Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization

Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 38; no. 2; pp. 701 - 711
Main Authors Zhang, Xiaomeng, Wang, Jing, Xing, Lei
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.02.2011
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
0094-2405
DOI10.1118/1.3533711

Cover

Loading…
Abstract Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of “metal shadows” in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflectsa priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general “missing data” image reconstruction problems.
AbstractList Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of “metal shadows” in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflectsa priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general “missing data” image reconstruction problems.
Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of "metal shadows" in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general "missing data" image reconstruction problems.
The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of "metal shadows" in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general "missing data" image reconstruction problems.
The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization.PURPOSEThe streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization.After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of "metal shadows" in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective.METHODSAfter the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of "metal shadows" in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective.The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images.RESULTSThe study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images.Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general "missing data" image reconstruction problems.CONCLUSIONSConstrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general "missing data" image reconstruction problems.
Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of ''metal shadows'' in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general ''missing data'' image reconstruction problems.
Author Zhang, Xiaomeng
Wang, Jing
Xing, Lei
Author_xml – sequence: 1
  givenname: Xiaomeng
  surname: Zhang
  fullname: Zhang, Xiaomeng
  organization: Department of Electrical Engineering, Stanford University, Stanford, California 94305 and Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
– sequence: 2
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
– sequence: 3
  givenname: Lei
  surname: Xing
  fullname: Xing, Lei
  email: lei@stanford.edu
  organization: Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21452707$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22096907$$D View this record in Osti.gov
BookMark eNqNks1u1DAUhS1URKeFBS-AIrGAIqX1X-J4g4RG0FZqBYvC1nIcp2OU2KntFIanx5nJVC2iCMmSF_e7x-ce3wOwZ53VALxE8BghVJ2gY1IQwhB6AhaYMpJTDPkeWEDIaY4pLPbBQQjfIYQlKeAzsI8RLTCDbAG-Xeoou0z6aFqpYuZ1M6ponM2MzX7mXq4z5fphjLrJouvdtZfDap29XV4dZfVUsyF6aWwquyGa3vySU_dz8LSVXdAv5vsQfP308Wp5ll98Pj1ffrjIVUkQyjmUBNVNVVUFRriGTU1hqhRlS6hElBDKuKwk5RwhJluIsS7TDLhtuOYVVeQQvN_qDmPd60Zpm9x0YvCml34tnDTiYcWalbh2t4JAQirGksDrrYAL0YigTNRqlaayWkWBU4wlhxP1Zn7Gu5tRhyh6E5TuOmm1G4OoCs7SKXkiX903dOdkl3gCjraA8i4Er9s7BEEx_aZAYv7NxJ78wSZ_m3ynzLu_duTbjh-m0-vHpcXll5mf8ws75cd7NpsidpsiNpuSBN79t8C_4Fvn77kbmpb8BuRB3r0
CODEN MPHYA6
CitedBy_id crossref_primary_10_1109_ACCESS_2016_2608621
crossref_primary_10_1109_TMI_2015_2459764
crossref_primary_10_1109_TNS_2013_2275919
crossref_primary_10_1186_s12880_024_01379_1
crossref_primary_10_1088_0031_9155_57_9_2803
crossref_primary_10_1118_1_4762814
crossref_primary_10_1038_s41598_018_36227_0
crossref_primary_10_1371_journal_pone_0179022
crossref_primary_10_3390_s21248164
crossref_primary_10_1007_s11282_021_00561_3
crossref_primary_10_1016_j_brachy_2017_10_006
crossref_primary_10_1186_s42490_024_00076_y
crossref_primary_10_1016_j_jcms_2021_01_029
crossref_primary_10_1016_j_radphyschem_2016_06_008
crossref_primary_10_3233_XST_190523
crossref_primary_10_1155_2012_786281
crossref_primary_10_1118_1_4851536
crossref_primary_10_1016_j_rard_2015_04_005
crossref_primary_10_1148_rg_2016160079
crossref_primary_10_1109_ACCESS_2019_2930302
crossref_primary_10_1016_j_ejrad_2023_110946
crossref_primary_10_1186_s12938_016_0240_8
crossref_primary_10_1002_mp_16546
crossref_primary_10_1080_21681163_2013_839394
crossref_primary_10_1093_ehjci_jex312
crossref_primary_10_1109_TMI_2013_2265136
crossref_primary_10_1016_j_softx_2019_100355
crossref_primary_10_1109_TMI_2021_3127074
crossref_primary_10_1038_srep37608
crossref_primary_10_1118_1_4926552
crossref_primary_10_1097_RLI_0000000000000345
crossref_primary_10_1007_s00586_020_06433_4
crossref_primary_10_1007_s13534_019_00110_2
crossref_primary_10_1007_s00330_013_2809_y
crossref_primary_10_1002_acm2_12347
crossref_primary_10_3390_jfb15100287
crossref_primary_10_1109_TNS_2015_2498190
crossref_primary_10_1118_1_4754647
crossref_primary_10_1118_1_4811129
crossref_primary_10_1186_s42492_021_00083_z
crossref_primary_10_3390_app14083261
crossref_primary_10_1371_journal_pone_0227656
crossref_primary_10_1259_bjro_20190013
crossref_primary_10_35366_112309
crossref_primary_10_1515_cdbme_2015_0064
crossref_primary_10_1016_j_phro_2021_01_007
crossref_primary_10_1016_j_media_2020_101655
crossref_primary_10_1016_j_ndteint_2021_102595
crossref_primary_10_1109_ACCESS_2020_3002090
crossref_primary_10_1097_RLI_0b013e3182532f17
crossref_primary_10_1088_0031_9155_59_21_6595
crossref_primary_10_1177_0284185116646144
crossref_primary_10_1118_1_4794474
crossref_primary_10_3390_jimaging8030077
crossref_primary_10_3390_jfb14050266
crossref_primary_10_1088_1742_6596_847_1_012070
crossref_primary_10_1093_bjrai_ubae004
crossref_primary_10_1109_TCI_2024_3485538
crossref_primary_10_5114_pjr_2018_80348
crossref_primary_10_1007_s00256_014_1986_3
crossref_primary_10_1002_mp_14332
crossref_primary_10_1186_s12880_022_00884_5
crossref_primary_10_1007_s00330_021_07709_z
crossref_primary_10_1155_2016_2180457
crossref_primary_10_1016_j_meddos_2019_07_003
crossref_primary_10_1118_1_3679863
crossref_primary_10_1016_j_ymeth_2020_10_004
crossref_primary_10_14316_pmp_2021_32_1_18
crossref_primary_10_1118_1_3691902
crossref_primary_10_1118_1_4745566
crossref_primary_10_1118_1_4709599
crossref_primary_10_1088_1742_6596_851_1_012009
crossref_primary_10_1007_s11042_022_12194_7
crossref_primary_10_1109_TMI_2020_3025064
crossref_primary_10_1002_mp_14231
crossref_primary_10_1109_TNS_2016_2577045
crossref_primary_10_3233_XST_17322
crossref_primary_10_1118_1_4749931
crossref_primary_10_1109_TMI_2018_2823083
crossref_primary_10_1177_0194599813510862
crossref_primary_10_1118_1_4812416
crossref_primary_10_1016_j_ultramic_2020_113122
crossref_primary_10_3174_ajnr_A4386
crossref_primary_10_1016_j_knosys_2025_113235
crossref_primary_10_1097_RLI_0b013e31824c86a3
crossref_primary_10_1002_acm2_14453
crossref_primary_10_1016_j_solmat_2022_112100
crossref_primary_10_1038_s41598_022_25366_0
crossref_primary_10_1088_1361_6560_ad3c0a
crossref_primary_10_1088_1361_6560_aa5293
crossref_primary_10_1088_1361_6560_acbddf
crossref_primary_10_3938_jkps_74_298
crossref_primary_10_1088_0957_0233_27_9_097001
crossref_primary_10_1002_mp_12719
crossref_primary_10_1109_TMI_2024_3416398
crossref_primary_10_3233_XST_16187
crossref_primary_10_3934_ipi_2021066
crossref_primary_10_1016_j_hjc_2023_12_001
crossref_primary_10_1021_acsami_4c07364
crossref_primary_10_1259_dmfr_20120105
crossref_primary_10_1186_s42492_020_00054_w
crossref_primary_10_1016_j_bioadv_2023_213697
crossref_primary_10_1118_1_4812424
crossref_primary_10_1109_ACCESS_2016_2602854
crossref_primary_10_3390_s23073633
crossref_primary_10_1007_s11282_025_00814_5
Cites_doi 10.1097/01.rli.0000086495.96457.54
10.1118/1.3036112
10.1088/0031-9155/43/4/003
10.1109/34.56205
10.1109/TIT.2005.862083
10.1109/42.897816
10.1120/jacmp.v8i3.2268
10.1097/00004728-199703000-00024
10.1109/TNS.2004.834824
10.1002/cpa.20124
10.1109/TMI.2006.875429
10.1109/42.896783
10.1109/42.538943
10.1109/78.193196
10.1016/0360-3016(87)90327-0
10.1088/0031-9155/53/17/021
10.1017/S1431927699000057
10.1109/TMI.2006.882141
10.1118/1.3505294
10.1118/1.1509443
10.1109/42.293921
10.1088/0031-9155/53/12/018
10.3928/0147-7447-19901201-06
10.1088/0031‐9155/43/4/003
10.1016/0360‐3016(87)90327‐0
10.1148/radiology.164.2.3602406
10.1088/0031‐9155/53/12/018
10.1117/12.844294
10.1097/00004728‐199703000‐00024
10.1017/CBO9780511804441
10.1088/0031‐9155/53/17/021
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2011 American Association of Physicists in Medicine
Copyright © 2011 American Association of Physicists in Medicine 2011 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2011 American Association of Physicists in Medicine
– notice: Copyright © 2011 American Association of Physicists in Medicine 2011 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
DOI 10.1118/1.3533711
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
0094-2405
EndPage 711
ExternalDocumentID PMC3033877
22096907
21452707
10_1118_1_3533711
MP3711
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: CA98523
– fundername: NIH
  grantid: CA104205
– fundername: NSF
  grantid: 0854492
– fundername: NSF
  funderid: 0854492
– fundername: NIH
  funderid: CA98523
– fundername: NIH
  funderid: CA104205
– fundername: NCI NIH HHS
  grantid: R01 CA104205
– fundername: NCI NIH HHS
  grantid: CA104205
– fundername: NCI NIH HHS
  grantid: R01 CA098523
– fundername: NCI NIH HHS
  grantid: CA98523
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAJUZ
AAPBV
ABCVL
ABPTK
ADDAD
AEUQT
OTOTI
5PM
ID FETCH-LOGICAL-c6311-90a31bd8885212b0db40c6356f34a1433479a8a499117af022e60632fd9e984c3
ISSN 0094-2405
IngestDate Thu Aug 21 14:04:51 EDT 2025
Thu May 18 18:29:33 EDT 2023
Fri Jul 11 16:31:50 EDT 2025
Mon Jul 21 06:07:40 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 02:38:15 EDT 2025
Wed Jan 22 16:36:44 EST 2025
Fri Jun 21 00:20:00 EDT 2024
Fri Jun 21 00:28:31 EDT 2024
Sun Jul 14 10:05:20 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords computed tomography
metal artifact
image reconstruction
optimization
Language English
License 0094-2405/2011/38(2)/701/11/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c6311-90a31bd8885212b0db40c6356f34a1433479a8a499117af022e60632fd9e984c3
Notes lei@stanford.edu
Telephone: (650) 498‐7896; Fax: (650) 498‐4015.
Author to whom correspondence should be addressed. Electronic mail
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author to whom correspondence should be addressed. Electronic mail: lei@stanford.edu; Telephone: (650) 498-7896; Fax: (650) 498-4015.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.3533711
PMID 21452707
PQID 859759769
PQPubID 23479
PageCount 11
ParticipantIDs osti_scitechconnect_22096907
pubmed_primary_21452707
scitation_primary_10_1118_1_3533711
proquest_miscellaneous_859759769
scitation_primary_10_1118_1_3533711Metal_artifact_reduc
wiley_primary_10_1118_1_3533711_MP3711
crossref_primary_10_1118_1_3533711
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3033877
crossref_citationtrail_10_1118_1_3533711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2011
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: February 2011
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2011
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Fessler (c20) 1994; 13
Wang, Lu, Liang, Eremina, Zhang, Wang, Chen, Manzione (c23) 2008; 53
Candès, Romberg, Tao (c29) 2006; 59
Srinivasa, Ramakrishnan, Rajgopal (c2) 1997; 14
Wang, Li, Lu, Liang (c21) 2006; 25
Feigenberg, Paskalev, McNeeley, Horwitz, Konski, Wang, Ma, Pollack (c15) 2007; 8
Ling (c9) 1987; 13
Meng, Wang, Xing (c18) 2010; 37
Kalender, Hebel, Ebersberger (c12) 1987; 164
Lewitt, Bates (c14) 1978; 50
La Riviere, Brian, Vargas (c26) 2006; 25
Mahnken, Raupach, Wildberger, Jung, Heussen, Flohr, Günther, Schaller (c1) 2003; 38
Williamson, Whiting, Benac, Murphy, Blaine, O’Sullivan, Politte, Snyder (c7) 2002; 29
Robertson (c5) 1997; 21
Wang (c4) 1996; 15
Ebraheim (c8) 1990; 13
Klotz, Kalender, Sokiranski, Felsenberg (c13) 1990; 1234
Li, Li, Wang, Wen, Lu, Hsieh, Liang (c22) 2004; 51
Nuyts, De Man, Dupont (c6) 1998; 43
Sidky, Pan (c19) 2008; 53
Sauer, Bouman (c24) 1993; 41
Perona, Malik (c27) 1990; 12
Zhao, Robertson, Wang (c3) 2000; 19
Toft (c11) 1996; 3
Sukovic, Clinthorne (c25) 2000; 19
Wang, Xing (c17) 2010; 7622
Wang, Li, Xing (c16) 2009; 36
Wang (c10) 1999; 5
Candes, Romberg, Tao (c28) 2006; 52
Perona, P.; Malik, J. 1990; 12
Meng, B.; Wang, J.; Xing, L. 2010; 37
Wang, G. 1996; 15
Ling, C. 1987; 13
Klotz, E.; Kalender, W.; Sokiranski, R.; Felsenberg, D. 1990; 1234
Toft, P. 1996; 3
Li, T.; Li, X.; Wang, J.; Wen, J.; Lu, H.; Hsieh, J.; Liang, Z. 2004; 51
Ebraheim, N. 1990; 13
Kalender, W.; Hebel, R.; Ebersberger, J. 1987; 164
La Riviere, P.; Brian, J.; Vargas, P. 2006; 25
Wang, J.; Xing, L. 2010; 7622
Nuyts, J.; De Man, B.; Dupont, P. 1998; 43
Zhao, S.; Robertson, D.; Wang, G. 2000; 19
Fessler, J. 1994; 13
Srinivasa, N.; Ramakrishnan, K.; Rajgopal, K. 1997; 14
Feigenberg, S.; Paskalev, K.; McNeeley, S.; Horwitz, E.; Konski, A.; Wang, L.; Ma, C.; Pollack, A. 2007; 8
Candès, E.; Romberg, J.; Tao, T. 2006; 59
Sukovic, P.; Clinthorne, N. 2000; 19
Robertson, D. 1997; 21
Lewitt, R.; Bates, R. 1978; 50
Wang, J.; Li, T.; Lu, H.; Liang, Z. 2006; 25
Sidky, E.; Pan, X. 2008; 53
Candes, E.; Romberg, J.; Tao, T. 2006; 52
Wang, J.; Li, T.; Xing, L. 2009; 36
Sauer, K.; Bouman, C. 1993; 41
Mahnken, A.; Raupach, R.; Wildberger, J.; Jung, B.; Heussen, N.; Flohr, T.; Günther, R.; Schaller, S. 2003; 38
Wang, G. 1999; 5
Wang, J.; Lu, H.; Liang, Z.; Eremina, D.; Zhang, G.; Wang, S.; Chen, J.; Manzione, J. 2008; 53
Williamson, J.; Whiting, B.; Benac, J.; Murphy, R.; Blaine, G.; O'Sullivan, J.; Politte, D.; Snyder, D. 2002; 29
1987; 13
1987; 164
2006; 52
2010; 37
1990; 12
1990; 13
1997; 21
1978; 50
1993; 41
2006; 59
2003; 38
2004
2008; 53
1998; 43
1996; 15
1999; 5
2009; 36
2000; 19
2004; 51
2002; 29
1990; 1234
1997; 14
2006; 25
2007; 8
1994; 13
1996; 3
2010; 7622
Lewitt R. M. (e_1_2_6_15_1) 1978; 50
Toft P. (e_1_2_6_12_1) 1996; 3
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_16_1
Klotz E. (e_1_2_6_14_1) 1990; 1234
Srinivasa N. (e_1_2_6_3_1) 1997; 14
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
3602406 - Radiology. 1987 Aug;164(2):576-7
9071303 - J Comput Assist Tomogr. 1997 Mar-Apr;21(2):293-8
18523346 - Phys Med Biol. 2008 Jun 21;53(12):3327-41
14627894 - Invest Radiol. 2003 Dec;38(12):769-75
18218505 - IEEE Trans Med Imaging. 1994;13(2):290-300
18215947 - IEEE Trans Med Imaging. 1996;15(5):657-64
21045277 - J Xray Sci Technol. 2010;18(4):403-14
9572499 - Phys Med Biol. 1998 Apr;43(4):729-37
10227827 - Microsc Microanal. 1999 Jan;5(1):58-65
21158299 - Med Phys. 2010 Nov;37(11):5867-75
17024831 - IEEE Trans Med Imaging. 2006 Oct;25(10):1272-83
16894995 - IEEE Trans Med Imaging. 2006 Aug;25(8):1022-36
11204845 - IEEE Trans Med Imaging. 2000 Nov;19(11):1075-81
11212372 - IEEE Trans Med Imaging. 2000 Dec;19(12):1238-47
17712295 - J Appl Clin Med Phys. 2007;8(3):2268
19235393 - Med Phys. 2009 Jan;36(1):252-60
2274478 - Orthopedics. 1990 Dec;13(12):1357-8
18701771 - Phys Med Biol. 2008 Sep 7;53(17):4777-807
3624031 - Int J Radiat Oncol Biol Phys. 1987 Oct;13(10):1577-82
12408315 - Med Phys. 2002 Oct;29(10):2404-18
References_xml – volume: 53
  start-page: 3327
  issn: 0031-9155
  year: 2008
  ident: c23
  article-title: An experimental study on the noise properties of x-ray CT sinogram data in Radon space
  publication-title: Phys. Med. Biol.
– volume: 25
  start-page: 1272
  issn: 0278-0062
  year: 2006
  ident: c21
  article-title: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 51
  start-page: 2505
  issn: 0018-9499
  year: 2004
  ident: c22
  article-title: Nonlinear sinogram smoothing for low-dose x-ray CT
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 13
  start-page: 290
  issn: 0278-0062
  year: 1994
  ident: c20
  article-title: Penalized weighted least-squares image-reconstruction for positron emission tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 41
  start-page: 534
  issn: 1053-587X
  year: 1993
  ident: c24
  article-title: A local update strategy for iterative reconstruction from projections
  publication-title: IEEE Trans. Signal Process.
– volume: 13
  start-page: 1357
  issn: 0147-7447
  year: 1990
  ident: c8
  article-title: Reduction of postoperative CT artefacts of pelvic fractures by use of titanium implants
  publication-title: Orthopedics
– volume: 13
  start-page: 1577
  issn: 0360-3016
  year: 1987
  ident: c9
  article-title: CT-assisted assessment of bladder and rectum dose in gynecological implants
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 21
  start-page: 293
  issn: 0363-8715
  year: 1997
  ident: c5
  article-title: Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction
  publication-title: J. Comput. Assist. Tomogr.
– volume: 29
  start-page: 2404
  issn: 0094-2405
  year: 2002
  ident: c7
  article-title: Prospects for quantitative computed tomography imaging in the presence of foreign metal bodies using statistical image reconstruction
  publication-title: Med. Phys.
– volume: 1234
  start-page: 642
  year: 1990
  ident: c13
  article-title: Algorithms for reduction of CT artifacts caused by metallic implants
  publication-title: SPIE Med Imaging IV
– volume: 5
  start-page: 58
  issn: 1431-9276
  year: 1999
  ident: c10
  article-title: Iterative x-ray cone-beam tomography for metal artifact reduction and local region reconstruction
  publication-title: Microsc. Microanal.
– volume: 8
  start-page: 2268
  issn: 1526-9914
  year: 2007
  ident: c15
  article-title: Comparing computed tomography localization with daily ultrasound during image-guided radiation therapy for the treatment of prostate cancer: A prospective evaluation
  publication-title: J. Appl. Clin. Med. Phys.
– volume: 164
  start-page: 576
  issn: 0033-8419
  year: 1987
  ident: c12
  article-title: Reduction of CT artifacts caused by metallic implants
  publication-title: Radiology
– volume: 19
  start-page: 1075
  issn: 0278-0062
  year: 2000
  ident: c25
  article-title: Penalized weighted least-squares image reconstruction for dual energy x-ray transmission tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 14
  start-page: 1
  year: 1997
  ident: c2
  article-title: Image reconstruction from incomplete projection
  publication-title: J Med Life Sci Eng
– volume: 12
  start-page: 629
  issn: 0162-8828
  year: 1990
  ident: c27
  article-title: Scale-space and edge-detection using anisotropic diffusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7622
  start-page: 76225A
  issn: 0277-786X
  year: 2010
  ident: c17
  article-title: Accurate determination of the shape and location of metal objects in x-ray computed tomography
  publication-title: Proc. SPIE
– volume: 43
  start-page: 729
  issn: 0031-9155
  year: 1998
  ident: c6
  article-title: Iterative reconstruction for helical CT: A simulation study
  publication-title: Phys. Med. Biol.
– volume: 3
  start-page: 1742
  year: 1996
  ident: c11
  article-title: A very fast implementation of 2D iterative reconstruction algorithms
  publication-title: IEEE Proc Med Imaging Conf
– volume: 36
  start-page: 252
  issn: 0094-2405
  year: 2009
  ident: c16
  article-title: Iterative image reconstruction for CBCT using edge-preserving prior
  publication-title: Med. Phys.
– volume: 52
  start-page: 489
  issn: 0018-9448
  year: 2006
  ident: c28
  article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– volume: 38
  start-page: 769
  issn: 0020-9996
  year: 2003
  ident: c1
  article-title: A new algorithm for metal artifact reduction in computed tomography
  publication-title: Invest. Radiol.
– volume: 25
  start-page: 1022
  issn: 0278-0062
  year: 2006
  ident: c26
  article-title: Penalized-likelihood sinogram restoration for computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 19
  start-page: 1238
  issn: 0278-0062
  year: 2000
  ident: c3
  article-title: X-ray CT metal artifact reduction using wavelets: An application for imaging total hip prostheses
  publication-title: IEEE Trans. Med. Imaging
– volume: 37
  start-page: 5867
  issn: 0094-2405
  year: 2010
  ident: c18
  article-title: Sinogram processing and binary reconstruction for determination of the shape and location of metal objects in computed tomography (CT)
  publication-title: Med. Phys.
– volume: 59
  start-page: 1207
  issn: 0010-3640
  year: 2006
  ident: c29
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Commun. Pure Appl. Math.
– volume: 50
  start-page: 189
  issn: 0030-4026
  year: 1978
  ident: c14
  article-title: Image reconstruction from projections: III. Projection completion methods
  publication-title: Optik (Stuttgart)
– volume: 15
  start-page: 657
  issn: 0278-0062
  year: 1996
  ident: c4
  article-title: Iterative deblurring for CT metal artifact reduction
  publication-title: IEEE Trans. Med. Imaging
– volume: 53
  start-page: 4777
  issn: 0031-9155
  year: 2008
  ident: c19
  article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization
  publication-title: Phys. Med. Biol.
– volume: 38
  start-page: 769-775
  year: 2003
  publication-title: Invest. Radiol.
  doi: 10.1097/01.rli.0000086495.96457.54
– volume: 13
  start-page: 1357-1358
  year: 1990
  publication-title: Orthopedics
– volume: 36
  start-page: 252-260
  year: 2009
  publication-title: Med. Phys.
  doi: 10.1118/1.3036112
– volume: 43
  start-page: 729-737
  year: 1998
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/43/4/003
– volume: 12
  start-page: 629-639
  year: 1990
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.56205
– volume: 3
  start-page: 1742-1746
  year: 1996
  publication-title: IEEE Proc Med Imaging Conf
– volume: 52
  start-page: 489-509
  year: 2006
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 19
  start-page: 1238-1247
  year: 2000
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.897816
– volume: 8
  start-page: 2268-2268
  year: 2007
  publication-title: J. Appl. Clin. Med. Phys.
  doi: 10.1120/jacmp.v8i3.2268
– volume: 21
  start-page: 293-298
  year: 1997
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199703000-00024
– volume: 50
  start-page: 189-204
  year: 1978
  publication-title: Optik (Stuttgart)
– volume: 51
  start-page: 2505-2513
  year: 2004
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2004.834824
– volume: 59
  start-page: 1207-1223
  year: 2006
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– volume: 25
  start-page: 1022-1036
  year: 2006
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.875429
– volume: 19
  start-page: 1075-1081
  year: 2000
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.896783
– volume: 15
  start-page: 657-664
  year: 1996
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.538943
– volume: 41
  start-page: 534-548
  year: 1993
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.193196
– volume: 13
  start-page: 1577-1582
  year: 1987
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
  doi: 10.1016/0360-3016(87)90327-0
– volume: 7622
  start-page: 76225A-76225A-10
  year: 2010
  publication-title: Proc. SPIE
– volume: 14
  start-page: 1-19
  year: 1997
  publication-title: J Med Life Sci Eng
– volume: 53
  start-page: 4777-4807
  year: 2008
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/17/021
– volume: 5
  start-page: 58-65
  year: 1999
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927699000057
– volume: 25
  start-page: 1272-1283
  year: 2006
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882141
– volume: 37
  start-page: 5867-5875
  year: 2010
  publication-title: Med. Phys.
  doi: 10.1118/1.3505294
– volume: 29
  start-page: 2404-2418
  year: 2002
  publication-title: Med. Phys.
  doi: 10.1118/1.1509443
– volume: 1234
  start-page: 642-650
  year: 1990
  publication-title: SPIE Med Imaging IV
– volume: 164
  start-page: 576-577
  year: 1987
  publication-title: Radiology
– volume: 13
  start-page: 290-300
  year: 1994
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.293921
– volume: 53
  start-page: 3327-3341
  year: 2008
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/12/018
– volume: 13
  start-page: 1577
  year: 1987
  end-page: 1582
  article-title: CT‐assisted assessment of bladder and rectum dose in gynecological implants
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 50
  start-page: 189
  year: 1978
  end-page: 204
  article-title: Image reconstruction from projections: III. Projection completion methods
  publication-title: Optik (Stuttgart)
– volume: 53
  start-page: 4777
  year: 2008
  end-page: 4807
  article-title: Image reconstruction in circular cone‐beam computed tomography by constrained, total‐variation minimization
  publication-title: Phys. Med. Biol.
– volume: 15
  start-page: 657
  year: 1996
  end-page: 664
  article-title: Iterative deblurring for CT metal artifact reduction
  publication-title: IEEE Trans. Med. Imaging
– volume: 25
  start-page: 1272
  year: 2006
  end-page: 1283
  article-title: Penalized weighted least‐squares approach to sinogram noise reduction and image reconstruction for low‐dose x‐ray computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 13
  start-page: 290
  year: 1994
  end-page: 300
  article-title: Penalized weighted least‐squares image‐reconstruction for positron emission tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 14
  start-page: 1
  year: 1997
  end-page: 19
  article-title: Image reconstruction from incomplete projection
  publication-title: J Med Life Sci Eng
– volume: 43
  start-page: 729
  year: 1998
  end-page: 737
  article-title: Iterative reconstruction for helical CT: A simulation study
  publication-title: Phys. Med. Biol.
– volume: 29
  start-page: 2404
  year: 2002
  end-page: 2418
  article-title: Prospects for quantitative computed tomography imaging in the presence of foreign metal bodies using statistical image reconstruction
  publication-title: Med. Phys.
– volume: 59
  start-page: 1207
  year: 2006
  end-page: 1223
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Commun. Pure Appl. Math.
– volume: 5
  start-page: 58
  year: 1999
  end-page: 65
  article-title: Iterative x‐ray cone‐beam tomography for metal artifact reduction and local region reconstruction
  publication-title: Microsc. Microanal.
– volume: 19
  start-page: 1075
  year: 2000
  end-page: 1081
  article-title: Penalized weighted least‐squares image reconstruction for dual energy x‐ray transmission tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 8
  start-page: 2268
  year: 2007
  end-page: 2268
  article-title: Comparing computed tomography localization with daily ultrasound during image‐guided radiation therapy for the treatment of prostate cancer: A prospective evaluation
  publication-title: J. Appl. Clin. Med. Phys.
– volume: 37
  start-page: 5867
  year: 2010
  end-page: 5875
  article-title: Sinogram processing and binary reconstruction for determination of the shape and location of metal objects in computed tomography (CT)
  publication-title: Med. Phys.
– volume: 21
  start-page: 293
  year: 1997
  end-page: 298
  article-title: Total hip prosthesis metal‐artifact suppression using iterative deblurring reconstruction
  publication-title: J. Comput. Assist. Tomogr.
– volume: 51
  start-page: 2505
  year: 2004
  end-page: 2513
  article-title: Nonlinear sinogram smoothing for low‐dose x‐ray CT
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 12
  start-page: 629
  year: 1990
  end-page: 639
  article-title: Scale‐space and edge‐detection using anisotropic diffusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 36
  start-page: 252
  year: 2009
  end-page: 260
  article-title: Iterative image reconstruction for CBCT using edge‐preserving prior
  publication-title: Med. Phys.
– volume: 52
  start-page: 489
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– volume: 164
  start-page: 576
  year: 1987
  end-page: 577
  article-title: Reduction of CT artifacts caused by metallic implants
  publication-title: Radiology
– volume: 41
  start-page: 534
  year: 1993
  end-page: 548
  article-title: A local update strategy for iterative reconstruction from projections
  publication-title: IEEE Trans. Signal Process.
– volume: 53
  start-page: 3327
  year: 2008
  end-page: 3341
  article-title: An experimental study on the noise properties of x‐ray CT sinogram data in Radon space
  publication-title: Phys. Med. Biol.
– volume: 1234
  start-page: 642
  year: 1990
  end-page: 650
  article-title: Algorithms for reduction of CT artifacts caused by metallic implants
  publication-title: SPIE Med Imaging IV
– volume: 7622
  start-page: 76225A
  year: 2010
  end-page: 76225A
  article-title: Accurate determination of the shape and location of metal objects in x‐ray computed tomography
  publication-title: Proc. SPIE
– year: 2004
– volume: 38
  start-page: 769
  year: 2003
  end-page: 775
  article-title: A new algorithm for metal artifact reduction in computed tomography
  publication-title: Invest. Radiol.
– volume: 13
  start-page: 1357
  year: 1990
  end-page: 1358
  article-title: Reduction of postoperative CT artefacts of pelvic fractures by use of titanium implants
  publication-title: Orthopedics
– volume: 3
  start-page: 1742
  year: 1996
  end-page: 1746
  article-title: A very fast implementation of 2D iterative reconstruction algorithms
  publication-title: IEEE Proc Med Imaging Conf
– volume: 25
  start-page: 1022
  year: 2006
  end-page: 1036
  article-title: Penalized‐likelihood sinogram restoration for computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 19
  start-page: 1238
  year: 2000
  end-page: 1247
  article-title: X‐ray CT metal artifact reduction using wavelets: An application for imaging total hip prostheses
  publication-title: IEEE Trans. Med. Imaging
– ident: e_1_2_6_28_1
  doi: 10.1109/34.56205
– ident: e_1_2_6_2_1
  doi: 10.1097/01.rli.0000086495.96457.54
– ident: e_1_2_6_17_1
  doi: 10.1118/1.3036112
– ident: e_1_2_6_9_1
  doi: 10.3928/0147-7447-19901201-06
– ident: e_1_2_6_7_1
  doi: 10.1088/0031‐9155/43/4/003
– volume: 14
  start-page: 1
  year: 1997
  ident: e_1_2_6_3_1
  article-title: Image reconstruction from incomplete projection
  publication-title: J Med Life Sci Eng
– ident: e_1_2_6_23_1
  doi: 10.1109/TNS.2004.834824
– volume: 50
  start-page: 189
  year: 1978
  ident: e_1_2_6_15_1
  article-title: Image reconstruction from projections: III. Projection completion methods
  publication-title: Optik (Stuttgart)
– ident: e_1_2_6_8_1
  doi: 10.1118/1.1509443
– ident: e_1_2_6_25_1
  doi: 10.1109/78.193196
– ident: e_1_2_6_21_1
  doi: 10.1109/42.293921
– ident: e_1_2_6_10_1
  doi: 10.1016/0360‐3016(87)90327‐0
– ident: e_1_2_6_19_1
  doi: 10.1118/1.3505294
– ident: e_1_2_6_30_1
  doi: 10.1002/cpa.20124
– ident: e_1_2_6_13_1
  doi: 10.1148/radiology.164.2.3602406
– ident: e_1_2_6_16_1
  doi: 10.1120/jacmp.v8i3.2268
– ident: e_1_2_6_24_1
  doi: 10.1088/0031‐9155/53/12/018
– ident: e_1_2_6_18_1
  doi: 10.1117/12.844294
– ident: e_1_2_6_22_1
  doi: 10.1109/TMI.2006.882141
– ident: e_1_2_6_11_1
  doi: 10.1017/S1431927699000057
– ident: e_1_2_6_6_1
  doi: 10.1097/00004728‐199703000‐00024
– volume: 1234
  start-page: 642
  year: 1990
  ident: e_1_2_6_14_1
  article-title: Algorithms for reduction of CT artifacts caused by metallic implants
  publication-title: SPIE Med Imaging IV
– volume: 3
  start-page: 1742
  year: 1996
  ident: e_1_2_6_12_1
  article-title: A very fast implementation of 2D iterative reconstruction algorithms
  publication-title: IEEE Proc Med Imaging Conf
– ident: e_1_2_6_26_1
  doi: 10.1109/42.896783
– ident: e_1_2_6_27_1
  doi: 10.1109/TMI.2006.875429
– ident: e_1_2_6_4_1
  doi: 10.1109/42.897816
– ident: e_1_2_6_29_1
  doi: 10.1109/TIT.2005.862083
– ident: e_1_2_6_31_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_2_6_20_1
  doi: 10.1088/0031‐9155/53/17/021
– ident: e_1_2_6_5_1
  doi: 10.1109/42.538943
– reference: 18523346 - Phys Med Biol. 2008 Jun 21;53(12):3327-41
– reference: 12408315 - Med Phys. 2002 Oct;29(10):2404-18
– reference: 16894995 - IEEE Trans Med Imaging. 2006 Aug;25(8):1022-36
– reference: 9071303 - J Comput Assist Tomogr. 1997 Mar-Apr;21(2):293-8
– reference: 9572499 - Phys Med Biol. 1998 Apr;43(4):729-37
– reference: 17024831 - IEEE Trans Med Imaging. 2006 Oct;25(10):1272-83
– reference: 18701771 - Phys Med Biol. 2008 Sep 7;53(17):4777-807
– reference: 17712295 - J Appl Clin Med Phys. 2007;8(3):2268
– reference: 18215947 - IEEE Trans Med Imaging. 1996;15(5):657-64
– reference: 3602406 - Radiology. 1987 Aug;164(2):576-7
– reference: 3624031 - Int J Radiat Oncol Biol Phys. 1987 Oct;13(10):1577-82
– reference: 18218505 - IEEE Trans Med Imaging. 1994;13(2):290-300
– reference: 11212372 - IEEE Trans Med Imaging. 2000 Dec;19(12):1238-47
– reference: 21158299 - Med Phys. 2010 Nov;37(11):5867-75
– reference: 10227827 - Microsc Microanal. 1999 Jan;5(1):58-65
– reference: 21045277 - J Xray Sci Technol. 2010;18(4):403-14
– reference: 14627894 - Invest Radiol. 2003 Dec;38(12):769-75
– reference: 19235393 - Med Phys. 2009 Jan;36(1):252-60
– reference: 11204845 - IEEE Trans Med Imaging. 2000 Nov;19(11):1075-81
– reference: 2274478 - Orthopedics. 1990 Dec;13(12):1357-8
SSID ssj0006350
Score 2.3907092
Snippet Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the...
The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors...
Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 701
SubjectTerms ALGORITHMS
Artifacts and distortion
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computed tomography
computerised tomography
COMPUTERIZED TOMOGRAPHY
gradient methods
IMAGE PROCESSING
Image Processing, Computer-Assisted - methods
image reconstruction
image segmentation
Interpolation
ITERATIVE METHODS
Medical image artifacts
Medical image noise
medical image processing
Medical image reconstruction
Medical imaging
Medical X‐ray imaging
metal artifact
METALS
minimisation
MINIMIZATION
Modulation transfer functions
NOISE
Nonmetals
Numerical optimization
optimization
Phantoms, Imaging
Quality Control
Radiation Imaging Physics
RADIATION SOURCE IMPLANTS
RADIOLOGY AND NUCLEAR MEDICINE
Reconstruction
Segmentation
Tomography, X-Ray Computed - methods
X RADIATION
X‐ray imaging
Title Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization
URI http://dx.doi.org/10.1118/1.3533711
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3533711
https://www.ncbi.nlm.nih.gov/pubmed/21452707
https://www.proquest.com/docview/859759769
https://www.osti.gov/biblio/22096907
https://pubmed.ncbi.nlm.nih.gov/PMC3033877
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZKJ16-IBgMCgNZgNBQlZG35uXjNEDTRGGCDvWbZScOq8SSqaQI-Bf8Y-781hS6aSBNWWU7bup7crk73z0h5FlVVhHS3HlpCbdbnIvcy7mIvZj7SZkDqESI9c7jd8nBcXw4HU17vV-drKVFK3aLn2vrSv5HqtAGcsUq2X-QrJsUGuAzyBeOIGE4XkrGY4mljNiB9QnDOdKw2uTF796c_1AZ4ws0Ktvm1JBTq33bCUYDBPYjgywHU7McNqA9Tk1ZZtdmtXs5OgiiorRYOc31Oz1cIEGFnofTGUdOh8_LQD00Hs6WDVNVViVnzoKG5-G8tSkJH5AqQf2E93XhCmnwVcd_1jUa-lDM4DHpAd2ROpfFlZ0h-_uoG-DAiK1LFjFKO49xE0gPk6otjNPIi0M_7yryKOsANjzn-YA1D8FuBFZuarT8Kt12CJNixOAK2QjB8_D7ZGPv1fjtR_d4BwtN1zWZqzJ0VTDzSzfvipHTb0BZr3Ng_s7DvQ5mj87AWPWVlLEzuUVuGi-F7mnI3SY9WW-Sa3ahN8nVI42FO-STwiC1GKQOg3RWU4VBajFIlxikO_uTF1Rgn8Mf7eLvLjl-83qyf-CZd3V4RRIFmOXDo0CUWZZhMbjwSxH7BXIfgirgYJNjwTLPOPjXQZDyCixHCa5zFFZlLvMsLqIt0q-bWt4nNImFLHmVSBxfwAFm5f6Ig-rIylEhBmTHLi6zy4VX-oVphzZjATNyGJAnbuiZZm9ZN2gbJcRw7WVxUmCCWdEyC4QBoVZyDFQv7qfxWjaLrywDZxz-knxA7mlBui9B_v8wxZPTFRG7AcjqvtpTz04UuzvYlFGWwplPHRguuvb0EqMUEphFAlNIWDv_t2a-PIudldWAPFcwPH9uNj7Cfw8uXsSH5Mby1t4m_Xa-kI_Amm_FY3N__QZUWPYV
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+artifact+reduction+in+x-ray+computed+tomography+%28CT%29+by+constrained+optimization&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Zhang+Xiaomeng&rft.au=Wang+Jing&rft.au=Xing+Lei&rft.au=Department+of+Radiation+Oncology%2C+Stanford+University+School+of+Medicine%2C+Stanford%2C+California+94305&rft.date=2011-02-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=38&rft.issue=2&rft_id=info:doi/10.1118%2F1.3533711&rft.externalDocID=22096907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon