: Chloroquine‐induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent publication-title: Neuro Oncol – ident: e_1_2_8_7_1 doi: 10.1158/0008-5472.CAN-09-2190 – ident: e_1_2_8_37_1 doi: 10.4161/auto.1.2.1697 – ident: e_1_2_8_14_1 doi: 10.4161/auto.5338 – ident: e_1_2_8_35_1 doi: 10.1038/cdd.2010.53 – reference: 21934648 - EMBO J. 2011 Oct 19;30(20):4126-41 – reference: 18454141 - Nat Cell Biol. 2008 Jun;10(6):676-87 – reference: 21150268 - Autophagy. 2011 May;7(5):457-65 – reference: 17429391 - Nature. 2007 Apr 12;446(7137):745-7 – reference: 21028821 - J Agric Food Chem. 2010 Nov 24;58(22):12014-21 – reference: 18329152 - Food Chem Toxicol. 2008 May;46(5):1851-9 – reference: 21062993 - Sci Signal. 2010;3(147):ra81 – reference: 18758232 - Autophagy. 2008 Oct;4(7):849-50 – reference: 21587219 - Nat Rev Clin Oncol. 2011 Sep;8(9):528-39 – reference: 18188003 - Autophagy. 2008 Feb;4(2):151-75 – reference: 16874052 - Autophagy. 2005 Jul;1(2):84-91 – reference: 17244528 - Mol Cell. 2007 Jan 26;25(2):193-205 – reference: 21571367 - Cell Calcium. 2011 Sep;50(3):242-50 – reference: 21884931 - Cell. 2011 Sep 2;146(5):682-95 – reference: 15304635 - Physiology (Bethesda). 2004 Aug;19:207-15 – reference: 19920197 - Cancer Res. 2009 Dec 1;69(23):8967-76 – reference: 10224039 - J Biol Chem. 1999 May 7;274(19):12951-4 – reference: 17717517 - Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52 – reference: 21690574 - Clin Cancer Res. 2011 Aug 15;17(16):5353-66 – reference: 20876807 - Cancer Res. 2010 Oct 1;70(19):7699-709 – reference: 20811353 - Nat Cell Biol. 2010 Sep;12(9):814-22 – reference: 18510934 - Cell. 2008 May 30;133(5):916-27 – reference: 18376137 - Autophagy. 2008 Jul;4(5):621-8 – reference: 20508647 - Cell Death Differ. 2010 Dec;17(12):1867-81 – reference: 19357706 - J Invest Dermatol. 2009 Oct;129(10):2419-26 – reference: 18054315 - Cell Metab. 2007 Dec;6(6):458-71 – reference: 12876274 - J Cell Biol. 2003 Jul 21;162(2):211-22 – reference: 16402390 - Mol Carcinog. 2006 Apr;45(4):220-9 – reference: 21700220 - Mol Cell. 2011 Jun 24;42(6):731-43 – reference: 9639028 - Cell Struct Funct. 1998 Feb;23(1):33-42 – reference: 17875480 - Biotechnol Annu Rev. 2007;13:265-301 – reference: 21490426 - Autophagy. 2011 Aug;7(8):873-82 – reference: 20406898 - Neuro Oncol. 2010 May;12(5):473-81 – reference: 22009224 - EMBO J. 2011 Oct 19;30(20):4113-5 – reference: 17090952 - Biosci Biotechnol Biochem. 2006 Nov;70(11):2627-34 – reference: 17720143 - Biochem Pharmacol. 2007 Nov 15;74(10):1541-54 – reference: 20144757 - Cell. 2010 Feb 5;140(3):313-26 – reference: 21317301 - Carcinogenesis. 2011 Jul;32(7):955-63 – reference: 21804531 - EMBO J. 2011 Aug 17;30(16):3242-58 |
SSID | ssj0014775 |
Score | 2.3086283 |
Snippet | BACKGROUND AND PURPOSE Autophagic cell death is considered a self‐destructive process that results from large amounts of autophagic flux. In our previous... BACKGROUND AND PURPOSE Autophagic cell death is considered a self‐destructive process that results from large amounts of autophagic flux. In our previous... Autophagic cell death is considered a self-destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant... BACKGROUND AND PURPOSE Autophagic cell death is considered a self-destructive process that results from large amounts of autophagic flux. In our previous... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1287 |
SubjectTerms | Apoptosis ATP6V0A1 autophagic cell death autophagic flux autophagy Autophagy - drug effects Biological and medical sciences Cell Line, Tumor Chloroquine - pharmacology Fungal Proteins - pharmacology Ganoderma Gene Silencing GMI Humans Immunologic Factors - pharmacology immunomodulatory protein Kinases Lung cancer lysosome Lysosomes - drug effects Macrolides - pharmacology Medical sciences Microsporum mTOR Phagosomes - drug effects Pharmacology. Drug treatments PKB Proto-Oncogene Proteins c-akt - metabolism Research Papers TOR Serine-Threonine Kinases - metabolism Vacuolar Proton-Translocating ATPases - genetics V‐ATPases |
Title | Inhibition of lysosome degradation on autophagosome formation and responses to GMI, an immunomodulatory protein from Ganoderma microsporum |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1476-5381.2012.02073.x https://www.ncbi.nlm.nih.gov/pubmed/22708544 https://www.proquest.com/docview/1766586219 https://www.proquest.com/docview/1239054772 https://www.proquest.com/docview/1776648590 https://pubmed.ncbi.nlm.nih.gov/PMC3504994 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBahexmMsfuydUWD0ZfEIb7Kety1ybaOQFPom7FluTE0dohjRvcT9nv3A3ZkybKdhjUrBGMkWTjWOUfnk46-g9A7J06YyS3P4E5iG45YsqKUUCNKQurbzE3cKsfS6Q9vcu58vXAver0_railchON2K-d50ruMqpQBuMqTsn-x8jqTqEA7mF84QojDNe9xniaLdIorX2-q-siL_KlOAh1uQ5j5Qtmg7AU5AHhpazUpxVlZLkMkZU8DyenUxnMOUjFqZF8mcciuZfYha_oHNJMnkY5CTORQW0ZDpYinE8AY0XosMWU1KKlWDUU2XoRf1JIAoOpjrj4XmpZPVvwslq0_5nr6nm4VhNtxQ6g4v7BWtUNzhZpXjb7XFWDSZje6F8tc5iWOu_XNt0EymQOwBGX1tohngEW2-yYc5neQ8lt2zjDVExaE73YyLtlElHdiwhAawSONbHr4NI2b_fWfKqjHNv4iniB6CkQPQVVTwL53LMA3Ijp5NP0m977cgiReTfUH-7Gn-18p45T9WAVFqDfiUzMsgs53QwAbgOzyrOaP0IPFSTC76V8P0Y9nj1BxzMpMNdDPG-OCBZDfIxnLVF6in43SoDzBNdKgFtKgOHXUQKslQCDEmCtBHiTY1CCIZTibRXASgWwUAGsVQC3VOAZOv_yef5xYqgEIwbzbNM2wLePXOYxwhggG-pzBughcSKPMm7anNo-iVgSsYgTMx4LWisSsoSbFFC-bVux_RwdZHnGXyKcMCthMZhDxiKwegl1aeSAHzSOfZcDiOojUo9QwBT7vkgCcxXcJiV9ZOonV5KBZo9njjpCoB-0AL4BAnP66LCWikDZgiIQXLGu74EP00dvdTVMN2IPMcx4XkIby6aA8kBs_9GGQEeO79JxH72Qgta8gEUA5DnwAqQjgrqBoLvv1mTpoqK9t12xPANPepWw7v0xgg-zibh7dYcP-Rrdb4zRITrYrEv-BlDIJjqqlPYvLNYs1g |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+lysosome+degradation+on+autophagosome+formation+and+responses+to+GMI%2C+an+immunomodulatory+protein+from+Ganoderma+microsporum&rft.jtitle=British+journal+of+pharmacology&rft.au=Hsin%2C+I%E2%80%90Lun&rft.au=Sheu%2C+Gwo%E2%80%90Tarng&rft.au=Jan%2C+Ming%E2%80%90Shiou&rft.au=Sun%2C+Hai%E2%80%90Lun&rft.date=2012-11-01&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=167&rft.issue=6&rft.spage=1287&rft.epage=1300&rft_id=info:doi/10.1111%2Fj.1476-5381.2012.02073.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1476_5381_2012_02073_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |