SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI

Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 253; p. 119033
Main Authors Tian, Qiyuan, Li, Ziyu, Fan, Qiuyun, Polimeni, Jonathan R., Bilgic, Berkin, Salat, David H., Huang, Susie Y.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2022
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2022.119033

Cover

Loading…
Abstract Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled “SDnDTI” for denoising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolutions, b-values and numbers of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain.
AbstractList Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled "SDnDTI" for denoising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolutions, b-values and numbers of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain.
Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled “SDnDTI” for denoising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolution, b-values and number of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain.
Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled "SDnDTI" for denoising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolutions, b-values and numbers of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain.Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled "SDnDTI" for denoising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolutions, b-values and numbers of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain.
ArticleNumber 119033
Author Tian, Qiyuan
Huang, Susie Y.
Li, Ziyu
Bilgic, Berkin
Salat, David H.
Fan, Qiuyun
Polimeni, Jonathan R.
AuthorAffiliation 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
2 Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States
4 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
3 Department of Biomedical Engineering, Tsinghua University, Beijing, P. R. China
AuthorAffiliation_xml – name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
– name: 3 Department of Biomedical Engineering, Tsinghua University, Beijing, P. R. China
– name: 2 Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States
– name: 4 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Author_xml – sequence: 1
  givenname: Qiyuan
  orcidid: 0000-0002-8350-5295
  surname: Tian
  fullname: Tian, Qiyuan
  email: qtian@mgh.harvard.edu
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States
– sequence: 2
  givenname: Ziyu
  surname: Li
  fullname: Li, Ziyu
  organization: Department of Biomedical Engineering, Tsinghua University, Beijing, PR China
– sequence: 3
  givenname: Qiuyun
  surname: Fan
  fullname: Fan, Qiuyun
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States
– sequence: 4
  givenname: Jonathan R.
  orcidid: 0000-0002-1348-1179
  surname: Polimeni
  fullname: Polimeni, Jonathan R.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States
– sequence: 5
  givenname: Berkin
  surname: Bilgic
  fullname: Bilgic, Berkin
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States
– sequence: 6
  givenname: David H.
  surname: Salat
  fullname: Salat, David H.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States
– sequence: 7
  givenname: Susie Y.
  orcidid: 0000-0003-2950-7254
  surname: Huang
  fullname: Huang, Susie Y.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35240299$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gL6BIXLhkseM4sTkgoOVjpQISLWfLdsaLQ9Ze7GSl_nu8pGxpT3uyPfP60cy8c4qOfPCAUEHwgmDSvOoXHqYY3FqtYFHhqloQIjClj9AJwYKVgrXV0e7OaMlz6hidptRjjAWp-RN0TFlV40qIE_T16sJfXC9fF1cw2DJNG4hbl6ArOoBNMYCK3vlVqdUc88Gl_C5siEXnrJ2SC74Ywacc-PJ9-RQ9tmpI8Oz2PEM_Pn64Pv9cXn77tDx_d1mahuKxhE4LRVqtMIAyFHPc8FwdbwgjmjHdkTqXSjjvcloJQa1uNa455i0VjVX0DC1nbhdULzcxTyLeyKCc_BsIcSVVHJ0ZQGpKGtA10V2Na2BWGaO5wa1SVjfU2sx6M7M2k15DZ8CPUQ33oPcz3v2Uq7CVguXRtjQDXt4CYvg9QRrl2iUDw6A8hCnJqqENqSmrWZa-eCDtwxR9HlVWsQrvXKyz6vn_Fe1L-WdbFvBZYGJIKYLdSwiWuw2RvbzbELnbEDlvyF23-6_GjWrMNube3HAI4P0MgOzv1kGUyTjwBjoXwYzZAHcI5O0DiBmcd0YNv-DmMMQf8ibz8Q
CitedBy_id crossref_primary_10_1088_1361_6560_ad45a5
crossref_primary_10_1016_j_bbe_2022_12_006
crossref_primary_10_1016_j_mri_2023_07_004
crossref_primary_10_1007_s00521_023_09206_4
crossref_primary_10_1002_mrm_30365
crossref_primary_10_1016_j_mri_2024_01_001
crossref_primary_10_1007_s00234_024_03282_6
crossref_primary_10_1002_jmri_29217
crossref_primary_10_1016_j_mri_2022_12_009
crossref_primary_10_1016_j_mri_2024_110277
crossref_primary_10_1162_imag_a_00060
crossref_primary_10_1109_JBHI_2022_3193299
crossref_primary_10_1002_mrm_29478
crossref_primary_10_1088_1361_6560_ad94c7
crossref_primary_10_3390_app131910829
crossref_primary_10_1016_j_acra_2024_06_029
crossref_primary_10_1007_s10278_022_00721_9
crossref_primary_10_1007_s11517_024_03122_y
crossref_primary_10_3389_fneur_2023_1168833
crossref_primary_10_1007_s11063_023_11404_z
crossref_primary_10_1016_j_media_2023_102744
crossref_primary_10_1002_mrm_29763
crossref_primary_10_3390_diagnostics13213326
crossref_primary_10_3390_math12050748
crossref_primary_10_1002_mp_16301
crossref_primary_10_1002_mrm_30018
crossref_primary_10_1002_mrm_30429
crossref_primary_10_1002_mrm_29848
crossref_primary_10_1051_bioconf_202412910021
crossref_primary_10_1162_imag_a_00193
crossref_primary_10_1002_mrm_29786
crossref_primary_10_1002_nbm_4822
crossref_primary_10_1088_1361_6560_ac783d
crossref_primary_10_3390_tomography10040039
crossref_primary_10_1371_journal_pone_0318992
crossref_primary_10_1002_hbm_70142
crossref_primary_10_1038_s41598_022_15511_0
crossref_primary_10_1162_imag_a_00353
Cites_doi 10.1002/mrm.20426
10.1016/j.media.2016.02.010
10.1148/radiol.2018180940
10.1109/TMI.2016.2551324
10.1016/S0006-3495(94)80775-1
10.1002/jmri.22003
10.1002/mrm.21391
10.1109/TMI.2012.2188039
10.1038/nn1075
10.1109/ACCESS.2019.2919241
10.1002/mrm.20033
10.1016/j.neuroimage.2012.11.065
10.1016/j.media.2017.07.006
10.3389/fnins.2019.01066
10.1016/S1053-8119(03)00336-7
10.1016/j.neuroimage.2018.03.045
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
10.1109/TIP.2003.819861
10.1002/mrm.26626
10.1002/hbm.22256
10.1016/j.compmedimag.2019.101647
10.1016/j.neuroimage.2004.07.037
10.1002/mrm.26059
10.1002/mrm.21236
10.1016/j.neuroimage.2018.09.060
10.1016/j.neuroimage.2013.05.012
10.1196/annals.1340.009
10.1038/s41598-019-51062-7
10.1016/j.neuroimage.2021.117946
10.1006/nimg.1998.0395
10.3174/ajnr.A3553
10.1109/TMI.2007.906087
10.1016/j.neuroimage.2016.08.016
10.1109/TIP.2012.2210725
10.1002/mp.13555
10.1006/jmrb.1996.0086
10.1016/j.neuroimage.2019.04.002
10.1002/mrm.27511
10.1038/s41467-018-04627-5
10.1109/TMI.2015.2427157
10.1016/j.neuroimage.2011.09.015
10.1002/mp.13400
10.1006/jmrb.1994.1037
10.1137/040616024
10.1016/j.neuroimage.2008.10.026
10.1016/j.nicl.2013.07.006
10.1016/j.neuroimage.2018.10.009
10.1016/j.neuroimage.2007.02.016
10.1016/j.neuroimage.2012.03.072
10.1002/mrm.27568
10.1002/mrm.22161
10.1371/journal.pone.0073021
10.2463/mrms.mp.2019-0018
10.1038/s41592-018-0261-2
10.1109/42.141646
10.1007/s11604-018-0758-8
10.1148/radiology.201.3.8939209
10.1016/j.neuroimage.2005.03.026
10.1016/j.pneurobio.2011.09.005
10.1016/j.neuroimage.2020.117017
10.1002/mrm.27488
10.1002/mrm.28025
10.1109/TIP.2007.901238
10.1002/mrm.27813
10.1016/j.neuroimage.2007.12.025
10.1002/mp.12974
10.1109/TIP.2017.2662206
10.1109/TSP.2006.881199
10.1109/TIM.2019.2925881
10.1016/j.neuroimage.2013.05.057
10.1109/TMI.2013.2293974
10.1002/mp.13626
10.1002/mrm.24997
10.1002/mrm.10609
10.1016/j.neuroimage.2015.10.019
10.1016/j.neuroimage.2005.03.042
10.1038/s41597-021-00904-z
10.1002/mrm.27899
10.1016/j.neuroimage.2009.01.008
10.1016/j.neuroimage.2004.07.051
10.1002/jmri.25970
10.1038/s41592-018-0216-7
10.1002/nbm.1020
10.1002/mrm.22463
10.1016/j.nic.2005.09.008
10.1038/nn.4393
10.1002/mrm.24736
10.1002/jmri.21049
10.1002/nbm.1506
10.1016/j.neuroimage.2009.06.060
10.1038/s41467-017-01285-x
10.1073/pnas.1206792109
10.1016/j.neuroimage.2013.04.127
10.1038/ncomms5932
10.1002/mrm.1910360612
10.1002/mrm.25717
10.1016/j.neuroimage.2011.06.006
10.1002/mrm.24204
10.1002/mrm.24229
10.1006/jmre.2000.2209
10.1016/j.neuroimage.2012.01.021
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Inc.
Copyright Elsevier Limited Jun 2022
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Jun 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2022.119033
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Psychology Database (NC LIVE)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic



ProQuest One Psychology
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 119033
ExternalDocumentID oai_doaj_org_article_b316eb41bd404e5faccb8c07aafb63ff
PMC9511973
35240299
10_1016_j_neuroimage_2022_119033
S1053811922001628
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIA NIH HHS
  grantid: U01 AG052564
– fundername: NIBIB NIH HHS
  grantid: P41 EB015896
– fundername: NIBIB NIH HHS
  grantid: R01 EB017337
– fundername: NIMH NIH HHS
  grantid: R01 MH111419
– fundername: NIBIB NIH HHS
  grantid: R03 EB031175
– fundername: NIA NIH HHS
  grantid: K99 AG073506
– fundername: NINDS NIH HHS
  grantid: R01 NS118187
– fundername: NIBIB NIH HHS
  grantid: U01 EB026996
– fundername: NINDS NIH HHS
  grantid: K23 NS096056
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-edb9a17ba0eeac30806800086151b55bd14091188deaca993fb7b048087396fa3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:32:23 EDT 2025
Thu Aug 21 18:39:25 EDT 2025
Thu Sep 04 19:50:40 EDT 2025
Wed Aug 13 03:07:32 EDT 2025
Wed Apr 16 06:21:20 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Jul 01 03:02:22 EDT 2025
Fri Feb 23 02:40:03 EST 2024
Tue Aug 26 17:21:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Diffusion tensor transformation
Image synthesis
Residual learning
Supervised learning
Normal aging
Convolutional neural network
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-edb9a17ba0eeac30806800086151b55bd14091188deaca993fb7b048087396fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1348-1179
0000-0002-8350-5295
0000-0003-2950-7254
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811922001628
PMID 35240299
PQID 2652019034
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_b316eb41bd404e5faccb8c07aafb63ff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9511973
proquest_miscellaneous_2636143545
proquest_journals_2652019034
pubmed_primary_35240299
crossref_primary_10_1016_j_neuroimage_2022_119033
crossref_citationtrail_10_1016_j_neuroimage_2022_119033
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_119033
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_119033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Marek (bib0022) 2011; 95
Liang, Liu, Wang, Ying (bib0034) 2009; 62
Shin (bib0041) 2014; 72
Bilgic (bib0043) 2019; 82
Zhang, Schneider, Wheeler-Kingshott, Alexander (bib0114) 2012; 61
Fischl (bib0093) 2012; 62
Caruyer, Lenglet, Sapiro, Deriche (bib0088) 2013; 69
Manjón (bib0046) 2013; 8
Sperl (bib0051) 2017; 78
Wang (bib0061) 2018; 174
Fieremans (bib0116) 2013; 34
Coupé (bib0028) 2008; 27
Dong (bib0052) 2018; 45
Wu, Cheung (bib0107) 2010; 23
Aharon, Elad, Bruckstein (bib0026) 2006; 54
Devalla (bib0056) 2019; 9
Jbabdi, Sotiropoulos, Savio, Graña, Behrens (bib0113) 2012; 68
Chang, Jones, Pierpaoli (bib0117) 2005; 53
Basser, Mattiello, LeBihan (bib0001) 1994; 66
Chen (bib0059) 2018; 290
Falk (bib0082) 2019; 16
Hu (bib0037) 2019; 81
Huber, Donnelly, Rokem, Yeatman (bib0010) 2018; 9
Kubicki (bib0013) 2005; 26
Jack (bib0020) 2008; 27
Tian (bib0071) 2021; 233
Huang, Liu, Van Der Maaten, Weinberger (bib0084) 2017
Otazo, Kim, Axel, Sodickson (bib0036) 2010; 64
Kim, Bilgic, Polak, Setsompop, Haldar (bib0039) 2019; 81
Maier-Hein (bib0118) 2017; 8
Fadnavis, Batson, Garyfallidis (bib0048) 2020; 33
Aliotta, Nourzadeh, Sanders, Muller, Ennis (bib0074) 2019; 46
He, Zhang, Ren, Sun (bib0104) 2016
Jiang (bib0066) 2018; 36
Golkov (bib0076) 2016; 35
Tian (bib0070) 2020; 219
Haldar (bib0049) 2013; 69
Ugurbil (bib0086) 2013; 80
Andersson, Skare, Ashburner (bib0091) 2003; 20
Gerig, Kubler, Kikinis, Jolesz (bib0027) 1992; 11
He, Zhang, Ren, Sun (bib0101) 2015
Assaf, Basser (bib0108) 2005; 27
Zhang, Zuo, Chen, Meng, Zhang (bib0053) 2017; 26
Murphy (bib0035) 2012; 31
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0090) 2012; 62
Salat (bib0008) 2005; 1064
Pierrick, C. MRI denoising using deep learning and non-local averaging. arXiv preprint arXiv
Veraart, Fieremans, Novikov (bib0044) 2016; 76
Basser, Pierpaoli (bib0004) 1996; 111
Li (bib0075) 2019; 7
Pham (bib0105) 2019; 77
Wang, Bovik, Sheikh, Simoncelli (bib0102) 2004; 13
Tournier, Calamante, Gadian, Connelly (bib0109) 2004; 23
Pierpaoli, Jezzard, Basser, Barnett, Di Chiro (bib0003) 1996; 201
McNab (bib0019) 2009; 46
Xu (bib0063) 2020; 11313
Haldar (bib0040) 2013; 33
Gondara (bib0057) 2016
Kidoh (bib0069) 2019; 19
Krull, Buchholz, Jug (bib0055) 2019
Smith (bib0089) 2004; 23
Basser, Mattiello, LeBihan (bib0002) 1994; 103
Varadarajan, Haldar (bib0050) 2015; 34
Liao (bib0017) 2020; 83
Greve, Fischl (bib0098) 2009; 48
Behrens (bib0112) 2003; 6
Kingma, D.P. & Ba, J. Adam: a method for stochastic optimization. arXiv preprint arXiv
Tournier, Calamante, Connelly (bib0110) 2007; 35
Gong (bib0068) 2020; 11313
St-Jean, Coupé, Descoteaux (bib0047) 2016; 32
Cullen (bib0014) 2010; 49
Andersson, Sotiropoulos (bib0092) 2016; 125
Yeatman, Wandell, Mezer (bib0006) 2014; 5
Hu (bib0038) 2020; 83
Manjón, Coupé, Martí-Bonmatí, Collins, Robles (bib0029) 2010; 31
Jones, Horsfield, Simmons (bib0081) 1999; 42
Bazin (bib0031) 2019; 13
Skare, Hedehus, Moseley, Li (bib0080) 2000; 147
Gong, Pauly, Wintermark, Zaharchuk (bib0064) 2018; 48
Sotiropoulos (bib0087) 2013; 80
Li (bib0072) 2018
Behrens (bib0111) 2003; 50
Haldar, Zhuo (bib0042) 2016; 75
Fieremans, Jensen, Helpern (bib0115) 2011; 58
Block, Uecker, Frahm (bib0033) 2007; 57
Chang, Yan, Chen, Fang, Zhong (bib0058) 2019; 69
Wang (bib0016) 2021; 8
Golkov (bib0077) 2015; 9349
Nir (bib0009) 2013; 3
Weigert (bib0054) 2018; 15
Ouyang, Chen, Gong, Pauly, Zaharchuk (bib0060) 2019; 46
(2019).
Serrano-Sosa, Spuhler, DeLorenzo, Huang (bib0062) 2020; 61
Jones (bib0099) 2004; 51
Veraart (bib0045) 2016; 142
Miller (bib0023) 2016; 19
Gibbons (bib0078) 2018; 81
Zheng (bib0012) 2014; 35
McNab (bib0015) 2013; 69
Garyfallidis (bib0103) 2014
Lustig, Donoho, Pauly (bib0032) 2007; 58
Yeatman, Dougherty, Ben-Shachar, Wandell (bib0007) 2012; 109
Buades, Coll, Morel (bib0024) 2005; 4
Liao (bib0018) 2019; 194
van der Kouwe, Benner, Salat, Fischl (bib0097) 2008; 40
Gong (bib0073) 2018
Roosendaal (bib0011) 2009; 44
Dabov, Foi, Katkovnik, Egiazarian (bib0025) 2007; 16
Harms (bib0095) 2018; 183
Lu, Jensen, Ramani, Helpern (bib0106) 2006; 19
Kim, Kwon Lee, Mu Lee (bib0083) 2016
(2014).
Maggioni, Katkovnik, Egiazarian, Foi (bib0030) 2012; 22
Mueller (bib0021) 2005; 15
Benou, Veksler, Friedman, Raviv (bib0065) 2017; 42
Lin (bib0079) 2019; 46
Dale, Fischl, Sereno (bib0094) 1999; 9
Glasser (bib0085) 2013; 80
Pierpaoli, Basser (bib0005) 1996; 36
Bookheimer (bib0096) 2019; 185
Tournier (10.1016/j.neuroimage.2022.119033_bib0109) 2004; 23
Jbabdi (10.1016/j.neuroimage.2022.119033_bib0113) 2012; 68
Veraart (10.1016/j.neuroimage.2022.119033_bib0044) 2016; 76
Buades (10.1016/j.neuroimage.2022.119033_bib0024) 2005; 4
Gibbons (10.1016/j.neuroimage.2022.119033_bib0078) 2018; 81
Zhang (10.1016/j.neuroimage.2022.119033_bib0053) 2017; 26
Smith (10.1016/j.neuroimage.2022.119033_bib0089) 2004; 23
Basser (10.1016/j.neuroimage.2022.119033_bib0004) 1996; 111
Manjón (10.1016/j.neuroimage.2022.119033_bib0046) 2013; 8
Miller (10.1016/j.neuroimage.2022.119033_bib0023) 2016; 19
Veraart (10.1016/j.neuroimage.2022.119033_bib0045) 2016; 142
Greve (10.1016/j.neuroimage.2022.119033_bib0098) 2009; 48
Glasser (10.1016/j.neuroimage.2022.119033_bib0085) 2013; 80
Harms (10.1016/j.neuroimage.2022.119033_bib0095) 2018; 183
Murphy (10.1016/j.neuroimage.2022.119033_bib0035) 2012; 31
Haldar (10.1016/j.neuroimage.2022.119033_bib0049) 2013; 69
Varadarajan (10.1016/j.neuroimage.2022.119033_bib0050) 2015; 34
Gong (10.1016/j.neuroimage.2022.119033_bib0064) 2018; 48
Dabov (10.1016/j.neuroimage.2022.119033_bib0025) 2007; 16
Ugurbil (10.1016/j.neuroimage.2022.119033_bib0086) 2013; 80
Otazo (10.1016/j.neuroimage.2022.119033_bib0036) 2010; 64
Wang (10.1016/j.neuroimage.2022.119033_bib0102) 2004; 13
McNab (10.1016/j.neuroimage.2022.119033_bib0015) 2013; 69
Li (10.1016/j.neuroimage.2022.119033_bib0072) 2018
Golkov (10.1016/j.neuroimage.2022.119033_bib0076) 2016; 35
Jack (10.1016/j.neuroimage.2022.119033_bib0020) 2008; 27
Kim (10.1016/j.neuroimage.2022.119033_bib0039) 2019; 81
Chen (10.1016/j.neuroimage.2022.119033_bib0059) 2018; 290
Lin (10.1016/j.neuroimage.2022.119033_bib0079) 2019; 46
Behrens (10.1016/j.neuroimage.2022.119033_bib0112) 2003; 6
Salat (10.1016/j.neuroimage.2022.119033_bib0008) 2005; 1064
Hu (10.1016/j.neuroimage.2022.119033_bib0038) 2020; 83
Kim (10.1016/j.neuroimage.2022.119033_bib0083) 2016
McNab (10.1016/j.neuroimage.2022.119033_bib0019) 2009; 46
Chang (10.1016/j.neuroimage.2022.119033_bib0058) 2019; 69
Haldar (10.1016/j.neuroimage.2022.119033_bib0042) 2016; 75
Wu (10.1016/j.neuroimage.2022.119033_bib0107) 2010; 23
Krull (10.1016/j.neuroimage.2022.119033_bib0055) 2019
Jiang (10.1016/j.neuroimage.2022.119033_bib0066) 2018; 36
St-Jean (10.1016/j.neuroimage.2022.119033_bib0047) 2016; 32
Liao (10.1016/j.neuroimage.2022.119033_bib0018) 2019; 194
Skare (10.1016/j.neuroimage.2022.119033_bib0080) 2000; 147
Basser (10.1016/j.neuroimage.2022.119033_bib0002) 1994; 103
Gondara (10.1016/j.neuroimage.2022.119033_bib0057) 2016
Fieremans (10.1016/j.neuroimage.2022.119033_bib0116) 2013; 34
Wang (10.1016/j.neuroimage.2022.119033_bib0016) 2021; 8
Andersson (10.1016/j.neuroimage.2022.119033_bib0092) 2016; 125
Li (10.1016/j.neuroimage.2022.119033_bib0075) 2019; 7
Devalla (10.1016/j.neuroimage.2022.119033_bib0056) 2019; 9
Pham (10.1016/j.neuroimage.2022.119033_bib0105) 2019; 77
Fischl (10.1016/j.neuroimage.2022.119033_bib0093) 2012; 62
Manjón (10.1016/j.neuroimage.2022.119033_bib0029) 2010; 31
Block (10.1016/j.neuroimage.2022.119033_bib0033) 2007; 57
Ouyang (10.1016/j.neuroimage.2022.119033_bib0060) 2019; 46
Wang (10.1016/j.neuroimage.2022.119033_bib0061) 2018; 174
Nir (10.1016/j.neuroimage.2022.119033_bib0009) 2013; 3
Dale (10.1016/j.neuroimage.2022.119033_bib0094) 1999; 9
Yeatman (10.1016/j.neuroimage.2022.119033_bib0006) 2014; 5
Maier-Hein (10.1016/j.neuroimage.2022.119033_bib0118) 2017; 8
Huber (10.1016/j.neuroimage.2022.119033_bib0010) 2018; 9
Shin (10.1016/j.neuroimage.2022.119033_bib0041) 2014; 72
Lu (10.1016/j.neuroimage.2022.119033_bib0106) 2006; 19
Tournier (10.1016/j.neuroimage.2022.119033_bib0110) 2007; 35
Liang (10.1016/j.neuroimage.2022.119033_bib0034) 2009; 62
Tian (10.1016/j.neuroimage.2022.119033_bib0070) 2020; 219
Hu (10.1016/j.neuroimage.2022.119033_bib0037) 2019; 81
Gong (10.1016/j.neuroimage.2022.119033_bib0073) 2018
Basser (10.1016/j.neuroimage.2022.119033_bib0001) 1994; 66
He (10.1016/j.neuroimage.2022.119033_bib0101) 2015
Jones (10.1016/j.neuroimage.2022.119033_bib0081) 1999; 42
Jones (10.1016/j.neuroimage.2022.119033_bib0099) 2004; 51
Kidoh (10.1016/j.neuroimage.2022.119033_bib0069) 2019; 19
Assaf (10.1016/j.neuroimage.2022.119033_bib0108) 2005; 27
Golkov (10.1016/j.neuroimage.2022.119033_bib0077) 2015; 9349
Weigert (10.1016/j.neuroimage.2022.119033_bib0054) 2018; 15
Gerig (10.1016/j.neuroimage.2022.119033_bib0027) 1992; 11
Tian (10.1016/j.neuroimage.2022.119033_bib0071) 2021; 233
Zhang (10.1016/j.neuroimage.2022.119033_bib0114) 2012; 61
Aharon (10.1016/j.neuroimage.2022.119033_bib0026) 2006; 54
Bookheimer (10.1016/j.neuroimage.2022.119033_bib0096) 2019; 185
Garyfallidis (10.1016/j.neuroimage.2022.119033_bib0103) 2014
He (10.1016/j.neuroimage.2022.119033_bib0104) 2016
Gong (10.1016/j.neuroimage.2022.119033_bib0068) 2020; 11313
Falk (10.1016/j.neuroimage.2022.119033_bib0082) 2019; 16
Benou (10.1016/j.neuroimage.2022.119033_bib0065) 2017; 42
Behrens (10.1016/j.neuroimage.2022.119033_bib0111) 2003; 50
Lustig (10.1016/j.neuroimage.2022.119033_bib0032) 2007; 58
Haldar (10.1016/j.neuroimage.2022.119033_bib0040) 2013; 33
Bazin (10.1016/j.neuroimage.2022.119033_bib0031) 2019; 13
Sperl (10.1016/j.neuroimage.2022.119033_bib0051) 2017; 78
Pierpaoli (10.1016/j.neuroimage.2022.119033_bib0005) 1996; 36
Pierpaoli (10.1016/j.neuroimage.2022.119033_bib0003) 1996; 201
Coupé (10.1016/j.neuroimage.2022.119033_bib0028) 2008; 27
Marek (10.1016/j.neuroimage.2022.119033_bib0022) 2011; 95
Maggioni (10.1016/j.neuroimage.2022.119033_bib0030) 2012; 22
Caruyer (10.1016/j.neuroimage.2022.119033_bib0088) 2013; 69
Dong (10.1016/j.neuroimage.2022.119033_bib0052) 2018; 45
Serrano-Sosa (10.1016/j.neuroimage.2022.119033_bib0062) 2020; 61
Aliotta (10.1016/j.neuroimage.2022.119033_bib0074) 2019; 46
Yeatman (10.1016/j.neuroimage.2022.119033_bib0007) 2012; 109
Jenkinson (10.1016/j.neuroimage.2022.119033_bib0090) 2012; 62
Sotiropoulos (10.1016/j.neuroimage.2022.119033_bib0087) 2013; 80
Andersson (10.1016/j.neuroimage.2022.119033_bib0091) 2003; 20
Bilgic (10.1016/j.neuroimage.2022.119033_bib0043) 2019; 82
Huang (10.1016/j.neuroimage.2022.119033_bib0084) 2017
Cullen (10.1016/j.neuroimage.2022.119033_bib0014) 2010; 49
Xu (10.1016/j.neuroimage.2022.119033_bib0063) 2020; 11313
Fadnavis (10.1016/j.neuroimage.2022.119033_bib0048) 2020; 33
Liao (10.1016/j.neuroimage.2022.119033_bib0017) 2020; 83
10.1016/j.neuroimage.2022.119033_bib0067
10.1016/j.neuroimage.2022.119033_bib0100
Roosendaal (10.1016/j.neuroimage.2022.119033_bib0011) 2009; 44
Kubicki (10.1016/j.neuroimage.2022.119033_bib0013) 2005; 26
Mueller (10.1016/j.neuroimage.2022.119033_bib0021) 2005; 15
Fieremans (10.1016/j.neuroimage.2022.119033_bib0115) 2011; 58
van der Kouwe (10.1016/j.neuroimage.2022.119033_bib0097) 2008; 40
Zheng (10.1016/j.neuroimage.2022.119033_bib0012) 2014; 35
Chang (10.1016/j.neuroimage.2022.119033_bib0117) 2005; 53
References_xml – volume: 103
  start-page: 247
  year: 1994
  end-page: 254
  ident: bib0002
  article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo
  publication-title: J. Magn. Reson. Ser. B
– volume: 15
  start-page: 869
  year: 2005
  end-page: 877
  ident: bib0021
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin.
– volume: 6
  start-page: 750
  year: 2003
  end-page: 757
  ident: bib0112
  article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging
  publication-title: Nat. Neurosci.
– volume: 174
  start-page: 550
  year: 2018
  end-page: 562
  ident: bib0061
  article-title: 3D conditional generative adversarial networks for high-quality PET image estimation at low dose
  publication-title: Neuroimage
– volume: 219
  year: 2020
  ident: bib0070
  article-title: DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning
  publication-title: Neuroimage
– volume: 69
  start-page: 2707
  year: 2019
  end-page: 2721
  ident: bib0058
  article-title: Two-stage convolutional neural network for medical noise removal via image decomposition
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  ident: bib0081
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 46
  start-page: 3555
  year: 2019
  end-page: 3564
  ident: bib0060
  article-title: Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss
  publication-title: Med. Phys.
– volume: 33
  start-page: 668
  year: 2013
  end-page: 681
  ident: bib0040
  article-title: Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bib0094
  article-title: Cortical surface-based analysis: I. Segmentation and surface reconstruction
  publication-title: Neuroimage
– start-page: 1653
  year: 2018
  ident: bib0073
  article-title: Efficient reconstruction of diffusion kurtosis imaging based on a hierarchical convolutional neural network
  publication-title: Proceedings of the 26th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM)
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: bib0026
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– volume: 26
  start-page: 1109
  year: 2005
  end-page: 1118
  ident: bib0013
  article-title: DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity
  publication-title: Neuroimage
– volume: 36
  start-page: 566
  year: 2018
  end-page: 574
  ident: bib0066
  article-title: Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network
  publication-title: Jpn. J. Radiol.
– volume: 23
  start-page: 836
  year: 2010
  end-page: 848
  ident: bib0107
  article-title: MR diffusion kurtosis imaging for neural tissue characterization
  publication-title: NMR Biomed.
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bib0020
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0102
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  ident: bib0001
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  ident: bib0087
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: Neuroimage
– volume: 19
  start-page: 236
  year: 2006
  end-page: 247
  ident: bib0106
  article-title: Three-dimensional characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging
  publication-title: NMR Biomed.
– volume: 83
  start-page: 56
  year: 2020
  end-page: 67
  ident: bib0017
  article-title: High-fidelity, high-isotropic-resolution diffusion imaging through gSlider acquisition with and T1 corrections and integrated ΔB0/Rx shim array
  publication-title: Magn. Reson. Med.
– volume: 34
  start-page: 2105
  year: 2013
  end-page: 2112
  ident: bib0116
  article-title: Novel white matter tract integrity metrics sensitive to Alzheimer disease progression
  publication-title: Am. J. Neuroradiol.
– volume: 81
  start-page: 1620
  year: 2019
  end-page: 1633
  ident: bib0039
  article-title: Wave-LORAKS: combining wave encoding with structured low-rank matrix modeling for more highly accelerated 3D imaging
  publication-title: Magn. Reson. Med.
– volume: 77
  year: 2019
  ident: bib0105
  article-title: Multiscale brain MRI super-resolution using deep 3D convolutional networks
  publication-title: Comput. Med. Imaging Graph.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib0084
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 11
  start-page: 221
  year: 1992
  end-page: 232
  ident: bib0027
  article-title: Nonlinear anisotropic filtering of MRI data
  publication-title: IEEE Trans. Med. Imaging
– reference: Kingma, D.P. & Ba, J. Adam: a method for stochastic optimization. arXiv preprint arXiv:
– volume: 194
  start-page: 291
  year: 2019
  end-page: 302
  ident: bib0018
  article-title: Phase-matched virtual coil reconstruction for highly accelerated diffusion echo-planar imaging
  publication-title: Neuroimage
– volume: 290
  start-page: 649
  year: 2018
  end-page: 656
  ident: bib0059
  article-title: Ultra–low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs
  publication-title: Radiology
– start-page: 8
  year: 2014
  ident: bib0103
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front. Neuroinform.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib0056
  article-title: A deep learning approach to denoise optical coherence tomography images of the optic nerve head
  publication-title: Sci. Rep.
– volume: 9
  start-page: 2260
  year: 2018
  ident: bib0010
  article-title: Rapid and widespread white matter plasticity during an intensive reading intervention
  publication-title: Nat. Commun.
– volume: 11313
  year: 2020
  ident: bib0068
  article-title: Deep learning and multi-contrast based denoising for low-SNR Arterial Spin Labeling (ASL) MRI
  publication-title: Proceedings of the SPIE Medical Imaging Conference
– volume: 34
  start-page: 2191
  year: 2015
  end-page: 2202
  ident: bib0050
  article-title: A majorize-minimize framework for Rician and non-central chi MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: bib0110
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bib0089
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 22
  start-page: 119
  year: 2012
  end-page: 133
  ident: bib0030
  article-title: Nonlocal transform-domain filter for volumetric data denoising and reconstruction
  publication-title: IEEE Trans. Image Process.
– volume: 61
  start-page: 434
  year: 2020
  ident: bib0062
  article-title: PET image denoising using structural MRI with a novel dilated convolutional neural network
  publication-title: J. Nucl. Med.
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  ident: bib0053
  article-title: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 185
  start-page: 335
  year: 2019
  end-page: 348
  ident: bib0096
  article-title: The lifespan Human Connectome Project in aging: an overview
  publication-title: Neuroimage
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib0101
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: (2014).
– year: 2018
  ident: bib0072
  article-title: Deep learning diffusion tensor imaging with accelerated q-space acquisition
  publication-title: Proceedings of the Machine Learning (Part II) Workshop of the International Society for Magnetic Resonance in Medicine
– volume: 69
  start-page: 87
  year: 2013
  end-page: 100
  ident: bib0015
  article-title: Surface based analysis of diffusion orientation for identifying architectonic domains in the
  publication-title: Neuroimage
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: bib0025
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– volume: 42
  start-page: 145
  year: 2017
  end-page: 159
  ident: bib0065
  article-title: Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences
  publication-title: Med. Image Anal.
– volume: 11313
  year: 2020
  ident: bib0063
  article-title: Ultra-low-dose 18F-FDG brain PET/MR denoising using deep learning and multi-contrast information
  publication-title: Proceedings of the SPIE Medical Imaging Conference
– volume: 19
  start-page: 1523
  year: 2016
  ident: bib0023
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
– volume: 45
  start-page: 3196
  year: 2018
  end-page: 3204
  ident: bib0052
  article-title: Model-based reconstruction for simultaneous multislice and parallel imaging accelerated multishot diffusion tensor imaging
  publication-title: Med. Phys.
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  ident: bib0114
  article-title: NODDI: practical
  publication-title: Neuroimage
– volume: 81
  start-page: 1181
  year: 2019
  end-page: 1190
  ident: bib0037
  article-title: Motion-robust reconstruction of multishot diffusion-weighted images without phase estimation through locally low-rank regularization
  publication-title: Magn. Reson. Med.
– volume: 62
  start-page: 1574
  year: 2009
  end-page: 1584
  ident: bib0034
  article-title: Accelerating SENSE using compressed sensing
  publication-title: Magn. Reson. Med.
– volume: 44
  start-page: 1397
  year: 2009
  end-page: 1403
  ident: bib0011
  article-title: Regional DTI differences in multiple sclerosis patients
  publication-title: Neuroimage
– volume: 8
  start-page: 1349
  year: 2017
  ident: bib0118
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
– volume: 111
  start-page: 209
  year: 1996
  end-page: 219
  ident: bib0004
  article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
  publication-title: J. Magn. Reson. Ser. B
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0090
  article-title: FSL
  publication-title: Neuroimage
– volume: 201
  start-page: 637
  year: 1996
  end-page: 648
  ident: bib0003
  article-title: Diffusion tensor MR imaging of the human brain
  publication-title: Radiology
– volume: 35
  start-page: 1344
  year: 2016
  end-page: 1351
  ident: bib0076
  article-title: q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans
  publication-title: IEEE Trans. Med. Imaging
– volume: 142
  start-page: 394
  year: 2016
  ident: bib0045
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
– volume: 53
  start-page: 1088
  year: 2005
  end-page: 1095
  ident: bib0117
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn. Reson. Med.
– volume: 27
  start-page: 48
  year: 2005
  end-page: 58
  ident: bib0108
  article-title: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain
  publication-title: Neuroimage
– volume: 36
  start-page: 893
  year: 1996
  end-page: 906
  ident: bib0005
  article-title: Toward a of diffusion anisotropy
  publication-title: Magn. Reson. Med.
– volume: 46
  start-page: 775
  year: 2009
  end-page: 785
  ident: bib0019
  article-title: High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession
  publication-title: Neuroimage
– volume: 147
  start-page: 340
  year: 2000
  end-page: 352
  ident: bib0080
  article-title: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI
  publication-title: J. Magn. Reson.
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bib0091
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 13
  start-page: 1066
  year: 2019
  ident: bib0031
  article-title: Denoising high-field multi-dimensional MRI with local complex PCA
  publication-title: Front. Neurosc.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib0006
  article-title: Lifespan maturation and degeneration of human brain white matter
  publication-title: Nat. Commun.
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: bib0032
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
– volume: 64
  start-page: 767
  year: 2010
  end-page: 776
  ident: bib0036
  article-title: Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI
  publication-title: Magn. Reson. Med.
– volume: 69
  start-page: 1534
  year: 2013
  end-page: 1540
  ident: bib0088
  article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI
  publication-title: Magn. Reson. Med.
– volume: 49
  start-page: 173
  year: 2010
  end-page: 183
  ident: bib0014
  article-title: Altered white matter microstructure in adolescents with major depression: a preliminary study
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
– volume: 75
  start-page: 1499
  year: 2016
  end-page: 1514
  ident: bib0042
  article-title: P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data
  publication-title: Magn. Reson. Med.
– start-page: 1646
  year: 2016
  end-page: 1654
  ident: bib0083
  article-title: Accurate image super-resolution using very deep convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 8
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib0016
  article-title: human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution
  publication-title: Scientific Data
– start-page: 241
  year: 2016
  end-page: 246
  ident: bib0057
  article-title: Medical image denoising using convolutional denoising autoencoders
  publication-title: Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW)
– volume: 46
  start-page: 3101
  year: 2019
  end-page: 3116
  ident: bib0079
  article-title: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network
  publication-title: Med. Phys.
– volume: 76
  start-page: 1582
  year: 2016
  end-page: 1593
  ident: bib0044
  article-title: Diffusion MRI noise mapping using random matrix theory
  publication-title: Magn. Reson. Med.
– volume: 31
  start-page: 1250
  year: 2012
  end-page: 1262
  ident: bib0035
  article-title: Fast L
  publication-title: IEEE Trans. Med. Imaging
– volume: 31
  start-page: 192
  year: 2010
  end-page: 203
  ident: bib0029
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: J. Magn. Reson. Imaging
– volume: 23
  start-page: 1176
  year: 2004
  end-page: 1185
  ident: bib0109
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
  publication-title: Neuroimage
– volume: 51
  start-page: 807
  year: 2004
  end-page: 815
  ident: bib0099
  article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study†
  publication-title: Magn. Reson. Med.
– volume: 4
  start-page: 490
  year: 2005
  end-page: 530
  ident: bib0024
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Model. Simul.
– volume: 48
  start-page: 63
  year: 2009
  end-page: 72
  ident: bib0098
  article-title: Accurate and robust brain image alignment using boundary-based registration
  publication-title: Neuroimage
– volume: 95
  start-page: 629
  year: 2011
  end-page: 635
  ident: bib0022
  article-title: The parkinson progression marker initiative (PPMI)
  publication-title: Prog. Neurobiol.
– volume: 82
  start-page: 1343
  year: 2019
  end-page: 1358
  ident: bib0043
  article-title: Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction
  publication-title: Magn. Reson. Med.
– volume: 80
  start-page: 80
  year: 2013
  end-page: 104
  ident: bib0086
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project
  publication-title: Neuroimage
– reference: Pierrick, C. MRI denoising using deep learning and non-local averaging. arXiv preprint arXiv:
– volume: 81
  start-page: 2399
  year: 2018
  end-page: 2411
  ident: bib0078
  article-title: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning
  publication-title: Magn. Reson. Med.
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  ident: bib0111
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
– volume: 7
  start-page: 71398
  year: 2019
  end-page: 71411
  ident: bib0075
  article-title: Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network
  publication-title: IEEE Access
– volume: 78
  start-page: 2428
  year: 2017
  end-page: 2438
  ident: bib0051
  article-title: Model-based denoising in diffusion-weighted imaging using generalized spherical deconvolution
  publication-title: Magn. Reson. Med.
– volume: 72
  start-page: 959
  year: 2014
  end-page: 970
  ident: bib0041
  article-title: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion
  publication-title: Magn. Reson. Med.
– volume: 32
  start-page: 115
  year: 2016
  end-page: 130
  ident: bib0047
  article-title: Non local spatial and angular matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising
  publication-title: Med. Image Anal.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0104
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 233
  year: 2021
  ident: bib0071
  article-title: Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising
  publication-title: Neuroimage
– volume: 48
  start-page: 330
  year: 2018
  end-page: 340
  ident: bib0064
  article-title: Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI
  publication-title: J. Magn. Reson. Imaging
– reference: (2019).
– volume: 40
  start-page: 559
  year: 2008
  end-page: 569
  ident: bib0097
  article-title: Brain morphometry with multiecho MPRAGE
  publication-title: Neuroimage
– volume: 19
  start-page: 195
  year: 2019
  ident: bib0069
  article-title: Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers
  publication-title: Magn. Reson. Med. Sci.
– volume: 35
  start-page: 1325
  year: 2014
  end-page: 1333
  ident: bib0012
  article-title: DTI correlates of distinct cognitive impairments in Parkinson's disease
  publication-title: Hum. Brain Mapp.
– volume: 8
  start-page: e73021
  year: 2013
  ident: bib0046
  article-title: Diffusion weighted image denoising using overcomplete local PCA
  publication-title: PLoS One
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: bib0092
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
– volume: 16
  start-page: 67
  year: 2019
  end-page: 70
  ident: bib0082
  article-title: U-Net: deep learning for cell counting, detection, and morphometry
  publication-title: Nat. Methods
– volume: 27
  start-page: 425
  year: 2008
  end-page: 441
  ident: bib0028
  article-title: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images
  publication-title: IEEE Trans. Med. Imaging
– volume: 183
  start-page: 972
  year: 2018
  end-page: 984
  ident: bib0095
  article-title: Extending the Human Connectome Project across ages: imaging protocols for the lifespan development and aging projects
  publication-title: Neuroimage
– volume: 33
  start-page: 16293
  year: 2020
  end-page: 16303
  ident: bib0048
  article-title: Patch2Self: denoising diffusion MRI with self-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 83
  start-page: 1596
  year: 2020
  end-page: 1607
  ident: bib0038
  article-title: Multi-shot diffusion-weighted MRI reconstruction with magnitude-based spatial-angular locally low-rank regularization (SPA-LLR)
  publication-title: Magn. Reson. Med.
– volume: 58
  start-page: 177
  year: 2011
  end-page: 188
  ident: bib0115
  article-title: White matter characterization with diffusional kurtosis imaging
  publication-title: Neuroimage
– volume: 3
  start-page: 180
  year: 2013
  end-page: 195
  ident: bib0009
  article-title: Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging
  publication-title: NeuroImage Clin.
– start-page: 2129
  year: 2019
  end-page: 2137
  ident: bib0055
  article-title: Noise2void-learning denoising from single noisy images
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib0093
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 109
  start-page: E3045
  year: 2012
  end-page: E3053
  ident: bib0007
  article-title: Development of white matter and reading skills
  publication-title: Proc. Natl. Acad. Sci.
– volume: 15
  start-page: 1090
  year: 2018
  end-page: 1097
  ident: bib0054
  article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy
  publication-title: Nat. Methods
– volume: 68
  start-page: 1846
  year: 2012
  end-page: 1855
  ident: bib0113
  article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems
  publication-title: Magn. Reson. Med.
– volume: 1064
  start-page: 37
  year: 2005
  end-page: 49
  ident: bib0008
  article-title: Age-related changes in prefrontal white matter measured by diffusion tensor imaging
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 57
  start-page: 1086
  year: 2007
  end-page: 1098
  ident: bib0033
  article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint
  publication-title: Magn. Reson. Med.
– volume: 9349
  start-page: 37
  year: 2015
  end-page: 44
  ident: bib0077
  article-title: q-Space deep learning for twelve-fold shorter and model-free diffusion MRI scans
  publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention
– volume: 46
  start-page: 1581
  year: 2019
  end-page: 1591
  ident: bib0074
  article-title: Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks
  publication-title: Med. Phys.
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0085
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– volume: 69
  start-page: 277
  year: 2013
  end-page: 289
  ident: bib0049
  article-title: Improved diffusion imaging through SNR-enhancing joint reconstruction
  publication-title: Magn. Reson. Med.
– volume: 53
  start-page: 1088
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119033_bib0117
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20426
– volume: 32
  start-page: 115
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119033_bib0047
  article-title: Non local spatial and angular matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.02.010
– volume: 290
  start-page: 649
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0059
  article-title: Ultra–low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs
  publication-title: Radiology
  doi: 10.1148/radiol.2018180940
– volume: 35
  start-page: 1344
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119033_bib0076
  article-title: q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2551324
– start-page: 1653
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0073
  article-title: Efficient reconstruction of diffusion kurtosis imaging based on a hierarchical convolutional neural network
– volume: 66
  start-page: 259
  year: 1994
  ident: 10.1016/j.neuroimage.2022.119033_bib0001
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80775-1
– volume: 31
  start-page: 192
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119033_bib0029
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22003
– volume: 58
  start-page: 1182
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119033_bib0032
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21391
– volume: 31
  start-page: 1250
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119033_bib0035
  article-title: Fast L1-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2188039
– ident: 10.1016/j.neuroimage.2022.119033_bib0100
– volume: 6
  start-page: 750
  year: 2003
  ident: 10.1016/j.neuroimage.2022.119033_bib0112
  article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1075
– volume: 11313
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119033_bib0063
  article-title: Ultra-low-dose 18F-FDG brain PET/MR denoising using deep learning and multi-contrast information
– volume: 7
  start-page: 71398
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0075
  article-title: Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919241
– volume: 51
  start-page: 807
  year: 2004
  ident: 10.1016/j.neuroimage.2022.119033_bib0099
  article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study†
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20033
– volume: 69
  start-page: 87
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119033_bib0015
  article-title: Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.11.065
– volume: 42
  start-page: 145
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119033_bib0065
  article-title: Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.006
– volume: 13
  start-page: 1066
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0031
  article-title: Denoising high-field multi-dimensional MRI with local complex PCA
  publication-title: Front. Neurosc.
  doi: 10.3389/fnins.2019.01066
– volume: 20
  start-page: 870
  year: 2003
  ident: 10.1016/j.neuroimage.2022.119033_bib0091
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 174
  start-page: 550
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0061
  article-title: 3D conditional generative adversarial networks for high-quality PET image estimation at low dose
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.045
– volume: 42
  start-page: 515
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2022.119033_bib0081
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.neuroimage.2022.119033_bib0102
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 78
  start-page: 2428
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119033_bib0051
  article-title: Model-based denoising in diffusion-weighted imaging using generalized spherical deconvolution
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26626
– volume: 35
  start-page: 1325
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119033_bib0012
  article-title: DTI correlates of distinct cognitive impairments in Parkinson's disease
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22256
– start-page: 1026
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119033_bib0101
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
– volume: 77
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0105
  article-title: Multiscale brain MRI super-resolution using deep 3D convolutional networks
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.101647
– volume: 33
  start-page: 16293
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119033_bib0048
  article-title: Patch2Self: denoising diffusion MRI with self-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 23
  start-page: 1176
  year: 2004
  ident: 10.1016/j.neuroimage.2022.119033_bib0109
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.037
– volume: 76
  start-page: 1582
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119033_bib0044
  article-title: Diffusion MRI noise mapping using random matrix theory
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26059
– volume: 57
  start-page: 1086
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119033_bib0033
  article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21236
– volume: 183
  start-page: 972
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0095
  article-title: Extending the Human Connectome Project across ages: imaging protocols for the lifespan development and aging projects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.09.060
– volume: 80
  start-page: 80
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119033_bib0086
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.012
– start-page: 770
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119033_bib0104
  article-title: Deep residual learning for image recognition
– volume: 1064
  start-page: 37
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119033_bib0008
  article-title: Age-related changes in prefrontal white matter measured by diffusion tensor imaging
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1196/annals.1340.009
– volume: 9349
  start-page: 37
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119033_bib0077
  article-title: q-Space deep learning for twelve-fold shorter and model-free diffusion MRI scans
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0056
  article-title: A deep learning approach to denoise optical coherence tomography images of the optic nerve head
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51062-7
– volume: 233
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119033_bib0071
  article-title: Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.117946
– volume: 9
  start-page: 179
  year: 1999
  ident: 10.1016/j.neuroimage.2022.119033_bib0094
  article-title: Cortical surface-based analysis: I. Segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 34
  start-page: 2105
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119033_bib0116
  article-title: Novel white matter tract integrity metrics sensitive to Alzheimer disease progression
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A3553
– volume: 27
  start-page: 425
  year: 2008
  ident: 10.1016/j.neuroimage.2022.119033_bib0028
  article-title: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.906087
– volume: 142
  start-page: 394
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119033_bib0045
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.016
– volume: 49
  start-page: 173
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119033_bib0014
  article-title: Altered white matter microstructure in adolescents with major depression: a preliminary study
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
– volume: 22
  start-page: 119
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119033_bib0030
  article-title: Nonlocal transform-domain filter for volumetric data denoising and reconstruction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2210725
– volume: 46
  start-page: 3101
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0079
  article-title: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network
  publication-title: Med. Phys.
  doi: 10.1002/mp.13555
– volume: 111
  start-page: 209
  year: 1996
  ident: 10.1016/j.neuroimage.2022.119033_bib0004
  article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
  publication-title: J. Magn. Reson. Ser. B
  doi: 10.1006/jmrb.1996.0086
– volume: 194
  start-page: 291
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0018
  article-title: Phase-matched virtual coil reconstruction for highly accelerated diffusion echo-planar imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.04.002
– volume: 81
  start-page: 1620
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0039
  article-title: Wave-LORAKS: combining wave encoding with structured low-rank matrix modeling for more highly accelerated 3D imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27511
– volume: 9
  start-page: 2260
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0010
  article-title: Rapid and widespread white matter plasticity during an intensive reading intervention
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04627-5
– start-page: 2129
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0055
  article-title: Noise2void-learning denoising from single noisy images
– volume: 34
  start-page: 2191
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119033_bib0050
  article-title: A majorize-minimize framework for Rician and non-central chi MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2427157
– volume: 62
  start-page: 782
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119033_bib0090
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 46
  start-page: 1581
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0074
  article-title: Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks
  publication-title: Med. Phys.
  doi: 10.1002/mp.13400
– volume: 103
  start-page: 247
  year: 1994
  ident: 10.1016/j.neuroimage.2022.119033_bib0002
  article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo
  publication-title: J. Magn. Reson. Ser. B
  doi: 10.1006/jmrb.1994.1037
– volume: 4
  start-page: 490
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119033_bib0024
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/040616024
– volume: 11313
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119033_bib0068
  article-title: Deep learning and multi-contrast based denoising for low-SNR Arterial Spin Labeling (ASL) MRI
– volume: 44
  start-page: 1397
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119033_bib0011
  article-title: Regional DTI differences in multiple sclerosis patients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.026
– year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0072
  article-title: Deep learning diffusion tensor imaging with accelerated q-space acquisition
– volume: 3
  start-page: 180
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119033_bib0009
  article-title: Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2013.07.006
– volume: 185
  start-page: 335
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0096
  article-title: The lifespan Human Connectome Project in aging: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.009
– volume: 35
  start-page: 1459
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119033_bib0110
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.016
– volume: 61
  start-page: 1000
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119033_bib0114
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.072
– volume: 81
  start-page: 2399
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0078
  article-title: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27568
– volume: 62
  start-page: 1574
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119033_bib0034
  article-title: Accelerating SENSE using compressed sensing
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22161
– volume: 8
  start-page: e73021
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119033_bib0046
  article-title: Diffusion weighted image denoising using overcomplete local PCA
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0073021
– volume: 19
  start-page: 195
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0069
  article-title: Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers
  publication-title: Magn. Reson. Med. Sci.
  doi: 10.2463/mrms.mp.2019-0018
– volume: 16
  start-page: 67
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0082
  article-title: U-Net: deep learning for cell counting, detection, and morphometry
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0261-2
– volume: 11
  start-page: 221
  year: 1992
  ident: 10.1016/j.neuroimage.2022.119033_bib0027
  article-title: Nonlinear anisotropic filtering of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.141646
– volume: 36
  start-page: 566
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0066
  article-title: Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-018-0758-8
– volume: 201
  start-page: 637
  year: 1996
  ident: 10.1016/j.neuroimage.2022.119033_bib0003
  article-title: Diffusion tensor MR imaging of the human brain
  publication-title: Radiology
  doi: 10.1148/radiology.201.3.8939209
– volume: 26
  start-page: 1109
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119033_bib0013
  article-title: DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.026
– start-page: 241
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119033_bib0057
  article-title: Medical image denoising using convolutional denoising autoencoders
– volume: 95
  start-page: 629
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119033_bib0022
  article-title: The parkinson progression marker initiative (PPMI)
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2011.09.005
– volume: 219
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119033_bib0070
  article-title: DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117017
– volume: 81
  start-page: 1181
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0037
  article-title: Motion-robust reconstruction of multishot diffusion-weighted images without phase estimation through locally low-rank regularization
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27488
– volume: 83
  start-page: 1596
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119033_bib0038
  article-title: Multi-shot diffusion-weighted MRI reconstruction with magnitude-based spatial-angular locally low-rank regularization (SPA-LLR)
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28025
– volume: 16
  start-page: 2080
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119033_bib0025
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– volume: 82
  start-page: 1343
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0043
  article-title: Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27813
– volume: 40
  start-page: 559
  year: 2008
  ident: 10.1016/j.neuroimage.2022.119033_bib0097
  article-title: Brain morphometry with multiecho MPRAGE
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.025
– start-page: 1646
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119033_bib0083
  article-title: Accurate image super-resolution using very deep convolutional networks
– volume: 45
  start-page: 3196
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0052
  article-title: Model-based reconstruction for simultaneous multislice and parallel imaging accelerated multishot diffusion tensor imaging
  publication-title: Med. Phys.
  doi: 10.1002/mp.12974
– volume: 26
  start-page: 3142
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119033_bib0053
  article-title: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– volume: 54
  start-page: 4311
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119033_bib0026
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 69
  start-page: 2707
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0058
  article-title: Two-stage convolutional neural network for medical noise removal via image decomposition
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2925881
– ident: 10.1016/j.neuroimage.2022.119033_bib0067
– volume: 80
  start-page: 125
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119033_bib0087
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 33
  start-page: 668
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119033_bib0040
  article-title: Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2293974
– volume: 46
  start-page: 3555
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119033_bib0060
  article-title: Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss
  publication-title: Med. Phys.
  doi: 10.1002/mp.13626
– volume: 72
  start-page: 959
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119033_bib0041
  article-title: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24997
– volume: 50
  start-page: 1077
  year: 2003
  ident: 10.1016/j.neuroimage.2022.119033_bib0111
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10609
– volume: 125
  start-page: 1063
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119033_bib0092
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– start-page: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119033_bib0103
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front. Neuroinform.
– volume: 27
  start-page: 48
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119033_bib0108
  article-title: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.042
– volume: 8
  start-page: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119033_bib0016
  article-title: In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution
  publication-title: Scientific Data
  doi: 10.1038/s41597-021-00904-z
– volume: 83
  start-page: 56
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119033_bib0017
  article-title: High-fidelity, high-isotropic-resolution diffusion imaging through gSlider acquisition with and T1 corrections and integrated ΔB0/Rx shim array
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27899
– volume: 46
  start-page: 775
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119033_bib0019
  article-title: High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.008
– volume: 23
  start-page: S208
  year: 2004
  ident: 10.1016/j.neuroimage.2022.119033_bib0089
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 48
  start-page: 330
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0064
  article-title: Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25970
– volume: 15
  start-page: 1090
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119033_bib0054
  article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0216-7
– volume: 19
  start-page: 236
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119033_bib0106
  article-title: Three-dimensional characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1020
– volume: 64
  start-page: 767
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119033_bib0036
  article-title: Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22463
– volume: 15
  start-page: 869
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119033_bib0021
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin.
  doi: 10.1016/j.nic.2005.09.008
– volume: 19
  start-page: 1523
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119033_bib0023
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
– volume: 69
  start-page: 1534
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119033_bib0088
  article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24736
– volume: 27
  start-page: 685
  year: 2008
  ident: 10.1016/j.neuroimage.2022.119033_bib0020
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 23
  start-page: 836
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119033_bib0107
  article-title: MR diffusion kurtosis imaging for neural tissue characterization
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1506
– volume: 48
  start-page: 63
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119033_bib0098
  article-title: Accurate and robust brain image alignment using boundary-based registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.060
– volume: 8
  start-page: 1349
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119033_bib0118
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01285-x
– volume: 109
  start-page: E3045
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119033_bib0007
  article-title: Development of white matter and reading skills
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1206792109
– volume: 61
  start-page: 434
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119033_bib0062
  article-title: PET image denoising using structural MRI with a novel dilated convolutional neural network
  publication-title: J. Nucl. Med.
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119033_bib0085
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– start-page: 4700
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119033_bib0084
  article-title: Densely connected convolutional networks
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119033_bib0006
  article-title: Lifespan maturation and degeneration of human brain white matter
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5932
– volume: 36
  start-page: 893
  year: 1996
  ident: 10.1016/j.neuroimage.2022.119033_bib0005
  article-title: Toward a of diffusion anisotropy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910360612
– volume: 75
  start-page: 1499
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119033_bib0042
  article-title: P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25717
– volume: 58
  start-page: 177
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119033_bib0115
  article-title: White matter characterization with diffusional kurtosis imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.006
– volume: 68
  start-page: 1846
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119033_bib0113
  article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24204
– volume: 69
  start-page: 277
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119033_bib0049
  article-title: Improved diffusion imaging through SNR-enhancing joint reconstruction
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24229
– volume: 147
  start-page: 340
  year: 2000
  ident: 10.1016/j.neuroimage.2022.119033_bib0080
  article-title: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2000.2209
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119033_bib0093
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
SSID ssj0009148
Score 2.5751672
Snippet Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119033
SubjectTerms Aging
Algorithms
Alzheimer's disease
Brain mapping
Convolutional neural network
Datasets
Deep Learning
Diffusion Tensor Imaging - methods
Diffusion tensor transformation
Humans
Image Processing, Computer-Assisted - methods
Image synthesis
Life span
Magnetic resonance imaging
Medical imaging
Methods
Neural networks
Neural Networks, Computer
Neuroimaging
Noise
Normal aging
Residual learning
Signal-To-Noise Ratio
Substantia alba
Supervised learning
Tomography
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k2goCBxjUjiRxI4AaVqkbYH2kq9WR4_YFHJrtjd_89M7IQGDuyBqx-RMx7PfLbH3zD22nQCOtG5onKBSLVLXFLB-CIEC7yBmhtLD5wXZ-rkUny-klc3Un1RTFikB46CewO8Uh5EBU6UwstgrIXWlo0xARQPgawv-rxxMzXS7SLKT3E7MZprYIdc_sA1invCukZL0ZWcz5zRwNk_80l_Y84_Qydv-KLje-xuApH5-zj4--yW7x-w24t0Tf6QnZ0f9UcXp2_zc38dis1uTQZh413uvF_nKVHE14I8GJX1qyWdGOSIX3NKmLKjE7ScQtuxYPHl9BG7PP508fGkSIkTCqt4uS28g85UDZjSo13lCApVO2xe0L2DlOCI5Qp3Fq3DaoMIJUAD9Li8bXinguGP2UG_6v1TlguEh42t0WT6SoCEVgoOyrpWhhbns8lYM0pQ28QqTsktrvUYPvZd_5a9JtnrKPuMVVPPdWTW2KPPB5qkqT1xYw8FqDE6aYz-l8ZkrBunWI_PT9Fg4oeWewzg3dQ3QZQIPfbsfThqlE6mYqNrJWt60M9Fxl5N1bjI6ebG9H61ozZcEbAVMmNPogJOMkAELUoEFTgTM9WcCWle0y-_DUTi3XCJzJ_9D6k-Z3foT2MU3SE72P7c-ReI17bwcliavwB2pkMN
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLZgKiEuiJ1AQUHiGpHEduLAoWppqxZpRqiL1JvltUzVJkNn5v_zXuJkCEhornZsOc9v-Wy_hZBPqmK6YpVNMusxqXYKIuWVS7w3mpY6p8pggPN0Vpxcsu9X_CpcuC2DW2WvE1tFbRuDd-Sf84LnGPdM2d7iV4JVo_B1NZTQeEh2QAULPiE7B0ezH2ebtLsZ64LhOE1EllXBl6fz8GozRs7vQG7hnJjnoD1gejoyUG0e_5Gd-heH_u1O-Yd9On5KngRgGe93nPCMPHD1c_JoGp7OX5DZ-WF9eHH6JT53tz5ZrheoJJbOxta5RRyKR1wnaNWwrW7meIsQA6aNsYjKGm_VYnR3h4bp2elLcnl8dPHtJAnFFBJT0HSVOKsrlZVapQ50LQWgWIj2QAMmX3OuLWa-gtOGsNCtALV4XWoMOBclrQqv6CsyqZvavSExA8hYmhzUqMuY5lpwRnVhrOBewB6XESl7CkoTMo1jwYtb2buU3cgN7SXSXna0j0g2jFx02Ta2GHOAmzR8j_my24bm_loG8ZOaZoXTLNOWpcxxr4zRwqSlUl4X1PuIVP0Wyz4kFZQoTDTfYgFfh7EBtnRwZMvRuz1HyaA-lnLD7BH5OHSD4ONrjqpds8ZvaIFgl_GIvO4YcKABoGqWAtCAnRix5ohI4556_rNNLl61D8v07f-X9Y48xn_ofOZ2yWR1v3bvAZ2t9Icggr8B1Rw7gA
  priority: 102
  providerName: ProQuest
Title SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922001628
https://dx.doi.org/10.1016/j.neuroimage.2022.119033
https://www.ncbi.nlm.nih.gov/pubmed/35240299
https://www.proquest.com/docview/2652019034
https://www.proquest.com/docview/2636143545
https://pubmed.ncbi.nlm.nih.gov/PMC9511973
https://doaj.org/article/b316eb41bd404e5faccb8c07aafb63ff
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi4S4IN4ElipIXEOT-JXAaZ9qQa3QdlfqzbITewla0mrbXvntzCROlsClEpdW9SNKx-OZz_bMZ0I-6JyZnOVllJQOSbVjmFJO28i5wlBpUqoLTHCezcXkmn1Z8uUBOe1yYTCs0tv-1qY31tqXjL00x-uqGi8AGYC7AYSCYUEixYRfxiTy53_8dR_mkSesTYfjNMLWPpqnjfFqOCOrnzBzYaWYpmA_8pjSgYtqmPwHnupfJPp3QOUfHuriCXnsoWV43L79U3Jg62fk4cwfnj8n88VZfXY1_RQu7K2LNrs1momNLcPS2nXor4-4idCvYVm9qnAfIQRUG-I1KjvcVwsx4B0KZpfTF-T64vzqdBL56xSiQtB4G9nS5DqRRscWrC0FqCiyZkkDTt9wbkrkvoL1RlZCtQbc4ow0mHKeSZoLp-lLclivavuahAxAoyxSMKQ2YYabjDNqRFFm3GUwyjIgspOgKjzXOF55cau6oLIf6l72CmWvWtkHJOl7rlu-jT36nOAg9e2RMbspWN3dKK8yytBEWMMSU7KYWe50UZisiKXWzgjqXEDybohVl5QKZhQeVO3xAp_7vgPl3bP3UadRyhuQjUoFTzHNn7KAvO-rYerjeY6u7WqHbahAuMt4QF61CtjLAHA1iwFqwEgMVHMgpGFNXX1v6MXz5miZvvmvP_WWPMJfbVDdETnc3u3sO4BvWzNq5id8yqUckQfH06-TOXyfnM-_XY6aLZHfGs5KYw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEviDuBAUGCx4gkdm4ghBjd1LK1Qlsn7c3zdXTakrK2QvwpfiPnJE5LQEJ92asdW8nx8Xe-2OdCyGtRMFmwQgeRtphUO4QtZYUJrFWSZjKmQmGA83CU9o_Zl5PkZIP8amNh0K2yxcQaqHWl8Iz8bZwmMcY9U_Zx-j3AqlF4u9qW0GjUYt_8_AG_bLMPgx6s75s43tsdf-4HrqpAoFIazgOjZSGiTIrQAOhQYExpXjN7sH0ySaTGFFBAu3MN3QLMt5WZxMjrPKNFagWFeW-QLaAZBeyirZ3d0dfDVZrfiDXBdwkN8igqnO9Q41FWZ6icXAJOwH9pHANawefQjkGs6wZ07OK_vPdv980_7OHeXXLHEVn_U6N598iGKe-Tm0N3Vf-AjI56ZW88eOcfmQsbzBZTBKWZ0b42Zuq7YhVnAVpRbCurCZ5a-MChfSzassBTPB_d66FheDh4SI6vRcyPyGZZleYJ8RlQ1EzFANsmYjKRecKoTJXOE5uDTmUeyVoJcuUym2OBjQveurCd85XsOcqeN7L3SLQcOW2ye6wxZgcXafk85ueuG6qrM-62O5c0So1kkdQsZCaxQimZqzATwsqUWuuRol1i3obAAmjDRJM1XuD9cqyjSQ39WXP0dqtR3MHVjK82l0deLbsBaPD2SJSmWuAzNEVyzRKPPG4UcCkDYPEsBGIDK9FRzY6Quj3l5FudzLyoL7Lp0_-_1ktyqz8eHvCDwWj_GbmN39P4622TzfnVwjwHZjiXL9x29MnpdSPAbz3Jd7E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anTTxgriTMSBI8BgtiZ0bCCFGV62MVtMu0t6Mndij00jL2grx1_h1nJM4KQEJ9WWvdmwlx8ff-WKfC8ArmXGV8azwgsJQUm0ft5SR2jMmVyxRIZM5BTiPxvHBGf90Hp1vwK8mFobcKhtMrIC6mOZ0Rr4bxlFIcc-M7xrrFnHUH7yfffeoghTdtDblNGoVOdQ_f-Dv2_zdsI9r_ToMB_unHw88W2HAy2PmLzxdqEwGiZK-RgBiyJ7itGL5aAdVFKmC0kEhBU8L7JZoyo1KFEVhpwnLYiMZznsLNhO0imkPNvf2x0fHq5S_Aa8D8SLmpUGQWT-i2rusylY5-YaYgf-oYYjIhZ_GOsaxqiHQsZH_cuC_XTn_sI2Du3DHklr3Q62F92BDl_dha2Sv7R_A-KRf9k-Hb9wTfWW8-XJGADXXhVtoPXNt4YoLjywqtZXTCZ1guMinXSrgsqQTPZdc7bFhdDx8CGc3IuZH0CunpX4CLke6muQhQrgOuIpUGnGm4rxII5OifiUOJI0ERW6znFOxjSvRuLNdipXsBcle1LJ3IGhHzupMH2uM2aNFap-nXN1Vw_T6QtitLxQLYq14oArucx0Zmecqzf1ESqNiZowDWbPEogmHRQDHiSZrvMDbdqylTDUVWnP0TqNRwkLXXKw2mgMv224EHbpJkqWeLukZFhPR5pEDj2sFbGWAjJ77SHJwJTqq2RFSt6ecfK0Sm2fVpTbb_v9rvYAt3Pni83B8-BRu0-fUrns70FtcL_UzJIkL9dzuRhe-3DQA_Aanq3vd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SDnDTI%3A+Self-supervised+deep+learning-based+denoising+for+diffusion+tensor+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Tian%2C+Qiyuan&rft.au=Li%2C+Ziyu&rft.au=Fan%2C+Qiuyun&rft.au=Polimeni%2C+Jonathan+R.&rft.date=2022-06-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=253&rft.spage=119033&rft.epage=119033&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.119033&rft_id=info%3Apmid%2F35240299&rft.externalDocID=PMC9511973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon