Delineating between-subject heterogeneity in alpha networks with Spatio-Spectral Eigenmodes

•A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure.•We show that the full multivariate transfer function can be rewritten as a linear superposition of these modes.•These modal coordinates factorise oscillatory systems without pre...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 240; p. 118330
Main Authors Quinn, Andrew J., Green, Gary G.R., Hymers, Mark
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.10.2021
Elsevier Limited
Academic Press
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure.•We show that the full multivariate transfer function can be rewritten as a linear superposition of these modes.•These modal coordinates factorise oscillatory systems without pre-specification of frequency bands or regions of interest.•Using these modes, we find a spatial gradient in alpha peak frequency between Occipital and Parietal cortex .•This gradient is highly variable between participants, showing shifts in spatial structure and peak frequency. Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital ’high-frequency alpha’ and parietal ’low-frequency alpha’. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person’s behavioural, cognitive or clinical state.
AbstractList Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital 'high-frequency alpha' and parietal 'low-frequency alpha'. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person's behavioural, cognitive or clinical state.
Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital 'high-frequency alpha' and parietal 'low-frequency alpha'. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person's behavioural, cognitive or clinical state.Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital 'high-frequency alpha' and parietal 'low-frequency alpha'. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person's behavioural, cognitive or clinical state.
•A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure.•We show that the full multivariate transfer function can be rewritten as a linear superposition of these modes.•These modal coordinates factorise oscillatory systems without pre-specification of frequency bands or regions of interest.•Using these modes, we find a spatial gradient in alpha peak frequency between Occipital and Parietal cortex .•This gradient is highly variable between participants, showing shifts in spatial structure and peak frequency. Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital ’high-frequency alpha’ and parietal ’low-frequency alpha’. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person’s behavioural, cognitive or clinical state.
• A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure. • We show that the full multivariate transfer function can be rewritten as a linear superposition of these modes. • These modal coordinates factorise oscillatory systems without pre-specification of frequency bands or regions of interest. • Using these modes, we find a spatial gradient in alpha peak frequency between Occipital and Parietal cortex . • This gradient is highly variable between participants, showing shifts in spatial structure and peak frequency. Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital ’high-frequency alpha’ and parietal ’low-frequency alpha’. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person’s behavioural, cognitive or clinical state.
ArticleNumber 118330
Author Green, Gary G.R.
Hymers, Mark
Quinn, Andrew J.
Author_xml – sequence: 1
  givenname: Andrew J.
  surname: Quinn
  fullname: Quinn, Andrew J.
  email: andrew.quinn@psych.ox.ac.uk
  organization: Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK
– sequence: 2
  givenname: Gary G.R.
  surname: Green
  fullname: Green, Gary G.R.
  organization: York Neuroimaging Centre, The Biocentre York Science Park, Heslington, York YO10 5NY, UK
– sequence: 3
  givenname: Mark
  surname: Hymers
  fullname: Hymers, Mark
  organization: York Neuroimaging Centre, The Biocentre York Science Park, Heslington, York YO10 5NY, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34237443$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wF1AkNmwy-J1kg4BSoFIlFoUVC8uxb2acZuxgJ63m3-OQMqVdzcqWfe6ne-85p9mR8w6yLMdohREW77qVgyl4u1VrWBFE8ArjilL0LDvBqOZFzUtyNN85LSqM6-PsNMYOIVRjVr3IjikjtGSMnmS_PkNvHajRunXewHgH4Io4NR3oMd_ACMGvwYEdd7l1ueqHjcpdkvlwE_M7O27y6yEV--J6SBVB9fmFTQVbbyC-zJ63qo_w6v48y35-ufhx_q24-v718vzjVaEFRWNhmKgB8aYCgTRvuDYcmVqU0IIhjQBKuYCGtCUlZSuaVhlV4sbQ0jS1RgToWXa5cI1XnRxCWkvYSa-s_Pvgw1qqMFrdgxSkYhRKppGmrKaqaqlQTAOYFhTgmfV-YQ1TswWjwc1DPYI-_nF2I9f-VlaMi5LTBHh7Dwj-9wRxlFsbNfS9cuCnKAnniAiCS5Kkb55IOz8Fl1aVVKJGjNdiBr7-v6N9K_88TIJqEejgYwzQ7iUYyTkuspMPcZFzXOQSl4dp96XajrOd82y2PwTwaQFA8vfWQpBRW3AajA0pD8kAewjkwxOITpm0WvU3sDsM8Qc0Dfsw
CitedBy_id crossref_primary_10_1016_j_ynirp_2022_100103
crossref_primary_10_7554_eLife_97107
crossref_primary_10_1016_j_neuroimage_2025_121122
crossref_primary_10_3389_fnhum_2022_995534
crossref_primary_10_7554_eLife_97107_3
crossref_primary_10_1016_j_neuroimage_2023_120236
crossref_primary_10_1038_s42003_022_03489_4
crossref_primary_10_1111_psyp_70033
crossref_primary_10_1016_j_nicl_2025_103754
Cites_doi 10.1023/A:1022233828999
10.1016/0010-4809(77)90029-5
10.3389/fpsyg.2011.00154
10.1073/pnas.0308538101
10.1016/j.jneumeth.2016.12.016
10.3389/fnhum.2016.00238
10.1007/BF00355687
10.1523/JNEUROSCI.1993-18.2019
10.1016/j.neuroimage.2013.05.041
10.18637/jss.v080.i01
10.1016/j.neuroimage.2015.07.075
10.1007/s11517-011-0739-x
10.1016/j.brainresrev.2005.04.005
10.1038/s41586-020-2649-2
10.1016/j.medengphy.2006.11.006
10.1111/ejn.13747
10.1038/s41592-019-0686-2
10.1038/s41598-017-08421-z
10.1016/j.neuroimage.2015.03.071
10.1038/srep37685
10.1007/BF01797193
10.1007/s10548-019-00745-5
10.1007/PL00007990
10.1016/j.brainresrev.2006.06.003
10.1016/j.neuroimage.2013.05.056
10.1016/S0377-0427(00)00341-1
10.1016/j.neuroimage.2011.11.005
10.1016/j.neuroimage.2005.05.011
10.1109/TASSP.1983.1164124
10.1186/1687-6180-2014-139
10.1007/s004229900137
10.1038/s41598-018-22984-5
10.1109/TAC.1974.1100705
10.1109/10.623056
10.1016/j.neuron.2018.05.019
10.1016/S0165-0173(98)00056-3
10.1016/0013-4694(91)90044-5
10.1175/1520-0442(1995)008<0377:POPAR>2.0.CO;2
10.1088/1741-2552/ab8910
10.7554/eLife.20178
10.1038/nn.3101
10.1016/j.jneumeth.2015.10.010
10.1016/j.neuroimage.2013.04.062
10.1007/s11222-016-9696-4
10.1073/pnas.1112685108
10.1016/j.neuroimage.2019.03.019
10.21105/joss.01982
10.1016/S0166-2236(96)10065-5
10.1016/j.tics.2005.08.011
10.1016/S0079-6123(06)59009-0
10.1017/S0022112010001217
10.1523/JNEUROSCI.1853-07.2008
10.3389/fnhum.2010.00186
10.3389/fnagi.2013.00100
10.1007/s10548-014-0364-8
10.1016/j.neuroimage.2014.01.049
10.2307/2332391
10.1098/rspa.1998.0193
10.1016/0165-0173(94)00016-I
10.1145/382043.382304
10.1177/1073858405277450
10.32614/RJ-2018-017
10.1016/j.tics.2017.11.002
10.1137/0301009
10.1002/hbm.1058
10.1016/j.neuroimage.2011.04.041
10.1006/nimg.2001.0978
10.1109/MCSE.2007.55
10.2514/3.20031
10.1007/BF00198095
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Oct 15, 2021
2021 The Authors. Published by Elsevier Inc. 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Oct 15, 2021
– notice: 2021 The Authors. Published by Elsevier Inc. 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2021.118330
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest One Psychology




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_62843e74c0c3493a8f36a4ceedfeae1e
PMC8456753
34237443
10_1016_j_neuroimage_2021_118330
S1053811921006066
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: Medical Research Council
  grantid: MR/L023784/2
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-d469e05b8e60c5b5cd50d967efed2b6e3356eb2f7327f6bfada71bd37db9c02e3
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:31:32 EDT 2025
Thu Aug 21 18:17:59 EDT 2025
Fri Jul 11 04:17:51 EDT 2025
Wed Aug 13 03:32:59 EDT 2025
Mon Jul 21 06:00:25 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
Tue Jul 01 03:02:19 EDT 2025
Fri Feb 23 02:39:56 EST 2024
Tue Aug 26 18:33:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Eigenmodes
Alpha oscillation
Autoregression
Spectral decomposition
MEG
Network
Language English
License This is an open access article under the CC BY license.
Copyright © 2021. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-d469e05b8e60c5b5cd50d967efed2b6e3356eb2f7327f6bfada71bd37db9c02e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/62843e74c0c3493a8f36a4ceedfeae1e
PMID 34237443
PQID 2569045963
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_62843e74c0c3493a8f36a4ceedfeae1e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456753
proquest_miscellaneous_2550262172
proquest_journals_2569045963
pubmed_primary_34237443
crossref_primary_10_1016_j_neuroimage_2021_118330
crossref_citationtrail_10_1016_j_neuroimage_2021_118330
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118330
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Academic Press
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Academic Press
– name: Elsevier
References Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0070) 2002; 15
van Dijk, Schoffelen, Oostenveld, Jensen (bib0018) 2008; 28
Foxe, Snyder (bib0022) 2011; 2
Huntenburg, Bazin, Margulies (bib0037) 2018; 22
Baccalá, Sameshima (bib0002) 2001; 84
Jansen (bib0040) 1991
Bürkner (bib0010) 2017; 80
Schutter (bib0064) 2000; 121
Brovelli, Ding, Ledberg, Chen, Nakamura, Bressler (bib0008) 2004; 101
Gilbert (bib0027) 1963; 1
von Storch, Bürger, Schnur, von Storch (bib0069) 1995; 8
Schlögl, Supp (bib0062) 2006; 159
Van Veen, Van Drongelen, Yuchtman, Suzuki (bib0072) 1997; 44
Woolrich, Hunt, Groves, Barnes (bib0075) 2011; 57
Mullen, Worrell, Makeig (bib0050) 2012
Klimesch (bib0044) 1999; 29
Larson-Prior, Oostenveld, Della Penna, Michalareas, Prior, Babajani-Feremi, Schoffelen, Marzetti, de Pasquale, Di Pompeo, Stout, Woolrich, Luo, Bucholz, Fries, Pizzella, Romani, Corbetta, Snyder (bib0046) 2013; 80
Lopes da Silva (bib0067) 1991; 79
Hillebrand, Barnes, Bosboom, Berendse, Stam (bib0032) 2012; 59
Hipp, Hawellek, Corbetta, Siegel, Engel (bib0033) 2012; 15
Jensen, Mazaheri (bib0041) 2010; 4
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (bib0031) 2020; 585
Engels, Hillebrand, van der Flier, Stam, Scheltens, van Straaten (bib0021) 2016; 10
Durbin, Watson (bib0020) 1950; 37
SciPy 1.0 Contributors, Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (bib0065) 2020; 17
Nichols, Holmes (bib0052) 2002; 15
Ciulla, Takeda, Endo (bib0013) 1999; 11
Brookes, Woolrich, Luckhoo, Price, Hale, Stephenson, Barnes, Smith, Morris (bib0007) 2011; 108
Sokoliuk, Mayhew, Aquino, Wilson, Brookes, Francis, Hanslmayr, Mullinger (bib0068) 2019; 39
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0071) 2013; 80
Clayton, Yeung, Cohen Kadosh (bib0014) 2018; 48
Garcés, Vicente, Wibral, Pineda-Pardo, López, Aurtenetxe, Marcos, de Andrés, Yus, Sancho, Maestú, Fernández (bib0025) 2013; 5
Rolls, Joliot, Tzourio-Mazoyer (bib0061) 2015; 122
Juang, Pappa (bib0042) 1985; 8
Lütkepohl (bib0048) 2007
Marzetti, Della Penna, Snyder, Pizzella, Nolte, de Pasquale, Romani, Corbetta (bib0049) 2013; 79
Schmid (bib0063) 2010; 656
Casorso, Kong, Chi, Van De Ville, Yeo, Liégeois (bib0012) 2019; 194
Quirk, Bede Liu (bib0060) 1983; 31
Hunyadi, Camps, Sorber, Paesschen, Vos, Huffel, Lathauwer (bib0039) 2014; 2014
Barzegaran, Vildavski, Knyazeva (bib0003) 2017; 7
Wens, Bourguignon, Goldman, Marty, Op de Beeck, Clumeck, Mary, Peigneux, Van Bogaert, Brookes, De Tiège (bib0074) 2014; 27
Klimesch, Sauseng, Hanslmayr (bib0045) 2007; 53
Brunton, Johnson, Ojemann, Kutz (bib0009) 2016; 258
Colclough, Brookes, Smith, Woolrich (bib0016) 2015; 117
Osipova, Ahveninen, Jensen, Ylikoski, Pekkonen (bib0053) 2005; 27
Hunter (bib0038) 2007; 9
Bressler (bib0006) 1995; 20
Colclough, Smith, Nichols, Winkler, Sotiropoulos, Glasser, Van Essen, Woolrich (bib0017) 2017; 6
Neumaier, Schneider (bib0051) 2001; 27
Pineda (bib0055) 2005; 50
Quinn, van Ede, Brookes, Heideman, Nowak, Seedat, Vidaurre, Zich, Nobre, Woolrich (bib0058) 2019; 32
Shiraishi, Kawahara, Yamashita, Fukuma, Yamamoto, Saitoh, Kishima, Yanagisawa (bib0066) 2020; 17
Kailath (bib0043) 1980
Vehtari, Gelman, Gabry (bib0073) 2017; 27
López-Sanz, Bruña, Garcés, Camara, Serrano, Rodríguez-Rojo, Delgado, Montenegro, López-Higes, Yus, Maestú (bib0047) 2016; 6
Ding, Bressler, Yang, Liang (bib0019) 2000; 83
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib0034) 1998; 454
Wright, Kydd, Sergejew (bib0076) 1990; 62
Gersch, Yonemoto (bib0026) 1977; 10
Quinn, Lopes-dos Santos, Huang, Liang, Juan, Yeh, Nobre, Dupret, Woolrich (bib0059) 2021
Berger (bib0004) 1929; 87
Poza, Hornero, Abásolo, Fernández, García (bib0056) 2007; 29
Peraza, Cromarty, Kobeleva, Firbank, Killen, Graziadio, Thomas, O’Brien, Taylor (bib0054) 2018; 8
Blinowska (bib0005) 2011; 49
Bürkner (bib0011) 2018; 10
Haegens, Cousijn, Wallis, Harrison, Nobre (bib0029) 2014; 92
Hari (bib0030) 1997; 20
Akaike (bib0001) 1974; 19
Quinn, Hymers (bib0057) 2020; 5
Zhang, Watrous, Patel, Jacobs (bib0077) 2018; 98
Franaszczuk, Blinowska (bib0023) 1985; 53
Golub, Van Loan (bib0028) 2013
Cohen (bib0015) 2017; 278
Hughes, Henson, Pereda, Bruña, López-Sanz, Quinn, Woolrich, Nobre, Rowe, Maestú, the BioFIND Working Group (bib0035) 2019; 11
Fries (bib0024) 2005; 9
Hughes, Crunelli (bib0036) 2005; 11
Colclough (10.1016/j.neuroimage.2021.118330_bib0017) 2017; 6
Gersch (10.1016/j.neuroimage.2021.118330_bib0026) 1977; 10
Ding (10.1016/j.neuroimage.2021.118330_bib0019) 2000; 83
SciPy 1.0 Contributors (10.1016/j.neuroimage.2021.118330_bib0065) 2020; 17
Sokoliuk (10.1016/j.neuroimage.2021.118330_bib0068) 2019; 39
Foxe (10.1016/j.neuroimage.2021.118330_bib0022) 2011; 2
Huang (10.1016/j.neuroimage.2021.118330_bib0034) 1998; 454
Rolls (10.1016/j.neuroimage.2021.118330_bib0061) 2015; 122
Bürkner (10.1016/j.neuroimage.2021.118330_bib0011) 2018; 10
Woolrich (10.1016/j.neuroimage.2021.118330_bib0075) 2011; 57
Lopes da Silva (10.1016/j.neuroimage.2021.118330_bib0067) 1991; 79
Poza (10.1016/j.neuroimage.2021.118330_bib0056) 2007; 29
Larson-Prior (10.1016/j.neuroimage.2021.118330_bib0046) 2013; 80
Bürkner (10.1016/j.neuroimage.2021.118330_bib0010) 2017; 80
Schmid (10.1016/j.neuroimage.2021.118330_bib0063) 2010; 656
Clayton (10.1016/j.neuroimage.2021.118330_bib0014) 2018; 48
Lütkepohl (10.1016/j.neuroimage.2021.118330_sbref0048) 2007
Van Veen (10.1016/j.neuroimage.2021.118330_bib0072) 1997; 44
Bressler (10.1016/j.neuroimage.2021.118330_bib0006) 1995; 20
Klimesch (10.1016/j.neuroimage.2021.118330_bib0044) 1999; 29
López-Sanz (10.1016/j.neuroimage.2021.118330_bib0047) 2016; 6
Huntenburg (10.1016/j.neuroimage.2021.118330_bib0037) 2018; 22
Engels (10.1016/j.neuroimage.2021.118330_bib0021) 2016; 10
Quinn (10.1016/j.neuroimage.2021.118330_bib0057) 2020; 5
Hunter (10.1016/j.neuroimage.2021.118330_bib0038) 2007; 9
Harris (10.1016/j.neuroimage.2021.118330_bib0031) 2020; 585
Zhang (10.1016/j.neuroimage.2021.118330_bib0077) 2018; 98
Franaszczuk (10.1016/j.neuroimage.2021.118330_bib0023) 1985; 53
Hunyadi (10.1016/j.neuroimage.2021.118330_bib0039) 2014; 2014
Peraza (10.1016/j.neuroimage.2021.118330_bib0054) 2018; 8
Jansen (10.1016/j.neuroimage.2021.118330_bib0040) 1991
Hillebrand (10.1016/j.neuroimage.2021.118330_bib0032) 2012; 59
Marzetti (10.1016/j.neuroimage.2021.118330_bib0049) 2013; 79
Quinn (10.1016/j.neuroimage.2021.118330_bib0058) 2019; 32
Fries (10.1016/j.neuroimage.2021.118330_bib0024) 2005; 9
Juang (10.1016/j.neuroimage.2021.118330_bib0042) 1985; 8
Kailath (10.1016/j.neuroimage.2021.118330_bib0043) 1980
Wright (10.1016/j.neuroimage.2021.118330_bib0076) 1990; 62
Osipova (10.1016/j.neuroimage.2021.118330_bib0053) 2005; 27
Cohen (10.1016/j.neuroimage.2021.118330_bib0015) 2017; 278
Neumaier (10.1016/j.neuroimage.2021.118330_bib0051) 2001; 27
Barzegaran (10.1016/j.neuroimage.2021.118330_bib0003) 2017; 7
Akaike (10.1016/j.neuroimage.2021.118330_bib0001) 1974; 19
Van Essen (10.1016/j.neuroimage.2021.118330_bib0071) 2013; 80
Schlögl (10.1016/j.neuroimage.2021.118330_bib0062) 2006; 159
Shiraishi (10.1016/j.neuroimage.2021.118330_bib0066) 2020; 17
Hari (10.1016/j.neuroimage.2021.118330_bib0030) 1997; 20
Hipp (10.1016/j.neuroimage.2021.118330_bib0033) 2012; 15
Quirk (10.1016/j.neuroimage.2021.118330_bib0060) 1983; 31
Hughes (10.1016/j.neuroimage.2021.118330_bib0036) 2005; 11
Vehtari (10.1016/j.neuroimage.2021.118330_bib0073) 2017; 27
Baccalá (10.1016/j.neuroimage.2021.118330_bib0002) 2001; 84
Brovelli (10.1016/j.neuroimage.2021.118330_bib0008) 2004; 101
Nichols (10.1016/j.neuroimage.2021.118330_bib0052) 2002; 15
Quinn (10.1016/j.neuroimage.2021.118330_sbref0059) 2021
Haegens (10.1016/j.neuroimage.2021.118330_bib0029) 2014; 92
Klimesch (10.1016/j.neuroimage.2021.118330_bib0045) 2007; 53
Brookes (10.1016/j.neuroimage.2021.118330_bib0007) 2011; 108
Durbin (10.1016/j.neuroimage.2021.118330_bib0020) 1950; 37
Pineda (10.1016/j.neuroimage.2021.118330_bib0055) 2005; 50
Brunton (10.1016/j.neuroimage.2021.118330_bib0009) 2016; 258
Casorso (10.1016/j.neuroimage.2021.118330_bib0012) 2019; 194
Blinowska (10.1016/j.neuroimage.2021.118330_bib0005) 2011; 49
Ciulla (10.1016/j.neuroimage.2021.118330_bib0013) 1999; 11
von Storch (10.1016/j.neuroimage.2021.118330_bib0069) 1995; 8
Hughes (10.1016/j.neuroimage.2021.118330_bib0035) 2019; 11
Jensen (10.1016/j.neuroimage.2021.118330_bib0041) 2010; 4
Berger (10.1016/j.neuroimage.2021.118330_bib0004) 1929; 87
Golub (10.1016/j.neuroimage.2021.118330_sbref0028) 2013
Colclough (10.1016/j.neuroimage.2021.118330_bib0016) 2015; 117
Gilbert (10.1016/j.neuroimage.2021.118330_bib0027) 1963; 1
Tzourio-Mazoyer (10.1016/j.neuroimage.2021.118330_bib0070) 2002; 15
van Dijk (10.1016/j.neuroimage.2021.118330_bib0018) 2008; 28
Schutter (10.1016/j.neuroimage.2021.118330_bib0064) 2000; 121
Mullen (10.1016/j.neuroimage.2021.118330_bib0050) 2012
Wens (10.1016/j.neuroimage.2021.118330_bib0074) 2014; 27
Garcés (10.1016/j.neuroimage.2021.118330_bib0025) 2013; 5
References_xml – year: 2013
  ident: bib0028
  article-title: Matrix computations
  publication-title: Johns Hopkins Studies in the Mathematical Sciences
– volume: 194
  start-page: 42
  year: 2019
  end-page: 54
  ident: bib0012
  article-title: Dynamic mode decomposition of resting-state and task fMRI
  publication-title: NeuroImage
– volume: 8
  start-page: 620
  year: 1985
  end-page: 627
  ident: bib0042
  article-title: An eigensystem realization algorithm for modal parameter identification and model reduction
  publication-title: J. Guid. Control Dyn.
– volume: 27
  start-page: 835
  year: 2005
  end-page: 841
  ident: bib0053
  article-title: Altered generation of spontaneous oscillations in Alzheimer’s disease
  publication-title: NeuroImage
– volume: 159
  start-page: 135
  year: 2006
  end-page: 147
  ident: bib0062
  article-title: Analyzing event-related EEG data with multivariate autoregressive parameters
  publication-title: Progress in Brain Research
– volume: 121
  start-page: 331
  year: 2000
  end-page: 354
  ident: bib0064
  article-title: Minimal state-space realization in linear system theory: an overview
  publication-title: J. Comput. Appl. Math.
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: bib0038
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng.
– volume: 117
  start-page: 439
  year: 2015
  end-page: 448
  ident: bib0016
  article-title: A symmetric multivariate leakage correction for MEG connectomes
  publication-title: NeuroImage
– volume: 53
  start-page: 19
  year: 1985
  end-page: 25
  ident: bib0023
  article-title: Linear model of brain electrical activity? EEG as a superposition of damped oscillatory modes
  publication-title: Biol. Cybern.
– volume: 22
  start-page: 21
  year: 2018
  end-page: 31
  ident: bib0037
  article-title: Large-scale gradients in human cortical organization
  publication-title: Trends Cognit. Sci.
– volume: 8
  start-page: 4637
  year: 2018
  ident: bib0054
  article-title: Electroencephalographic derived network differences in Lewy body dementia compared to Alzheimer’s disease patients
  publication-title: Sci. Rep.
– volume: 44
  start-page: 867
  year: 1997
  end-page: 880
  ident: bib0072
  article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 656
  start-page: 5
  year: 2010
  end-page: 28
  ident: bib0063
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J. Fluid Mech.
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: bib0065
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
– volume: 79
  start-page: 172
  year: 2013
  end-page: 183
  ident: bib0049
  article-title: Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure
  publication-title: NeuroImage
– volume: 5
  start-page: 1982
  year: 2020
  ident: bib0057
  article-title: SAILS: spectral analysis in linear systems
  publication-title: J. Open Source Softw.
– volume: 278
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib0015
  article-title: Comparison of linear spatial filters for identifying oscillatory activity in multichannel data
  publication-title: J. Neurosci. Methods
– volume: 62
  start-page: 201
  year: 1990
  end-page: 210
  ident: bib0076
  article-title: Autoregression models of EEG: results compared with expectations for a multilinear near-equilibrium biophysical process
  publication-title: Biol. Cybern.
– volume: 9
  start-page: 474
  year: 2005
  end-page: 480
  ident: bib0024
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence
  publication-title: Trends Cognit. Sci.
– volume: 31
  start-page: 630
  year: 1983
  end-page: 637
  ident: bib0060
  article-title: Improving resolution for autoregressive spectral estimation by decimation
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 258
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib0009
  article-title: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
  publication-title: J. Neurosci. Methods
– volume: 48
  start-page: 2498
  year: 2018
  end-page: 2508
  ident: bib0014
  article-title: The many characters of visual alpha oscillations
  publication-title: Eur. J. Neurosci.
– volume: 98
  start-page: 1269
  year: 2018
  end-page: 1281.e4
  ident: bib0077
  article-title: Theta and alpha oscillations are traveling waves in the human neocortex
  publication-title: Neuron
– volume: 80
  year: 2017
  ident: bib0010
  article-title: : an
  publication-title: J. Stat. Softw.
– volume: 28
  start-page: 1816
  year: 2008
  end-page: 1823
  ident: bib0018
  article-title: Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability
  publication-title: J. Neurosci.
– volume: 84
  start-page: 463
  year: 2001
  end-page: 474
  ident: bib0002
  article-title: Partial directed coherence: a new concept in neural structure determination
  publication-title: Biol. Cybern.
– volume: 101
  start-page: 9849
  year: 2004
  end-page: 9854
  ident: bib0008
  article-title: Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality
  publication-title: Proc. Natl. Acad. Sci.
– volume: 122
  start-page: 1
  year: 2015
  end-page: 5
  ident: bib0061
  article-title: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas
  publication-title: NeuroImage
– volume: 29
  start-page: 1073
  year: 2007
  end-page: 1083
  ident: bib0056
  article-title: Extraction of spectral based measures from MEG background oscillations in Alzheimer’s disease
  publication-title: Med. Eng. Phys.
– volume: 29
  start-page: 169
  year: 1999
  end-page: 195
  ident: bib0044
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Rev.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0071
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
– volume: 27
  start-page: 620
  year: 2014
  end-page: 634
  ident: bib0074
  article-title: Inter- and intra-subject variability of neuromagnetic resting state networks
  publication-title: Brain Topogr.
– volume: 11
  start-page: 357
  year: 2005
  end-page: 372
  ident: bib0036
  article-title: Thalamic mechanisms of EEG alpha rhythms and their pathological implications
  publication-title: Neuroscientist
– volume: 20
  start-page: 288
  year: 1995
  end-page: 304
  ident: bib0006
  article-title: Large-scale cortical networks and cognition
  publication-title: Brain Res. Rev.
– volume: 8
  start-page: 377
  year: 1995
  end-page: 400
  ident: bib0069
  article-title: Principal oscillation patterns: a review
  publication-title: J. Clim.
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: bib0001
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
– volume: 2
  year: 2011
  ident: bib0022
  article-title: The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention
  publication-title: Front. Psychol.
– volume: 50
  start-page: 57
  year: 2005
  end-page: 68
  ident: bib0055
  article-title: The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”
  publication-title: Brain Res. Rev.
– volume: 17
  start-page: 036009
  year: 2020
  ident: bib0066
  article-title: Neural decoding of electrocorticographic signals using dynamic mode decomposition
  publication-title: J. Neural Eng.
– volume: 4
  year: 2010
  ident: bib0041
  article-title: Shaping functional architecture by oscillatory alpha activity: gating by inhibition
  publication-title: Front. Hum. Neurosci.
– volume: 83
  start-page: 35
  year: 2000
  end-page: 45
  ident: bib0019
  article-title: Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment
  publication-title: Biol. Cybern.
– volume: 2014
  start-page: 139
  year: 2014
  ident: bib0039
  article-title: Block term decomposition for modelling epileptic seizures
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 6
  start-page: 37685
  year: 2016
  ident: bib0047
  article-title: Alpha band disruption in the AD-continuum starts in the subjective cognitive decline stage: a MEG study
  publication-title: Sci. Rep.
– start-page: 2921
  year: 2012
  end-page: 2924
  ident: bib0050
  article-title: Multivariate principal oscillation pattern analysis of ICA sources during seizure
  publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 57
  start-page: 1466
  year: 2011
  end-page: 1479
  ident: bib0075
  article-title: MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization
  publication-title: NeuroImage
– volume: 49
  start-page: 521
  year: 2011
  end-page: 529
  ident: bib0005
  article-title: Review of the methods of determination of directed connectivity from multichannel data
  publication-title: Med. Biol. Eng. Comput.
– volume: 10
  start-page: 395
  year: 2018
  ident: bib0011
  article-title: Advanced Bayesian multilevel modeling with the R package brms
  publication-title: R J.
– volume: 15
  start-page: 1
  year: 2002
  end-page: 25
  ident: bib0052
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
– volume: 108
  start-page: 16783
  year: 2011
  end-page: 16788
  ident: bib0007
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proc. Natl. Acad. Sci.
– volume: 11
  start-page: 450
  year: 2019
  end-page: 462
  ident: bib0035
  article-title: Biomagnetic biomarkers for dementia: a pilot multicentre study with a recommended methodological framework for magnetoencephalography
  publication-title: Alzheimer’s Dement. Diagn. Assess. Dis. Monit.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib0070
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
– volume: 1
  start-page: 128
  year: 1963
  end-page: 151
  ident: bib0027
  article-title: Controllability and observability in multivariable control systems
  publication-title: J. Soc. Ind. Appl. Math. Ser. A Control
– volume: 10
  year: 2016
  ident: bib0021
  article-title: Slowing of hippocampal activity correlates with cognitive decline in early onset Alzheimer’s disease. An MEG study with virtual electrodes
  publication-title: Front. Hum. Neurosci.
– volume: 37
  start-page: 409
  year: 1950
  ident: bib0020
  article-title: Testing for serial correlation in least squares regression: I
  publication-title: Biometrika
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib0034
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 32
  start-page: 1020
  year: 2019
  end-page: 1034
  ident: bib0058
  article-title: Unpacking transient event dynamics in electrophysiological power Spectra
  publication-title: Brain Topogr.
– volume: 15
  start-page: 884
  year: 2012
  end-page: 890
  ident: bib0033
  article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity
  publication-title: Nat. Neurosci.
– volume: 20
  start-page: 44
  year: 1997
  end-page: 49
  ident: bib0030
  article-title: Human cortical oscillations: a neuromagnetic view through the skull
  publication-title: Trends Neurosci.
– volume: 27
  start-page: 27
  year: 2001
  end-page: 57
  ident: bib0051
  article-title: Estimation of parameters and eigenmodes of multivariate autoregressive models
  publication-title: ACM Trans. Math. Softw.
– volume: 87
  start-page: 527
  year: 1929
  end-page: 570
  ident: bib0004
  article-title: Über das Elektrenkephalogramm des Menschen
  publication-title: Arch. für Psychiatr. und Nervenkrankh.
– volume: 27
  start-page: 1413
  year: 2017
  end-page: 1432
  ident: bib0073
  article-title: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
  publication-title: Stat. Comput.
– volume: 6
  start-page: e20178
  year: 2017
  ident: bib0017
  article-title: The heritability of multi-modal connectivity in human brain activity
  publication-title: eLife
– volume: 59
  start-page: 3909
  year: 2012
  end-page: 3921
  ident: bib0032
  article-title: Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution
  publication-title: NeuroImage
– year: 1991
  ident: bib0040
  article-title: Time series analysis by means of linear modelling.
  publication-title: Digital Biosignal Processing
– year: 1980
  ident: bib0043
  article-title: Linear systems
  publication-title: Prentice-Hall Information and System Science Series
– year: 2021
  ident: bib0059
  article-title: Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics
  publication-title: Neuroscience
– volume: 79
  start-page: 81
  year: 1991
  end-page: 93
  ident: bib0067
  article-title: Neural mechanisms underlying brain waves: from neural membranes to networks
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 80
  start-page: 190
  year: 2013
  end-page: 201
  ident: bib0046
  article-title: Adding dynamics to the human connectome project with MEG
  publication-title: NeuroImage
– volume: 10
  start-page: 113
  year: 1977
  end-page: 125
  ident: bib0026
  article-title: Parametric time series models for multivariate EEG analysis
  publication-title: Comput. Biomed. Res.
– volume: 11
  start-page: 211
  year: 1999
  end-page: 222
  ident: bib0013
  article-title: MEG characterization of spontaneous alpha rhythm in the human brain
  publication-title: Brain Topogr.
– volume: 7
  start-page: 8249
  year: 2017
  ident: bib0003
  article-title: Fine structure of posterior alpha rhythm in human EEG: frequency components, their cortical sources, and temporal behavior
  publication-title: Sci. Rep.
– volume: 39
  start-page: 7183
  year: 2019
  end-page: 7194
  ident: bib0068
  article-title: Two spatially distinct posterior alpha sources fulfill different functional roles in attention
  publication-title: J. Neurosci.
– volume: 53
  start-page: 63
  year: 2007
  end-page: 88
  ident: bib0045
  article-title: EEG alpha oscillations: the inhibition-timing hypothesis
  publication-title: Brain Res. Rev.
– year: 2007
  ident: bib0048
  article-title: New Introduction to Multiple Time Series Analysis
– volume: 5
  year: 2013
  ident: bib0025
  article-title: Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment
  publication-title: Front. Aging Neurosci.
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: bib0031
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 92
  start-page: 46
  year: 2014
  end-page: 55
  ident: bib0029
  article-title: Inter- and intra-individual variability in alpha peak frequency
  publication-title: NeuroImage
– volume: 11
  start-page: 211
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2021.118330_bib0013
  article-title: MEG characterization of spontaneous alpha rhythm in the human brain
  publication-title: Brain Topogr.
  doi: 10.1023/A:1022233828999
– volume: 10
  start-page: 113
  issue: 2
  year: 1977
  ident: 10.1016/j.neuroimage.2021.118330_bib0026
  article-title: Parametric time series models for multivariate EEG analysis
  publication-title: Comput. Biomed. Res.
  doi: 10.1016/0010-4809(77)90029-5
– year: 2013
  ident: 10.1016/j.neuroimage.2021.118330_sbref0028
  article-title: Matrix computations
– volume: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118330_bib0022
  article-title: The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2011.00154
– volume: 101
  start-page: 9849
  issue: 26
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118330_bib0008
  article-title: Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0308538101
– volume: 278
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118330_bib0015
  article-title: Comparison of linear spatial filters for identifying oscillatory activity in multichannel data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.12.016
– volume: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118330_bib0021
  article-title: Slowing of hippocampal activity correlates with cognitive decline in early onset Alzheimer’s disease. An MEG study with virtual electrodes
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00238
– volume: 53
  start-page: 19
  issue: 1
  year: 1985
  ident: 10.1016/j.neuroimage.2021.118330_bib0023
  article-title: Linear model of brain electrical activity? EEG as a superposition of damped oscillatory modes
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00355687
– volume: 39
  start-page: 7183
  issue: 36
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118330_bib0068
  article-title: Two spatially distinct posterior alpha sources fulfill different functional roles in attention
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1993-18.2019
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118330_bib0071
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 80
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118330_bib0010
  article-title: brms : an R package for Bayesian multilevel models using Stan
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v080.i01
– volume: 122
  start-page: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118330_bib0061
  article-title: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.075
– volume: 49
  start-page: 521
  issue: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118330_bib0005
  article-title: Review of the methods of determination of directed connectivity from multichannel data
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-011-0739-x
– volume: 50
  start-page: 57
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118330_bib0055
  article-title: The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”
  publication-title: Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2005.04.005
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118330_bib0031
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 29
  start-page: 1073
  issue: 10
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118330_bib0056
  article-title: Extraction of spectral based measures from MEG background oscillations in Alzheimer’s disease
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.11.006
– volume: 48
  start-page: 2498
  issue: 7
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118330_bib0014
  article-title: The many characters of visual alpha oscillations
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.13747
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118330_bib0065
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 7
  start-page: 8249
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118330_bib0003
  article-title: Fine structure of posterior alpha rhythm in human EEG: frequency components, their cortical sources, and temporal behavior
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08421-z
– volume: 117
  start-page: 439
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118330_bib0016
  article-title: A symmetric multivariate leakage correction for MEG connectomes
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.071
– volume: 6
  start-page: 37685
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118330_bib0047
  article-title: Alpha band disruption in the AD-continuum starts in the subjective cognitive decline stage: a MEG study
  publication-title: Sci. Rep.
  doi: 10.1038/srep37685
– year: 2007
  ident: 10.1016/j.neuroimage.2021.118330_sbref0048
– volume: 87
  start-page: 527
  issue: 1
  year: 1929
  ident: 10.1016/j.neuroimage.2021.118330_bib0004
  article-title: Über das Elektrenkephalogramm des Menschen
  publication-title: Arch. für Psychiatr. und Nervenkrankh.
  doi: 10.1007/BF01797193
– volume: 32
  start-page: 1020
  issue: 6
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118330_bib0058
  article-title: Unpacking transient event dynamics in electrophysiological power Spectra
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-019-00745-5
– volume: 84
  start-page: 463
  issue: 6
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118330_bib0002
  article-title: Partial directed coherence: a new concept in neural structure determination
  publication-title: Biol. Cybern.
  doi: 10.1007/PL00007990
– volume: 53
  start-page: 63
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118330_bib0045
  article-title: EEG alpha oscillations: the inhibition-timing hypothesis
  publication-title: Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2006.06.003
– volume: 80
  start-page: 190
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118330_bib0046
  article-title: Adding dynamics to the human connectome project with MEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.056
– volume: 121
  start-page: 331
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118330_bib0064
  article-title: Minimal state-space realization in linear system theory: an overview
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00341-1
– volume: 59
  start-page: 3909
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118330_bib0032
  article-title: Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.005
– volume: 27
  start-page: 835
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118330_bib0053
  article-title: Altered generation of spontaneous oscillations in Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.05.011
– volume: 31
  start-page: 630
  issue: 3
  year: 1983
  ident: 10.1016/j.neuroimage.2021.118330_bib0060
  article-title: Improving resolution for autoregressive spectral estimation by decimation
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1983.1164124
– volume: 2014
  start-page: 139
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118330_bib0039
  article-title: Block term decomposition for modelling epileptic seizures
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/1687-6180-2014-139
– volume: 83
  start-page: 35
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118330_bib0019
  article-title: Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment
  publication-title: Biol. Cybern.
  doi: 10.1007/s004229900137
– volume: 8
  start-page: 4637
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118330_bib0054
  article-title: Electroencephalographic derived network differences in Lewy body dementia compared to Alzheimer’s disease patients
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22984-5
– year: 1991
  ident: 10.1016/j.neuroimage.2021.118330_bib0040
  article-title: Time series analysis by means of linear modelling.
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: 10.1016/j.neuroimage.2021.118330_bib0001
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– year: 1980
  ident: 10.1016/j.neuroimage.2021.118330_bib0043
  article-title: Linear systems
– volume: 44
  start-page: 867
  issue: 9
  year: 1997
  ident: 10.1016/j.neuroimage.2021.118330_bib0072
  article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.623056
– volume: 98
  start-page: 1269
  issue: 6
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118330_bib0077
  article-title: Theta and alpha oscillations are traveling waves in the human neocortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.019
– volume: 29
  start-page: 169
  issue: 2-3
  year: 1999
  ident: 10.1016/j.neuroimage.2021.118330_bib0044
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Rev.
  doi: 10.1016/S0165-0173(98)00056-3
– volume: 79
  start-page: 81
  issue: 2
  year: 1991
  ident: 10.1016/j.neuroimage.2021.118330_bib0067
  article-title: Neural mechanisms underlying brain waves: from neural membranes to networks
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(91)90044-5
– volume: 8
  start-page: 377
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroimage.2021.118330_bib0069
  article-title: Principal oscillation patterns: a review
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1995)008<0377:POPAR>2.0.CO;2
– volume: 17
  start-page: 036009
  issue: 3
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118330_bib0066
  article-title: Neural decoding of electrocorticographic signals using dynamic mode decomposition
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab8910
– year: 2021
  ident: 10.1016/j.neuroimage.2021.118330_sbref0059
  article-title: Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics
  publication-title: Neuroscience
– volume: 6
  start-page: e20178
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118330_bib0017
  article-title: The heritability of multi-modal connectivity in human brain activity
  publication-title: eLife
  doi: 10.7554/eLife.20178
– volume: 15
  start-page: 884
  issue: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118330_bib0033
  article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3101
– volume: 258
  start-page: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118330_bib0009
  article-title: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.10.010
– volume: 79
  start-page: 172
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118330_bib0049
  article-title: Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.062
– volume: 27
  start-page: 1413
  issue: 5
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118330_bib0073
  article-title: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-016-9696-4
– volume: 108
  start-page: 16783
  issue: 40
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118330_bib0007
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1112685108
– volume: 194
  start-page: 42
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118330_bib0012
  article-title: Dynamic mode decomposition of resting-state and task fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.03.019
– volume: 5
  start-page: 1982
  issue: 47
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118330_bib0057
  article-title: SAILS: spectral analysis in linear systems
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.01982
– volume: 20
  start-page: 44
  issue: 1
  year: 1997
  ident: 10.1016/j.neuroimage.2021.118330_bib0030
  article-title: Human cortical oscillations: a neuromagnetic view through the skull
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(96)10065-5
– volume: 9
  start-page: 474
  issue: 10
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118330_bib0024
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2005.08.011
– volume: 159
  start-page: 135
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118330_bib0062
  article-title: Analyzing event-related EEG data with multivariate autoregressive parameters
  doi: 10.1016/S0079-6123(06)59009-0
– volume: 656
  start-page: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118330_bib0063
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010001217
– volume: 28
  start-page: 1816
  issue: 8
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118330_bib0018
  article-title: Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1853-07.2008
– volume: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118330_bib0041
  article-title: Shaping functional architecture by oscillatory alpha activity: gating by inhibition
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2010.00186
– start-page: 2921
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118330_bib0050
  article-title: Multivariate principal oscillation pattern analysis of ICA sources during seizure
– volume: 5
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118330_bib0025
  article-title: Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2013.00100
– volume: 27
  start-page: 620
  issue: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118330_bib0074
  article-title: Inter- and intra-subject variability of neuromagnetic resting state networks
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-014-0364-8
– volume: 92
  start-page: 46
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118330_bib0029
  article-title: Inter- and intra-individual variability in alpha peak frequency
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.01.049
– volume: 37
  start-page: 409
  issue: 3/4
  year: 1950
  ident: 10.1016/j.neuroimage.2021.118330_bib0020
  article-title: Testing for serial correlation in least squares regression: I
  publication-title: Biometrika
  doi: 10.2307/2332391
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.neuroimage.2021.118330_bib0034
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 20
  start-page: 288
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroimage.2021.118330_bib0006
  article-title: Large-scale cortical networks and cognition
  publication-title: Brain Res. Rev.
  doi: 10.1016/0165-0173(94)00016-I
– volume: 27
  start-page: 27
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118330_bib0051
  article-title: Estimation of parameters and eigenmodes of multivariate autoregressive models
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/382043.382304
– volume: 11
  start-page: 357
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118330_bib0036
  article-title: Thalamic mechanisms of EEG alpha rhythms and their pathological implications
  publication-title: Neuroscientist
  doi: 10.1177/1073858405277450
– volume: 11
  start-page: 450
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118330_bib0035
  article-title: Biomagnetic biomarkers for dementia: a pilot multicentre study with a recommended methodological framework for magnetoencephalography
  publication-title: Alzheimer’s Dement. Diagn. Assess. Dis. Monit.
– volume: 10
  start-page: 395
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118330_bib0011
  article-title: Advanced Bayesian multilevel modeling with the R package brms
  publication-title: R J.
  doi: 10.32614/RJ-2018-017
– volume: 22
  start-page: 21
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118330_bib0037
  article-title: Large-scale gradients in human cortical organization
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2017.11.002
– volume: 1
  start-page: 128
  issue: 2
  year: 1963
  ident: 10.1016/j.neuroimage.2021.118330_bib0027
  article-title: Controllability and observability in multivariable control systems
  publication-title: J. Soc. Ind. Appl. Math. Ser. A Control
  doi: 10.1137/0301009
– volume: 15
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118330_bib0052
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1058
– volume: 57
  start-page: 1466
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118330_bib0075
  article-title: MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.04.041
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118330_bib0070
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118330_bib0038
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 8
  start-page: 620
  issue: 5
  year: 1985
  ident: 10.1016/j.neuroimage.2021.118330_bib0042
  article-title: An eigensystem realization algorithm for modal parameter identification and model reduction
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/3.20031
– volume: 62
  start-page: 201
  issue: 3
  year: 1990
  ident: 10.1016/j.neuroimage.2021.118330_bib0076
  article-title: Autoregression models of EEG: results compared with expectations for a multilinear near-equilibrium biophysical process
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00198095
SSID ssj0009148
Score 2.4230845
Snippet •A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure.•We show that the full multivariate...
Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic...
• A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure. • We show that the full...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118330
SubjectTerms Alpha oscillation
Alpha Rhythm - physiology
Alzheimer's disease
Autoregression
Brain
Brain - diagnostic imaging
Brain - physiology
Cognitive ability
Connectome - methods
Decomposition
Eigenmodes
Fourier transforms
Humans
Magnetoencephalography - methods
MEG
Multivariate Analysis
Network
Neural Networks, Computer
Oscillations
Phenotypes
Spatial distribution
Spectral decomposition
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHhAXxDeBgozE1Wy8dmxHnKC0qpDgUipV4mDFzqQNKtmqu3vltzOTOGkDl5W4ZRM78nomM2-S52fG3mmjLTSuFCFqLFDKJhfOhEZglJQuKhKH7NU-v5mTM_3lvDjfY4fjWhiiVabYP8T0PlqnM4s0m4vrtl2cIjLAdEN6XiQqYkh2W2tLXv7-9y3No5R6WA5XKEGtE5tn4Hj1mpHtL3xysVJcSowfThEf-k6K6pX8Z5nqXyT6N6HyToY6fsgeJGjJPw6jf8T2oHvM7n1NH8-fsB-fae05YcTugid-llhvA72J4ZdEi1mhNwHCct52vF-Ey7uBJb7m9L6Wn_b0a0F71tMA-BFJedJeOuun7Oz46PvhiUh7K4hoVL4RNZbFkBfBgcljEYpYF3ldGrQb1MtgQKnCYNHdWLW0DRqvqisrQ61sHcqYL0E9Y_vdqoMXjNdWAiDOcnltEY5FB5CDqfDQVbK0IWN2nE4fk_A47X9x5UeG2U9_awhPhvCDITImp57Xg_jGDn0-kcWm9iSf3Z9Y3Vz45D_eYFJWYHXMo9KlqlyjcMCEFxqoQELGytHeflyhijEVb9TuMIAPU9-ZJ-_Y-2B0L5-iydojLC0RemOszNjb6TLGAfq4U3Ww2lKbAstp2m4sY88Hb5zmgFQerdbY2878dDZJ8ytde9lrjTs0I1a0L__rT71i9-kXpXxZHLD9zc0WXiOW24Q3_cP6B5ZCSx8
  priority: 102
  providerName: Elsevier
– databaseName: Proquest Health and Medical Complete
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96gvgifls9JYKvwXbTJik-iB93HIK-6MGCD6FJpnd7aHted_9_Z9K0e6sg-1a2SclmJjO_SSa_Yex1qUoNramF8yUGKHWbC6NcK9BKFsZLIoeMbJ9f1clp-XlZLdOG25DSKiebGA116D3tkb9B11wj_EB9eXf5W1DVKDpdTSU0brJbRF1GWq2Xeku6W5TjVbhKCoMNUibPmN8V-SJXv3DVYpS4KNB2GEm50NfcU2Tx3_FS_6LQv5Mpr3mn43vsboKV_P2oB_fZDegesNtf0sH5Q_bjE907J3zYnfGUmyWGjaNdGH5OKTE9ahIgJOerjscLuLwbM8QHTnu1_FtMvRZUr54GwI-IxpPq6AyP2Onx0fePJyLVVRBeyXwtAobEkFfOgMp95SofqjzUCmUGYeEUSFkpDLhbLRe6RcE1odGFC1IHV_t8AfIxO-j6Dp4yHnQBgBjL5EEjFPMGIAfV4KNpilq7jOlpOq1PpONU--KnnbLLLuxWEJYEYUdBZKyYe16OxBt79PlAEpvbE3V2_KG_OrNpJVqFDlmCLn3uZVnLxrQSB0xYoYUGCshYPcnbTrdT0Z7ih1Z7DODt3DchmBGZ7Nn7cFIvmyzJYLd6n7FX82u0AXSw03TQb6hNhaE0lRrL2JNRG-c5IIZHXZbYW-_o6c4k7b7pVueRZ9ygGDGaffb_YT1nd-g_kD8vqkN2sL7awAsEamv3Mq7GP5jWQAM
  priority: 102
  providerName: ProQuest
Title Delineating between-subject heterogeneity in alpha networks with Spatio-Spectral Eigenmodes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921006066
https://dx.doi.org/10.1016/j.neuroimage.2021.118330
https://www.ncbi.nlm.nih.gov/pubmed/34237443
https://www.proquest.com/docview/2569045963
https://www.proquest.com/docview/2550262172
https://pubmed.ncbi.nlm.nih.gov/PMC8456753
https://doaj.org/article/62843e74c0c3493a8f36a4ceedfeae1e
Volume 240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgkRAXxJuwS2UkroG4fkZ72kdXBUSFgJUqcbBiZ8IWQYpoe-W3M5MXLRzogUsjNZnI8YxnvknG3zD2XBlloXJ5GqLCBCWvstSZUKXoJYWLksghG7bPmZleqtdzPd9q9UU1YS09cDtxLw36TwlWxSxKlcvCVdIUilx7BQUIIO-LMa9Ppnq6XUT5Xd1OW83VsEMuvuEaxZxwLNBTOEmVz1vBqOHs34lJf2POP0snt2LRxR12uwOR_KQd_F12Dep77Obb7jP5ffbpnHaZExqsP_OuEitdbQK9c-FXVACzRLsBBOB8UfNmuy2v23rwFac3s_xDU2idUnd6GgCfEGkndc1ZPWCXF5OPZ9O066KQRiOzdVpiAgyZDg5MFnXQsdRZmRvUEJTjYEBKbTC9rqwc2wrVVJSFFaGUtgx5zMYgH7KDelnDY8ZLKwAQUbmstAi8ogPIALWhjStEbkPCbD-dPnYU49Tp4qvva8m--N-K8KQI3yoiYWKQ_N7SbOwhc0oaG64nouzmDzQf35mP_5f5JCzv9e37vajoPfFGiz0GcDzIdnilxSF7Sh_15uU7v7HyCEBzBNnoFRP2bDiNK54-4xQ1LDd0jcbEmRqLJexRa43DHBCfo1UKpe2One5M0u6ZenHVsIo7VCPmrk_-x6weslv0pBTjhT5iB-sfG3iK4G0dRuz6i58Cf-3cjtiNk1dvpjM8nk5m796PmjX8C-9KTOQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4lkCBYwER4s4TmJHCCGgrbb0cWkrrcTBxM6kXQRJaXaF-FP8Rmby2O2ChPbSW5RkoolnPP7GngdjL-M01lCaTDgfo4OSlaEwqSsFWklpvKLikG21z8N0dBJ_GifjNfZ7yIWhsMrBJraGuqg97ZG_xqU5Q_iB-vLu_IegrlF0ujq00OjUYg9-_USXrXm7u4XyfRVFO9vHH0ei7yogfKrCqSjQIYQwcQbS0Ccu8UUSFlmKHEMRuRSUSlJ0N0utIl0i23mRa-kKpQuX-TAChd-9xq7jwhuSs6fHelHkV8Zd6l2ihJEy6yOHuniytj7l5DtaCfRKI4m2yiiKvb60HLZdA5ZWxX9R79_Bm5dWw5077HYPY_n7Tu_usjWo7rEbB_1B_X32eYvy3AmPVqe8jwUTzczRrg8_oxCcGjUX0AXgk4q3Cb-86iLSG057w_yoDfUWR5QJigzwbSobSn17mgfs5EpG_CFbr-oKHjFeaAmAmM6EhUbo5w1ACGmOlyaXmXYB08NwWt8XOadeG9_sEM321S4EYUkQthNEwOSc8rwr9LECzQeS2Px9KtXd3qgvTm0_822KAECBjn3oVZyp3JQKGSZsUkIOEgKWDfK2QzYs2m_80GQFBt7MaXvE1CGhFak3B_WyveVq7GKeBezF_DHaHDpIyiuoZ_ROgq47tTYL2EanjfMxoIqSOo6RWi_p6dIgLT-pJmdtXXODYkTv-fH_2XrObo6OD_bt_u7h3hN2i_6HsIRMNtn69GIGTxEkTt2zdmZy9uWqTcEfAO5-6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QXwTGGAkeIwWx0nsCCHEaKuNQTUxJk3iwSSOsxVBMtZWiH-Nv467xElXkFBf9lY1ucjxXX7-nX0fAM-jJJK2VKmfmwgdlLQMfJXkpY8oyZURVByyqfY5SfaOo3cn8ckG_O5yYSisssPEBqiL2tAe-Q4uzSnSD7SXndKFRRwOx6_Pf_jUQYpOWrt2Gq2JHNhfP9F9m73aH6KuX4ThePTp7Z7vOgz4JhHB3C_QObRBnCubBCbOY1PEQZEmOHpbhHlihYgTdD1LKUJZ4itkRSZ5XghZ5KkJQivwuddgU5JXNIDN3dHk8OOy5C-P2kS8WPiK89TFEbXRZU21yul3xAz0UUOOyKUERWJfWhybHgIra-S_HPjvUM5La-P4JtxwpJa9aa3wFmzY6jZsfXDH9nfg85Cy3omdVqfMRYb5s0VOe0DsjAJyarRjiw4Bm1asSf9lVRufPmO0U8yOmsBv_4jyQnEAbERFRKmLz-wuHF_JnN-DQVVX9gGwQnJrkeGpoJBIBI2yNrBJhj9VxlOZeyC76dTGlTynzhvfdBfb9lUvFaFJEbpVhAe8lzxvy36sIbNLGuvvp8LdzR_1xal2OKATpAPCysgERkSpyFQpcMDEVEqbWW49SDt96y43FtEcHzRdYwAve1nHn1petKb0dmde2uHYTC-_Og-e9ZcRgehYKatsvaB7YnTkqdGZB_dba-zngOpLyihCablipyuTtHqlmp41Vc4VqhF96Yf_H9ZT2EIY0O_3JweP4Dq9DhELHm_DYH6xsI-RMc7zJ-7TZPDlqtHgDxbqhIU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delineating+between-subject+heterogeneity+in+alpha+networks+with+Spatio-Spectral+Eigenmodes&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Andrew+J.+Quinn&rft.au=Gary+G.R.+Green&rft.au=Mark+Hymers&rft.date=2021-10-15&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=240&rft.spage=118330&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118330&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_62843e74c0c3493a8f36a4ceedfeae1e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon