Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization
Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of...
Saved in:
Published in | Medical physics (Lancaster) Vol. 38; no. 2; pp. 701 - 711 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association of Physicists in Medicine
01.02.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-2405 2473-4209 0094-2405 |
DOI | 10.1118/1.3533711 |
Cover
Loading…
Abstract | Purpose:
The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization.
Methods:
After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of “metal shadows” in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflectsa priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective.
Results:
The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images.
Conclusions:
Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general “missing data” image reconstruction problems. |
---|---|
AbstractList | Purpose:
The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization.
Methods:
After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of “metal shadows” in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflectsa priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective.
Results:
The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images.
Conclusions:
Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general “missing data” image reconstruction problems. Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of "metal shadows" in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general "missing data" image reconstruction problems. The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of "metal shadows" in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general "missing data" image reconstruction problems. The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization.PURPOSEThe streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization.After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of "metal shadows" in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective.METHODSAfter the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of "metal shadows" in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective.The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images.RESULTSThe study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images.Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general "missing data" image reconstruction problems.CONCLUSIONSConstrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general "missing data" image reconstruction problems. Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of ''metal shadows'' in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general ''missing data'' image reconstruction problems. |
Author | Zhang, Xiaomeng Wang, Jing Xing, Lei |
Author_xml | – sequence: 1 givenname: Xiaomeng surname: Zhang fullname: Zhang, Xiaomeng organization: Department of Electrical Engineering, Stanford University, Stanford, California 94305 and Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 – sequence: 2 givenname: Jing surname: Wang fullname: Wang, Jing organization: Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 – sequence: 3 givenname: Lei surname: Xing fullname: Xing, Lei email: lei@stanford.edu organization: Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21452707$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22096907$$D View this record in Osti.gov |
BookMark | eNqNks1u1DAUhS1URKeFBS-AIrGAIqX1X-J4g4RG0FZqBYvC1nIcp2OU2KntFIanx5nJVC2iCMmSF_e7x-ce3wOwZ53VALxE8BghVJ2gY1IQwhB6AhaYMpJTDPkeWEDIaY4pLPbBQQjfIYQlKeAzsI8RLTCDbAG-Xeoou0z6aFqpYuZ1M6ponM2MzX7mXq4z5fphjLrJouvdtZfDap29XV4dZfVUsyF6aWwquyGa3vySU_dz8LSVXdAv5vsQfP308Wp5ll98Pj1ffrjIVUkQyjmUBNVNVVUFRriGTU1hqhRlS6hElBDKuKwk5RwhJluIsS7TDLhtuOYVVeQQvN_qDmPd60Zpm9x0YvCml34tnDTiYcWalbh2t4JAQirGksDrrYAL0YigTNRqlaayWkWBU4wlhxP1Zn7Gu5tRhyh6E5TuOmm1G4OoCs7SKXkiX903dOdkl3gCjraA8i4Er9s7BEEx_aZAYv7NxJ78wSZ_m3ynzLu_duTbjh-m0-vHpcXll5mf8ws75cd7NpsidpsiNpuSBN79t8C_4Fvn77kbmpb8BuRB3r0 |
CODEN | MPHYA6 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2016_2608621 crossref_primary_10_1109_TMI_2015_2459764 crossref_primary_10_1109_TNS_2013_2275919 crossref_primary_10_1186_s12880_024_01379_1 crossref_primary_10_1088_0031_9155_57_9_2803 crossref_primary_10_1118_1_4762814 crossref_primary_10_1038_s41598_018_36227_0 crossref_primary_10_1371_journal_pone_0179022 crossref_primary_10_3390_s21248164 crossref_primary_10_1007_s11282_021_00561_3 crossref_primary_10_1016_j_brachy_2017_10_006 crossref_primary_10_1186_s42490_024_00076_y crossref_primary_10_1016_j_jcms_2021_01_029 crossref_primary_10_1016_j_radphyschem_2016_06_008 crossref_primary_10_3233_XST_190523 crossref_primary_10_1155_2012_786281 crossref_primary_10_1118_1_4851536 crossref_primary_10_1016_j_rard_2015_04_005 crossref_primary_10_1148_rg_2016160079 crossref_primary_10_1109_ACCESS_2019_2930302 crossref_primary_10_1016_j_ejrad_2023_110946 crossref_primary_10_1186_s12938_016_0240_8 crossref_primary_10_1002_mp_16546 crossref_primary_10_1080_21681163_2013_839394 crossref_primary_10_1093_ehjci_jex312 crossref_primary_10_1109_TMI_2013_2265136 crossref_primary_10_1016_j_softx_2019_100355 crossref_primary_10_1109_TMI_2021_3127074 crossref_primary_10_1038_srep37608 crossref_primary_10_1118_1_4926552 crossref_primary_10_1097_RLI_0000000000000345 crossref_primary_10_1007_s00586_020_06433_4 crossref_primary_10_1007_s13534_019_00110_2 crossref_primary_10_1007_s00330_013_2809_y crossref_primary_10_1002_acm2_12347 crossref_primary_10_3390_jfb15100287 crossref_primary_10_1109_TNS_2015_2498190 crossref_primary_10_1118_1_4754647 crossref_primary_10_1118_1_4811129 crossref_primary_10_1186_s42492_021_00083_z crossref_primary_10_3390_app14083261 crossref_primary_10_1371_journal_pone_0227656 crossref_primary_10_1259_bjro_20190013 crossref_primary_10_35366_112309 crossref_primary_10_1515_cdbme_2015_0064 crossref_primary_10_1016_j_phro_2021_01_007 crossref_primary_10_1016_j_media_2020_101655 crossref_primary_10_1016_j_ndteint_2021_102595 crossref_primary_10_1109_ACCESS_2020_3002090 crossref_primary_10_1097_RLI_0b013e3182532f17 crossref_primary_10_1088_0031_9155_59_21_6595 crossref_primary_10_1177_0284185116646144 crossref_primary_10_1118_1_4794474 crossref_primary_10_3390_jimaging8030077 crossref_primary_10_3390_jfb14050266 crossref_primary_10_1088_1742_6596_847_1_012070 crossref_primary_10_1093_bjrai_ubae004 crossref_primary_10_1109_TCI_2024_3485538 crossref_primary_10_5114_pjr_2018_80348 crossref_primary_10_1007_s00256_014_1986_3 crossref_primary_10_1002_mp_14332 crossref_primary_10_1186_s12880_022_00884_5 crossref_primary_10_1007_s00330_021_07709_z crossref_primary_10_1155_2016_2180457 crossref_primary_10_1016_j_meddos_2019_07_003 crossref_primary_10_1118_1_3679863 crossref_primary_10_1016_j_ymeth_2020_10_004 crossref_primary_10_14316_pmp_2021_32_1_18 crossref_primary_10_1118_1_3691902 crossref_primary_10_1118_1_4745566 crossref_primary_10_1118_1_4709599 crossref_primary_10_1088_1742_6596_851_1_012009 crossref_primary_10_1007_s11042_022_12194_7 crossref_primary_10_1109_TMI_2020_3025064 crossref_primary_10_1002_mp_14231 crossref_primary_10_1109_TNS_2016_2577045 crossref_primary_10_3233_XST_17322 crossref_primary_10_1118_1_4749931 crossref_primary_10_1109_TMI_2018_2823083 crossref_primary_10_1177_0194599813510862 crossref_primary_10_1118_1_4812416 crossref_primary_10_1016_j_ultramic_2020_113122 crossref_primary_10_3174_ajnr_A4386 crossref_primary_10_1016_j_knosys_2025_113235 crossref_primary_10_1097_RLI_0b013e31824c86a3 crossref_primary_10_1002_acm2_14453 crossref_primary_10_1016_j_solmat_2022_112100 crossref_primary_10_1038_s41598_022_25366_0 crossref_primary_10_1088_1361_6560_ad3c0a crossref_primary_10_1088_1361_6560_aa5293 crossref_primary_10_1088_1361_6560_acbddf crossref_primary_10_3938_jkps_74_298 crossref_primary_10_1088_0957_0233_27_9_097001 crossref_primary_10_1002_mp_12719 crossref_primary_10_1109_TMI_2024_3416398 crossref_primary_10_3233_XST_16187 crossref_primary_10_3934_ipi_2021066 crossref_primary_10_1016_j_hjc_2023_12_001 crossref_primary_10_1021_acsami_4c07364 crossref_primary_10_1259_dmfr_20120105 crossref_primary_10_1186_s42492_020_00054_w crossref_primary_10_1016_j_bioadv_2023_213697 crossref_primary_10_1118_1_4812424 crossref_primary_10_1109_ACCESS_2016_2602854 crossref_primary_10_3390_s23073633 crossref_primary_10_1007_s11282_025_00814_5 |
Cites_doi | 10.1097/01.rli.0000086495.96457.54 10.1118/1.3036112 10.1088/0031-9155/43/4/003 10.1109/34.56205 10.1109/TIT.2005.862083 10.1109/42.897816 10.1120/jacmp.v8i3.2268 10.1097/00004728-199703000-00024 10.1109/TNS.2004.834824 10.1002/cpa.20124 10.1109/TMI.2006.875429 10.1109/42.896783 10.1109/42.538943 10.1109/78.193196 10.1016/0360-3016(87)90327-0 10.1088/0031-9155/53/17/021 10.1017/S1431927699000057 10.1109/TMI.2006.882141 10.1118/1.3505294 10.1118/1.1509443 10.1109/42.293921 10.1088/0031-9155/53/12/018 10.3928/0147-7447-19901201-06 10.1088/0031‐9155/43/4/003 10.1016/0360‐3016(87)90327‐0 10.1148/radiology.164.2.3602406 10.1088/0031‐9155/53/12/018 10.1117/12.844294 10.1097/00004728‐199703000‐00024 10.1017/CBO9780511804441 10.1088/0031‐9155/53/17/021 |
ContentType | Journal Article |
Copyright | American Association of Physicists in Medicine 2011 American Association of Physicists in Medicine Copyright © 2011 American Association of Physicists in Medicine 2011 American Association of Physicists in Medicine |
Copyright_xml | – notice: American Association of Physicists in Medicine – notice: 2011 American Association of Physicists in Medicine – notice: Copyright © 2011 American Association of Physicists in Medicine 2011 American Association of Physicists in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI 5PM |
DOI | 10.1118/1.3533711 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 0094-2405 |
EndPage | 711 |
ExternalDocumentID | PMC3033877 22096907 21452707 10_1118_1_3533711 MP3711 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH grantid: CA98523 – fundername: NIH grantid: CA104205 – fundername: NSF grantid: 0854492 – fundername: NSF funderid: 0854492 – fundername: NIH funderid: CA98523 – fundername: NIH funderid: CA104205 – fundername: NCI NIH HHS grantid: R01 CA104205 – fundername: NCI NIH HHS grantid: CA104205 – fundername: NCI NIH HHS grantid: R01 CA098523 – fundername: NCI NIH HHS grantid: CA98523 |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 476 53G 5GY 5RE 5VS AAHHS AANLZ AAQQT AASGY AAXRX AAZKR ABCUV ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACSMX ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P G8K HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAHQN AAIPD AAMNL AAYCA ABDPE AFWVQ AITYG ALVPJ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 AAJUZ AAPBV ABCVL ABPTK ADDAD AEUQT OTOTI 5PM |
ID | FETCH-LOGICAL-c6311-90a31bd8885212b0db40c6356f34a1433479a8a499117af022e60632fd9e984c3 |
ISSN | 0094-2405 |
IngestDate | Thu Aug 21 14:04:51 EDT 2025 Thu May 18 18:29:33 EDT 2023 Fri Jul 11 16:31:50 EDT 2025 Mon Jul 21 06:07:40 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 02:38:15 EDT 2025 Wed Jan 22 16:36:44 EST 2025 Fri Jun 21 00:20:00 EDT 2024 Fri Jun 21 00:28:31 EDT 2024 Sun Jul 14 10:05:20 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | computed tomography metal artifact image reconstruction optimization |
Language | English |
License | 0094-2405/2011/38(2)/701/11/$30.00 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c6311-90a31bd8885212b0db40c6356f34a1433479a8a499117af022e60632fd9e984c3 |
Notes | lei@stanford.edu Telephone: (650) 498‐7896; Fax: (650) 498‐4015. Author to whom correspondence should be addressed. Electronic mail ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author to whom correspondence should be addressed. Electronic mail: lei@stanford.edu; Telephone: (650) 498-7896; Fax: (650) 498-4015. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.3533711 |
PMID | 21452707 |
PQID | 859759769 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_22096907 pubmed_primary_21452707 scitation_primary_10_1118_1_3533711 proquest_miscellaneous_859759769 scitation_primary_10_1118_1_3533711Metal_artifact_reduc wiley_primary_10_1118_1_3533711_MP3711 crossref_primary_10_1118_1_3533711 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3033877 crossref_citationtrail_10_1118_1_3533711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2011 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: February 2011 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2011 |
Publisher | American Association of Physicists in Medicine |
Publisher_xml | – name: American Association of Physicists in Medicine |
References | Fessler (c20) 1994; 13 Wang, Lu, Liang, Eremina, Zhang, Wang, Chen, Manzione (c23) 2008; 53 Candès, Romberg, Tao (c29) 2006; 59 Srinivasa, Ramakrishnan, Rajgopal (c2) 1997; 14 Wang, Li, Lu, Liang (c21) 2006; 25 Feigenberg, Paskalev, McNeeley, Horwitz, Konski, Wang, Ma, Pollack (c15) 2007; 8 Ling (c9) 1987; 13 Meng, Wang, Xing (c18) 2010; 37 Kalender, Hebel, Ebersberger (c12) 1987; 164 Lewitt, Bates (c14) 1978; 50 La Riviere, Brian, Vargas (c26) 2006; 25 Mahnken, Raupach, Wildberger, Jung, Heussen, Flohr, Günther, Schaller (c1) 2003; 38 Williamson, Whiting, Benac, Murphy, Blaine, O’Sullivan, Politte, Snyder (c7) 2002; 29 Robertson (c5) 1997; 21 Wang (c4) 1996; 15 Ebraheim (c8) 1990; 13 Klotz, Kalender, Sokiranski, Felsenberg (c13) 1990; 1234 Li, Li, Wang, Wen, Lu, Hsieh, Liang (c22) 2004; 51 Nuyts, De Man, Dupont (c6) 1998; 43 Sidky, Pan (c19) 2008; 53 Sauer, Bouman (c24) 1993; 41 Perona, Malik (c27) 1990; 12 Zhao, Robertson, Wang (c3) 2000; 19 Toft (c11) 1996; 3 Sukovic, Clinthorne (c25) 2000; 19 Wang, Xing (c17) 2010; 7622 Wang, Li, Xing (c16) 2009; 36 Wang (c10) 1999; 5 Candes, Romberg, Tao (c28) 2006; 52 Perona, P.; Malik, J. 1990; 12 Meng, B.; Wang, J.; Xing, L. 2010; 37 Wang, G. 1996; 15 Ling, C. 1987; 13 Klotz, E.; Kalender, W.; Sokiranski, R.; Felsenberg, D. 1990; 1234 Toft, P. 1996; 3 Li, T.; Li, X.; Wang, J.; Wen, J.; Lu, H.; Hsieh, J.; Liang, Z. 2004; 51 Ebraheim, N. 1990; 13 Kalender, W.; Hebel, R.; Ebersberger, J. 1987; 164 La Riviere, P.; Brian, J.; Vargas, P. 2006; 25 Wang, J.; Xing, L. 2010; 7622 Nuyts, J.; De Man, B.; Dupont, P. 1998; 43 Zhao, S.; Robertson, D.; Wang, G. 2000; 19 Fessler, J. 1994; 13 Srinivasa, N.; Ramakrishnan, K.; Rajgopal, K. 1997; 14 Feigenberg, S.; Paskalev, K.; McNeeley, S.; Horwitz, E.; Konski, A.; Wang, L.; Ma, C.; Pollack, A. 2007; 8 Candès, E.; Romberg, J.; Tao, T. 2006; 59 Sukovic, P.; Clinthorne, N. 2000; 19 Robertson, D. 1997; 21 Lewitt, R.; Bates, R. 1978; 50 Wang, J.; Li, T.; Lu, H.; Liang, Z. 2006; 25 Sidky, E.; Pan, X. 2008; 53 Candes, E.; Romberg, J.; Tao, T. 2006; 52 Wang, J.; Li, T.; Xing, L. 2009; 36 Sauer, K.; Bouman, C. 1993; 41 Mahnken, A.; Raupach, R.; Wildberger, J.; Jung, B.; Heussen, N.; Flohr, T.; Günther, R.; Schaller, S. 2003; 38 Wang, G. 1999; 5 Wang, J.; Lu, H.; Liang, Z.; Eremina, D.; Zhang, G.; Wang, S.; Chen, J.; Manzione, J. 2008; 53 Williamson, J.; Whiting, B.; Benac, J.; Murphy, R.; Blaine, G.; O'Sullivan, J.; Politte, D.; Snyder, D. 2002; 29 1987; 13 1987; 164 2006; 52 2010; 37 1990; 12 1990; 13 1997; 21 1978; 50 1993; 41 2006; 59 2003; 38 2004 2008; 53 1998; 43 1996; 15 1999; 5 2009; 36 2000; 19 2004; 51 2002; 29 1990; 1234 1997; 14 2006; 25 2007; 8 1994; 13 1996; 3 2010; 7622 Lewitt R. M. (e_1_2_6_15_1) 1978; 50 Toft P. (e_1_2_6_12_1) 1996; 3 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_16_1 Klotz E. (e_1_2_6_14_1) 1990; 1234 Srinivasa N. (e_1_2_6_3_1) 1997; 14 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 3602406 - Radiology. 1987 Aug;164(2):576-7 9071303 - J Comput Assist Tomogr. 1997 Mar-Apr;21(2):293-8 18523346 - Phys Med Biol. 2008 Jun 21;53(12):3327-41 14627894 - Invest Radiol. 2003 Dec;38(12):769-75 18218505 - IEEE Trans Med Imaging. 1994;13(2):290-300 18215947 - IEEE Trans Med Imaging. 1996;15(5):657-64 21045277 - J Xray Sci Technol. 2010;18(4):403-14 9572499 - Phys Med Biol. 1998 Apr;43(4):729-37 10227827 - Microsc Microanal. 1999 Jan;5(1):58-65 21158299 - Med Phys. 2010 Nov;37(11):5867-75 17024831 - IEEE Trans Med Imaging. 2006 Oct;25(10):1272-83 16894995 - IEEE Trans Med Imaging. 2006 Aug;25(8):1022-36 11204845 - IEEE Trans Med Imaging. 2000 Nov;19(11):1075-81 11212372 - IEEE Trans Med Imaging. 2000 Dec;19(12):1238-47 17712295 - J Appl Clin Med Phys. 2007;8(3):2268 19235393 - Med Phys. 2009 Jan;36(1):252-60 2274478 - Orthopedics. 1990 Dec;13(12):1357-8 18701771 - Phys Med Biol. 2008 Sep 7;53(17):4777-807 3624031 - Int J Radiat Oncol Biol Phys. 1987 Oct;13(10):1577-82 12408315 - Med Phys. 2002 Oct;29(10):2404-18 |
References_xml | – volume: 53 start-page: 3327 issn: 0031-9155 year: 2008 ident: c23 article-title: An experimental study on the noise properties of x-ray CT sinogram data in Radon space publication-title: Phys. Med. Biol. – volume: 25 start-page: 1272 issn: 0278-0062 year: 2006 ident: c21 article-title: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography publication-title: IEEE Trans. Med. Imaging – volume: 51 start-page: 2505 issn: 0018-9499 year: 2004 ident: c22 article-title: Nonlinear sinogram smoothing for low-dose x-ray CT publication-title: IEEE Trans. Nucl. Sci. – volume: 13 start-page: 290 issn: 0278-0062 year: 1994 ident: c20 article-title: Penalized weighted least-squares image-reconstruction for positron emission tomography publication-title: IEEE Trans. Med. Imaging – volume: 41 start-page: 534 issn: 1053-587X year: 1993 ident: c24 article-title: A local update strategy for iterative reconstruction from projections publication-title: IEEE Trans. Signal Process. – volume: 13 start-page: 1357 issn: 0147-7447 year: 1990 ident: c8 article-title: Reduction of postoperative CT artefacts of pelvic fractures by use of titanium implants publication-title: Orthopedics – volume: 13 start-page: 1577 issn: 0360-3016 year: 1987 ident: c9 article-title: CT-assisted assessment of bladder and rectum dose in gynecological implants publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 21 start-page: 293 issn: 0363-8715 year: 1997 ident: c5 article-title: Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction publication-title: J. Comput. Assist. Tomogr. – volume: 29 start-page: 2404 issn: 0094-2405 year: 2002 ident: c7 article-title: Prospects for quantitative computed tomography imaging in the presence of foreign metal bodies using statistical image reconstruction publication-title: Med. Phys. – volume: 1234 start-page: 642 year: 1990 ident: c13 article-title: Algorithms for reduction of CT artifacts caused by metallic implants publication-title: SPIE Med Imaging IV – volume: 5 start-page: 58 issn: 1431-9276 year: 1999 ident: c10 article-title: Iterative x-ray cone-beam tomography for metal artifact reduction and local region reconstruction publication-title: Microsc. Microanal. – volume: 8 start-page: 2268 issn: 1526-9914 year: 2007 ident: c15 article-title: Comparing computed tomography localization with daily ultrasound during image-guided radiation therapy for the treatment of prostate cancer: A prospective evaluation publication-title: J. Appl. Clin. Med. Phys. – volume: 164 start-page: 576 issn: 0033-8419 year: 1987 ident: c12 article-title: Reduction of CT artifacts caused by metallic implants publication-title: Radiology – volume: 19 start-page: 1075 issn: 0278-0062 year: 2000 ident: c25 article-title: Penalized weighted least-squares image reconstruction for dual energy x-ray transmission tomography publication-title: IEEE Trans. Med. Imaging – volume: 14 start-page: 1 year: 1997 ident: c2 article-title: Image reconstruction from incomplete projection publication-title: J Med Life Sci Eng – volume: 12 start-page: 629 issn: 0162-8828 year: 1990 ident: c27 article-title: Scale-space and edge-detection using anisotropic diffusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 7622 start-page: 76225A issn: 0277-786X year: 2010 ident: c17 article-title: Accurate determination of the shape and location of metal objects in x-ray computed tomography publication-title: Proc. SPIE – volume: 43 start-page: 729 issn: 0031-9155 year: 1998 ident: c6 article-title: Iterative reconstruction for helical CT: A simulation study publication-title: Phys. Med. Biol. – volume: 3 start-page: 1742 year: 1996 ident: c11 article-title: A very fast implementation of 2D iterative reconstruction algorithms publication-title: IEEE Proc Med Imaging Conf – volume: 36 start-page: 252 issn: 0094-2405 year: 2009 ident: c16 article-title: Iterative image reconstruction for CBCT using edge-preserving prior publication-title: Med. Phys. – volume: 52 start-page: 489 issn: 0018-9448 year: 2006 ident: c28 article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory – volume: 38 start-page: 769 issn: 0020-9996 year: 2003 ident: c1 article-title: A new algorithm for metal artifact reduction in computed tomography publication-title: Invest. Radiol. – volume: 25 start-page: 1022 issn: 0278-0062 year: 2006 ident: c26 article-title: Penalized-likelihood sinogram restoration for computed tomography publication-title: IEEE Trans. Med. Imaging – volume: 19 start-page: 1238 issn: 0278-0062 year: 2000 ident: c3 article-title: X-ray CT metal artifact reduction using wavelets: An application for imaging total hip prostheses publication-title: IEEE Trans. Med. Imaging – volume: 37 start-page: 5867 issn: 0094-2405 year: 2010 ident: c18 article-title: Sinogram processing and binary reconstruction for determination of the shape and location of metal objects in computed tomography (CT) publication-title: Med. Phys. – volume: 59 start-page: 1207 issn: 0010-3640 year: 2006 ident: c29 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Commun. Pure Appl. Math. – volume: 50 start-page: 189 issn: 0030-4026 year: 1978 ident: c14 article-title: Image reconstruction from projections: III. Projection completion methods publication-title: Optik (Stuttgart) – volume: 15 start-page: 657 issn: 0278-0062 year: 1996 ident: c4 article-title: Iterative deblurring for CT metal artifact reduction publication-title: IEEE Trans. Med. Imaging – volume: 53 start-page: 4777 issn: 0031-9155 year: 2008 ident: c19 article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization publication-title: Phys. Med. Biol. – volume: 38 start-page: 769-775 year: 2003 publication-title: Invest. Radiol. doi: 10.1097/01.rli.0000086495.96457.54 – volume: 13 start-page: 1357-1358 year: 1990 publication-title: Orthopedics – volume: 36 start-page: 252-260 year: 2009 publication-title: Med. Phys. doi: 10.1118/1.3036112 – volume: 43 start-page: 729-737 year: 1998 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/43/4/003 – volume: 12 start-page: 629-639 year: 1990 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.56205 – volume: 3 start-page: 1742-1746 year: 1996 publication-title: IEEE Proc Med Imaging Conf – volume: 52 start-page: 489-509 year: 2006 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.862083 – volume: 19 start-page: 1238-1247 year: 2000 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.897816 – volume: 8 start-page: 2268-2268 year: 2007 publication-title: J. Appl. Clin. Med. Phys. doi: 10.1120/jacmp.v8i3.2268 – volume: 21 start-page: 293-298 year: 1997 publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199703000-00024 – volume: 50 start-page: 189-204 year: 1978 publication-title: Optik (Stuttgart) – volume: 51 start-page: 2505-2513 year: 2004 publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2004.834824 – volume: 59 start-page: 1207-1223 year: 2006 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20124 – volume: 25 start-page: 1022-1036 year: 2006 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.875429 – volume: 19 start-page: 1075-1081 year: 2000 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.896783 – volume: 15 start-page: 657-664 year: 1996 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.538943 – volume: 41 start-page: 534-548 year: 1993 publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.193196 – volume: 13 start-page: 1577-1582 year: 1987 publication-title: Int. J. Radiat. Oncol., Biol., Phys. doi: 10.1016/0360-3016(87)90327-0 – volume: 7622 start-page: 76225A-76225A-10 year: 2010 publication-title: Proc. SPIE – volume: 14 start-page: 1-19 year: 1997 publication-title: J Med Life Sci Eng – volume: 53 start-page: 4777-4807 year: 2008 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/17/021 – volume: 5 start-page: 58-65 year: 1999 publication-title: Microsc. Microanal. doi: 10.1017/S1431927699000057 – volume: 25 start-page: 1272-1283 year: 2006 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.882141 – volume: 37 start-page: 5867-5875 year: 2010 publication-title: Med. Phys. doi: 10.1118/1.3505294 – volume: 29 start-page: 2404-2418 year: 2002 publication-title: Med. Phys. doi: 10.1118/1.1509443 – volume: 1234 start-page: 642-650 year: 1990 publication-title: SPIE Med Imaging IV – volume: 164 start-page: 576-577 year: 1987 publication-title: Radiology – volume: 13 start-page: 290-300 year: 1994 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.293921 – volume: 53 start-page: 3327-3341 year: 2008 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/12/018 – volume: 13 start-page: 1577 year: 1987 end-page: 1582 article-title: CT‐assisted assessment of bladder and rectum dose in gynecological implants publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 50 start-page: 189 year: 1978 end-page: 204 article-title: Image reconstruction from projections: III. Projection completion methods publication-title: Optik (Stuttgart) – volume: 53 start-page: 4777 year: 2008 end-page: 4807 article-title: Image reconstruction in circular cone‐beam computed tomography by constrained, total‐variation minimization publication-title: Phys. Med. Biol. – volume: 15 start-page: 657 year: 1996 end-page: 664 article-title: Iterative deblurring for CT metal artifact reduction publication-title: IEEE Trans. Med. Imaging – volume: 25 start-page: 1272 year: 2006 end-page: 1283 article-title: Penalized weighted least‐squares approach to sinogram noise reduction and image reconstruction for low‐dose x‐ray computed tomography publication-title: IEEE Trans. Med. Imaging – volume: 13 start-page: 290 year: 1994 end-page: 300 article-title: Penalized weighted least‐squares image‐reconstruction for positron emission tomography publication-title: IEEE Trans. Med. Imaging – volume: 14 start-page: 1 year: 1997 end-page: 19 article-title: Image reconstruction from incomplete projection publication-title: J Med Life Sci Eng – volume: 43 start-page: 729 year: 1998 end-page: 737 article-title: Iterative reconstruction for helical CT: A simulation study publication-title: Phys. Med. Biol. – volume: 29 start-page: 2404 year: 2002 end-page: 2418 article-title: Prospects for quantitative computed tomography imaging in the presence of foreign metal bodies using statistical image reconstruction publication-title: Med. Phys. – volume: 59 start-page: 1207 year: 2006 end-page: 1223 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Commun. Pure Appl. Math. – volume: 5 start-page: 58 year: 1999 end-page: 65 article-title: Iterative x‐ray cone‐beam tomography for metal artifact reduction and local region reconstruction publication-title: Microsc. Microanal. – volume: 19 start-page: 1075 year: 2000 end-page: 1081 article-title: Penalized weighted least‐squares image reconstruction for dual energy x‐ray transmission tomography publication-title: IEEE Trans. Med. Imaging – volume: 8 start-page: 2268 year: 2007 end-page: 2268 article-title: Comparing computed tomography localization with daily ultrasound during image‐guided radiation therapy for the treatment of prostate cancer: A prospective evaluation publication-title: J. Appl. Clin. Med. Phys. – volume: 37 start-page: 5867 year: 2010 end-page: 5875 article-title: Sinogram processing and binary reconstruction for determination of the shape and location of metal objects in computed tomography (CT) publication-title: Med. Phys. – volume: 21 start-page: 293 year: 1997 end-page: 298 article-title: Total hip prosthesis metal‐artifact suppression using iterative deblurring reconstruction publication-title: J. Comput. Assist. Tomogr. – volume: 51 start-page: 2505 year: 2004 end-page: 2513 article-title: Nonlinear sinogram smoothing for low‐dose x‐ray CT publication-title: IEEE Trans. Nucl. Sci. – volume: 12 start-page: 629 year: 1990 end-page: 639 article-title: Scale‐space and edge‐detection using anisotropic diffusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 36 start-page: 252 year: 2009 end-page: 260 article-title: Iterative image reconstruction for CBCT using edge‐preserving prior publication-title: Med. Phys. – volume: 52 start-page: 489 year: 2006 end-page: 509 article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory – volume: 164 start-page: 576 year: 1987 end-page: 577 article-title: Reduction of CT artifacts caused by metallic implants publication-title: Radiology – volume: 41 start-page: 534 year: 1993 end-page: 548 article-title: A local update strategy for iterative reconstruction from projections publication-title: IEEE Trans. Signal Process. – volume: 53 start-page: 3327 year: 2008 end-page: 3341 article-title: An experimental study on the noise properties of x‐ray CT sinogram data in Radon space publication-title: Phys. Med. Biol. – volume: 1234 start-page: 642 year: 1990 end-page: 650 article-title: Algorithms for reduction of CT artifacts caused by metallic implants publication-title: SPIE Med Imaging IV – volume: 7622 start-page: 76225A year: 2010 end-page: 76225A article-title: Accurate determination of the shape and location of metal objects in x‐ray computed tomography publication-title: Proc. SPIE – year: 2004 – volume: 38 start-page: 769 year: 2003 end-page: 775 article-title: A new algorithm for metal artifact reduction in computed tomography publication-title: Invest. Radiol. – volume: 13 start-page: 1357 year: 1990 end-page: 1358 article-title: Reduction of postoperative CT artefacts of pelvic fractures by use of titanium implants publication-title: Orthopedics – volume: 3 start-page: 1742 year: 1996 end-page: 1746 article-title: A very fast implementation of 2D iterative reconstruction algorithms publication-title: IEEE Proc Med Imaging Conf – volume: 25 start-page: 1022 year: 2006 end-page: 1036 article-title: Penalized‐likelihood sinogram restoration for computed tomography publication-title: IEEE Trans. Med. Imaging – volume: 19 start-page: 1238 year: 2000 end-page: 1247 article-title: X‐ray CT metal artifact reduction using wavelets: An application for imaging total hip prostheses publication-title: IEEE Trans. Med. Imaging – ident: e_1_2_6_28_1 doi: 10.1109/34.56205 – ident: e_1_2_6_2_1 doi: 10.1097/01.rli.0000086495.96457.54 – ident: e_1_2_6_17_1 doi: 10.1118/1.3036112 – ident: e_1_2_6_9_1 doi: 10.3928/0147-7447-19901201-06 – ident: e_1_2_6_7_1 doi: 10.1088/0031‐9155/43/4/003 – volume: 14 start-page: 1 year: 1997 ident: e_1_2_6_3_1 article-title: Image reconstruction from incomplete projection publication-title: J Med Life Sci Eng – ident: e_1_2_6_23_1 doi: 10.1109/TNS.2004.834824 – volume: 50 start-page: 189 year: 1978 ident: e_1_2_6_15_1 article-title: Image reconstruction from projections: III. Projection completion methods publication-title: Optik (Stuttgart) – ident: e_1_2_6_8_1 doi: 10.1118/1.1509443 – ident: e_1_2_6_25_1 doi: 10.1109/78.193196 – ident: e_1_2_6_21_1 doi: 10.1109/42.293921 – ident: e_1_2_6_10_1 doi: 10.1016/0360‐3016(87)90327‐0 – ident: e_1_2_6_19_1 doi: 10.1118/1.3505294 – ident: e_1_2_6_30_1 doi: 10.1002/cpa.20124 – ident: e_1_2_6_13_1 doi: 10.1148/radiology.164.2.3602406 – ident: e_1_2_6_16_1 doi: 10.1120/jacmp.v8i3.2268 – ident: e_1_2_6_24_1 doi: 10.1088/0031‐9155/53/12/018 – ident: e_1_2_6_18_1 doi: 10.1117/12.844294 – ident: e_1_2_6_22_1 doi: 10.1109/TMI.2006.882141 – ident: e_1_2_6_11_1 doi: 10.1017/S1431927699000057 – ident: e_1_2_6_6_1 doi: 10.1097/00004728‐199703000‐00024 – volume: 1234 start-page: 642 year: 1990 ident: e_1_2_6_14_1 article-title: Algorithms for reduction of CT artifacts caused by metallic implants publication-title: SPIE Med Imaging IV – volume: 3 start-page: 1742 year: 1996 ident: e_1_2_6_12_1 article-title: A very fast implementation of 2D iterative reconstruction algorithms publication-title: IEEE Proc Med Imaging Conf – ident: e_1_2_6_26_1 doi: 10.1109/42.896783 – ident: e_1_2_6_27_1 doi: 10.1109/TMI.2006.875429 – ident: e_1_2_6_4_1 doi: 10.1109/42.897816 – ident: e_1_2_6_29_1 doi: 10.1109/TIT.2005.862083 – ident: e_1_2_6_31_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_6_20_1 doi: 10.1088/0031‐9155/53/17/021 – ident: e_1_2_6_5_1 doi: 10.1109/42.538943 – reference: 18523346 - Phys Med Biol. 2008 Jun 21;53(12):3327-41 – reference: 12408315 - Med Phys. 2002 Oct;29(10):2404-18 – reference: 16894995 - IEEE Trans Med Imaging. 2006 Aug;25(8):1022-36 – reference: 9071303 - J Comput Assist Tomogr. 1997 Mar-Apr;21(2):293-8 – reference: 9572499 - Phys Med Biol. 1998 Apr;43(4):729-37 – reference: 17024831 - IEEE Trans Med Imaging. 2006 Oct;25(10):1272-83 – reference: 18701771 - Phys Med Biol. 2008 Sep 7;53(17):4777-807 – reference: 17712295 - J Appl Clin Med Phys. 2007;8(3):2268 – reference: 18215947 - IEEE Trans Med Imaging. 1996;15(5):657-64 – reference: 3602406 - Radiology. 1987 Aug;164(2):576-7 – reference: 3624031 - Int J Radiat Oncol Biol Phys. 1987 Oct;13(10):1577-82 – reference: 18218505 - IEEE Trans Med Imaging. 1994;13(2):290-300 – reference: 11212372 - IEEE Trans Med Imaging. 2000 Dec;19(12):1238-47 – reference: 21158299 - Med Phys. 2010 Nov;37(11):5867-75 – reference: 10227827 - Microsc Microanal. 1999 Jan;5(1):58-65 – reference: 21045277 - J Xray Sci Technol. 2010;18(4):403-14 – reference: 14627894 - Invest Radiol. 2003 Dec;38(12):769-75 – reference: 19235393 - Med Phys. 2009 Jan;36(1):252-60 – reference: 11204845 - IEEE Trans Med Imaging. 2000 Nov;19(11):1075-81 – reference: 2274478 - Orthopedics. 1990 Dec;13(12):1357-8 |
SSID | ssj0006350 |
Score | 2.3907092 |
Snippet | Purpose:
The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the... The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors... Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the... |
SourceID | pubmedcentral osti proquest pubmed crossref wiley scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 701 |
SubjectTerms | ALGORITHMS Artifacts and distortion CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computed tomography computerised tomography COMPUTERIZED TOMOGRAPHY gradient methods IMAGE PROCESSING Image Processing, Computer-Assisted - methods image reconstruction image segmentation Interpolation ITERATIVE METHODS Medical image artifacts Medical image noise medical image processing Medical image reconstruction Medical imaging Medical X‐ray imaging metal artifact METALS minimisation MINIMIZATION Modulation transfer functions NOISE Nonmetals Numerical optimization optimization Phantoms, Imaging Quality Control Radiation Imaging Physics RADIATION SOURCE IMPLANTS RADIOLOGY AND NUCLEAR MEDICINE Reconstruction Segmentation Tomography, X-Ray Computed - methods X RADIATION X‐ray imaging |
Title | Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization |
URI | http://dx.doi.org/10.1118/1.3533711 https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3533711 https://www.ncbi.nlm.nih.gov/pubmed/21452707 https://www.proquest.com/docview/859759769 https://www.osti.gov/biblio/22096907 https://pubmed.ncbi.nlm.nih.gov/PMC3033877 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZKJ16-IBgMCgNZgNBQlZG35uXjNEDTRGGCDvWbZScOq8SSqaQI-Bf8Y-781hS6aSBNWWU7bup7crk73z0h5FlVVhHS3HlpCbdbnIvcy7mIvZj7SZkDqESI9c7jd8nBcXw4HU17vV-drKVFK3aLn2vrSv5HqtAGcsUq2X-QrJsUGuAzyBeOIGE4XkrGY4mljNiB9QnDOdKw2uTF796c_1AZ4ws0Ktvm1JBTq33bCUYDBPYjgywHU7McNqA9Tk1ZZtdmtXs5OgiiorRYOc31Oz1cIEGFnofTGUdOh8_LQD00Hs6WDVNVViVnzoKG5-G8tSkJH5AqQf2E93XhCmnwVcd_1jUa-lDM4DHpAd2ROpfFlZ0h-_uoG-DAiK1LFjFKO49xE0gPk6otjNPIi0M_7yryKOsANjzn-YA1D8FuBFZuarT8Kt12CJNixOAK2QjB8_D7ZGPv1fjtR_d4BwtN1zWZqzJ0VTDzSzfvipHTb0BZr3Ng_s7DvQ5mj87AWPWVlLEzuUVuGi-F7mnI3SY9WW-Sa3ahN8nVI42FO-STwiC1GKQOg3RWU4VBajFIlxikO_uTF1Rgn8Mf7eLvLjl-83qyf-CZd3V4RRIFmOXDo0CUWZZhMbjwSxH7BXIfgirgYJNjwTLPOPjXQZDyCixHCa5zFFZlLvMsLqIt0q-bWt4nNImFLHmVSBxfwAFm5f6Ig-rIylEhBmTHLi6zy4VX-oVphzZjATNyGJAnbuiZZm9ZN2gbJcRw7WVxUmCCWdEyC4QBoVZyDFQv7qfxWjaLrywDZxz-knxA7mlBui9B_v8wxZPTFRG7AcjqvtpTz04UuzvYlFGWwplPHRguuvb0EqMUEphFAlNIWDv_t2a-PIudldWAPFcwPH9uNj7Cfw8uXsSH5Mby1t4m_Xa-kI_Amm_FY3N__QZUWPYV |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+artifact+reduction+in+x-ray+computed+tomography+%28CT%29+by+constrained+optimization&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Zhang+Xiaomeng&rft.au=Wang+Jing&rft.au=Xing+Lei&rft.au=Department+of+Radiation+Oncology%2C+Stanford+University+School+of+Medicine%2C+Stanford%2C+California+94305&rft.date=2011-02-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=38&rft.issue=2&rft_id=info:doi/10.1118%2F1.3533711&rft.externalDocID=22096907 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |