SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI
Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 253; p. 119033 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2022
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2022.119033 |
Cover
Loading…
Abstract | Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled “SDnDTI” for denoising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolutions, b-values and numbers of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain. |
---|---|
AbstractList | Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled "SDnDTI" for denoising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolutions, b-values and numbers of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain. Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled “SDnDTI” for denoising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolution, b-values and number of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain. Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled "SDnDTI" for denoising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolutions, b-values and numbers of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain.Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled "SDnDTI" for denoising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolutions, b-values and numbers of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain. |
ArticleNumber | 119033 |
Author | Tian, Qiyuan Huang, Susie Y. Li, Ziyu Bilgic, Berkin Salat, David H. Fan, Qiuyun Polimeni, Jonathan R. |
AuthorAffiliation | 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States 2 Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States 4 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 3 Department of Biomedical Engineering, Tsinghua University, Beijing, P. R. China |
AuthorAffiliation_xml | – name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States – name: 3 Department of Biomedical Engineering, Tsinghua University, Beijing, P. R. China – name: 2 Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States – name: 4 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States |
Author_xml | – sequence: 1 givenname: Qiyuan orcidid: 0000-0002-8350-5295 surname: Tian fullname: Tian, Qiyuan email: qtian@mgh.harvard.edu organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States – sequence: 2 givenname: Ziyu surname: Li fullname: Li, Ziyu organization: Department of Biomedical Engineering, Tsinghua University, Beijing, PR China – sequence: 3 givenname: Qiuyun surname: Fan fullname: Fan, Qiuyun organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States – sequence: 4 givenname: Jonathan R. orcidid: 0000-0002-1348-1179 surname: Polimeni fullname: Polimeni, Jonathan R. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States – sequence: 5 givenname: Berkin surname: Bilgic fullname: Bilgic, Berkin organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States – sequence: 6 givenname: David H. surname: Salat fullname: Salat, David H. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States – sequence: 7 givenname: Susie Y. orcidid: 0000-0003-2950-7254 surname: Huang fullname: Huang, Susie Y. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35240299$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URD_gL6BIXLhkseM4sTkgoOVjpQISLWfLdsaLQ9Ze7GSl_nu8pGxpT3uyPfP60cy8c4qOfPCAUEHwgmDSvOoXHqYY3FqtYFHhqloQIjClj9AJwYKVgrXV0e7OaMlz6hidptRjjAWp-RN0TFlV40qIE_T16sJfXC9fF1cw2DJNG4hbl6ArOoBNMYCK3vlVqdUc88Gl_C5siEXnrJ2SC74Ywacc-PJ9-RQ9tmpI8Oz2PEM_Pn64Pv9cXn77tDx_d1mahuKxhE4LRVqtMIAyFHPc8FwdbwgjmjHdkTqXSjjvcloJQa1uNa455i0VjVX0DC1nbhdULzcxTyLeyKCc_BsIcSVVHJ0ZQGpKGtA10V2Na2BWGaO5wa1SVjfU2sx6M7M2k15DZ8CPUQ33oPcz3v2Uq7CVguXRtjQDXt4CYvg9QRrl2iUDw6A8hCnJqqENqSmrWZa-eCDtwxR9HlVWsQrvXKyz6vn_Fe1L-WdbFvBZYGJIKYLdSwiWuw2RvbzbELnbEDlvyF23-6_GjWrMNube3HAI4P0MgOzv1kGUyTjwBjoXwYzZAHcI5O0DiBmcd0YNv-DmMMQf8ibz8Q |
CitedBy_id | crossref_primary_10_1088_1361_6560_ad45a5 crossref_primary_10_1016_j_bbe_2022_12_006 crossref_primary_10_1016_j_mri_2023_07_004 crossref_primary_10_1007_s00521_023_09206_4 crossref_primary_10_1002_mrm_30365 crossref_primary_10_1016_j_mri_2024_01_001 crossref_primary_10_1007_s00234_024_03282_6 crossref_primary_10_1002_jmri_29217 crossref_primary_10_1016_j_mri_2022_12_009 crossref_primary_10_1016_j_mri_2024_110277 crossref_primary_10_1162_imag_a_00060 crossref_primary_10_1109_JBHI_2022_3193299 crossref_primary_10_1002_mrm_29478 crossref_primary_10_1088_1361_6560_ad94c7 crossref_primary_10_3390_app131910829 crossref_primary_10_1016_j_acra_2024_06_029 crossref_primary_10_1007_s10278_022_00721_9 crossref_primary_10_1007_s11517_024_03122_y crossref_primary_10_3389_fneur_2023_1168833 crossref_primary_10_1007_s11063_023_11404_z crossref_primary_10_1016_j_media_2023_102744 crossref_primary_10_1002_mrm_29763 crossref_primary_10_3390_diagnostics13213326 crossref_primary_10_3390_math12050748 crossref_primary_10_1002_mp_16301 crossref_primary_10_1002_mrm_30018 crossref_primary_10_1002_mrm_30429 crossref_primary_10_1002_mrm_29848 crossref_primary_10_1051_bioconf_202412910021 crossref_primary_10_1162_imag_a_00193 crossref_primary_10_1002_mrm_29786 crossref_primary_10_1002_nbm_4822 crossref_primary_10_1088_1361_6560_ac783d crossref_primary_10_3390_tomography10040039 crossref_primary_10_1371_journal_pone_0318992 crossref_primary_10_1002_hbm_70142 crossref_primary_10_1038_s41598_022_15511_0 crossref_primary_10_1162_imag_a_00353 |
Cites_doi | 10.1002/mrm.20426 10.1016/j.media.2016.02.010 10.1148/radiol.2018180940 10.1109/TMI.2016.2551324 10.1016/S0006-3495(94)80775-1 10.1002/jmri.22003 10.1002/mrm.21391 10.1109/TMI.2012.2188039 10.1038/nn1075 10.1109/ACCESS.2019.2919241 10.1002/mrm.20033 10.1016/j.neuroimage.2012.11.065 10.1016/j.media.2017.07.006 10.3389/fnins.2019.01066 10.1016/S1053-8119(03)00336-7 10.1016/j.neuroimage.2018.03.045 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q 10.1109/TIP.2003.819861 10.1002/mrm.26626 10.1002/hbm.22256 10.1016/j.compmedimag.2019.101647 10.1016/j.neuroimage.2004.07.037 10.1002/mrm.26059 10.1002/mrm.21236 10.1016/j.neuroimage.2018.09.060 10.1016/j.neuroimage.2013.05.012 10.1196/annals.1340.009 10.1038/s41598-019-51062-7 10.1016/j.neuroimage.2021.117946 10.1006/nimg.1998.0395 10.3174/ajnr.A3553 10.1109/TMI.2007.906087 10.1016/j.neuroimage.2016.08.016 10.1109/TIP.2012.2210725 10.1002/mp.13555 10.1006/jmrb.1996.0086 10.1016/j.neuroimage.2019.04.002 10.1002/mrm.27511 10.1038/s41467-018-04627-5 10.1109/TMI.2015.2427157 10.1016/j.neuroimage.2011.09.015 10.1002/mp.13400 10.1006/jmrb.1994.1037 10.1137/040616024 10.1016/j.neuroimage.2008.10.026 10.1016/j.nicl.2013.07.006 10.1016/j.neuroimage.2018.10.009 10.1016/j.neuroimage.2007.02.016 10.1016/j.neuroimage.2012.03.072 10.1002/mrm.27568 10.1002/mrm.22161 10.1371/journal.pone.0073021 10.2463/mrms.mp.2019-0018 10.1038/s41592-018-0261-2 10.1109/42.141646 10.1007/s11604-018-0758-8 10.1148/radiology.201.3.8939209 10.1016/j.neuroimage.2005.03.026 10.1016/j.pneurobio.2011.09.005 10.1016/j.neuroimage.2020.117017 10.1002/mrm.27488 10.1002/mrm.28025 10.1109/TIP.2007.901238 10.1002/mrm.27813 10.1016/j.neuroimage.2007.12.025 10.1002/mp.12974 10.1109/TIP.2017.2662206 10.1109/TSP.2006.881199 10.1109/TIM.2019.2925881 10.1016/j.neuroimage.2013.05.057 10.1109/TMI.2013.2293974 10.1002/mp.13626 10.1002/mrm.24997 10.1002/mrm.10609 10.1016/j.neuroimage.2015.10.019 10.1016/j.neuroimage.2005.03.042 10.1038/s41597-021-00904-z 10.1002/mrm.27899 10.1016/j.neuroimage.2009.01.008 10.1016/j.neuroimage.2004.07.051 10.1002/jmri.25970 10.1038/s41592-018-0216-7 10.1002/nbm.1020 10.1002/mrm.22463 10.1016/j.nic.2005.09.008 10.1038/nn.4393 10.1002/mrm.24736 10.1002/jmri.21049 10.1002/nbm.1506 10.1016/j.neuroimage.2009.06.060 10.1038/s41467-017-01285-x 10.1073/pnas.1206792109 10.1016/j.neuroimage.2013.04.127 10.1038/ncomms5932 10.1002/mrm.1910360612 10.1002/mrm.25717 10.1016/j.neuroimage.2011.06.006 10.1002/mrm.24204 10.1002/mrm.24229 10.1006/jmre.2000.2209 10.1016/j.neuroimage.2012.01.021 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Inc. Copyright Elsevier Limited Jun 2022 |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Jun 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM DOA |
DOI | 10.1016/j.neuroimage.2022.119033 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database (NC LIVE) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 119033 |
ExternalDocumentID | oai_doaj_org_article_b316eb41bd404e5faccb8c07aafb63ff PMC9511973 35240299 10_1016_j_neuroimage_2022_119033 S1053811922001628 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIA NIH HHS grantid: U01 AG052564 – fundername: NIBIB NIH HHS grantid: P41 EB015896 – fundername: NIBIB NIH HHS grantid: R01 EB017337 – fundername: NIMH NIH HHS grantid: R01 MH111419 – fundername: NIBIB NIH HHS grantid: R03 EB031175 – fundername: NIA NIH HHS grantid: K99 AG073506 – fundername: NINDS NIH HHS grantid: R01 NS118187 – fundername: NIBIB NIH HHS grantid: U01 EB026996 – fundername: NINDS NIH HHS grantid: K23 NS096056 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c630t-edb9a17ba0eeac30806800086151b55bd14091188deaca993fb7b048087396fa3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:32:23 EDT 2025 Thu Aug 21 18:39:25 EDT 2025 Thu Sep 04 19:50:40 EDT 2025 Wed Aug 13 03:07:32 EDT 2025 Wed Apr 16 06:21:20 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Tue Jul 01 03:02:22 EDT 2025 Fri Feb 23 02:40:03 EST 2024 Tue Aug 26 17:21:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Diffusion tensor transformation Image synthesis Residual learning Supervised learning Normal aging Convolutional neural network |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-edb9a17ba0eeac30806800086151b55bd14091188deaca993fb7b048087396fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1348-1179 0000-0002-8350-5295 0000-0003-2950-7254 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811922001628 |
PMID | 35240299 |
PQID | 2652019034 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b316eb41bd404e5faccb8c07aafb63ff pubmedcentral_primary_oai_pubmedcentral_nih_gov_9511973 proquest_miscellaneous_2636143545 proquest_journals_2652019034 pubmed_primary_35240299 crossref_primary_10_1016_j_neuroimage_2022_119033 crossref_citationtrail_10_1016_j_neuroimage_2022_119033 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_119033 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_119033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Marek (bib0022) 2011; 95 Liang, Liu, Wang, Ying (bib0034) 2009; 62 Shin (bib0041) 2014; 72 Bilgic (bib0043) 2019; 82 Zhang, Schneider, Wheeler-Kingshott, Alexander (bib0114) 2012; 61 Fischl (bib0093) 2012; 62 Caruyer, Lenglet, Sapiro, Deriche (bib0088) 2013; 69 Manjón (bib0046) 2013; 8 Sperl (bib0051) 2017; 78 Wang (bib0061) 2018; 174 Fieremans (bib0116) 2013; 34 Coupé (bib0028) 2008; 27 Dong (bib0052) 2018; 45 Wu, Cheung (bib0107) 2010; 23 Aharon, Elad, Bruckstein (bib0026) 2006; 54 Devalla (bib0056) 2019; 9 Jbabdi, Sotiropoulos, Savio, Graña, Behrens (bib0113) 2012; 68 Chang, Jones, Pierpaoli (bib0117) 2005; 53 Basser, Mattiello, LeBihan (bib0001) 1994; 66 Chen (bib0059) 2018; 290 Falk (bib0082) 2019; 16 Hu (bib0037) 2019; 81 Huber, Donnelly, Rokem, Yeatman (bib0010) 2018; 9 Kubicki (bib0013) 2005; 26 Jack (bib0020) 2008; 27 Tian (bib0071) 2021; 233 Huang, Liu, Van Der Maaten, Weinberger (bib0084) 2017 Otazo, Kim, Axel, Sodickson (bib0036) 2010; 64 Kim, Bilgic, Polak, Setsompop, Haldar (bib0039) 2019; 81 Maier-Hein (bib0118) 2017; 8 Fadnavis, Batson, Garyfallidis (bib0048) 2020; 33 Aliotta, Nourzadeh, Sanders, Muller, Ennis (bib0074) 2019; 46 He, Zhang, Ren, Sun (bib0104) 2016 Jiang (bib0066) 2018; 36 Golkov (bib0076) 2016; 35 Tian (bib0070) 2020; 219 Haldar (bib0049) 2013; 69 Ugurbil (bib0086) 2013; 80 Andersson, Skare, Ashburner (bib0091) 2003; 20 Gerig, Kubler, Kikinis, Jolesz (bib0027) 1992; 11 He, Zhang, Ren, Sun (bib0101) 2015 Assaf, Basser (bib0108) 2005; 27 Zhang, Zuo, Chen, Meng, Zhang (bib0053) 2017; 26 Murphy (bib0035) 2012; 31 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0090) 2012; 62 Salat (bib0008) 2005; 1064 Pierrick, C. MRI denoising using deep learning and non-local averaging. arXiv preprint arXiv Veraart, Fieremans, Novikov (bib0044) 2016; 76 Basser, Pierpaoli (bib0004) 1996; 111 Li (bib0075) 2019; 7 Pham (bib0105) 2019; 77 Wang, Bovik, Sheikh, Simoncelli (bib0102) 2004; 13 Tournier, Calamante, Gadian, Connelly (bib0109) 2004; 23 Pierpaoli, Jezzard, Basser, Barnett, Di Chiro (bib0003) 1996; 201 McNab (bib0019) 2009; 46 Xu (bib0063) 2020; 11313 Haldar (bib0040) 2013; 33 Gondara (bib0057) 2016 Kidoh (bib0069) 2019; 19 Krull, Buchholz, Jug (bib0055) 2019 Smith (bib0089) 2004; 23 Basser, Mattiello, LeBihan (bib0002) 1994; 103 Varadarajan, Haldar (bib0050) 2015; 34 Liao (bib0017) 2020; 83 Greve, Fischl (bib0098) 2009; 48 Behrens (bib0112) 2003; 6 Kingma, D.P. & Ba, J. Adam: a method for stochastic optimization. arXiv preprint arXiv Tournier, Calamante, Connelly (bib0110) 2007; 35 Gong (bib0068) 2020; 11313 St-Jean, Coupé, Descoteaux (bib0047) 2016; 32 Cullen (bib0014) 2010; 49 Andersson, Sotiropoulos (bib0092) 2016; 125 Yeatman, Wandell, Mezer (bib0006) 2014; 5 Hu (bib0038) 2020; 83 Manjón, Coupé, Martí-Bonmatí, Collins, Robles (bib0029) 2010; 31 Jones, Horsfield, Simmons (bib0081) 1999; 42 Bazin (bib0031) 2019; 13 Skare, Hedehus, Moseley, Li (bib0080) 2000; 147 Gong, Pauly, Wintermark, Zaharchuk (bib0064) 2018; 48 Sotiropoulos (bib0087) 2013; 80 Li (bib0072) 2018 Behrens (bib0111) 2003; 50 Haldar, Zhuo (bib0042) 2016; 75 Fieremans, Jensen, Helpern (bib0115) 2011; 58 Block, Uecker, Frahm (bib0033) 2007; 57 Chang, Yan, Chen, Fang, Zhong (bib0058) 2019; 69 Wang (bib0016) 2021; 8 Golkov (bib0077) 2015; 9349 Nir (bib0009) 2013; 3 Weigert (bib0054) 2018; 15 Ouyang, Chen, Gong, Pauly, Zaharchuk (bib0060) 2019; 46 (2019). Serrano-Sosa, Spuhler, DeLorenzo, Huang (bib0062) 2020; 61 Jones (bib0099) 2004; 51 Veraart (bib0045) 2016; 142 Miller (bib0023) 2016; 19 Gibbons (bib0078) 2018; 81 Zheng (bib0012) 2014; 35 McNab (bib0015) 2013; 69 Garyfallidis (bib0103) 2014 Lustig, Donoho, Pauly (bib0032) 2007; 58 Yeatman, Dougherty, Ben-Shachar, Wandell (bib0007) 2012; 109 Buades, Coll, Morel (bib0024) 2005; 4 Liao (bib0018) 2019; 194 van der Kouwe, Benner, Salat, Fischl (bib0097) 2008; 40 Gong (bib0073) 2018 Roosendaal (bib0011) 2009; 44 Dabov, Foi, Katkovnik, Egiazarian (bib0025) 2007; 16 Harms (bib0095) 2018; 183 Lu, Jensen, Ramani, Helpern (bib0106) 2006; 19 Kim, Kwon Lee, Mu Lee (bib0083) 2016 (2014). Maggioni, Katkovnik, Egiazarian, Foi (bib0030) 2012; 22 Mueller (bib0021) 2005; 15 Benou, Veksler, Friedman, Raviv (bib0065) 2017; 42 Lin (bib0079) 2019; 46 Dale, Fischl, Sereno (bib0094) 1999; 9 Glasser (bib0085) 2013; 80 Pierpaoli, Basser (bib0005) 1996; 36 Bookheimer (bib0096) 2019; 185 Tournier (10.1016/j.neuroimage.2022.119033_bib0109) 2004; 23 Jbabdi (10.1016/j.neuroimage.2022.119033_bib0113) 2012; 68 Veraart (10.1016/j.neuroimage.2022.119033_bib0044) 2016; 76 Buades (10.1016/j.neuroimage.2022.119033_bib0024) 2005; 4 Gibbons (10.1016/j.neuroimage.2022.119033_bib0078) 2018; 81 Zhang (10.1016/j.neuroimage.2022.119033_bib0053) 2017; 26 Smith (10.1016/j.neuroimage.2022.119033_bib0089) 2004; 23 Basser (10.1016/j.neuroimage.2022.119033_bib0004) 1996; 111 Manjón (10.1016/j.neuroimage.2022.119033_bib0046) 2013; 8 Miller (10.1016/j.neuroimage.2022.119033_bib0023) 2016; 19 Veraart (10.1016/j.neuroimage.2022.119033_bib0045) 2016; 142 Greve (10.1016/j.neuroimage.2022.119033_bib0098) 2009; 48 Glasser (10.1016/j.neuroimage.2022.119033_bib0085) 2013; 80 Harms (10.1016/j.neuroimage.2022.119033_bib0095) 2018; 183 Murphy (10.1016/j.neuroimage.2022.119033_bib0035) 2012; 31 Haldar (10.1016/j.neuroimage.2022.119033_bib0049) 2013; 69 Varadarajan (10.1016/j.neuroimage.2022.119033_bib0050) 2015; 34 Gong (10.1016/j.neuroimage.2022.119033_bib0064) 2018; 48 Dabov (10.1016/j.neuroimage.2022.119033_bib0025) 2007; 16 Ugurbil (10.1016/j.neuroimage.2022.119033_bib0086) 2013; 80 Otazo (10.1016/j.neuroimage.2022.119033_bib0036) 2010; 64 Wang (10.1016/j.neuroimage.2022.119033_bib0102) 2004; 13 McNab (10.1016/j.neuroimage.2022.119033_bib0015) 2013; 69 Li (10.1016/j.neuroimage.2022.119033_bib0072) 2018 Golkov (10.1016/j.neuroimage.2022.119033_bib0076) 2016; 35 Jack (10.1016/j.neuroimage.2022.119033_bib0020) 2008; 27 Kim (10.1016/j.neuroimage.2022.119033_bib0039) 2019; 81 Chen (10.1016/j.neuroimage.2022.119033_bib0059) 2018; 290 Lin (10.1016/j.neuroimage.2022.119033_bib0079) 2019; 46 Behrens (10.1016/j.neuroimage.2022.119033_bib0112) 2003; 6 Salat (10.1016/j.neuroimage.2022.119033_bib0008) 2005; 1064 Hu (10.1016/j.neuroimage.2022.119033_bib0038) 2020; 83 Kim (10.1016/j.neuroimage.2022.119033_bib0083) 2016 McNab (10.1016/j.neuroimage.2022.119033_bib0019) 2009; 46 Chang (10.1016/j.neuroimage.2022.119033_bib0058) 2019; 69 Haldar (10.1016/j.neuroimage.2022.119033_bib0042) 2016; 75 Wu (10.1016/j.neuroimage.2022.119033_bib0107) 2010; 23 Krull (10.1016/j.neuroimage.2022.119033_bib0055) 2019 Jiang (10.1016/j.neuroimage.2022.119033_bib0066) 2018; 36 St-Jean (10.1016/j.neuroimage.2022.119033_bib0047) 2016; 32 Liao (10.1016/j.neuroimage.2022.119033_bib0018) 2019; 194 Skare (10.1016/j.neuroimage.2022.119033_bib0080) 2000; 147 Basser (10.1016/j.neuroimage.2022.119033_bib0002) 1994; 103 Gondara (10.1016/j.neuroimage.2022.119033_bib0057) 2016 Fieremans (10.1016/j.neuroimage.2022.119033_bib0116) 2013; 34 Wang (10.1016/j.neuroimage.2022.119033_bib0016) 2021; 8 Andersson (10.1016/j.neuroimage.2022.119033_bib0092) 2016; 125 Li (10.1016/j.neuroimage.2022.119033_bib0075) 2019; 7 Devalla (10.1016/j.neuroimage.2022.119033_bib0056) 2019; 9 Pham (10.1016/j.neuroimage.2022.119033_bib0105) 2019; 77 Fischl (10.1016/j.neuroimage.2022.119033_bib0093) 2012; 62 Manjón (10.1016/j.neuroimage.2022.119033_bib0029) 2010; 31 Block (10.1016/j.neuroimage.2022.119033_bib0033) 2007; 57 Ouyang (10.1016/j.neuroimage.2022.119033_bib0060) 2019; 46 Wang (10.1016/j.neuroimage.2022.119033_bib0061) 2018; 174 Nir (10.1016/j.neuroimage.2022.119033_bib0009) 2013; 3 Dale (10.1016/j.neuroimage.2022.119033_bib0094) 1999; 9 Yeatman (10.1016/j.neuroimage.2022.119033_bib0006) 2014; 5 Maier-Hein (10.1016/j.neuroimage.2022.119033_bib0118) 2017; 8 Huber (10.1016/j.neuroimage.2022.119033_bib0010) 2018; 9 Shin (10.1016/j.neuroimage.2022.119033_bib0041) 2014; 72 Lu (10.1016/j.neuroimage.2022.119033_bib0106) 2006; 19 Tournier (10.1016/j.neuroimage.2022.119033_bib0110) 2007; 35 Liang (10.1016/j.neuroimage.2022.119033_bib0034) 2009; 62 Tian (10.1016/j.neuroimage.2022.119033_bib0070) 2020; 219 Hu (10.1016/j.neuroimage.2022.119033_bib0037) 2019; 81 Gong (10.1016/j.neuroimage.2022.119033_bib0073) 2018 Basser (10.1016/j.neuroimage.2022.119033_bib0001) 1994; 66 He (10.1016/j.neuroimage.2022.119033_bib0101) 2015 Jones (10.1016/j.neuroimage.2022.119033_bib0081) 1999; 42 Jones (10.1016/j.neuroimage.2022.119033_bib0099) 2004; 51 Kidoh (10.1016/j.neuroimage.2022.119033_bib0069) 2019; 19 Assaf (10.1016/j.neuroimage.2022.119033_bib0108) 2005; 27 Golkov (10.1016/j.neuroimage.2022.119033_bib0077) 2015; 9349 Weigert (10.1016/j.neuroimage.2022.119033_bib0054) 2018; 15 Gerig (10.1016/j.neuroimage.2022.119033_bib0027) 1992; 11 Tian (10.1016/j.neuroimage.2022.119033_bib0071) 2021; 233 Zhang (10.1016/j.neuroimage.2022.119033_bib0114) 2012; 61 Aharon (10.1016/j.neuroimage.2022.119033_bib0026) 2006; 54 Bookheimer (10.1016/j.neuroimage.2022.119033_bib0096) 2019; 185 Garyfallidis (10.1016/j.neuroimage.2022.119033_bib0103) 2014 He (10.1016/j.neuroimage.2022.119033_bib0104) 2016 Gong (10.1016/j.neuroimage.2022.119033_bib0068) 2020; 11313 Falk (10.1016/j.neuroimage.2022.119033_bib0082) 2019; 16 Benou (10.1016/j.neuroimage.2022.119033_bib0065) 2017; 42 Behrens (10.1016/j.neuroimage.2022.119033_bib0111) 2003; 50 Lustig (10.1016/j.neuroimage.2022.119033_bib0032) 2007; 58 Haldar (10.1016/j.neuroimage.2022.119033_bib0040) 2013; 33 Bazin (10.1016/j.neuroimage.2022.119033_bib0031) 2019; 13 Sperl (10.1016/j.neuroimage.2022.119033_bib0051) 2017; 78 Pierpaoli (10.1016/j.neuroimage.2022.119033_bib0005) 1996; 36 Pierpaoli (10.1016/j.neuroimage.2022.119033_bib0003) 1996; 201 Coupé (10.1016/j.neuroimage.2022.119033_bib0028) 2008; 27 Marek (10.1016/j.neuroimage.2022.119033_bib0022) 2011; 95 Maggioni (10.1016/j.neuroimage.2022.119033_bib0030) 2012; 22 Caruyer (10.1016/j.neuroimage.2022.119033_bib0088) 2013; 69 Dong (10.1016/j.neuroimage.2022.119033_bib0052) 2018; 45 Serrano-Sosa (10.1016/j.neuroimage.2022.119033_bib0062) 2020; 61 Aliotta (10.1016/j.neuroimage.2022.119033_bib0074) 2019; 46 Yeatman (10.1016/j.neuroimage.2022.119033_bib0007) 2012; 109 Jenkinson (10.1016/j.neuroimage.2022.119033_bib0090) 2012; 62 Sotiropoulos (10.1016/j.neuroimage.2022.119033_bib0087) 2013; 80 Andersson (10.1016/j.neuroimage.2022.119033_bib0091) 2003; 20 Bilgic (10.1016/j.neuroimage.2022.119033_bib0043) 2019; 82 Huang (10.1016/j.neuroimage.2022.119033_bib0084) 2017 Cullen (10.1016/j.neuroimage.2022.119033_bib0014) 2010; 49 Xu (10.1016/j.neuroimage.2022.119033_bib0063) 2020; 11313 Fadnavis (10.1016/j.neuroimage.2022.119033_bib0048) 2020; 33 Liao (10.1016/j.neuroimage.2022.119033_bib0017) 2020; 83 10.1016/j.neuroimage.2022.119033_bib0067 10.1016/j.neuroimage.2022.119033_bib0100 Roosendaal (10.1016/j.neuroimage.2022.119033_bib0011) 2009; 44 Kubicki (10.1016/j.neuroimage.2022.119033_bib0013) 2005; 26 Mueller (10.1016/j.neuroimage.2022.119033_bib0021) 2005; 15 Fieremans (10.1016/j.neuroimage.2022.119033_bib0115) 2011; 58 van der Kouwe (10.1016/j.neuroimage.2022.119033_bib0097) 2008; 40 Zheng (10.1016/j.neuroimage.2022.119033_bib0012) 2014; 35 Chang (10.1016/j.neuroimage.2022.119033_bib0117) 2005; 53 |
References_xml | – volume: 103 start-page: 247 year: 1994 end-page: 254 ident: bib0002 article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo publication-title: J. Magn. Reson. Ser. B – volume: 15 start-page: 869 year: 2005 end-page: 877 ident: bib0021 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin. – volume: 6 start-page: 750 year: 2003 end-page: 757 ident: bib0112 article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging publication-title: Nat. Neurosci. – volume: 174 start-page: 550 year: 2018 end-page: 562 ident: bib0061 article-title: 3D conditional generative adversarial networks for high-quality PET image estimation at low dose publication-title: Neuroimage – volume: 219 year: 2020 ident: bib0070 article-title: DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning publication-title: Neuroimage – volume: 69 start-page: 2707 year: 2019 end-page: 2721 ident: bib0058 article-title: Two-stage convolutional neural network for medical noise removal via image decomposition publication-title: IEEE Trans. Instrum. Meas. – volume: 42 start-page: 515 year: 1999 end-page: 525 ident: bib0081 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 46 start-page: 3555 year: 2019 end-page: 3564 ident: bib0060 article-title: Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss publication-title: Med. Phys. – volume: 33 start-page: 668 year: 2013 end-page: 681 ident: bib0040 article-title: Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI publication-title: IEEE Trans. Med. Imaging – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bib0094 article-title: Cortical surface-based analysis: I. Segmentation and surface reconstruction publication-title: Neuroimage – start-page: 1653 year: 2018 ident: bib0073 article-title: Efficient reconstruction of diffusion kurtosis imaging based on a hierarchical convolutional neural network publication-title: Proceedings of the 26th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM) – volume: 54 start-page: 4311 year: 2006 end-page: 4322 ident: bib0026 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. – volume: 26 start-page: 1109 year: 2005 end-page: 1118 ident: bib0013 article-title: DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity publication-title: Neuroimage – volume: 36 start-page: 566 year: 2018 end-page: 574 ident: bib0066 article-title: Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network publication-title: Jpn. J. Radiol. – volume: 23 start-page: 836 year: 2010 end-page: 848 ident: bib0107 article-title: MR diffusion kurtosis imaging for neural tissue characterization publication-title: NMR Biomed. – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bib0020 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0102 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 66 start-page: 259 year: 1994 end-page: 267 ident: bib0001 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. – volume: 80 start-page: 125 year: 2013 end-page: 143 ident: bib0087 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: Neuroimage – volume: 19 start-page: 236 year: 2006 end-page: 247 ident: bib0106 article-title: Three-dimensional characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging publication-title: NMR Biomed. – volume: 83 start-page: 56 year: 2020 end-page: 67 ident: bib0017 article-title: High-fidelity, high-isotropic-resolution diffusion imaging through gSlider acquisition with and T1 corrections and integrated ΔB0/Rx shim array publication-title: Magn. Reson. Med. – volume: 34 start-page: 2105 year: 2013 end-page: 2112 ident: bib0116 article-title: Novel white matter tract integrity metrics sensitive to Alzheimer disease progression publication-title: Am. J. Neuroradiol. – volume: 81 start-page: 1620 year: 2019 end-page: 1633 ident: bib0039 article-title: Wave-LORAKS: combining wave encoding with structured low-rank matrix modeling for more highly accelerated 3D imaging publication-title: Magn. Reson. Med. – volume: 77 year: 2019 ident: bib0105 article-title: Multiscale brain MRI super-resolution using deep 3D convolutional networks publication-title: Comput. Med. Imaging Graph. – start-page: 4700 year: 2017 end-page: 4708 ident: bib0084 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 11 start-page: 221 year: 1992 end-page: 232 ident: bib0027 article-title: Nonlinear anisotropic filtering of MRI data publication-title: IEEE Trans. Med. Imaging – reference: Kingma, D.P. & Ba, J. Adam: a method for stochastic optimization. arXiv preprint arXiv: – volume: 194 start-page: 291 year: 2019 end-page: 302 ident: bib0018 article-title: Phase-matched virtual coil reconstruction for highly accelerated diffusion echo-planar imaging publication-title: Neuroimage – volume: 290 start-page: 649 year: 2018 end-page: 656 ident: bib0059 article-title: Ultra–low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs publication-title: Radiology – start-page: 8 year: 2014 ident: bib0103 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front. Neuroinform. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: bib0056 article-title: A deep learning approach to denoise optical coherence tomography images of the optic nerve head publication-title: Sci. Rep. – volume: 9 start-page: 2260 year: 2018 ident: bib0010 article-title: Rapid and widespread white matter plasticity during an intensive reading intervention publication-title: Nat. Commun. – volume: 11313 year: 2020 ident: bib0068 article-title: Deep learning and multi-contrast based denoising for low-SNR Arterial Spin Labeling (ASL) MRI publication-title: Proceedings of the SPIE Medical Imaging Conference – volume: 34 start-page: 2191 year: 2015 end-page: 2202 ident: bib0050 article-title: A majorize-minimize framework for Rician and non-central chi MR images publication-title: IEEE Trans. Med. Imaging – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bib0110 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bib0089 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 22 start-page: 119 year: 2012 end-page: 133 ident: bib0030 article-title: Nonlocal transform-domain filter for volumetric data denoising and reconstruction publication-title: IEEE Trans. Image Process. – volume: 61 start-page: 434 year: 2020 ident: bib0062 article-title: PET image denoising using structural MRI with a novel dilated convolutional neural network publication-title: J. Nucl. Med. – volume: 26 start-page: 3142 year: 2017 end-page: 3155 ident: bib0053 article-title: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. – volume: 185 start-page: 335 year: 2019 end-page: 348 ident: bib0096 article-title: The lifespan Human Connectome Project in aging: an overview publication-title: Neuroimage – start-page: 1026 year: 2015 end-page: 1034 ident: bib0101 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification publication-title: Proceedings of the IEEE International Conference on Computer Vision – reference: (2014). – year: 2018 ident: bib0072 article-title: Deep learning diffusion tensor imaging with accelerated q-space acquisition publication-title: Proceedings of the Machine Learning (Part II) Workshop of the International Society for Magnetic Resonance in Medicine – volume: 69 start-page: 87 year: 2013 end-page: 100 ident: bib0015 article-title: Surface based analysis of diffusion orientation for identifying architectonic domains in the publication-title: Neuroimage – volume: 16 start-page: 2080 year: 2007 end-page: 2095 ident: bib0025 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. – volume: 42 start-page: 145 year: 2017 end-page: 159 ident: bib0065 article-title: Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences publication-title: Med. Image Anal. – volume: 11313 year: 2020 ident: bib0063 article-title: Ultra-low-dose 18F-FDG brain PET/MR denoising using deep learning and multi-contrast information publication-title: Proceedings of the SPIE Medical Imaging Conference – volume: 19 start-page: 1523 year: 2016 ident: bib0023 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat. Neurosci. – volume: 45 start-page: 3196 year: 2018 end-page: 3204 ident: bib0052 article-title: Model-based reconstruction for simultaneous multislice and parallel imaging accelerated multishot diffusion tensor imaging publication-title: Med. Phys. – volume: 61 start-page: 1000 year: 2012 end-page: 1016 ident: bib0114 article-title: NODDI: practical publication-title: Neuroimage – volume: 81 start-page: 1181 year: 2019 end-page: 1190 ident: bib0037 article-title: Motion-robust reconstruction of multishot diffusion-weighted images without phase estimation through locally low-rank regularization publication-title: Magn. Reson. Med. – volume: 62 start-page: 1574 year: 2009 end-page: 1584 ident: bib0034 article-title: Accelerating SENSE using compressed sensing publication-title: Magn. Reson. Med. – volume: 44 start-page: 1397 year: 2009 end-page: 1403 ident: bib0011 article-title: Regional DTI differences in multiple sclerosis patients publication-title: Neuroimage – volume: 8 start-page: 1349 year: 2017 ident: bib0118 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. – volume: 111 start-page: 209 year: 1996 end-page: 219 ident: bib0004 article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI publication-title: J. Magn. Reson. Ser. B – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib0090 article-title: FSL publication-title: Neuroimage – volume: 201 start-page: 637 year: 1996 end-page: 648 ident: bib0003 article-title: Diffusion tensor MR imaging of the human brain publication-title: Radiology – volume: 35 start-page: 1344 year: 2016 end-page: 1351 ident: bib0076 article-title: q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans publication-title: IEEE Trans. Med. Imaging – volume: 142 start-page: 394 year: 2016 ident: bib0045 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage – volume: 53 start-page: 1088 year: 2005 end-page: 1095 ident: bib0117 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn. Reson. Med. – volume: 27 start-page: 48 year: 2005 end-page: 58 ident: bib0108 article-title: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain publication-title: Neuroimage – volume: 36 start-page: 893 year: 1996 end-page: 906 ident: bib0005 article-title: Toward a of diffusion anisotropy publication-title: Magn. Reson. Med. – volume: 46 start-page: 775 year: 2009 end-page: 785 ident: bib0019 article-title: High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession publication-title: Neuroimage – volume: 147 start-page: 340 year: 2000 end-page: 352 ident: bib0080 article-title: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI publication-title: J. Magn. Reson. – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bib0091 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 13 start-page: 1066 year: 2019 ident: bib0031 article-title: Denoising high-field multi-dimensional MRI with local complex PCA publication-title: Front. Neurosc. – volume: 5 start-page: 1 year: 2014 end-page: 12 ident: bib0006 article-title: Lifespan maturation and degeneration of human brain white matter publication-title: Nat. Commun. – volume: 58 start-page: 1182 year: 2007 end-page: 1195 ident: bib0032 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn. Reson. Med. – volume: 64 start-page: 767 year: 2010 end-page: 776 ident: bib0036 article-title: Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI publication-title: Magn. Reson. Med. – volume: 69 start-page: 1534 year: 2013 end-page: 1540 ident: bib0088 article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI publication-title: Magn. Reson. Med. – volume: 49 start-page: 173 year: 2010 end-page: 183 ident: bib0014 article-title: Altered white matter microstructure in adolescents with major depression: a preliminary study publication-title: J. Am. Acad. Child Adolesc. Psychiatry – volume: 75 start-page: 1499 year: 2016 end-page: 1514 ident: bib0042 article-title: P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data publication-title: Magn. Reson. Med. – start-page: 1646 year: 2016 end-page: 1654 ident: bib0083 article-title: Accurate image super-resolution using very deep convolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 8 start-page: 1 year: 2021 end-page: 12 ident: bib0016 article-title: human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution publication-title: Scientific Data – start-page: 241 year: 2016 end-page: 246 ident: bib0057 article-title: Medical image denoising using convolutional denoising autoencoders publication-title: Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW) – volume: 46 start-page: 3101 year: 2019 end-page: 3116 ident: bib0079 article-title: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network publication-title: Med. Phys. – volume: 76 start-page: 1582 year: 2016 end-page: 1593 ident: bib0044 article-title: Diffusion MRI noise mapping using random matrix theory publication-title: Magn. Reson. Med. – volume: 31 start-page: 1250 year: 2012 end-page: 1262 ident: bib0035 article-title: Fast L publication-title: IEEE Trans. Med. Imaging – volume: 31 start-page: 192 year: 2010 end-page: 203 ident: bib0029 article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels publication-title: J. Magn. Reson. Imaging – volume: 23 start-page: 1176 year: 2004 end-page: 1185 ident: bib0109 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: Neuroimage – volume: 51 start-page: 807 year: 2004 end-page: 815 ident: bib0099 article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study† publication-title: Magn. Reson. Med. – volume: 4 start-page: 490 year: 2005 end-page: 530 ident: bib0024 article-title: A review of image denoising algorithms, with a new one publication-title: Multiscale Model. Simul. – volume: 48 start-page: 63 year: 2009 end-page: 72 ident: bib0098 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: Neuroimage – volume: 95 start-page: 629 year: 2011 end-page: 635 ident: bib0022 article-title: The parkinson progression marker initiative (PPMI) publication-title: Prog. Neurobiol. – volume: 82 start-page: 1343 year: 2019 end-page: 1358 ident: bib0043 article-title: Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction publication-title: Magn. Reson. Med. – volume: 80 start-page: 80 year: 2013 end-page: 104 ident: bib0086 article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project publication-title: Neuroimage – reference: Pierrick, C. MRI denoising using deep learning and non-local averaging. arXiv preprint arXiv: – volume: 81 start-page: 2399 year: 2018 end-page: 2411 ident: bib0078 article-title: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning publication-title: Magn. Reson. Med. – volume: 50 start-page: 1077 year: 2003 end-page: 1088 ident: bib0111 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. – volume: 7 start-page: 71398 year: 2019 end-page: 71411 ident: bib0075 article-title: Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network publication-title: IEEE Access – volume: 78 start-page: 2428 year: 2017 end-page: 2438 ident: bib0051 article-title: Model-based denoising in diffusion-weighted imaging using generalized spherical deconvolution publication-title: Magn. Reson. Med. – volume: 72 start-page: 959 year: 2014 end-page: 970 ident: bib0041 article-title: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion publication-title: Magn. Reson. Med. – volume: 32 start-page: 115 year: 2016 end-page: 130 ident: bib0047 article-title: Non local spatial and angular matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising publication-title: Med. Image Anal. – start-page: 770 year: 2016 end-page: 778 ident: bib0104 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 233 year: 2021 ident: bib0071 article-title: Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising publication-title: Neuroimage – volume: 48 start-page: 330 year: 2018 end-page: 340 ident: bib0064 article-title: Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI publication-title: J. Magn. Reson. Imaging – reference: (2019). – volume: 40 start-page: 559 year: 2008 end-page: 569 ident: bib0097 article-title: Brain morphometry with multiecho MPRAGE publication-title: Neuroimage – volume: 19 start-page: 195 year: 2019 ident: bib0069 article-title: Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers publication-title: Magn. Reson. Med. Sci. – volume: 35 start-page: 1325 year: 2014 end-page: 1333 ident: bib0012 article-title: DTI correlates of distinct cognitive impairments in Parkinson's disease publication-title: Hum. Brain Mapp. – volume: 8 start-page: e73021 year: 2013 ident: bib0046 article-title: Diffusion weighted image denoising using overcomplete local PCA publication-title: PLoS One – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: bib0092 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage – volume: 16 start-page: 67 year: 2019 end-page: 70 ident: bib0082 article-title: U-Net: deep learning for cell counting, detection, and morphometry publication-title: Nat. Methods – volume: 27 start-page: 425 year: 2008 end-page: 441 ident: bib0028 article-title: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images publication-title: IEEE Trans. Med. Imaging – volume: 183 start-page: 972 year: 2018 end-page: 984 ident: bib0095 article-title: Extending the Human Connectome Project across ages: imaging protocols for the lifespan development and aging projects publication-title: Neuroimage – volume: 33 start-page: 16293 year: 2020 end-page: 16303 ident: bib0048 article-title: Patch2Self: denoising diffusion MRI with self-supervised learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 83 start-page: 1596 year: 2020 end-page: 1607 ident: bib0038 article-title: Multi-shot diffusion-weighted MRI reconstruction with magnitude-based spatial-angular locally low-rank regularization (SPA-LLR) publication-title: Magn. Reson. Med. – volume: 58 start-page: 177 year: 2011 end-page: 188 ident: bib0115 article-title: White matter characterization with diffusional kurtosis imaging publication-title: Neuroimage – volume: 3 start-page: 180 year: 2013 end-page: 195 ident: bib0009 article-title: Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging publication-title: NeuroImage Clin. – start-page: 2129 year: 2019 end-page: 2137 ident: bib0055 article-title: Noise2void-learning denoising from single noisy images publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib0093 article-title: FreeSurfer publication-title: Neuroimage – volume: 109 start-page: E3045 year: 2012 end-page: E3053 ident: bib0007 article-title: Development of white matter and reading skills publication-title: Proc. Natl. Acad. Sci. – volume: 15 start-page: 1090 year: 2018 end-page: 1097 ident: bib0054 article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy publication-title: Nat. Methods – volume: 68 start-page: 1846 year: 2012 end-page: 1855 ident: bib0113 article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems publication-title: Magn. Reson. Med. – volume: 1064 start-page: 37 year: 2005 end-page: 49 ident: bib0008 article-title: Age-related changes in prefrontal white matter measured by diffusion tensor imaging publication-title: Ann. N.Y. Acad. Sci. – volume: 57 start-page: 1086 year: 2007 end-page: 1098 ident: bib0033 article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint publication-title: Magn. Reson. Med. – volume: 9349 start-page: 37 year: 2015 end-page: 44 ident: bib0077 article-title: q-Space deep learning for twelve-fold shorter and model-free diffusion MRI scans publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention – volume: 46 start-page: 1581 year: 2019 end-page: 1591 ident: bib0074 article-title: Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks publication-title: Med. Phys. – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0085 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – volume: 69 start-page: 277 year: 2013 end-page: 289 ident: bib0049 article-title: Improved diffusion imaging through SNR-enhancing joint reconstruction publication-title: Magn. Reson. Med. – volume: 53 start-page: 1088 year: 2005 ident: 10.1016/j.neuroimage.2022.119033_bib0117 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20426 – volume: 32 start-page: 115 year: 2016 ident: 10.1016/j.neuroimage.2022.119033_bib0047 article-title: Non local spatial and angular matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.02.010 – volume: 290 start-page: 649 year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0059 article-title: Ultra–low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs publication-title: Radiology doi: 10.1148/radiol.2018180940 – volume: 35 start-page: 1344 year: 2016 ident: 10.1016/j.neuroimage.2022.119033_bib0076 article-title: q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2551324 – start-page: 1653 year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0073 article-title: Efficient reconstruction of diffusion kurtosis imaging based on a hierarchical convolutional neural network – volume: 66 start-page: 259 year: 1994 ident: 10.1016/j.neuroimage.2022.119033_bib0001 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – volume: 31 start-page: 192 year: 2010 ident: 10.1016/j.neuroimage.2022.119033_bib0029 article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22003 – volume: 58 start-page: 1182 year: 2007 ident: 10.1016/j.neuroimage.2022.119033_bib0032 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21391 – volume: 31 start-page: 1250 year: 2012 ident: 10.1016/j.neuroimage.2022.119033_bib0035 article-title: Fast L1-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2188039 – ident: 10.1016/j.neuroimage.2022.119033_bib0100 – volume: 6 start-page: 750 year: 2003 ident: 10.1016/j.neuroimage.2022.119033_bib0112 article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging publication-title: Nat. Neurosci. doi: 10.1038/nn1075 – volume: 11313 year: 2020 ident: 10.1016/j.neuroimage.2022.119033_bib0063 article-title: Ultra-low-dose 18F-FDG brain PET/MR denoising using deep learning and multi-contrast information – volume: 7 start-page: 71398 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0075 article-title: Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919241 – volume: 51 start-page: 807 year: 2004 ident: 10.1016/j.neuroimage.2022.119033_bib0099 article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study† publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20033 – volume: 69 start-page: 87 year: 2013 ident: 10.1016/j.neuroimage.2022.119033_bib0015 article-title: Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.11.065 – volume: 42 start-page: 145 year: 2017 ident: 10.1016/j.neuroimage.2022.119033_bib0065 article-title: Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.006 – volume: 13 start-page: 1066 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0031 article-title: Denoising high-field multi-dimensional MRI with local complex PCA publication-title: Front. Neurosc. doi: 10.3389/fnins.2019.01066 – volume: 20 start-page: 870 year: 2003 ident: 10.1016/j.neuroimage.2022.119033_bib0091 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – volume: 174 start-page: 550 year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0061 article-title: 3D conditional generative adversarial networks for high-quality PET image estimation at low dose publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.045 – volume: 42 start-page: 515 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2022.119033_bib0081 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q – volume: 13 start-page: 600 year: 2004 ident: 10.1016/j.neuroimage.2022.119033_bib0102 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 78 start-page: 2428 year: 2017 ident: 10.1016/j.neuroimage.2022.119033_bib0051 article-title: Model-based denoising in diffusion-weighted imaging using generalized spherical deconvolution publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26626 – volume: 35 start-page: 1325 year: 2014 ident: 10.1016/j.neuroimage.2022.119033_bib0012 article-title: DTI correlates of distinct cognitive impairments in Parkinson's disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22256 – start-page: 1026 year: 2015 ident: 10.1016/j.neuroimage.2022.119033_bib0101 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification – volume: 77 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0105 article-title: Multiscale brain MRI super-resolution using deep 3D convolutional networks publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.101647 – volume: 33 start-page: 16293 year: 2020 ident: 10.1016/j.neuroimage.2022.119033_bib0048 article-title: Patch2Self: denoising diffusion MRI with self-supervised learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 23 start-page: 1176 year: 2004 ident: 10.1016/j.neuroimage.2022.119033_bib0109 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.037 – volume: 76 start-page: 1582 year: 2016 ident: 10.1016/j.neuroimage.2022.119033_bib0044 article-title: Diffusion MRI noise mapping using random matrix theory publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26059 – volume: 57 start-page: 1086 year: 2007 ident: 10.1016/j.neuroimage.2022.119033_bib0033 article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21236 – volume: 183 start-page: 972 year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0095 article-title: Extending the Human Connectome Project across ages: imaging protocols for the lifespan development and aging projects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.09.060 – volume: 80 start-page: 80 year: 2013 ident: 10.1016/j.neuroimage.2022.119033_bib0086 article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.012 – start-page: 770 year: 2016 ident: 10.1016/j.neuroimage.2022.119033_bib0104 article-title: Deep residual learning for image recognition – volume: 1064 start-page: 37 year: 2005 ident: 10.1016/j.neuroimage.2022.119033_bib0008 article-title: Age-related changes in prefrontal white matter measured by diffusion tensor imaging publication-title: Ann. N.Y. Acad. Sci. doi: 10.1196/annals.1340.009 – volume: 9349 start-page: 37 year: 2015 ident: 10.1016/j.neuroimage.2022.119033_bib0077 article-title: q-Space deep learning for twelve-fold shorter and model-free diffusion MRI scans – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0056 article-title: A deep learning approach to denoise optical coherence tomography images of the optic nerve head publication-title: Sci. Rep. doi: 10.1038/s41598-019-51062-7 – volume: 233 year: 2021 ident: 10.1016/j.neuroimage.2022.119033_bib0071 article-title: Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.117946 – volume: 9 start-page: 179 year: 1999 ident: 10.1016/j.neuroimage.2022.119033_bib0094 article-title: Cortical surface-based analysis: I. Segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 34 start-page: 2105 year: 2013 ident: 10.1016/j.neuroimage.2022.119033_bib0116 article-title: Novel white matter tract integrity metrics sensitive to Alzheimer disease progression publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A3553 – volume: 27 start-page: 425 year: 2008 ident: 10.1016/j.neuroimage.2022.119033_bib0028 article-title: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.906087 – volume: 142 start-page: 394 year: 2016 ident: 10.1016/j.neuroimage.2022.119033_bib0045 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.016 – volume: 49 start-page: 173 year: 2010 ident: 10.1016/j.neuroimage.2022.119033_bib0014 article-title: Altered white matter microstructure in adolescents with major depression: a preliminary study publication-title: J. Am. Acad. Child Adolesc. Psychiatry – volume: 22 start-page: 119 year: 2012 ident: 10.1016/j.neuroimage.2022.119033_bib0030 article-title: Nonlocal transform-domain filter for volumetric data denoising and reconstruction publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2210725 – volume: 46 start-page: 3101 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0079 article-title: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network publication-title: Med. Phys. doi: 10.1002/mp.13555 – volume: 111 start-page: 209 year: 1996 ident: 10.1016/j.neuroimage.2022.119033_bib0004 article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI publication-title: J. Magn. Reson. Ser. B doi: 10.1006/jmrb.1996.0086 – volume: 194 start-page: 291 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0018 article-title: Phase-matched virtual coil reconstruction for highly accelerated diffusion echo-planar imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.04.002 – volume: 81 start-page: 1620 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0039 article-title: Wave-LORAKS: combining wave encoding with structured low-rank matrix modeling for more highly accelerated 3D imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27511 – volume: 9 start-page: 2260 year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0010 article-title: Rapid and widespread white matter plasticity during an intensive reading intervention publication-title: Nat. Commun. doi: 10.1038/s41467-018-04627-5 – start-page: 2129 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0055 article-title: Noise2void-learning denoising from single noisy images – volume: 34 start-page: 2191 year: 2015 ident: 10.1016/j.neuroimage.2022.119033_bib0050 article-title: A majorize-minimize framework for Rician and non-central chi MR images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2427157 – volume: 62 start-page: 782 year: 2012 ident: 10.1016/j.neuroimage.2022.119033_bib0090 article-title: FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 46 start-page: 1581 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0074 article-title: Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks publication-title: Med. Phys. doi: 10.1002/mp.13400 – volume: 103 start-page: 247 year: 1994 ident: 10.1016/j.neuroimage.2022.119033_bib0002 article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo publication-title: J. Magn. Reson. Ser. B doi: 10.1006/jmrb.1994.1037 – volume: 4 start-page: 490 year: 2005 ident: 10.1016/j.neuroimage.2022.119033_bib0024 article-title: A review of image denoising algorithms, with a new one publication-title: Multiscale Model. Simul. doi: 10.1137/040616024 – volume: 11313 year: 2020 ident: 10.1016/j.neuroimage.2022.119033_bib0068 article-title: Deep learning and multi-contrast based denoising for low-SNR Arterial Spin Labeling (ASL) MRI – volume: 44 start-page: 1397 year: 2009 ident: 10.1016/j.neuroimage.2022.119033_bib0011 article-title: Regional DTI differences in multiple sclerosis patients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.026 – year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0072 article-title: Deep learning diffusion tensor imaging with accelerated q-space acquisition – volume: 3 start-page: 180 year: 2013 ident: 10.1016/j.neuroimage.2022.119033_bib0009 article-title: Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2013.07.006 – volume: 185 start-page: 335 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0096 article-title: The lifespan Human Connectome Project in aging: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.009 – volume: 35 start-page: 1459 year: 2007 ident: 10.1016/j.neuroimage.2022.119033_bib0110 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 61 start-page: 1000 year: 2012 ident: 10.1016/j.neuroimage.2022.119033_bib0114 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – volume: 81 start-page: 2399 year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0078 article-title: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27568 – volume: 62 start-page: 1574 year: 2009 ident: 10.1016/j.neuroimage.2022.119033_bib0034 article-title: Accelerating SENSE using compressed sensing publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22161 – volume: 8 start-page: e73021 year: 2013 ident: 10.1016/j.neuroimage.2022.119033_bib0046 article-title: Diffusion weighted image denoising using overcomplete local PCA publication-title: PLoS One doi: 10.1371/journal.pone.0073021 – volume: 19 start-page: 195 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0069 article-title: Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers publication-title: Magn. Reson. Med. Sci. doi: 10.2463/mrms.mp.2019-0018 – volume: 16 start-page: 67 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0082 article-title: U-Net: deep learning for cell counting, detection, and morphometry publication-title: Nat. Methods doi: 10.1038/s41592-018-0261-2 – volume: 11 start-page: 221 year: 1992 ident: 10.1016/j.neuroimage.2022.119033_bib0027 article-title: Nonlinear anisotropic filtering of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.141646 – volume: 36 start-page: 566 year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0066 article-title: Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network publication-title: Jpn. J. Radiol. doi: 10.1007/s11604-018-0758-8 – volume: 201 start-page: 637 year: 1996 ident: 10.1016/j.neuroimage.2022.119033_bib0003 article-title: Diffusion tensor MR imaging of the human brain publication-title: Radiology doi: 10.1148/radiology.201.3.8939209 – volume: 26 start-page: 1109 year: 2005 ident: 10.1016/j.neuroimage.2022.119033_bib0013 article-title: DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.026 – start-page: 241 year: 2016 ident: 10.1016/j.neuroimage.2022.119033_bib0057 article-title: Medical image denoising using convolutional denoising autoencoders – volume: 95 start-page: 629 year: 2011 ident: 10.1016/j.neuroimage.2022.119033_bib0022 article-title: The parkinson progression marker initiative (PPMI) publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2011.09.005 – volume: 219 year: 2020 ident: 10.1016/j.neuroimage.2022.119033_bib0070 article-title: DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117017 – volume: 81 start-page: 1181 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0037 article-title: Motion-robust reconstruction of multishot diffusion-weighted images without phase estimation through locally low-rank regularization publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27488 – volume: 83 start-page: 1596 year: 2020 ident: 10.1016/j.neuroimage.2022.119033_bib0038 article-title: Multi-shot diffusion-weighted MRI reconstruction with magnitude-based spatial-angular locally low-rank regularization (SPA-LLR) publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28025 – volume: 16 start-page: 2080 year: 2007 ident: 10.1016/j.neuroimage.2022.119033_bib0025 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – volume: 82 start-page: 1343 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0043 article-title: Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27813 – volume: 40 start-page: 559 year: 2008 ident: 10.1016/j.neuroimage.2022.119033_bib0097 article-title: Brain morphometry with multiecho MPRAGE publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.025 – start-page: 1646 year: 2016 ident: 10.1016/j.neuroimage.2022.119033_bib0083 article-title: Accurate image super-resolution using very deep convolutional networks – volume: 45 start-page: 3196 year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0052 article-title: Model-based reconstruction for simultaneous multislice and parallel imaging accelerated multishot diffusion tensor imaging publication-title: Med. Phys. doi: 10.1002/mp.12974 – volume: 26 start-page: 3142 year: 2017 ident: 10.1016/j.neuroimage.2022.119033_bib0053 article-title: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2662206 – volume: 54 start-page: 4311 year: 2006 ident: 10.1016/j.neuroimage.2022.119033_bib0026 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – volume: 69 start-page: 2707 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0058 article-title: Two-stage convolutional neural network for medical noise removal via image decomposition publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2925881 – ident: 10.1016/j.neuroimage.2022.119033_bib0067 – volume: 80 start-page: 125 year: 2013 ident: 10.1016/j.neuroimage.2022.119033_bib0087 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 33 start-page: 668 year: 2013 ident: 10.1016/j.neuroimage.2022.119033_bib0040 article-title: Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2293974 – volume: 46 start-page: 3555 year: 2019 ident: 10.1016/j.neuroimage.2022.119033_bib0060 article-title: Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss publication-title: Med. Phys. doi: 10.1002/mp.13626 – volume: 72 start-page: 959 year: 2014 ident: 10.1016/j.neuroimage.2022.119033_bib0041 article-title: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24997 – volume: 50 start-page: 1077 year: 2003 ident: 10.1016/j.neuroimage.2022.119033_bib0111 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10609 – volume: 125 start-page: 1063 year: 2016 ident: 10.1016/j.neuroimage.2022.119033_bib0092 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – start-page: 8 year: 2014 ident: 10.1016/j.neuroimage.2022.119033_bib0103 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front. Neuroinform. – volume: 27 start-page: 48 year: 2005 ident: 10.1016/j.neuroimage.2022.119033_bib0108 article-title: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.042 – volume: 8 start-page: 1 year: 2021 ident: 10.1016/j.neuroimage.2022.119033_bib0016 article-title: In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution publication-title: Scientific Data doi: 10.1038/s41597-021-00904-z – volume: 83 start-page: 56 year: 2020 ident: 10.1016/j.neuroimage.2022.119033_bib0017 article-title: High-fidelity, high-isotropic-resolution diffusion imaging through gSlider acquisition with and T1 corrections and integrated ΔB0/Rx shim array publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27899 – volume: 46 start-page: 775 year: 2009 ident: 10.1016/j.neuroimage.2022.119033_bib0019 article-title: High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.008 – volume: 23 start-page: S208 year: 2004 ident: 10.1016/j.neuroimage.2022.119033_bib0089 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 48 start-page: 330 year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0064 article-title: Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25970 – volume: 15 start-page: 1090 year: 2018 ident: 10.1016/j.neuroimage.2022.119033_bib0054 article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy publication-title: Nat. Methods doi: 10.1038/s41592-018-0216-7 – volume: 19 start-page: 236 year: 2006 ident: 10.1016/j.neuroimage.2022.119033_bib0106 article-title: Three-dimensional characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging publication-title: NMR Biomed. doi: 10.1002/nbm.1020 – volume: 64 start-page: 767 year: 2010 ident: 10.1016/j.neuroimage.2022.119033_bib0036 article-title: Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22463 – volume: 15 start-page: 869 year: 2005 ident: 10.1016/j.neuroimage.2022.119033_bib0021 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin. doi: 10.1016/j.nic.2005.09.008 – volume: 19 start-page: 1523 year: 2016 ident: 10.1016/j.neuroimage.2022.119033_bib0023 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat. Neurosci. doi: 10.1038/nn.4393 – volume: 69 start-page: 1534 year: 2013 ident: 10.1016/j.neuroimage.2022.119033_bib0088 article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24736 – volume: 27 start-page: 685 year: 2008 ident: 10.1016/j.neuroimage.2022.119033_bib0020 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 23 start-page: 836 year: 2010 ident: 10.1016/j.neuroimage.2022.119033_bib0107 article-title: MR diffusion kurtosis imaging for neural tissue characterization publication-title: NMR Biomed. doi: 10.1002/nbm.1506 – volume: 48 start-page: 63 year: 2009 ident: 10.1016/j.neuroimage.2022.119033_bib0098 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.060 – volume: 8 start-page: 1349 year: 2017 ident: 10.1016/j.neuroimage.2022.119033_bib0118 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. doi: 10.1038/s41467-017-01285-x – volume: 109 start-page: E3045 year: 2012 ident: 10.1016/j.neuroimage.2022.119033_bib0007 article-title: Development of white matter and reading skills publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1206792109 – volume: 61 start-page: 434 year: 2020 ident: 10.1016/j.neuroimage.2022.119033_bib0062 article-title: PET image denoising using structural MRI with a novel dilated convolutional neural network publication-title: J. Nucl. Med. – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2022.119033_bib0085 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – start-page: 4700 year: 2017 ident: 10.1016/j.neuroimage.2022.119033_bib0084 article-title: Densely connected convolutional networks – volume: 5 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2022.119033_bib0006 article-title: Lifespan maturation and degeneration of human brain white matter publication-title: Nat. Commun. doi: 10.1038/ncomms5932 – volume: 36 start-page: 893 year: 1996 ident: 10.1016/j.neuroimage.2022.119033_bib0005 article-title: Toward a of diffusion anisotropy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910360612 – volume: 75 start-page: 1499 year: 2016 ident: 10.1016/j.neuroimage.2022.119033_bib0042 article-title: P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25717 – volume: 58 start-page: 177 year: 2011 ident: 10.1016/j.neuroimage.2022.119033_bib0115 article-title: White matter characterization with diffusional kurtosis imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.006 – volume: 68 start-page: 1846 year: 2012 ident: 10.1016/j.neuroimage.2022.119033_bib0113 article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24204 – volume: 69 start-page: 277 year: 2013 ident: 10.1016/j.neuroimage.2022.119033_bib0049 article-title: Improved diffusion imaging through SNR-enhancing joint reconstruction publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24229 – volume: 147 start-page: 340 year: 2000 ident: 10.1016/j.neuroimage.2022.119033_bib0080 article-title: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI publication-title: J. Magn. Reson. doi: 10.1006/jmre.2000.2209 – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.neuroimage.2022.119033_bib0093 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 |
SSID | ssj0009148 |
Score | 2.5751672 |
Snippet | Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119033 |
SubjectTerms | Aging Algorithms Alzheimer's disease Brain mapping Convolutional neural network Datasets Deep Learning Diffusion Tensor Imaging - methods Diffusion tensor transformation Humans Image Processing, Computer-Assisted - methods Image synthesis Life span Magnetic resonance imaging Medical imaging Methods Neural networks Neural Networks, Computer Neuroimaging Noise Normal aging Residual learning Signal-To-Noise Ratio Substantia alba Supervised learning Tomography Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k2goCBxjUjiRxI4AaVqkbYH2kq9WR4_YFHJrtjd_89M7IQGDuyBqx-RMx7PfLbH3zD22nQCOtG5onKBSLVLXFLB-CIEC7yBmhtLD5wXZ-rkUny-klc3Un1RTFikB46CewO8Uh5EBU6UwstgrIXWlo0xARQPgawv-rxxMzXS7SLKT3E7MZprYIdc_sA1invCukZL0ZWcz5zRwNk_80l_Y84_Qydv-KLje-xuApH5-zj4--yW7x-w24t0Tf6QnZ0f9UcXp2_zc38dis1uTQZh413uvF_nKVHE14I8GJX1qyWdGOSIX3NKmLKjE7ScQtuxYPHl9BG7PP508fGkSIkTCqt4uS28g85UDZjSo13lCApVO2xe0L2DlOCI5Qp3Fq3DaoMIJUAD9Li8bXinguGP2UG_6v1TlguEh42t0WT6SoCEVgoOyrpWhhbns8lYM0pQ28QqTsktrvUYPvZd_5a9JtnrKPuMVVPPdWTW2KPPB5qkqT1xYw8FqDE6aYz-l8ZkrBunWI_PT9Fg4oeWewzg3dQ3QZQIPfbsfThqlE6mYqNrJWt60M9Fxl5N1bjI6ebG9H61ozZcEbAVMmNPogJOMkAELUoEFTgTM9WcCWle0y-_DUTi3XCJzJ_9D6k-Z3foT2MU3SE72P7c-ReI17bwcliavwB2pkMN priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLZgKiEuiJ1AQUHiGpHEduLAoWppqxZpRqiL1JvltUzVJkNn5v_zXuJkCEhornZsOc9v-Wy_hZBPqmK6YpVNMusxqXYKIuWVS7w3mpY6p8pggPN0Vpxcsu9X_CpcuC2DW2WvE1tFbRuDd-Sf84LnGPdM2d7iV4JVo_B1NZTQeEh2QAULPiE7B0ezH2ebtLsZ64LhOE1EllXBl6fz8GozRs7vQG7hnJjnoD1gejoyUG0e_5Gd-heH_u1O-Yd9On5KngRgGe93nPCMPHD1c_JoGp7OX5DZ-WF9eHH6JT53tz5ZrheoJJbOxta5RRyKR1wnaNWwrW7meIsQA6aNsYjKGm_VYnR3h4bp2elLcnl8dPHtJAnFFBJT0HSVOKsrlZVapQ50LQWgWIj2QAMmX3OuLWa-gtOGsNCtALV4XWoMOBclrQqv6CsyqZvavSExA8hYmhzUqMuY5lpwRnVhrOBewB6XESl7CkoTMo1jwYtb2buU3cgN7SXSXna0j0g2jFx02Ta2GHOAmzR8j_my24bm_loG8ZOaZoXTLNOWpcxxr4zRwqSlUl4X1PuIVP0Wyz4kFZQoTDTfYgFfh7EBtnRwZMvRuz1HyaA-lnLD7BH5OHSD4ONrjqpds8ZvaIFgl_GIvO4YcKABoGqWAtCAnRix5ohI4556_rNNLl61D8v07f-X9Y48xn_ofOZ2yWR1v3bvAZ2t9Icggr8B1Rw7gA priority: 102 providerName: ProQuest |
Title | SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922001628 https://dx.doi.org/10.1016/j.neuroimage.2022.119033 https://www.ncbi.nlm.nih.gov/pubmed/35240299 https://www.proquest.com/docview/2652019034 https://www.proquest.com/docview/2636143545 https://pubmed.ncbi.nlm.nih.gov/PMC9511973 https://doaj.org/article/b316eb41bd404e5faccb8c07aafb63ff |
Volume | 253 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi4S4IN4ElipIXEOT-JXAaZ9qQa3QdlfqzbITewla0mrbXvntzCROlsClEpdW9SNKx-OZz_bMZ0I-6JyZnOVllJQOSbVjmFJO28i5wlBpUqoLTHCezcXkmn1Z8uUBOe1yYTCs0tv-1qY31tqXjL00x-uqGi8AGYC7AYSCYUEixYRfxiTy53_8dR_mkSesTYfjNMLWPpqnjfFqOCOrnzBzYaWYpmA_8pjSgYtqmPwHnupfJPp3QOUfHuriCXnsoWV43L79U3Jg62fk4cwfnj8n88VZfXY1_RQu7K2LNrs1momNLcPS2nXor4-4idCvYVm9qnAfIQRUG-I1KjvcVwsx4B0KZpfTF-T64vzqdBL56xSiQtB4G9nS5DqRRscWrC0FqCiyZkkDTt9wbkrkvoL1RlZCtQbc4ow0mHKeSZoLp-lLclivavuahAxAoyxSMKQ2YYabjDNqRFFm3GUwyjIgspOgKjzXOF55cau6oLIf6l72CmWvWtkHJOl7rlu-jT36nOAg9e2RMbspWN3dKK8yytBEWMMSU7KYWe50UZisiKXWzgjqXEDybohVl5QKZhQeVO3xAp_7vgPl3bP3UadRyhuQjUoFTzHNn7KAvO-rYerjeY6u7WqHbahAuMt4QF61CtjLAHA1iwFqwEgMVHMgpGFNXX1v6MXz5miZvvmvP_WWPMJfbVDdETnc3u3sO4BvWzNq5id8yqUckQfH06-TOXyfnM-_XY6aLZHfGs5KYw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEviDuBAUGCx4gkdm4ghBjd1LK1Qlsn7c3zdXTakrK2QvwpfiPnJE5LQEJ92asdW8nx8Xe-2OdCyGtRMFmwQgeRtphUO4QtZYUJrFWSZjKmQmGA83CU9o_Zl5PkZIP8amNh0K2yxcQaqHWl8Iz8bZwmMcY9U_Zx-j3AqlF4u9qW0GjUYt_8_AG_bLMPgx6s75s43tsdf-4HrqpAoFIazgOjZSGiTIrQAOhQYExpXjN7sH0ySaTGFFBAu3MN3QLMt5WZxMjrPKNFagWFeW-QLaAZBeyirZ3d0dfDVZrfiDXBdwkN8igqnO9Q41FWZ6icXAJOwH9pHANawefQjkGs6wZ07OK_vPdv980_7OHeXXLHEVn_U6N598iGKe-Tm0N3Vf-AjI56ZW88eOcfmQsbzBZTBKWZ0b42Zuq7YhVnAVpRbCurCZ5a-MChfSzassBTPB_d66FheDh4SI6vRcyPyGZZleYJ8RlQ1EzFANsmYjKRecKoTJXOE5uDTmUeyVoJcuUym2OBjQveurCd85XsOcqeN7L3SLQcOW2ye6wxZgcXafk85ueuG6qrM-62O5c0So1kkdQsZCaxQimZqzATwsqUWuuRol1i3obAAmjDRJM1XuD9cqyjSQ39WXP0dqtR3MHVjK82l0deLbsBaPD2SJSmWuAzNEVyzRKPPG4UcCkDYPEsBGIDK9FRzY6Quj3l5FudzLyoL7Lp0_-_1ktyqz8eHvCDwWj_GbmN39P4622TzfnVwjwHZjiXL9x29MnpdSPAbz3Jd7E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anTTxgriTMSBI8BgtiZ0bCCFGV62MVtMu0t6Mndij00jL2grx1_h1nJM4KQEJ9WWvdmwlx8ff-WKfC8ArmXGV8azwgsJQUm0ft5SR2jMmVyxRIZM5BTiPxvHBGf90Hp1vwK8mFobcKhtMrIC6mOZ0Rr4bxlFIcc-M7xrrFnHUH7yfffeoghTdtDblNGoVOdQ_f-Dv2_zdsI9r_ToMB_unHw88W2HAy2PmLzxdqEwGiZK-RgBiyJ7itGL5aAdVFKmC0kEhBU8L7JZoyo1KFEVhpwnLYiMZznsLNhO0imkPNvf2x0fHq5S_Aa8D8SLmpUGQWT-i2rusylY5-YaYgf-oYYjIhZ_GOsaxqiHQsZH_cuC_XTn_sI2Du3DHklr3Q62F92BDl_dha2Sv7R_A-KRf9k-Hb9wTfWW8-XJGADXXhVtoPXNt4YoLjywqtZXTCZ1guMinXSrgsqQTPZdc7bFhdDx8CGc3IuZH0CunpX4CLke6muQhQrgOuIpUGnGm4rxII5OifiUOJI0ERW6znFOxjSvRuLNdipXsBcle1LJ3IGhHzupMH2uM2aNFap-nXN1Vw_T6QtitLxQLYq14oArucx0Zmecqzf1ESqNiZowDWbPEogmHRQDHiSZrvMDbdqylTDUVWnP0TqNRwkLXXKw2mgMv224EHbpJkqWeLukZFhPR5pEDj2sFbGWAjJ77SHJwJTqq2RFSt6ecfK0Sm2fVpTbb_v9rvYAt3Pni83B8-BRu0-fUrns70FtcL_UzJIkL9dzuRhe-3DQA_Aanq3vd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SDnDTI%3A+Self-supervised+deep+learning-based+denoising+for+diffusion+tensor+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Tian%2C+Qiyuan&rft.au=Li%2C+Ziyu&rft.au=Fan%2C+Qiuyun&rft.au=Polimeni%2C+Jonathan+R.&rft.date=2022-06-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=253&rft.spage=119033&rft.epage=119033&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.119033&rft_id=info%3Apmid%2F35240299&rft.externalDocID=PMC9511973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |