Delineating between-subject heterogeneity in alpha networks with Spatio-Spectral Eigenmodes
•A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure.•We show that the full multivariate transfer function can be rewritten as a linear superposition of these modes.•These modal coordinates factorise oscillatory systems without pre...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 240; p. 118330 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.10.2021
Elsevier Limited Academic Press Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure.•We show that the full multivariate transfer function can be rewritten as a linear superposition of these modes.•These modal coordinates factorise oscillatory systems without pre-specification of frequency bands or regions of interest.•Using these modes, we find a spatial gradient in alpha peak frequency between Occipital and Parietal cortex .•This gradient is highly variable between participants, showing shifts in spatial structure and peak frequency.
Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital ’high-frequency alpha’ and parietal ’low-frequency alpha’. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person’s behavioural, cognitive or clinical state. |
---|---|
AbstractList | Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital 'high-frequency alpha' and parietal 'low-frequency alpha'. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person's behavioural, cognitive or clinical state. Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital 'high-frequency alpha' and parietal 'low-frequency alpha'. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person's behavioural, cognitive or clinical state.Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital 'high-frequency alpha' and parietal 'low-frequency alpha'. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person's behavioural, cognitive or clinical state. •A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure.•We show that the full multivariate transfer function can be rewritten as a linear superposition of these modes.•These modal coordinates factorise oscillatory systems without pre-specification of frequency bands or regions of interest.•Using these modes, we find a spatial gradient in alpha peak frequency between Occipital and Parietal cortex .•This gradient is highly variable between participants, showing shifts in spatial structure and peak frequency. Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital ’high-frequency alpha’ and parietal ’low-frequency alpha’. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person’s behavioural, cognitive or clinical state. • A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure. • We show that the full multivariate transfer function can be rewritten as a linear superposition of these modes. • These modal coordinates factorise oscillatory systems without pre-specification of frequency bands or regions of interest. • Using these modes, we find a spatial gradient in alpha peak frequency between Occipital and Parietal cortex . • This gradient is highly variable between participants, showing shifts in spatial structure and peak frequency. Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital ’high-frequency alpha’ and parietal ’low-frequency alpha’. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person’s behavioural, cognitive or clinical state. |
ArticleNumber | 118330 |
Author | Green, Gary G.R. Hymers, Mark Quinn, Andrew J. |
Author_xml | – sequence: 1 givenname: Andrew J. surname: Quinn fullname: Quinn, Andrew J. email: andrew.quinn@psych.ox.ac.uk organization: Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK – sequence: 2 givenname: Gary G.R. surname: Green fullname: Green, Gary G.R. organization: York Neuroimaging Centre, The Biocentre York Science Park, Heslington, York YO10 5NY, UK – sequence: 3 givenname: Mark surname: Hymers fullname: Hymers, Mark organization: York Neuroimaging Centre, The Biocentre York Science Park, Heslington, York YO10 5NY, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34237443$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhSNURB_wF1AkNmwy-J1kg4BSoFIlFoUVC8uxb2acZuxgJ63m3-OQMqVdzcqWfe6ne-85p9mR8w6yLMdohREW77qVgyl4u1VrWBFE8ArjilL0LDvBqOZFzUtyNN85LSqM6-PsNMYOIVRjVr3IjikjtGSMnmS_PkNvHajRunXewHgH4Io4NR3oMd_ACMGvwYEdd7l1ueqHjcpdkvlwE_M7O27y6yEV--J6SBVB9fmFTQVbbyC-zJ63qo_w6v48y35-ufhx_q24-v718vzjVaEFRWNhmKgB8aYCgTRvuDYcmVqU0IIhjQBKuYCGtCUlZSuaVhlV4sbQ0jS1RgToWXa5cI1XnRxCWkvYSa-s_Pvgw1qqMFrdgxSkYhRKppGmrKaqaqlQTAOYFhTgmfV-YQ1TswWjwc1DPYI-_nF2I9f-VlaMi5LTBHh7Dwj-9wRxlFsbNfS9cuCnKAnniAiCS5Kkb55IOz8Fl1aVVKJGjNdiBr7-v6N9K_88TIJqEejgYwzQ7iUYyTkuspMPcZFzXOQSl4dp96XajrOd82y2PwTwaQFA8vfWQpBRW3AajA0pD8kAewjkwxOITpm0WvU3sDsM8Qc0Dfsw |
CitedBy_id | crossref_primary_10_1016_j_ynirp_2022_100103 crossref_primary_10_7554_eLife_97107 crossref_primary_10_1016_j_neuroimage_2025_121122 crossref_primary_10_3389_fnhum_2022_995534 crossref_primary_10_7554_eLife_97107_3 crossref_primary_10_1016_j_neuroimage_2023_120236 crossref_primary_10_1038_s42003_022_03489_4 crossref_primary_10_1111_psyp_70033 crossref_primary_10_1016_j_nicl_2025_103754 |
Cites_doi | 10.1023/A:1022233828999 10.1016/0010-4809(77)90029-5 10.3389/fpsyg.2011.00154 10.1073/pnas.0308538101 10.1016/j.jneumeth.2016.12.016 10.3389/fnhum.2016.00238 10.1007/BF00355687 10.1523/JNEUROSCI.1993-18.2019 10.1016/j.neuroimage.2013.05.041 10.18637/jss.v080.i01 10.1016/j.neuroimage.2015.07.075 10.1007/s11517-011-0739-x 10.1016/j.brainresrev.2005.04.005 10.1038/s41586-020-2649-2 10.1016/j.medengphy.2006.11.006 10.1111/ejn.13747 10.1038/s41592-019-0686-2 10.1038/s41598-017-08421-z 10.1016/j.neuroimage.2015.03.071 10.1038/srep37685 10.1007/BF01797193 10.1007/s10548-019-00745-5 10.1007/PL00007990 10.1016/j.brainresrev.2006.06.003 10.1016/j.neuroimage.2013.05.056 10.1016/S0377-0427(00)00341-1 10.1016/j.neuroimage.2011.11.005 10.1016/j.neuroimage.2005.05.011 10.1109/TASSP.1983.1164124 10.1186/1687-6180-2014-139 10.1007/s004229900137 10.1038/s41598-018-22984-5 10.1109/TAC.1974.1100705 10.1109/10.623056 10.1016/j.neuron.2018.05.019 10.1016/S0165-0173(98)00056-3 10.1016/0013-4694(91)90044-5 10.1175/1520-0442(1995)008<0377:POPAR>2.0.CO;2 10.1088/1741-2552/ab8910 10.7554/eLife.20178 10.1038/nn.3101 10.1016/j.jneumeth.2015.10.010 10.1016/j.neuroimage.2013.04.062 10.1007/s11222-016-9696-4 10.1073/pnas.1112685108 10.1016/j.neuroimage.2019.03.019 10.21105/joss.01982 10.1016/S0166-2236(96)10065-5 10.1016/j.tics.2005.08.011 10.1016/S0079-6123(06)59009-0 10.1017/S0022112010001217 10.1523/JNEUROSCI.1853-07.2008 10.3389/fnhum.2010.00186 10.3389/fnagi.2013.00100 10.1007/s10548-014-0364-8 10.1016/j.neuroimage.2014.01.049 10.2307/2332391 10.1098/rspa.1998.0193 10.1016/0165-0173(94)00016-I 10.1145/382043.382304 10.1177/1073858405277450 10.32614/RJ-2018-017 10.1016/j.tics.2017.11.002 10.1137/0301009 10.1002/hbm.1058 10.1016/j.neuroimage.2011.04.041 10.1006/nimg.2001.0978 10.1109/MCSE.2007.55 10.2514/3.20031 10.1007/BF00198095 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Oct 15, 2021 2021 The Authors. Published by Elsevier Inc. 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Oct 15, 2021 – notice: 2021 The Authors. Published by Elsevier Inc. 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM DOA |
DOI | 10.1016/j.neuroimage.2021.118330 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_62843e74c0c3493a8f36a4ceedfeae1e PMC8456753 34237443 10_1016_j_neuroimage_2021_118330 S1053811921006066 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: Medical Research Council grantid: MR/L023784/2 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c630t-d469e05b8e60c5b5cd50d967efed2b6e3356eb2f7327f6bfada71bd37db9c02e3 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:31:32 EDT 2025 Thu Aug 21 18:17:59 EDT 2025 Fri Jul 11 04:17:51 EDT 2025 Wed Aug 13 03:32:59 EDT 2025 Mon Jul 21 06:00:25 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 Tue Jul 01 03:02:19 EDT 2025 Fri Feb 23 02:39:56 EST 2024 Tue Aug 26 18:33:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Eigenmodes Alpha oscillation Autoregression Spectral decomposition MEG Network |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-d469e05b8e60c5b5cd50d967efed2b6e3356eb2f7327f6bfada71bd37db9c02e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/62843e74c0c3493a8f36a4ceedfeae1e |
PMID | 34237443 |
PQID | 2569045963 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_62843e74c0c3493a8f36a4ceedfeae1e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456753 proquest_miscellaneous_2550262172 proquest_journals_2569045963 pubmed_primary_34237443 crossref_primary_10_1016_j_neuroimage_2021_118330 crossref_citationtrail_10_1016_j_neuroimage_2021_118330 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118330 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118330 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Academic Press Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Academic Press – name: Elsevier |
References | Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0070) 2002; 15 van Dijk, Schoffelen, Oostenveld, Jensen (bib0018) 2008; 28 Foxe, Snyder (bib0022) 2011; 2 Huntenburg, Bazin, Margulies (bib0037) 2018; 22 Baccalá, Sameshima (bib0002) 2001; 84 Jansen (bib0040) 1991 Bürkner (bib0010) 2017; 80 Schutter (bib0064) 2000; 121 Brovelli, Ding, Ledberg, Chen, Nakamura, Bressler (bib0008) 2004; 101 Gilbert (bib0027) 1963; 1 von Storch, Bürger, Schnur, von Storch (bib0069) 1995; 8 Schlögl, Supp (bib0062) 2006; 159 Van Veen, Van Drongelen, Yuchtman, Suzuki (bib0072) 1997; 44 Woolrich, Hunt, Groves, Barnes (bib0075) 2011; 57 Mullen, Worrell, Makeig (bib0050) 2012 Klimesch (bib0044) 1999; 29 Larson-Prior, Oostenveld, Della Penna, Michalareas, Prior, Babajani-Feremi, Schoffelen, Marzetti, de Pasquale, Di Pompeo, Stout, Woolrich, Luo, Bucholz, Fries, Pizzella, Romani, Corbetta, Snyder (bib0046) 2013; 80 Lopes da Silva (bib0067) 1991; 79 Hillebrand, Barnes, Bosboom, Berendse, Stam (bib0032) 2012; 59 Hipp, Hawellek, Corbetta, Siegel, Engel (bib0033) 2012; 15 Jensen, Mazaheri (bib0041) 2010; 4 Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (bib0031) 2020; 585 Engels, Hillebrand, van der Flier, Stam, Scheltens, van Straaten (bib0021) 2016; 10 Durbin, Watson (bib0020) 1950; 37 SciPy 1.0 Contributors, Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (bib0065) 2020; 17 Nichols, Holmes (bib0052) 2002; 15 Ciulla, Takeda, Endo (bib0013) 1999; 11 Brookes, Woolrich, Luckhoo, Price, Hale, Stephenson, Barnes, Smith, Morris (bib0007) 2011; 108 Sokoliuk, Mayhew, Aquino, Wilson, Brookes, Francis, Hanslmayr, Mullinger (bib0068) 2019; 39 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0071) 2013; 80 Clayton, Yeung, Cohen Kadosh (bib0014) 2018; 48 Garcés, Vicente, Wibral, Pineda-Pardo, López, Aurtenetxe, Marcos, de Andrés, Yus, Sancho, Maestú, Fernández (bib0025) 2013; 5 Rolls, Joliot, Tzourio-Mazoyer (bib0061) 2015; 122 Juang, Pappa (bib0042) 1985; 8 Lütkepohl (bib0048) 2007 Marzetti, Della Penna, Snyder, Pizzella, Nolte, de Pasquale, Romani, Corbetta (bib0049) 2013; 79 Schmid (bib0063) 2010; 656 Casorso, Kong, Chi, Van De Ville, Yeo, Liégeois (bib0012) 2019; 194 Quirk, Bede Liu (bib0060) 1983; 31 Hunyadi, Camps, Sorber, Paesschen, Vos, Huffel, Lathauwer (bib0039) 2014; 2014 Barzegaran, Vildavski, Knyazeva (bib0003) 2017; 7 Wens, Bourguignon, Goldman, Marty, Op de Beeck, Clumeck, Mary, Peigneux, Van Bogaert, Brookes, De Tiège (bib0074) 2014; 27 Klimesch, Sauseng, Hanslmayr (bib0045) 2007; 53 Brunton, Johnson, Ojemann, Kutz (bib0009) 2016; 258 Colclough, Brookes, Smith, Woolrich (bib0016) 2015; 117 Osipova, Ahveninen, Jensen, Ylikoski, Pekkonen (bib0053) 2005; 27 Hunter (bib0038) 2007; 9 Bressler (bib0006) 1995; 20 Colclough, Smith, Nichols, Winkler, Sotiropoulos, Glasser, Van Essen, Woolrich (bib0017) 2017; 6 Neumaier, Schneider (bib0051) 2001; 27 Pineda (bib0055) 2005; 50 Quinn, van Ede, Brookes, Heideman, Nowak, Seedat, Vidaurre, Zich, Nobre, Woolrich (bib0058) 2019; 32 Shiraishi, Kawahara, Yamashita, Fukuma, Yamamoto, Saitoh, Kishima, Yanagisawa (bib0066) 2020; 17 Kailath (bib0043) 1980 Vehtari, Gelman, Gabry (bib0073) 2017; 27 López-Sanz, Bruña, Garcés, Camara, Serrano, Rodríguez-Rojo, Delgado, Montenegro, López-Higes, Yus, Maestú (bib0047) 2016; 6 Ding, Bressler, Yang, Liang (bib0019) 2000; 83 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib0034) 1998; 454 Wright, Kydd, Sergejew (bib0076) 1990; 62 Gersch, Yonemoto (bib0026) 1977; 10 Quinn, Lopes-dos Santos, Huang, Liang, Juan, Yeh, Nobre, Dupret, Woolrich (bib0059) 2021 Berger (bib0004) 1929; 87 Poza, Hornero, Abásolo, Fernández, García (bib0056) 2007; 29 Peraza, Cromarty, Kobeleva, Firbank, Killen, Graziadio, Thomas, O’Brien, Taylor (bib0054) 2018; 8 Blinowska (bib0005) 2011; 49 Bürkner (bib0011) 2018; 10 Haegens, Cousijn, Wallis, Harrison, Nobre (bib0029) 2014; 92 Hari (bib0030) 1997; 20 Akaike (bib0001) 1974; 19 Quinn, Hymers (bib0057) 2020; 5 Zhang, Watrous, Patel, Jacobs (bib0077) 2018; 98 Franaszczuk, Blinowska (bib0023) 1985; 53 Golub, Van Loan (bib0028) 2013 Cohen (bib0015) 2017; 278 Hughes, Henson, Pereda, Bruña, López-Sanz, Quinn, Woolrich, Nobre, Rowe, Maestú, the BioFIND Working Group (bib0035) 2019; 11 Fries (bib0024) 2005; 9 Hughes, Crunelli (bib0036) 2005; 11 Colclough (10.1016/j.neuroimage.2021.118330_bib0017) 2017; 6 Gersch (10.1016/j.neuroimage.2021.118330_bib0026) 1977; 10 Ding (10.1016/j.neuroimage.2021.118330_bib0019) 2000; 83 SciPy 1.0 Contributors (10.1016/j.neuroimage.2021.118330_bib0065) 2020; 17 Sokoliuk (10.1016/j.neuroimage.2021.118330_bib0068) 2019; 39 Foxe (10.1016/j.neuroimage.2021.118330_bib0022) 2011; 2 Huang (10.1016/j.neuroimage.2021.118330_bib0034) 1998; 454 Rolls (10.1016/j.neuroimage.2021.118330_bib0061) 2015; 122 Bürkner (10.1016/j.neuroimage.2021.118330_bib0011) 2018; 10 Woolrich (10.1016/j.neuroimage.2021.118330_bib0075) 2011; 57 Lopes da Silva (10.1016/j.neuroimage.2021.118330_bib0067) 1991; 79 Poza (10.1016/j.neuroimage.2021.118330_bib0056) 2007; 29 Larson-Prior (10.1016/j.neuroimage.2021.118330_bib0046) 2013; 80 Bürkner (10.1016/j.neuroimage.2021.118330_bib0010) 2017; 80 Schmid (10.1016/j.neuroimage.2021.118330_bib0063) 2010; 656 Clayton (10.1016/j.neuroimage.2021.118330_bib0014) 2018; 48 Lütkepohl (10.1016/j.neuroimage.2021.118330_sbref0048) 2007 Van Veen (10.1016/j.neuroimage.2021.118330_bib0072) 1997; 44 Bressler (10.1016/j.neuroimage.2021.118330_bib0006) 1995; 20 Klimesch (10.1016/j.neuroimage.2021.118330_bib0044) 1999; 29 López-Sanz (10.1016/j.neuroimage.2021.118330_bib0047) 2016; 6 Huntenburg (10.1016/j.neuroimage.2021.118330_bib0037) 2018; 22 Engels (10.1016/j.neuroimage.2021.118330_bib0021) 2016; 10 Quinn (10.1016/j.neuroimage.2021.118330_bib0057) 2020; 5 Hunter (10.1016/j.neuroimage.2021.118330_bib0038) 2007; 9 Harris (10.1016/j.neuroimage.2021.118330_bib0031) 2020; 585 Zhang (10.1016/j.neuroimage.2021.118330_bib0077) 2018; 98 Franaszczuk (10.1016/j.neuroimage.2021.118330_bib0023) 1985; 53 Hunyadi (10.1016/j.neuroimage.2021.118330_bib0039) 2014; 2014 Peraza (10.1016/j.neuroimage.2021.118330_bib0054) 2018; 8 Jansen (10.1016/j.neuroimage.2021.118330_bib0040) 1991 Hillebrand (10.1016/j.neuroimage.2021.118330_bib0032) 2012; 59 Marzetti (10.1016/j.neuroimage.2021.118330_bib0049) 2013; 79 Quinn (10.1016/j.neuroimage.2021.118330_bib0058) 2019; 32 Fries (10.1016/j.neuroimage.2021.118330_bib0024) 2005; 9 Juang (10.1016/j.neuroimage.2021.118330_bib0042) 1985; 8 Kailath (10.1016/j.neuroimage.2021.118330_bib0043) 1980 Wright (10.1016/j.neuroimage.2021.118330_bib0076) 1990; 62 Osipova (10.1016/j.neuroimage.2021.118330_bib0053) 2005; 27 Cohen (10.1016/j.neuroimage.2021.118330_bib0015) 2017; 278 Neumaier (10.1016/j.neuroimage.2021.118330_bib0051) 2001; 27 Barzegaran (10.1016/j.neuroimage.2021.118330_bib0003) 2017; 7 Akaike (10.1016/j.neuroimage.2021.118330_bib0001) 1974; 19 Van Essen (10.1016/j.neuroimage.2021.118330_bib0071) 2013; 80 Schlögl (10.1016/j.neuroimage.2021.118330_bib0062) 2006; 159 Shiraishi (10.1016/j.neuroimage.2021.118330_bib0066) 2020; 17 Hari (10.1016/j.neuroimage.2021.118330_bib0030) 1997; 20 Hipp (10.1016/j.neuroimage.2021.118330_bib0033) 2012; 15 Quirk (10.1016/j.neuroimage.2021.118330_bib0060) 1983; 31 Hughes (10.1016/j.neuroimage.2021.118330_bib0036) 2005; 11 Vehtari (10.1016/j.neuroimage.2021.118330_bib0073) 2017; 27 Baccalá (10.1016/j.neuroimage.2021.118330_bib0002) 2001; 84 Brovelli (10.1016/j.neuroimage.2021.118330_bib0008) 2004; 101 Nichols (10.1016/j.neuroimage.2021.118330_bib0052) 2002; 15 Quinn (10.1016/j.neuroimage.2021.118330_sbref0059) 2021 Haegens (10.1016/j.neuroimage.2021.118330_bib0029) 2014; 92 Klimesch (10.1016/j.neuroimage.2021.118330_bib0045) 2007; 53 Brookes (10.1016/j.neuroimage.2021.118330_bib0007) 2011; 108 Durbin (10.1016/j.neuroimage.2021.118330_bib0020) 1950; 37 Pineda (10.1016/j.neuroimage.2021.118330_bib0055) 2005; 50 Brunton (10.1016/j.neuroimage.2021.118330_bib0009) 2016; 258 Casorso (10.1016/j.neuroimage.2021.118330_bib0012) 2019; 194 Blinowska (10.1016/j.neuroimage.2021.118330_bib0005) 2011; 49 Ciulla (10.1016/j.neuroimage.2021.118330_bib0013) 1999; 11 von Storch (10.1016/j.neuroimage.2021.118330_bib0069) 1995; 8 Hughes (10.1016/j.neuroimage.2021.118330_bib0035) 2019; 11 Jensen (10.1016/j.neuroimage.2021.118330_bib0041) 2010; 4 Berger (10.1016/j.neuroimage.2021.118330_bib0004) 1929; 87 Golub (10.1016/j.neuroimage.2021.118330_sbref0028) 2013 Colclough (10.1016/j.neuroimage.2021.118330_bib0016) 2015; 117 Gilbert (10.1016/j.neuroimage.2021.118330_bib0027) 1963; 1 Tzourio-Mazoyer (10.1016/j.neuroimage.2021.118330_bib0070) 2002; 15 van Dijk (10.1016/j.neuroimage.2021.118330_bib0018) 2008; 28 Schutter (10.1016/j.neuroimage.2021.118330_bib0064) 2000; 121 Mullen (10.1016/j.neuroimage.2021.118330_bib0050) 2012 Wens (10.1016/j.neuroimage.2021.118330_bib0074) 2014; 27 Garcés (10.1016/j.neuroimage.2021.118330_bib0025) 2013; 5 |
References_xml | – year: 2013 ident: bib0028 article-title: Matrix computations publication-title: Johns Hopkins Studies in the Mathematical Sciences – volume: 194 start-page: 42 year: 2019 end-page: 54 ident: bib0012 article-title: Dynamic mode decomposition of resting-state and task fMRI publication-title: NeuroImage – volume: 8 start-page: 620 year: 1985 end-page: 627 ident: bib0042 article-title: An eigensystem realization algorithm for modal parameter identification and model reduction publication-title: J. Guid. Control Dyn. – volume: 27 start-page: 835 year: 2005 end-page: 841 ident: bib0053 article-title: Altered generation of spontaneous oscillations in Alzheimer’s disease publication-title: NeuroImage – volume: 159 start-page: 135 year: 2006 end-page: 147 ident: bib0062 article-title: Analyzing event-related EEG data with multivariate autoregressive parameters publication-title: Progress in Brain Research – volume: 121 start-page: 331 year: 2000 end-page: 354 ident: bib0064 article-title: Minimal state-space realization in linear system theory: an overview publication-title: J. Comput. Appl. Math. – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: bib0038 article-title: Matplotlib: a 2D graphics environment publication-title: Comput. Sci. Eng. – volume: 117 start-page: 439 year: 2015 end-page: 448 ident: bib0016 article-title: A symmetric multivariate leakage correction for MEG connectomes publication-title: NeuroImage – volume: 53 start-page: 19 year: 1985 end-page: 25 ident: bib0023 article-title: Linear model of brain electrical activity? EEG as a superposition of damped oscillatory modes publication-title: Biol. Cybern. – volume: 22 start-page: 21 year: 2018 end-page: 31 ident: bib0037 article-title: Large-scale gradients in human cortical organization publication-title: Trends Cognit. Sci. – volume: 8 start-page: 4637 year: 2018 ident: bib0054 article-title: Electroencephalographic derived network differences in Lewy body dementia compared to Alzheimer’s disease patients publication-title: Sci. Rep. – volume: 44 start-page: 867 year: 1997 end-page: 880 ident: bib0072 article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering publication-title: IEEE Trans. Biomed. Eng. – volume: 656 start-page: 5 year: 2010 end-page: 28 ident: bib0063 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: bib0065 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods – volume: 79 start-page: 172 year: 2013 end-page: 183 ident: bib0049 article-title: Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure publication-title: NeuroImage – volume: 5 start-page: 1982 year: 2020 ident: bib0057 article-title: SAILS: spectral analysis in linear systems publication-title: J. Open Source Softw. – volume: 278 start-page: 1 year: 2017 end-page: 12 ident: bib0015 article-title: Comparison of linear spatial filters for identifying oscillatory activity in multichannel data publication-title: J. Neurosci. Methods – volume: 62 start-page: 201 year: 1990 end-page: 210 ident: bib0076 article-title: Autoregression models of EEG: results compared with expectations for a multilinear near-equilibrium biophysical process publication-title: Biol. Cybern. – volume: 9 start-page: 474 year: 2005 end-page: 480 ident: bib0024 article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence publication-title: Trends Cognit. Sci. – volume: 31 start-page: 630 year: 1983 end-page: 637 ident: bib0060 article-title: Improving resolution for autoregressive spectral estimation by decimation publication-title: IEEE Trans. Acoust. Speech Signal Process. – volume: 258 start-page: 1 year: 2016 end-page: 15 ident: bib0009 article-title: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition publication-title: J. Neurosci. Methods – volume: 48 start-page: 2498 year: 2018 end-page: 2508 ident: bib0014 article-title: The many characters of visual alpha oscillations publication-title: Eur. J. Neurosci. – volume: 98 start-page: 1269 year: 2018 end-page: 1281.e4 ident: bib0077 article-title: Theta and alpha oscillations are traveling waves in the human neocortex publication-title: Neuron – volume: 80 year: 2017 ident: bib0010 article-title: : an publication-title: J. Stat. Softw. – volume: 28 start-page: 1816 year: 2008 end-page: 1823 ident: bib0018 article-title: Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability publication-title: J. Neurosci. – volume: 84 start-page: 463 year: 2001 end-page: 474 ident: bib0002 article-title: Partial directed coherence: a new concept in neural structure determination publication-title: Biol. Cybern. – volume: 101 start-page: 9849 year: 2004 end-page: 9854 ident: bib0008 article-title: Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality publication-title: Proc. Natl. Acad. Sci. – volume: 122 start-page: 1 year: 2015 end-page: 5 ident: bib0061 article-title: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas publication-title: NeuroImage – volume: 29 start-page: 1073 year: 2007 end-page: 1083 ident: bib0056 article-title: Extraction of spectral based measures from MEG background oscillations in Alzheimer’s disease publication-title: Med. Eng. Phys. – volume: 29 start-page: 169 year: 1999 end-page: 195 ident: bib0044 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Rev. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0071 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage – volume: 27 start-page: 620 year: 2014 end-page: 634 ident: bib0074 article-title: Inter- and intra-subject variability of neuromagnetic resting state networks publication-title: Brain Topogr. – volume: 11 start-page: 357 year: 2005 end-page: 372 ident: bib0036 article-title: Thalamic mechanisms of EEG alpha rhythms and their pathological implications publication-title: Neuroscientist – volume: 20 start-page: 288 year: 1995 end-page: 304 ident: bib0006 article-title: Large-scale cortical networks and cognition publication-title: Brain Res. Rev. – volume: 8 start-page: 377 year: 1995 end-page: 400 ident: bib0069 article-title: Principal oscillation patterns: a review publication-title: J. Clim. – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: bib0001 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control – volume: 2 year: 2011 ident: bib0022 article-title: The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention publication-title: Front. Psychol. – volume: 50 start-page: 57 year: 2005 end-page: 68 ident: bib0055 article-title: The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing” publication-title: Brain Res. Rev. – volume: 17 start-page: 036009 year: 2020 ident: bib0066 article-title: Neural decoding of electrocorticographic signals using dynamic mode decomposition publication-title: J. Neural Eng. – volume: 4 year: 2010 ident: bib0041 article-title: Shaping functional architecture by oscillatory alpha activity: gating by inhibition publication-title: Front. Hum. Neurosci. – volume: 83 start-page: 35 year: 2000 end-page: 45 ident: bib0019 article-title: Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment publication-title: Biol. Cybern. – volume: 2014 start-page: 139 year: 2014 ident: bib0039 article-title: Block term decomposition for modelling epileptic seizures publication-title: EURASIP J. Adv. Signal Process. – volume: 6 start-page: 37685 year: 2016 ident: bib0047 article-title: Alpha band disruption in the AD-continuum starts in the subjective cognitive decline stage: a MEG study publication-title: Sci. Rep. – start-page: 2921 year: 2012 end-page: 2924 ident: bib0050 article-title: Multivariate principal oscillation pattern analysis of ICA sources during seizure publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 57 start-page: 1466 year: 2011 end-page: 1479 ident: bib0075 article-title: MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization publication-title: NeuroImage – volume: 49 start-page: 521 year: 2011 end-page: 529 ident: bib0005 article-title: Review of the methods of determination of directed connectivity from multichannel data publication-title: Med. Biol. Eng. Comput. – volume: 10 start-page: 395 year: 2018 ident: bib0011 article-title: Advanced Bayesian multilevel modeling with the R package brms publication-title: R J. – volume: 15 start-page: 1 year: 2002 end-page: 25 ident: bib0052 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. – volume: 108 start-page: 16783 year: 2011 end-page: 16788 ident: bib0007 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proc. Natl. Acad. Sci. – volume: 11 start-page: 450 year: 2019 end-page: 462 ident: bib0035 article-title: Biomagnetic biomarkers for dementia: a pilot multicentre study with a recommended methodological framework for magnetoencephalography publication-title: Alzheimer’s Dement. Diagn. Assess. Dis. Monit. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib0070 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage – volume: 1 start-page: 128 year: 1963 end-page: 151 ident: bib0027 article-title: Controllability and observability in multivariable control systems publication-title: J. Soc. Ind. Appl. Math. Ser. A Control – volume: 10 year: 2016 ident: bib0021 article-title: Slowing of hippocampal activity correlates with cognitive decline in early onset Alzheimer’s disease. An MEG study with virtual electrodes publication-title: Front. Hum. Neurosci. – volume: 37 start-page: 409 year: 1950 ident: bib0020 article-title: Testing for serial correlation in least squares regression: I publication-title: Biometrika – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib0034 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 32 start-page: 1020 year: 2019 end-page: 1034 ident: bib0058 article-title: Unpacking transient event dynamics in electrophysiological power Spectra publication-title: Brain Topogr. – volume: 15 start-page: 884 year: 2012 end-page: 890 ident: bib0033 article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity publication-title: Nat. Neurosci. – volume: 20 start-page: 44 year: 1997 end-page: 49 ident: bib0030 article-title: Human cortical oscillations: a neuromagnetic view through the skull publication-title: Trends Neurosci. – volume: 27 start-page: 27 year: 2001 end-page: 57 ident: bib0051 article-title: Estimation of parameters and eigenmodes of multivariate autoregressive models publication-title: ACM Trans. Math. Softw. – volume: 87 start-page: 527 year: 1929 end-page: 570 ident: bib0004 article-title: Über das Elektrenkephalogramm des Menschen publication-title: Arch. für Psychiatr. und Nervenkrankh. – volume: 27 start-page: 1413 year: 2017 end-page: 1432 ident: bib0073 article-title: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC publication-title: Stat. Comput. – volume: 6 start-page: e20178 year: 2017 ident: bib0017 article-title: The heritability of multi-modal connectivity in human brain activity publication-title: eLife – volume: 59 start-page: 3909 year: 2012 end-page: 3921 ident: bib0032 article-title: Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution publication-title: NeuroImage – year: 1991 ident: bib0040 article-title: Time series analysis by means of linear modelling. publication-title: Digital Biosignal Processing – year: 1980 ident: bib0043 article-title: Linear systems publication-title: Prentice-Hall Information and System Science Series – year: 2021 ident: bib0059 article-title: Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics publication-title: Neuroscience – volume: 79 start-page: 81 year: 1991 end-page: 93 ident: bib0067 article-title: Neural mechanisms underlying brain waves: from neural membranes to networks publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 80 start-page: 190 year: 2013 end-page: 201 ident: bib0046 article-title: Adding dynamics to the human connectome project with MEG publication-title: NeuroImage – volume: 10 start-page: 113 year: 1977 end-page: 125 ident: bib0026 article-title: Parametric time series models for multivariate EEG analysis publication-title: Comput. Biomed. Res. – volume: 11 start-page: 211 year: 1999 end-page: 222 ident: bib0013 article-title: MEG characterization of spontaneous alpha rhythm in the human brain publication-title: Brain Topogr. – volume: 7 start-page: 8249 year: 2017 ident: bib0003 article-title: Fine structure of posterior alpha rhythm in human EEG: frequency components, their cortical sources, and temporal behavior publication-title: Sci. Rep. – volume: 39 start-page: 7183 year: 2019 end-page: 7194 ident: bib0068 article-title: Two spatially distinct posterior alpha sources fulfill different functional roles in attention publication-title: J. Neurosci. – volume: 53 start-page: 63 year: 2007 end-page: 88 ident: bib0045 article-title: EEG alpha oscillations: the inhibition-timing hypothesis publication-title: Brain Res. Rev. – year: 2007 ident: bib0048 article-title: New Introduction to Multiple Time Series Analysis – volume: 5 year: 2013 ident: bib0025 article-title: Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment publication-title: Front. Aging Neurosci. – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: bib0031 article-title: Array programming with NumPy publication-title: Nature – volume: 92 start-page: 46 year: 2014 end-page: 55 ident: bib0029 article-title: Inter- and intra-individual variability in alpha peak frequency publication-title: NeuroImage – volume: 11 start-page: 211 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2021.118330_bib0013 article-title: MEG characterization of spontaneous alpha rhythm in the human brain publication-title: Brain Topogr. doi: 10.1023/A:1022233828999 – volume: 10 start-page: 113 issue: 2 year: 1977 ident: 10.1016/j.neuroimage.2021.118330_bib0026 article-title: Parametric time series models for multivariate EEG analysis publication-title: Comput. Biomed. Res. doi: 10.1016/0010-4809(77)90029-5 – year: 2013 ident: 10.1016/j.neuroimage.2021.118330_sbref0028 article-title: Matrix computations – volume: 2 year: 2011 ident: 10.1016/j.neuroimage.2021.118330_bib0022 article-title: The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention publication-title: Front. Psychol. doi: 10.3389/fpsyg.2011.00154 – volume: 101 start-page: 9849 issue: 26 year: 2004 ident: 10.1016/j.neuroimage.2021.118330_bib0008 article-title: Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0308538101 – volume: 278 start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.118330_bib0015 article-title: Comparison of linear spatial filters for identifying oscillatory activity in multichannel data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.12.016 – volume: 10 year: 2016 ident: 10.1016/j.neuroimage.2021.118330_bib0021 article-title: Slowing of hippocampal activity correlates with cognitive decline in early onset Alzheimer’s disease. An MEG study with virtual electrodes publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00238 – volume: 53 start-page: 19 issue: 1 year: 1985 ident: 10.1016/j.neuroimage.2021.118330_bib0023 article-title: Linear model of brain electrical activity? EEG as a superposition of damped oscillatory modes publication-title: Biol. Cybern. doi: 10.1007/BF00355687 – volume: 39 start-page: 7183 issue: 36 year: 2019 ident: 10.1016/j.neuroimage.2021.118330_bib0068 article-title: Two spatially distinct posterior alpha sources fulfill different functional roles in attention publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1993-18.2019 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2021.118330_bib0071 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 80 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.118330_bib0010 article-title: brms : an R package for Bayesian multilevel models using Stan publication-title: J. Stat. Softw. doi: 10.18637/jss.v080.i01 – volume: 122 start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2021.118330_bib0061 article-title: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.075 – volume: 49 start-page: 521 issue: 5 year: 2011 ident: 10.1016/j.neuroimage.2021.118330_bib0005 article-title: Review of the methods of determination of directed connectivity from multichannel data publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-011-0739-x – volume: 50 start-page: 57 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2021.118330_bib0055 article-title: The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing” publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2005.04.005 – volume: 585 start-page: 357 issue: 7825 year: 2020 ident: 10.1016/j.neuroimage.2021.118330_bib0031 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 29 start-page: 1073 issue: 10 year: 2007 ident: 10.1016/j.neuroimage.2021.118330_bib0056 article-title: Extraction of spectral based measures from MEG background oscillations in Alzheimer’s disease publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2006.11.006 – volume: 48 start-page: 2498 issue: 7 year: 2018 ident: 10.1016/j.neuroimage.2021.118330_bib0014 article-title: The many characters of visual alpha oscillations publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.13747 – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 10.1016/j.neuroimage.2021.118330_bib0065 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 7 start-page: 8249 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.118330_bib0003 article-title: Fine structure of posterior alpha rhythm in human EEG: frequency components, their cortical sources, and temporal behavior publication-title: Sci. Rep. doi: 10.1038/s41598-017-08421-z – volume: 117 start-page: 439 year: 2015 ident: 10.1016/j.neuroimage.2021.118330_bib0016 article-title: A symmetric multivariate leakage correction for MEG connectomes publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.071 – volume: 6 start-page: 37685 issue: 1 year: 2016 ident: 10.1016/j.neuroimage.2021.118330_bib0047 article-title: Alpha band disruption in the AD-continuum starts in the subjective cognitive decline stage: a MEG study publication-title: Sci. Rep. doi: 10.1038/srep37685 – year: 2007 ident: 10.1016/j.neuroimage.2021.118330_sbref0048 – volume: 87 start-page: 527 issue: 1 year: 1929 ident: 10.1016/j.neuroimage.2021.118330_bib0004 article-title: Über das Elektrenkephalogramm des Menschen publication-title: Arch. für Psychiatr. und Nervenkrankh. doi: 10.1007/BF01797193 – volume: 32 start-page: 1020 issue: 6 year: 2019 ident: 10.1016/j.neuroimage.2021.118330_bib0058 article-title: Unpacking transient event dynamics in electrophysiological power Spectra publication-title: Brain Topogr. doi: 10.1007/s10548-019-00745-5 – volume: 84 start-page: 463 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2021.118330_bib0002 article-title: Partial directed coherence: a new concept in neural structure determination publication-title: Biol. Cybern. doi: 10.1007/PL00007990 – volume: 53 start-page: 63 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2021.118330_bib0045 article-title: EEG alpha oscillations: the inhibition-timing hypothesis publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2006.06.003 – volume: 80 start-page: 190 year: 2013 ident: 10.1016/j.neuroimage.2021.118330_bib0046 article-title: Adding dynamics to the human connectome project with MEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.056 – volume: 121 start-page: 331 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2021.118330_bib0064 article-title: Minimal state-space realization in linear system theory: an overview publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00341-1 – volume: 59 start-page: 3909 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2021.118330_bib0032 article-title: Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.005 – volume: 27 start-page: 835 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2021.118330_bib0053 article-title: Altered generation of spontaneous oscillations in Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.05.011 – volume: 31 start-page: 630 issue: 3 year: 1983 ident: 10.1016/j.neuroimage.2021.118330_bib0060 article-title: Improving resolution for autoregressive spectral estimation by decimation publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1983.1164124 – volume: 2014 start-page: 139 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2021.118330_bib0039 article-title: Block term decomposition for modelling epileptic seizures publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/1687-6180-2014-139 – volume: 83 start-page: 35 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2021.118330_bib0019 article-title: Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment publication-title: Biol. Cybern. doi: 10.1007/s004229900137 – volume: 8 start-page: 4637 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118330_bib0054 article-title: Electroencephalographic derived network differences in Lewy body dementia compared to Alzheimer’s disease patients publication-title: Sci. Rep. doi: 10.1038/s41598-018-22984-5 – year: 1991 ident: 10.1016/j.neuroimage.2021.118330_bib0040 article-title: Time series analysis by means of linear modelling. – volume: 19 start-page: 716 issue: 6 year: 1974 ident: 10.1016/j.neuroimage.2021.118330_bib0001 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100705 – year: 1980 ident: 10.1016/j.neuroimage.2021.118330_bib0043 article-title: Linear systems – volume: 44 start-page: 867 issue: 9 year: 1997 ident: 10.1016/j.neuroimage.2021.118330_bib0072 article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.623056 – volume: 98 start-page: 1269 issue: 6 year: 2018 ident: 10.1016/j.neuroimage.2021.118330_bib0077 article-title: Theta and alpha oscillations are traveling waves in the human neocortex publication-title: Neuron doi: 10.1016/j.neuron.2018.05.019 – volume: 29 start-page: 169 issue: 2-3 year: 1999 ident: 10.1016/j.neuroimage.2021.118330_bib0044 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Rev. doi: 10.1016/S0165-0173(98)00056-3 – volume: 79 start-page: 81 issue: 2 year: 1991 ident: 10.1016/j.neuroimage.2021.118330_bib0067 article-title: Neural mechanisms underlying brain waves: from neural membranes to networks publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(91)90044-5 – volume: 8 start-page: 377 issue: 3 year: 1995 ident: 10.1016/j.neuroimage.2021.118330_bib0069 article-title: Principal oscillation patterns: a review publication-title: J. Clim. doi: 10.1175/1520-0442(1995)008<0377:POPAR>2.0.CO;2 – volume: 17 start-page: 036009 issue: 3 year: 2020 ident: 10.1016/j.neuroimage.2021.118330_bib0066 article-title: Neural decoding of electrocorticographic signals using dynamic mode decomposition publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab8910 – year: 2021 ident: 10.1016/j.neuroimage.2021.118330_sbref0059 article-title: Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics publication-title: Neuroscience – volume: 6 start-page: e20178 year: 2017 ident: 10.1016/j.neuroimage.2021.118330_bib0017 article-title: The heritability of multi-modal connectivity in human brain activity publication-title: eLife doi: 10.7554/eLife.20178 – volume: 15 start-page: 884 issue: 6 year: 2012 ident: 10.1016/j.neuroimage.2021.118330_bib0033 article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity publication-title: Nat. Neurosci. doi: 10.1038/nn.3101 – volume: 258 start-page: 1 year: 2016 ident: 10.1016/j.neuroimage.2021.118330_bib0009 article-title: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.10.010 – volume: 79 start-page: 172 year: 2013 ident: 10.1016/j.neuroimage.2021.118330_bib0049 article-title: Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.062 – volume: 27 start-page: 1413 issue: 5 year: 2017 ident: 10.1016/j.neuroimage.2021.118330_bib0073 article-title: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC publication-title: Stat. Comput. doi: 10.1007/s11222-016-9696-4 – volume: 108 start-page: 16783 issue: 40 year: 2011 ident: 10.1016/j.neuroimage.2021.118330_bib0007 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1112685108 – volume: 194 start-page: 42 year: 2019 ident: 10.1016/j.neuroimage.2021.118330_bib0012 article-title: Dynamic mode decomposition of resting-state and task fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.03.019 – volume: 5 start-page: 1982 issue: 47 year: 2020 ident: 10.1016/j.neuroimage.2021.118330_bib0057 article-title: SAILS: spectral analysis in linear systems publication-title: J. Open Source Softw. doi: 10.21105/joss.01982 – volume: 20 start-page: 44 issue: 1 year: 1997 ident: 10.1016/j.neuroimage.2021.118330_bib0030 article-title: Human cortical oscillations: a neuromagnetic view through the skull publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(96)10065-5 – volume: 9 start-page: 474 issue: 10 year: 2005 ident: 10.1016/j.neuroimage.2021.118330_bib0024 article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2005.08.011 – volume: 159 start-page: 135 year: 2006 ident: 10.1016/j.neuroimage.2021.118330_bib0062 article-title: Analyzing event-related EEG data with multivariate autoregressive parameters doi: 10.1016/S0079-6123(06)59009-0 – volume: 656 start-page: 5 year: 2010 ident: 10.1016/j.neuroimage.2021.118330_bib0063 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. doi: 10.1017/S0022112010001217 – volume: 28 start-page: 1816 issue: 8 year: 2008 ident: 10.1016/j.neuroimage.2021.118330_bib0018 article-title: Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1853-07.2008 – volume: 4 year: 2010 ident: 10.1016/j.neuroimage.2021.118330_bib0041 article-title: Shaping functional architecture by oscillatory alpha activity: gating by inhibition publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2010.00186 – start-page: 2921 year: 2012 ident: 10.1016/j.neuroimage.2021.118330_bib0050 article-title: Multivariate principal oscillation pattern analysis of ICA sources during seizure – volume: 5 year: 2013 ident: 10.1016/j.neuroimage.2021.118330_bib0025 article-title: Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2013.00100 – volume: 27 start-page: 620 issue: 5 year: 2014 ident: 10.1016/j.neuroimage.2021.118330_bib0074 article-title: Inter- and intra-subject variability of neuromagnetic resting state networks publication-title: Brain Topogr. doi: 10.1007/s10548-014-0364-8 – volume: 92 start-page: 46 year: 2014 ident: 10.1016/j.neuroimage.2021.118330_bib0029 article-title: Inter- and intra-individual variability in alpha peak frequency publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.01.049 – volume: 37 start-page: 409 issue: 3/4 year: 1950 ident: 10.1016/j.neuroimage.2021.118330_bib0020 article-title: Testing for serial correlation in least squares regression: I publication-title: Biometrika doi: 10.2307/2332391 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.neuroimage.2021.118330_bib0034 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 20 start-page: 288 issue: 3 year: 1995 ident: 10.1016/j.neuroimage.2021.118330_bib0006 article-title: Large-scale cortical networks and cognition publication-title: Brain Res. Rev. doi: 10.1016/0165-0173(94)00016-I – volume: 27 start-page: 27 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2021.118330_bib0051 article-title: Estimation of parameters and eigenmodes of multivariate autoregressive models publication-title: ACM Trans. Math. Softw. doi: 10.1145/382043.382304 – volume: 11 start-page: 357 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2021.118330_bib0036 article-title: Thalamic mechanisms of EEG alpha rhythms and their pathological implications publication-title: Neuroscientist doi: 10.1177/1073858405277450 – volume: 11 start-page: 450 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118330_bib0035 article-title: Biomagnetic biomarkers for dementia: a pilot multicentre study with a recommended methodological framework for magnetoencephalography publication-title: Alzheimer’s Dement. Diagn. Assess. Dis. Monit. – volume: 10 start-page: 395 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118330_bib0011 article-title: Advanced Bayesian multilevel modeling with the R package brms publication-title: R J. doi: 10.32614/RJ-2018-017 – volume: 22 start-page: 21 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118330_bib0037 article-title: Large-scale gradients in human cortical organization publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2017.11.002 – volume: 1 start-page: 128 issue: 2 year: 1963 ident: 10.1016/j.neuroimage.2021.118330_bib0027 article-title: Controllability and observability in multivariable control systems publication-title: J. Soc. Ind. Appl. Math. Ser. A Control doi: 10.1137/0301009 – volume: 15 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2021.118330_bib0052 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1058 – volume: 57 start-page: 1466 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2021.118330_bib0075 article-title: MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.04.041 – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2021.118330_bib0070 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2021.118330_bib0038 article-title: Matplotlib: a 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 8 start-page: 620 issue: 5 year: 1985 ident: 10.1016/j.neuroimage.2021.118330_bib0042 article-title: An eigensystem realization algorithm for modal parameter identification and model reduction publication-title: J. Guid. Control Dyn. doi: 10.2514/3.20031 – volume: 62 start-page: 201 issue: 3 year: 1990 ident: 10.1016/j.neuroimage.2021.118330_bib0076 article-title: Autoregression models of EEG: results compared with expectations for a multilinear near-equilibrium biophysical process publication-title: Biol. Cybern. doi: 10.1007/BF00198095 |
SSID | ssj0009148 |
Score | 2.4230845 |
Snippet | •A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure.•We show that the full multivariate... Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic... • A data-driven modal decomposition describes oscillations by their resonant frequency, damping time and network structure. • We show that the full... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118330 |
SubjectTerms | Alpha oscillation Alpha Rhythm - physiology Alzheimer's disease Autoregression Brain Brain - diagnostic imaging Brain - physiology Cognitive ability Connectome - methods Decomposition Eigenmodes Fourier transforms Humans Magnetoencephalography - methods MEG Multivariate Analysis Network Neural Networks, Computer Oscillations Phenotypes Spatial distribution Spectral decomposition |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHhAXxDeBgozE1Wy8dmxHnKC0qpDgUipV4mDFzqQNKtmqu3vltzOTOGkDl5W4ZRM78nomM2-S52fG3mmjLTSuFCFqLFDKJhfOhEZglJQuKhKH7NU-v5mTM_3lvDjfY4fjWhiiVabYP8T0PlqnM4s0m4vrtl2cIjLAdEN6XiQqYkh2W2tLXv7-9y3No5R6WA5XKEGtE5tn4Hj1mpHtL3xysVJcSowfThEf-k6K6pX8Z5nqXyT6N6HyToY6fsgeJGjJPw6jf8T2oHvM7n1NH8-fsB-fae05YcTugid-llhvA72J4ZdEi1mhNwHCct52vF-Ey7uBJb7m9L6Wn_b0a0F71tMA-BFJedJeOuun7Oz46PvhiUh7K4hoVL4RNZbFkBfBgcljEYpYF3ldGrQb1MtgQKnCYNHdWLW0DRqvqisrQ61sHcqYL0E9Y_vdqoMXjNdWAiDOcnltEY5FB5CDqfDQVbK0IWN2nE4fk_A47X9x5UeG2U9_awhPhvCDITImp57Xg_jGDn0-kcWm9iSf3Z9Y3Vz45D_eYFJWYHXMo9KlqlyjcMCEFxqoQELGytHeflyhijEVb9TuMIAPU9-ZJ-_Y-2B0L5-iydojLC0RemOszNjb6TLGAfq4U3Ww2lKbAstp2m4sY88Hb5zmgFQerdbY2878dDZJ8ytde9lrjTs0I1a0L__rT71i9-kXpXxZHLD9zc0WXiOW24Q3_cP6B5ZCSx8 priority: 102 providerName: Elsevier – databaseName: Proquest Health and Medical Complete dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96gvgifls9JYKvwXbTJik-iB93HIK-6MGCD6FJpnd7aHted_9_Z9K0e6sg-1a2SclmJjO_SSa_Yex1qUoNramF8yUGKHWbC6NcK9BKFsZLIoeMbJ9f1clp-XlZLdOG25DSKiebGA116D3tkb9B11wj_EB9eXf5W1DVKDpdTSU0brJbRF1GWq2Xeku6W5TjVbhKCoMNUibPmN8V-SJXv3DVYpS4KNB2GEm50NfcU2Tx3_FS_6LQv5Mpr3mn43vsboKV_P2oB_fZDegesNtf0sH5Q_bjE907J3zYnfGUmyWGjaNdGH5OKTE9ahIgJOerjscLuLwbM8QHTnu1_FtMvRZUr54GwI-IxpPq6AyP2Onx0fePJyLVVRBeyXwtAobEkFfOgMp95SofqjzUCmUGYeEUSFkpDLhbLRe6RcE1odGFC1IHV_t8AfIxO-j6Dp4yHnQBgBjL5EEjFPMGIAfV4KNpilq7jOlpOq1PpONU--KnnbLLLuxWEJYEYUdBZKyYe16OxBt79PlAEpvbE3V2_KG_OrNpJVqFDlmCLn3uZVnLxrQSB0xYoYUGCshYPcnbTrdT0Z7ih1Z7DODt3DchmBGZ7Nn7cFIvmyzJYLd6n7FX82u0AXSw03TQb6hNhaE0lRrL2JNRG-c5IIZHXZbYW-_o6c4k7b7pVueRZ9ygGDGaffb_YT1nd-g_kD8vqkN2sL7awAsEamv3Mq7GP5jWQAM priority: 102 providerName: ProQuest |
Title | Delineating between-subject heterogeneity in alpha networks with Spatio-Spectral Eigenmodes |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921006066 https://dx.doi.org/10.1016/j.neuroimage.2021.118330 https://www.ncbi.nlm.nih.gov/pubmed/34237443 https://www.proquest.com/docview/2569045963 https://www.proquest.com/docview/2550262172 https://pubmed.ncbi.nlm.nih.gov/PMC8456753 https://doaj.org/article/62843e74c0c3493a8f36a4ceedfeae1e |
Volume | 240 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgkRAXxJuwS2UkroG4fkZ72kdXBUSFgJUqcbBiZ8IWQYpoe-W3M5MXLRzogUsjNZnI8YxnvknG3zD2XBlloXJ5GqLCBCWvstSZUKXoJYWLksghG7bPmZleqtdzPd9q9UU1YS09cDtxLw36TwlWxSxKlcvCVdIUilx7BQUIIO-LMa9Ppnq6XUT5Xd1OW83VsEMuvuEaxZxwLNBTOEmVz1vBqOHs34lJf2POP0snt2LRxR12uwOR_KQd_F12Dep77Obb7jP5ffbpnHaZExqsP_OuEitdbQK9c-FXVACzRLsBBOB8UfNmuy2v23rwFac3s_xDU2idUnd6GgCfEGkndc1ZPWCXF5OPZ9O066KQRiOzdVpiAgyZDg5MFnXQsdRZmRvUEJTjYEBKbTC9rqwc2wrVVJSFFaGUtgx5zMYgH7KDelnDY8ZLKwAQUbmstAi8ogPIALWhjStEbkPCbD-dPnYU49Tp4qvva8m--N-K8KQI3yoiYWKQ_N7SbOwhc0oaG64nouzmDzQf35mP_5f5JCzv9e37vajoPfFGiz0GcDzIdnilxSF7Sh_15uU7v7HyCEBzBNnoFRP2bDiNK54-4xQ1LDd0jcbEmRqLJexRa43DHBCfo1UKpe2One5M0u6ZenHVsIo7VCPmrk_-x6weslv0pBTjhT5iB-sfG3iK4G0dRuz6i58Cf-3cjtiNk1dvpjM8nk5m796PmjX8C-9KTOQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4lkCBYwER4s4TmJHCCGgrbb0cWkrrcTBxM6kXQRJaXaF-FP8Rmby2O2ChPbSW5RkoolnPP7GngdjL-M01lCaTDgfo4OSlaEwqSsFWklpvKLikG21z8N0dBJ_GifjNfZ7yIWhsMrBJraGuqg97ZG_xqU5Q_iB-vLu_IegrlF0ujq00OjUYg9-_USXrXm7u4XyfRVFO9vHH0ei7yogfKrCqSjQIYQwcQbS0Ccu8UUSFlmKHEMRuRSUSlJ0N0utIl0i23mRa-kKpQuX-TAChd-9xq7jwhuSs6fHelHkV8Zd6l2ihJEy6yOHuniytj7l5DtaCfRKI4m2yiiKvb60HLZdA5ZWxX9R79_Bm5dWw5077HYPY_n7Tu_usjWo7rEbB_1B_X32eYvy3AmPVqe8jwUTzczRrg8_oxCcGjUX0AXgk4q3Cb-86iLSG057w_yoDfUWR5QJigzwbSobSn17mgfs5EpG_CFbr-oKHjFeaAmAmM6EhUbo5w1ACGmOlyaXmXYB08NwWt8XOadeG9_sEM321S4EYUkQthNEwOSc8rwr9LECzQeS2Px9KtXd3qgvTm0_822KAECBjn3oVZyp3JQKGSZsUkIOEgKWDfK2QzYs2m_80GQFBt7MaXvE1CGhFak3B_WyveVq7GKeBezF_DHaHDpIyiuoZ_ROgq47tTYL2EanjfMxoIqSOo6RWi_p6dIgLT-pJmdtXXODYkTv-fH_2XrObo6OD_bt_u7h3hN2i_6HsIRMNtn69GIGTxEkTt2zdmZy9uWqTcEfAO5-6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QXwTGGAkeIwWx0nsCCHEaKuNQTUxJk3iwSSOsxVBMtZWiH-Nv467xElXkFBf9lY1ucjxXX7-nX0fAM-jJJK2VKmfmwgdlLQMfJXkpY8oyZURVByyqfY5SfaOo3cn8ckG_O5yYSisssPEBqiL2tAe-Q4uzSnSD7SXndKFRRwOx6_Pf_jUQYpOWrt2Gq2JHNhfP9F9m73aH6KuX4ThePTp7Z7vOgz4JhHB3C_QObRBnCubBCbOY1PEQZEmOHpbhHlihYgTdD1LKUJZ4itkRSZ5XghZ5KkJQivwuddgU5JXNIDN3dHk8OOy5C-P2kS8WPiK89TFEbXRZU21yul3xAz0UUOOyKUERWJfWhybHgIra-S_HPjvUM5La-P4JtxwpJa9aa3wFmzY6jZsfXDH9nfg85Cy3omdVqfMRYb5s0VOe0DsjAJyarRjiw4Bm1asSf9lVRufPmO0U8yOmsBv_4jyQnEAbERFRKmLz-wuHF_JnN-DQVVX9gGwQnJrkeGpoJBIBI2yNrBJhj9VxlOZeyC76dTGlTynzhvfdBfb9lUvFaFJEbpVhAe8lzxvy36sIbNLGuvvp8LdzR_1xal2OKATpAPCysgERkSpyFQpcMDEVEqbWW49SDt96y43FtEcHzRdYwAve1nHn1petKb0dmde2uHYTC-_Og-e9ZcRgehYKatsvaB7YnTkqdGZB_dba-zngOpLyihCablipyuTtHqlmp41Vc4VqhF96Yf_H9ZT2EIY0O_3JweP4Dq9DhELHm_DYH6xsI-RMc7zJ-7TZPDlqtHgDxbqhIU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delineating+between-subject+heterogeneity+in+alpha+networks+with+Spatio-Spectral+Eigenmodes&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Andrew+J.+Quinn&rft.au=Gary+G.R.+Green&rft.au=Mark+Hymers&rft.date=2021-10-15&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=240&rft.spage=118330&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118330&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_62843e74c0c3493a8f36a4ceedfeae1e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |