Representation learning of resting state fMRI with variational autoencoder
•Variational auto-encoder disentangles generative factors of resting state fMRI activity.•Variational auto-encoder trained with unsupervised learning extracts useful latent representations discriminative across individuals.•Temporal gradients of the latent representations report various types of tra...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 241; p. 118423 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Variational auto-encoder disentangles generative factors of resting state fMRI activity.•Variational auto-encoder trained with unsupervised learning extracts useful latent representations discriminative across individuals.•Temporal gradients of the latent representations report various types of transition in cortical network activity.
Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity. |
---|---|
AbstractList | Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity. Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity.Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity. •Variational auto-encoder disentangles generative factors of resting state fMRI activity.•Variational auto-encoder trained with unsupervised learning extracts useful latent representations discriminative across individuals.•Temporal gradients of the latent representations report various types of transition in cortical network activity. Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity. |
ArticleNumber | 118423 |
Author | Liu, Zhongming Zhang, Yizhen Kim, Jung-Hoon Han, Kuan Choi, Minkyu Wen, Zheyu |
AuthorAffiliation | b Department of Electrical Engineering and Computer Science, University of Michigan, United States c Weldon School of Biomedical Engineering, Purdue University, United States a Department of Biomedical Engineering, University of Michigan, United States |
AuthorAffiliation_xml | – name: a Department of Biomedical Engineering, University of Michigan, United States – name: c Weldon School of Biomedical Engineering, Purdue University, United States – name: b Department of Electrical Engineering and Computer Science, University of Michigan, United States |
Author_xml | – sequence: 1 givenname: Jung-Hoon surname: Kim fullname: Kim, Jung-Hoon organization: Department of Biomedical Engineering, University of Michigan, United States – sequence: 2 givenname: Yizhen surname: Zhang fullname: Zhang, Yizhen organization: Department of Electrical Engineering and Computer Science, University of Michigan, United States – sequence: 3 givenname: Kuan surname: Han fullname: Han, Kuan organization: Department of Electrical Engineering and Computer Science, University of Michigan, United States – sequence: 4 givenname: Zheyu surname: Wen fullname: Wen, Zheyu organization: Department of Electrical Engineering and Computer Science, University of Michigan, United States – sequence: 5 givenname: Minkyu surname: Choi fullname: Choi, Minkyu organization: Department of Electrical Engineering and Computer Science, University of Michigan, United States – sequence: 6 givenname: Zhongming surname: Liu fullname: Liu, Zhongming email: zmliu@umich.edu organization: Department of Biomedical Engineering, University of Michigan, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34303794$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhiNURD_gL6BIXLhk8Vcc-4KAipZFRUgVnC3bGW8dsvbiJIv673G6LaV72pNHnpnHr-ed0-IoxABFUWK0wAjzd90iwJSiX-sVLAgieIGxYIQ-K04wknUl64YczXFNK4GxPC5Oh6FDCEnMxIvimDKKaCPZSfH1GjYJBgijHn0MZQ86BR9WZXRlvh_ncMg5KN2362X5x4835VYnf1et-1JPY4RgYwvpZfHc6X6AV_fnWfHz4vOP8y_V1ffL5fnHq8pyisbKNsSRVjSmIdy42nHLWiFxC8w5xqUgdU25xsYSSYk1YKjhjODGEE4MB0HPiuWO20bdqU3KU0i3Kmqv7i5iWimdRm97UBpkA1Q6KxrLsGy1cdgZyiypiURNm1nvd6zNZNbQ2jyHpPsn0KeZ4G_UKm6VYKImmGXA23tAir-nPDC19oOFvtcB4jSo_Jua0prxWfebvdIuTikPca7igiOUbclVr_9X9E_Kg2WPkm2Kw5DAKet35mWBvlcYqXlHVKced0TNO6J2O5IBYg_w8MYBrZ92rZD93XpIarA-2w-tT2DHbIA_BPJhD2J7H7zV_S-4PQzxF5a_82o |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2024_120651 crossref_primary_10_1016_j_neuroimage_2023_120142 crossref_primary_10_3389_fncom_2024_1478193 crossref_primary_10_1007_s11063_022_11108_w crossref_primary_10_3389_fnhum_2023_1134012 crossref_primary_10_1016_j_media_2023_102756 crossref_primary_10_7554_eLife_80878 crossref_primary_10_1109_ACCESS_2023_3340266 crossref_primary_10_1016_j_patter_2024_100930 crossref_primary_10_1016_j_neuroimage_2024_120806 crossref_primary_10_1038_s41598_024_76695_1 crossref_primary_10_1162_netn_a_00281 crossref_primary_10_1088_1748_9326_ad0607 crossref_primary_10_1155_2022_1124927 crossref_primary_10_1016_j_compbiomed_2023_107395 crossref_primary_10_1016_j_knosys_2024_112597 crossref_primary_10_3389_fpsyt_2024_1397093 crossref_primary_10_3390_bioengineering10101209 |
Cites_doi | 10.1016/j.neuroimage.2016.01.005 10.1016/j.tics.2013.06.007 10.1016/j.neuroimage.2013.08.048 10.1002/hbm.1024 10.1371/journal.pcbi.1003915 10.1093/cercor/bhs352 10.1016/j.neuroimage.2018.11.016 10.3389/fnins.2019.00434 10.1109/TMI.2017.2715285 10.1176/ajp.2007.164.3.450 10.1016/j.neuroimage.2008.09.036 10.1038/nrn2719 10.1016/j.neuroimage.2018.01.029 10.1038/s41593-017-0007-y 10.1073/pnas.0504136102 10.1016/j.neuroimage.2015.03.070 10.1073/pnas.1608282113 10.1016/j.neuroimage.2019.116459 10.1038/s41467-019-10317-7 10.1073/pnas.1520613113 10.1016/j.neuroimage.2019.116276 10.1162/netn_a_00068 10.1016/j.neuroimage.2019.06.012 10.1002/mrm.1910340409 10.1038/srep40722 10.1016/j.neuroimage.2011.10.059 10.1016/j.jneumeth.2019.108506 10.1038/nrn2201 10.1073/pnas.1501242112 10.1371/journal.pcbi.1007263 10.1016/j.neuroimage.2019.116398 10.7554/eLife.33321 10.1016/j.mri.2019.05.031 10.1016/j.neuroimage.2016.09.046 10.1038/nn.4244 10.1016/j.neuroimage.2013.11.046 10.1016/j.neuroimage.2014.03.034 10.1016/j.neuroimage.2012.01.021 10.1109/ACCESS.2017.2762703 10.1016/j.neuroimage.2011.01.008 10.1016/j.neuroimage.2019.05.039 10.3389/fnins.2020.00881 10.1371/journal.pcbi.0010042 10.1016/j.neuroimage.2007.11.059 10.1038/nature14539 10.1073/pnas.0700668104 10.1109/TMI.2003.822821 10.1089/brain.2017.0561 10.1016/j.neuroimage.2017.09.012 10.1016/j.neuroimage.2013.04.127 10.3389/fnins.2019.01136 10.1038/s42003-019-0659-0 10.1038/s41593-019-0520-2 10.1016/j.neuron.2018.03.044 10.1073/pnas.1405003111 10.1073/pnas.0905267106 10.1073/pnas.1121329109 10.3389/fnins.2014.00229 10.1016/j.tics.2019.03.007 10.1016/j.neuroimage.2009.11.011 10.1002/hbm.24006 10.1109/TBME.2019.2895663 10.1007/978-3-030-59728-3_52 10.1016/j.neuroimage.2013.05.079 10.1162/netn_a_00129 10.1016/j.mri.2009.02.004 10.1016/j.neucom.2018.09.066 10.1002/hbm.24891 10.1016/j.neuroimage.2014.10.002 10.1016/j.mri.2010.03.002 10.1016/j.neuroimage.2013.05.041 10.1016/j.neuroimage.2009.12.011 10.1038/nn.4135 10.1038/nature18933 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Nov 1, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Nov 1, 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM DOA |
DOI | 10.1016/j.neuroimage.2021.118423 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 118423 |
ExternalDocumentID | oai_doaj_org_article_ae97e39fc87c419dabf1fb34c252907d PMC8485214 34303794 10_1016_j_neuroimage_2021_118423 S1053811921006984 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH104402 – fundername: NCCIH NIH HHS grantid: R01 AT011665 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c630t-c72f2d87b726bf5f6c4d891de4ff469825536a1bc2932cbeb3b64217b262b6e83 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:25:36 EDT 2025 Thu Aug 21 17:54:49 EDT 2025 Thu Jul 10 23:46:26 EDT 2025 Wed Aug 13 03:33:05 EDT 2025 Mon Jul 21 05:24:25 EDT 2025 Thu Apr 24 22:53:29 EDT 2025 Tue Jul 01 03:02:19 EDT 2025 Fri Feb 23 02:41:22 EST 2024 Tue Aug 26 20:02:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Variational autoencoder Deep generative model Latent gradients Unsupervised learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-c72f2d87b726bf5f6c4d891de4ff469825536a1bc2932cbeb3b64217b262b6e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Zhongming Liu conceived the original idea. Jung-Hoon Kim, Yizhen Zhang, Kuan Han, Minkyu Choi and Zhongming Liu designed and implemented the model and algorithm. Jung-Hoon Kim and Yizhen Zhang performed the analysis. Zheyu Wen helped debugging of the model and the final algorithm. Jung-Hoon Kim and Minkyu Choi documented the model and source code. Jung-Hoon Kim and Zhongming Liu wrote the paper. Author credits |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811921006984 |
PMID | 34303794 |
PQID | 2568600343 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ae97e39fc87c419dabf1fb34c252907d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8485214 proquest_miscellaneous_2555335468 proquest_journals_2568600343 pubmed_primary_34303794 crossref_citationtrail_10_1016_j_neuroimage_2021_118423 crossref_primary_10_1016_j_neuroimage_2021_118423 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118423 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118423 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Yang, Zhou, Ni, Xu, Chen, Wang, Lei (bib0102) 2019 Bright, Murphy (bib0008) 2015; 114 Fox, Raichle (bib0029) 2007; 8 Richards, Lillicrap, Beaudoin, Bengio, Bogacz, Christensen, Clopath, Costa, de Berker, Ganguli (bib0080) 2019; 22 Venkatesh, Jaja, Pessoa (bib0094) 2019; 186 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0082) 2014; 90 Suk, Wee, Lee, Shen (bib0091) 2016; 129 Cui, Zhao, Chen, Han, Guo, Xie, Liu (bib0018) 2019 Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner (bib0040) 2017; 2 Calhoun, Adali, Pearlson, Pekar (bib0012) 2001; 13 Koppe, Toutounji, Kirsch, Lis, Durstewitz (bib0054) 2019; 15 Shi, Wen, Zhang, Han, Liu (bib0087) 2018; 39 Liégeois, Li, Kong, Orban, Van De Ville, Ge, Sabuncu, Yeo (bib0059) 2019; 10 Sutskever, Vinyals, Le (bib0092) 2014 Huang, Hu, Zhao, Makkie, Dong, Zhao, Guo, Liu (bib0041) 2017; 37 Matsubara, Tashiro, Uehara (bib0068) 2019; 66 Fischl (bib0026) 2012; 62 . Kashyap, Keilholz (bib0044) 2020; 4 Biswal, Zerrin Yetkin, Haughton, Hyde (bib0007) 1995; 34 Nair, Hinton (bib0072) 2010 Gonzalez-Castillo, Hoy, Handwerker, Robinson, Buchanan, Saad, Bandettini (bib0035) 2015; 112 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird (bib0088) 2009; 106 Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (bib0075) 2014; 84 Khemakhem, I., Kingma, D.P., Hyvärinen, A., 2019. Variational autoencoders and nonlinear ICA: a unifying framework. arXiv preprint arXiv:1907.04809. Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. Byrge, Kennedy (bib0011) 2019; 3 Mantini, Perrucci, Del Gratta, Romani, Corbetta (bib0066) 2007; 104 Bianciardi, Fukunaga, van Gelderen, Horovitz, de Zwart, Shmueli, Duyn (bib0005) 2009; 27 Kriegeskorte, Kievit (bib0055) 2013; 17 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (bib0037) 2014; 95 Khosla, Jamison, Kuceyeski, Sabuncu (bib0049) 2019; 199 Liégeois, Laumann, Snyder, Zhou, Yeo (bib0058) 2017; 163 Kell, Yamins, Shook, Norman-Haignere, McDermott (bib0046) 2018; 98 Smith, Miller, Moeller, Xu, Auerbach, Woolrich, Beckmann, Jenkinson, Andersson, Glasser (bib0089) 2012; 109 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib0093) 2013; 80 Han, Wen, Shi, Lu, Zhang, Fu, Liu (bib0038) 2019; 198 Liu, Zhao, Wang, Xin, Zhao, Guttery, Zhang (bib0061) 2020 Chang, Glover (bib0013) 2010; 50 Yu, Y., Chan, K.H.R., You, C., Song, C., Ma, Y., 2020. Learning diverse and discriminative representations via the principle of maximal coding rate reduction. arXiv Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni (bib0103) 2011 Venkatesh, Jaja, Pessoa (bib0095) 2020; 207 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib0030) 2005; 102 Beckmann, Smith (bib0004) 2004; 23 Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (bib0074) 2014; 8 Birn, Smith, Jones, Bandettini (bib0006) 2008; 40 Lu, Jaime, Yang (bib0063) 2019; 13 Lucas, Tucker, Grosse, Norouzi (bib0064) 2019; 32 Jarrett (bib0043) 2009 Rogers, Katwal, Morgan, Asplund, Gore (bib0081) 2010; 28 Murphy, Birn, Handwerker, Jones, Bandettini (bib0071) 2009; 44 Rebollo, Devauchelle, Beranger, Tallon-Baudry (bib0078) 2018; 7 Seo, Morante, Kopsinis, Theodoridis (bib0084) 2019 Garrity, Pearlson, McKiernan, Lloyd, Kiehl, Calhoun (bib0032) 2007; 164 Gadgil, S., Zhao, Q., Adeli, E., Pfefferbaum, A., Sullivan, E.V., Pohl, K.M., 2020. Spatio-temporal graph convolution for functional MRI analysis. arXiv preprint arXiv:2003.10613. Amico, Goñi (bib0002) 2018; 8 He, Kong, Holmes, Nguyen, Sabuncu, Eickhoff, Bzdok, Feng, Yeo (bib0039) 2020; 206 Shen, Wang, Liu, Hu (bib0086) 2010; 49 Özbay, Chang, Picchioni, Mandelkow, Chappel-Farley, van Gelderen, de Zwart, Duyn (bib0073) 2019; 2 Dvornek, Yang, Ventola, Duncan (bib0022) 2018 Fox, Buckner, Liu, Chakravarty, Lozano, Pascual-Leone (bib0027) 2014; 111 Rakic (bib0077) 2009; 10 Zhang, Wang, Zhou, Yuan, Shen, Initiative (bib0105) 2011; 55 Chen, Hu (bib0015) 2018; 8 Kim, Lee (bib0051) 2016 Moradi, Pepe, Gaser, Huttunen, Tohka, Initiative (bib0070) 2015; 104 Wang, Liang, Jiang, Nguchu, Zhou, Wang, Wang, Li, Zhu, Wu (bib0097) 2020; 41 Sporns, Tononi, Kötter (bib0090) 2005; 1 Khaligh-Razavi, Kriegeskorte (bib0047) 2014; 10 Khosla, Jamison, Ngo, Kuceyeski, Sabuncu (bib0050) 2019 LeCun, Bengio, Hinton (bib0056) 2015; 521 Liu, Li, Yan, Wang, Ma, Shen, Xu, Initiative (bib0060) 2020; 208 Azzalini, Rebollo, Tallon-Baudry (bib0003) 2019; 23 Chou, Sundman, Whitson, Gaur, Chu, Weingarten, Madden, Wang, Kirste, Joliot (bib0016) 2017; 7 Makkie, Huang, Zhao, Vasilakos, Liu (bib0065) 2019; 325 Mejia, Nebel, Barber, Choe, Pekar, Caffo, Lindquist (bib0069) 2018; 172 Zhang, Han, Worth, Liu (bib0106) 2020; 11 Zhao, Honnorat, Adeli, Pfefferbaum, Sullivan, Pohl (bib0107) 2019 Winder, Echagarruga, Zhang, Drew (bib0100) 2017; 20 Shao, H., Lin H., Yang, Q., Yao S., Zhao, H., Abdelzaher, T., 2020. DynamicVAE: Decoupling reconstruction error and disentangled representation learning. arXiv:2009.06795 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib0025) 2015; 18 D'Souza, Nebel, Wymbs, Mostofsky, Venkataraman (bib0019) 2019 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson (bib0033) 2016; 536 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib0034) 2013; 80 Chang, Leopold, Schölvinck, Mandelkow, Picchioni, Liu, Frank, Turchi, Duyn (bib0014) 2016; 113 Margulies, Ghost, Goulas, Falkiewicz, Huntenburg, Langs, Bezgin, Eickhoff, Castellanos, Petrides, Jefferies, Smallwood (bib0067) 2016; 113 Leopold, Maier (bib0057) 2012; 62 Zhao, Li, Zhang, Zhao, Makkie, Zhang, Li, Liu (bib0108) 2018 Riaz, Asad, Alonso, Slabaugh (bib0079) 2020; 335 Kawahara, Brown, Miller, Booth, Chau, Grunau, Zwicker, Hamarneh (bib0045) 2017; 146 Wang, Li, Chen, Hu (bib0096) 2019; 13 Wen, Shi, Chen, Liu (bib0099) 2018; 8 Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib0001) 2014; 24 Brown, Lee, Pasquini, Seeley (bib0009) 2021 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo (bib0042) 2013; 80 Yamins, DiCarlo (bib0101) 2016; 19 Fan, Su, Qin, Hu, Shen (bib0024) 2020; 14 Zou, Zheng, Miao, Mckeown, Wang (bib0109) 2017; 5 Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. Power (10.1016/j.neuroimage.2021.118423_bib0075) 2014; 84 Liégeois (10.1016/j.neuroimage.2021.118423_bib0058) 2017; 163 Fox (10.1016/j.neuroimage.2021.118423_bib0027) 2014; 111 Wang (10.1016/j.neuroimage.2021.118423_bib0096) 2019; 13 Liu (10.1016/j.neuroimage.2021.118423_bib0061) 2020 Bianciardi (10.1016/j.neuroimage.2021.118423_bib0005) 2009; 27 Venkatesh (10.1016/j.neuroimage.2021.118423_bib0095) 2020; 207 Wang (10.1016/j.neuroimage.2021.118423_bib0097) 2020; 41 Amico (10.1016/j.neuroimage.2021.118423_bib0002) 2018; 8 Mejia (10.1016/j.neuroimage.2021.118423_bib0069) 2018; 172 Yang (10.1016/j.neuroimage.2021.118423_bib0102) 2019 Khosla (10.1016/j.neuroimage.2021.118423_bib0050) 2019 Garrity (10.1016/j.neuroimage.2021.118423_bib0032) 2007; 164 Richards (10.1016/j.neuroimage.2021.118423_bib0080) 2019; 22 Calhoun (10.1016/j.neuroimage.2021.118423_bib0012) 2001; 13 10.1016/j.neuroimage.2021.118423_bib0031 Chang (10.1016/j.neuroimage.2021.118423_bib0013) 2010; 50 Kim (10.1016/j.neuroimage.2021.118423_bib0051) 2016 Huang (10.1016/j.neuroimage.2021.118423_bib0041) 2017; 37 Fox (10.1016/j.neuroimage.2021.118423_bib0029) 2007; 8 Yamins (10.1016/j.neuroimage.2021.118423_bib0101) 2016; 19 Riaz (10.1016/j.neuroimage.2021.118423_bib0079) 2020; 335 Chou (10.1016/j.neuroimage.2021.118423_bib0016) 2017; 7 Winder (10.1016/j.neuroimage.2021.118423_bib0100) 2017; 20 Lucas (10.1016/j.neuroimage.2021.118423_bib0064) 2019; 32 Azzalini (10.1016/j.neuroimage.2021.118423_bib0003) 2019; 23 Shi (10.1016/j.neuroimage.2021.118423_bib0087) 2018; 39 Biswal (10.1016/j.neuroimage.2021.118423_bib0007) 1995; 34 D'Souza (10.1016/j.neuroimage.2021.118423_bib0019) 2019 Zhao (10.1016/j.neuroimage.2021.118423_bib0108) 2018 Lu (10.1016/j.neuroimage.2021.118423_bib0063) 2019; 13 Zhang (10.1016/j.neuroimage.2021.118423_bib0106) 2020; 11 He (10.1016/j.neuroimage.2021.118423_bib0039) 2020; 206 Khaligh-Razavi (10.1016/j.neuroimage.2021.118423_bib0047) 2014; 10 Shen (10.1016/j.neuroimage.2021.118423_bib0086) 2010; 49 Plis (10.1016/j.neuroimage.2021.118423_bib0074) 2014; 8 10.1016/j.neuroimage.2021.118423_bib0053 10.1016/j.neuroimage.2021.118423_bib0052 Sporns (10.1016/j.neuroimage.2021.118423_bib0090) 2005; 1 Sutskever (10.1016/j.neuroimage.2021.118423_bib0092) 2014 Kriegeskorte (10.1016/j.neuroimage.2021.118423_bib0055) 2013; 17 Smith (10.1016/j.neuroimage.2021.118423_bib0088) 2009; 106 Kell (10.1016/j.neuroimage.2021.118423_bib0046) 2018; 98 Smith (10.1016/j.neuroimage.2021.118423_bib0089) 2012; 109 Glasser (10.1016/j.neuroimage.2021.118423_bib0034) 2013; 80 Salimi-Khorshidi (10.1016/j.neuroimage.2021.118423_bib0082) 2014; 90 Rogers (10.1016/j.neuroimage.2021.118423_bib0081) 2010; 28 10.1016/j.neuroimage.2021.118423_bib0048 Moradi (10.1016/j.neuroimage.2021.118423_bib0070) 2015; 104 10.1016/j.neuroimage.2021.118423_bib0085 Zhang (10.1016/j.neuroimage.2021.118423_bib0105) 2011; 55 Byrge (10.1016/j.neuroimage.2021.118423_bib0011) 2019; 3 Griffanti (10.1016/j.neuroimage.2021.118423_bib0037) 2014; 95 Zhao (10.1016/j.neuroimage.2021.118423_bib0107) 2019 Leopold (10.1016/j.neuroimage.2021.118423_bib0057) 2012; 62 Yeo (10.1016/j.neuroimage.2021.118423_bib0103) 2011 Allen (10.1016/j.neuroimage.2021.118423_bib0001) 2014; 24 Birn (10.1016/j.neuroimage.2021.118423_bib0006) 2008; 40 Gonzalez-Castillo (10.1016/j.neuroimage.2021.118423_bib0035) 2015; 112 Liu (10.1016/j.neuroimage.2021.118423_bib0060) 2020; 208 Han (10.1016/j.neuroimage.2021.118423_bib0038) 2019; 198 Glasser (10.1016/j.neuroimage.2021.118423_bib0033) 2016; 536 LeCun (10.1016/j.neuroimage.2021.118423_bib0056) 2015; 521 Rakic (10.1016/j.neuroimage.2021.118423_bib0077) 2009; 10 Koppe (10.1016/j.neuroimage.2021.118423_bib0054) 2019; 15 Beckmann (10.1016/j.neuroimage.2021.118423_bib0004) 2004; 23 Rebollo (10.1016/j.neuroimage.2021.118423_bib0078) 2018; 7 Bright (10.1016/j.neuroimage.2021.118423_bib0008) 2015; 114 Fischl (10.1016/j.neuroimage.2021.118423_bib0026) 2012; 62 Özbay (10.1016/j.neuroimage.2021.118423_bib0073) 2019; 2 10.1016/j.neuroimage.2021.118423_bib0104 Van Essen (10.1016/j.neuroimage.2021.118423_bib0093) 2013; 80 Matsubara (10.1016/j.neuroimage.2021.118423_bib0068) 2019; 66 Seo (10.1016/j.neuroimage.2021.118423_bib0084) 2019 Hutchison (10.1016/j.neuroimage.2021.118423_bib0042) 2013; 80 Wen (10.1016/j.neuroimage.2021.118423_bib0099) 2018; 8 Zou (10.1016/j.neuroimage.2021.118423_bib0109) 2017; 5 Fox (10.1016/j.neuroimage.2021.118423_bib0030) 2005; 102 Jarrett (10.1016/j.neuroimage.2021.118423_bib0043) 2009 Chang (10.1016/j.neuroimage.2021.118423_bib0014) 2016; 113 Chen (10.1016/j.neuroimage.2021.118423_bib0015) 2018; 8 Khosla (10.1016/j.neuroimage.2021.118423_bib0049) 2019; 199 Brown (10.1016/j.neuroimage.2021.118423_bib0009) 2021 Higgins (10.1016/j.neuroimage.2021.118423_bib0040) 2017; 2 Suk (10.1016/j.neuroimage.2021.118423_bib0091) 2016; 129 Margulies (10.1016/j.neuroimage.2021.118423_bib0067) 2016; 113 Finn (10.1016/j.neuroimage.2021.118423_bib0025) 2015; 18 Nair (10.1016/j.neuroimage.2021.118423_bib0072) 2010 Cui (10.1016/j.neuroimage.2021.118423_bib0018) 2019 Fan (10.1016/j.neuroimage.2021.118423_bib0024) 2020; 14 Venkatesh (10.1016/j.neuroimage.2021.118423_bib0094) 2019; 186 Murphy (10.1016/j.neuroimage.2021.118423_bib0071) 2009; 44 Kawahara (10.1016/j.neuroimage.2021.118423_bib0045) 2017; 146 Dvornek (10.1016/j.neuroimage.2021.118423_bib0022) 2018 Mantini (10.1016/j.neuroimage.2021.118423_bib0066) 2007; 104 Kashyap (10.1016/j.neuroimage.2021.118423_bib0044) 2020; 4 Liégeois (10.1016/j.neuroimage.2021.118423_bib0059) 2019; 10 Makkie (10.1016/j.neuroimage.2021.118423_bib0065) 2019; 325 |
References_xml | – volume: 5 start-page: 23626 year: 2017 end-page: 23636 ident: bib0109 article-title: 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI publication-title: IEEE Access – start-page: 709 year: 2019 end-page: 717 ident: bib0019 article-title: Integrating neural networks and dictionary learning for multidimensional clinical characterizations from functional connectomics data publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 62 start-page: 2190 year: 2012 end-page: 2200 ident: bib0057 article-title: Ongoing physiological processes in the cerebral cortex publication-title: Neuroimage – volume: 32 year: 2019 ident: bib0064 article-title: Don't blame the ELBO! A linear VAE perspective on posterior collapse publication-title: Adv. Neural Inf. Process. Syst. – reference: Shao, H., Lin H., Yang, Q., Yao S., Zhao, H., Abdelzaher, T., 2020. DynamicVAE: Decoupling reconstruction error and disentangled representation learning. arXiv:2009.06795 – volume: 208 year: 2020 ident: bib0060 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease publication-title: Neuroimage – volume: 7 start-page: e33321 year: 2018 ident: bib0078 article-title: Stomach-brain synchrony reveals a novel, delayed connectivity resting-state network in humans publication-title: eLife – volume: 207 year: 2020 ident: bib0095 article-title: Comparing functional connectivity matrices: A geometry-aware approach applied to participant identification publication-title: Neuroimage – volume: 8 start-page: 229 year: 2014 ident: bib0074 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. – volume: 325 start-page: 20 year: 2019 end-page: 30 ident: bib0065 article-title: Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics publication-title: Neurocomputing – volume: 98 start-page: 630 year: 2018 end-page: 644 ident: bib0046 article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy publication-title: Neuron – volume: 113 start-page: 12574 year: 2016 end-page: 12579 ident: bib0067 article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization publication-title: Proc. Natl. Acad. Sci. – volume: 17 start-page: 401 year: 2013 end-page: 412 ident: bib0055 article-title: Representational geometry: integrating cognition, computation, and the brain publication-title: Trends Cognit. Sci. – volume: 2 start-page: 6 year: 2017 ident: bib0040 article-title: beta-VAE: learning basic visual concepts with a constrained variational framework publication-title: ICLR – volume: 198 start-page: 125 year: 2019 end-page: 136 ident: bib0038 article-title: Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex publication-title: Neuroimage – volume: 24 start-page: 663 year: 2014 end-page: 676 ident: bib0001 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebral Cortex – volume: 8 start-page: 700 year: 2007 end-page: 711 ident: bib0029 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nature Rev. Neurosci. – year: 2020 ident: bib0061 article-title: Deep spatio-temporal representation and ensemble classification for attention deficit/Hyperactivity disorder publication-title: IEEE Trans. Neural Syst. Rehabil. Eng – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: bib0004 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging – volume: 164 start-page: 450 year: 2007 end-page: 457 ident: bib0032 article-title: Aberrant “default mode” functional connectivity in schizophrenia publication-title: Am. J. Psych. – volume: 15 year: 2019 ident: bib0054 article-title: Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI publication-title: PLoS Comput. Biol. – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib0026 article-title: FreeSurfer publication-title: Neuroimage – volume: 1 year: 2005 ident: bib0090 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. – start-page: 181 year: 2018 end-page: 189 ident: bib0108 article-title: Modeling 4d fMRI data via spatio-temporal convolutional neural networks (st-cnn) publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 146 start-page: 1038 year: 2017 end-page: 1049 ident: bib0045 article-title: BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment publication-title: Neuroimage – reference: Yu, Y., Chan, K.H.R., You, C., Song, C., Ma, Y., 2020. Learning diverse and discriminative representations via the principle of maximal coding rate reduction. arXiv: – volume: 199 start-page: 651 year: 2019 end-page: 662 ident: bib0049 article-title: Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction publication-title: Neuroimage – volume: 50 start-page: 81 year: 2010 end-page: 98 ident: bib0013 article-title: Time–frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: Neuroimage – volume: 109 start-page: 3131 year: 2012 end-page: 3136 ident: bib0089 article-title: Temporally-independent functional modes of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. – start-page: 807 year: 2010 end-page: 814 ident: bib0072 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: bib0105 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage – volume: 23 start-page: 488 year: 2019 end-page: 509 ident: bib0003 article-title: Visceral signals shape brain dynamics and cognition publication-title: Trends Cognit. Sci. – volume: 18 start-page: 1664 year: 2015 ident: bib0025 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nature Neurosci. – start-page: 608 year: 2019 end-page: 620 ident: bib0084 article-title: Unsupervised pre-training of the brain connectivity dynamic using residual D-Net publication-title: Proceedings of the International Conference on Neural Information Processing – volume: 28 start-page: 1058 year: 2010 end-page: 1065 ident: bib0081 article-title: Functional MRI and multivariate autoregressive models publication-title: Magnet. Reson. Imaging – year: 2019 ident: bib0102 article-title: Fused sparse network learning for longitudinal analysis of mild cognitive impairment publication-title: IEEE Trans. Cybern. – volume: 10 start-page: 724 year: 2009 end-page: 735 ident: bib0077 article-title: Evolution of the neocortex: a perspective from developmental biology publication-title: Nature Rev. Neurosci. – start-page: 1 year: 2016 end-page: 4 ident: bib0051 article-title: Evaluation of weight sparsity control during autoencoder training of resting-state fMRI using non-zero ratio and Hoyer's sparseness publication-title: Proceedings of the International Workshop on Pattern Recognition in Neuroimaging (PRNI) – volume: 66 start-page: 2768 year: 2019 end-page: 2779 ident: bib0068 article-title: Deep neural generative model of functional MRI images for psychiatric disorder diagnosis publication-title: IEEE Trans. Biomed. Eng. – volume: 27 start-page: 1019 year: 2009 end-page: 1029 ident: bib0005 article-title: Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study publication-title: Magnet. Resonance Imaging – volume: 8 start-page: 1 year: 2018 end-page: 17 ident: bib0099 article-title: Deep residual network predicts cortical representation and organization of visual features for rapid categorization publication-title: Scient. Rep. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0056 article-title: Deep learning publication-title: Nature – volume: 10 start-page: 2317 year: 2019 ident: bib0059 article-title: Resting brain dynamics at different timescales capture distinct aspects of human behavior publication-title: Nature Commun. – volume: 114 start-page: 158 year: 2015 end-page: 169 ident: bib0008 article-title: Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure publication-title: NeuroImage – year: 2009 ident: bib0043 article-title: The restless brain publication-title: Psychologist – volume: 3 start-page: 363 year: 2019 end-page: 383 ident: bib0011 article-title: High-accuracy individual identification using a “thin slice” of the functional connectome publication-title: Netw. Neurosci. – volume: 129 start-page: 292 year: 2016 end-page: 307 ident: bib0091 article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI publication-title: Neuroimage – volume: 186 start-page: 410 year: 2019 end-page: 423 ident: bib0094 article-title: Brain dynamics and temporal trajectories during task and naturalistic processing publication-title: Neuroimage – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bib0030 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. – volume: 80 start-page: 360 year: 2013 end-page: 378 ident: bib0042 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage – volume: 19 start-page: 356 year: 2016 end-page: 365 ident: bib0101 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nature Neurosci. – reference: Gadgil, S., Zhao, Q., Adeli, E., Pfefferbaum, A., Sullivan, E.V., Pohl, K.M., 2020. Spatio-temporal graph convolution for functional MRI analysis. arXiv preprint arXiv:2003.10613. – volume: 4 start-page: 448 year: 2020 end-page: 466 ident: bib0044 article-title: Brain network constraints and recurrent neural networks reproduce unique trajectories and state transitions seen over the span of minutes in resting-state fMRI publication-title: Network Neurosci. – volume: 8 start-page: 1 year: 2018 end-page: 14 ident: bib0002 article-title: The quest for identifiability in human functional connectomes publication-title: Scienti. Rep. – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib0007 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magnet. Resonance Med. – year: 2011 ident: bib0103 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – volume: 13 year: 2019 ident: bib0063 article-title: Origins of the resting-state functional MRI signal: potential limitations of the “neurocentric” model publication-title: Front. Neurosci. – volume: 113 start-page: 4518 year: 2016 end-page: 4523 ident: bib0014 article-title: Tracking brain arousal fluctuations with fMRI publication-title: Proc. Natl. Acad. Sci. – volume: 13 start-page: 43 year: 2001 end-page: 53 ident: bib0012 article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms publication-title: Human Brain Map. – volume: 111 start-page: E4367 year: 2014 end-page: E4375 ident: bib0027 article-title: Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases publication-title: Proc. Natl. Acad. Sci. – reference: Khemakhem, I., Kingma, D.P., Hyvärinen, A., 2019. Variational autoencoders and nonlinear ICA: a unifying framework. arXiv preprint arXiv:1907.04809. – volume: 20 start-page: 1761 year: 2017 end-page: 1769 ident: bib0100 article-title: Weak correlations between hemodynamic signals and ongoing neural activity during the resting state publication-title: Nature Neurosci. – start-page: 3104 year: 2014 end-page: 3112 ident: bib0092 article-title: Sequence to sequence learning with neural networks publication-title: Advances in neural information processing systems – reference: Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. – volume: 84 start-page: 320 year: 2014 end-page: 341 ident: bib0075 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: Neuroimage – year: 2021 ident: bib0009 article-title: A dynamic gradient architecture generates brain activity states publication-title: bioRxiv – volume: 172 start-page: 478 year: 2018 end-page: 491 ident: bib0069 article-title: Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage publication-title: Neuroimage – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: bib0082 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: bib0033 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature – year: 2019 ident: bib0018 article-title: Modeling brain diverse and complex hemodynamic response patterns via deep recurrent autoencoder publication-title: IEEE Trans. Cogn. Devel. Syst – volume: 39 start-page: 2269 year: 2018 end-page: 2282 ident: bib0087 article-title: Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision publication-title: Human Brain Map. – volume: 40 start-page: 644 year: 2008 end-page: 654 ident: bib0006 article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration publication-title: Neuroimage – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0034 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib0037 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage – start-page: 329 year: 2018 end-page: 337 ident: bib0022 article-title: Learning generalizable recurrent neural networks from small task-fmri datasets publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 2 start-page: 421 year: 2019 ident: bib0073 article-title: Sympathetic activity contributes to the fMRI signal publication-title: Commun. Biol. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0093 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage – volume: 10 year: 2014 ident: bib0047 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib0088 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. – volume: 11 start-page: 1 year: 2020 end-page: 13 ident: bib0106 article-title: Connecting concepts in the brain by mapping cortical representations of semantic relations publication-title: Nature Commun. – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: bib0070 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: Neuroimage – year: 2019 ident: bib0050 article-title: Machine learning in resting-state fMRI analysis publication-title: Magnet. Resonance Imaging – volume: 22 start-page: 1761 year: 2019 end-page: 1770 ident: bib0080 article-title: A deep learning framework for neuroscience publication-title: Nature Neurosci. – volume: 14 start-page: 881 year: 2020 ident: bib0024 article-title: A deep network model on dynamic functional connectivity with applications to gender classification and intelligence prediction publication-title: Front. Neurosci. – volume: 41 start-page: 1505 year: 2020 end-page: 1519 ident: bib0097 article-title: Decoding and mapping task states of the human brain via deep learning publication-title: Human Brain Map. – volume: 37 start-page: 1551 year: 2017 end-page: 1561 ident: bib0041 article-title: Modeling task fMRI data via deep convolutional autoencoder publication-title: IEEE Trans. Med. Imaging – volume: 44 start-page: 893 year: 2009 end-page: 905 ident: bib0071 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: Neuroimage – start-page: 867 year: 2019 end-page: 879 ident: bib0107 article-title: Variational autoencoder with truncated mixture of gaussians for functional connectivity analysis publication-title: Proceedings of the International Conference on Information Processing in Medical Imaging – reference: . – volume: 104 start-page: 13170 year: 2007 end-page: 13175 ident: bib0066 article-title: Electrophysiological signatures of resting state networks in the human brain publication-title: Proc. Natl. Acad. Sci. – volume: 8 start-page: 197 year: 2018 end-page: 204 ident: bib0015 article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network publication-title: Brain Connect. – volume: 112 start-page: 8762 year: 2015 end-page: 8767 ident: bib0035 article-title: Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns publication-title: Proc. Natl. Acad. Sci. – volume: 163 start-page: 437 year: 2017 ident: bib0058 article-title: Interpreting temporal fluctuations in resting-state functional connectivity MRI publication-title: NeuroImage – reference: Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. – volume: 13 start-page: 434 year: 2019 ident: bib0096 article-title: Application of convolutional recurrent neural network for individual recognition based on resting state fMRI data publication-title: Front. Neurosci. – volume: 206 year: 2020 ident: bib0039 article-title: Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics publication-title: Neuroimage – volume: 7 start-page: 40722 year: 2017 ident: bib0016 article-title: Maintenance and representation of mind wandering during Resting-State fMRI publication-title: Scient. Rep. – volume: 335 year: 2020 ident: bib0079 article-title: DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI publication-title: J. Neurosci. Methods – volume: 49 start-page: 3110 year: 2010 end-page: 3121 ident: bib0086 article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI publication-title: Neuroimage – start-page: 181 year: 2018 ident: 10.1016/j.neuroimage.2021.118423_bib0108 article-title: Modeling 4d fMRI data via spatio-temporal convolutional neural networks (st-cnn) – volume: 129 start-page: 292 year: 2016 ident: 10.1016/j.neuroimage.2021.118423_bib0091 article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.005 – volume: 17 start-page: 401 year: 2013 ident: 10.1016/j.neuroimage.2021.118423_bib0055 article-title: Representational geometry: integrating cognition, computation, and the brain publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2013.06.007 – year: 2020 ident: 10.1016/j.neuroimage.2021.118423_bib0061 article-title: Deep spatio-temporal representation and ensemble classification for attention deficit/Hyperactivity disorder publication-title: IEEE Trans. Neural Syst. Rehabil. Eng – volume: 84 start-page: 320 year: 2014 ident: 10.1016/j.neuroimage.2021.118423_bib0075 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 13 start-page: 43 year: 2001 ident: 10.1016/j.neuroimage.2021.118423_bib0012 article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms publication-title: Human Brain Map. doi: 10.1002/hbm.1024 – volume: 10 year: 2014 ident: 10.1016/j.neuroimage.2021.118423_bib0047 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003915 – volume: 24 start-page: 663 year: 2014 ident: 10.1016/j.neuroimage.2021.118423_bib0001 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebral Cortex doi: 10.1093/cercor/bhs352 – volume: 186 start-page: 410 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0094 article-title: Brain dynamics and temporal trajectories during task and naturalistic processing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.11.016 – volume: 13 start-page: 434 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0096 article-title: Application of convolutional recurrent neural network for individual recognition based on resting state fMRI data publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00434 – volume: 37 start-page: 1551 year: 2017 ident: 10.1016/j.neuroimage.2021.118423_bib0041 article-title: Modeling task fMRI data via deep convolutional autoencoder publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2715285 – ident: 10.1016/j.neuroimage.2021.118423_bib0053 – volume: 164 start-page: 450 year: 2007 ident: 10.1016/j.neuroimage.2021.118423_bib0032 article-title: Aberrant “default mode” functional connectivity in schizophrenia publication-title: Am. J. Psych. doi: 10.1176/ajp.2007.164.3.450 – volume: 44 start-page: 893 year: 2009 ident: 10.1016/j.neuroimage.2021.118423_bib0071 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.036 – volume: 10 start-page: 724 year: 2009 ident: 10.1016/j.neuroimage.2021.118423_bib0077 article-title: Evolution of the neocortex: a perspective from developmental biology publication-title: Nature Rev. Neurosci. doi: 10.1038/nrn2719 – volume: 172 start-page: 478 year: 2018 ident: 10.1016/j.neuroimage.2021.118423_bib0069 article-title: Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.029 – volume: 20 start-page: 1761 year: 2017 ident: 10.1016/j.neuroimage.2021.118423_bib0100 article-title: Weak correlations between hemodynamic signals and ongoing neural activity during the resting state publication-title: Nature Neurosci. doi: 10.1038/s41593-017-0007-y – volume: 102 start-page: 9673 year: 2005 ident: 10.1016/j.neuroimage.2021.118423_bib0030 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0504136102 – year: 2009 ident: 10.1016/j.neuroimage.2021.118423_bib0043 article-title: The restless brain publication-title: Psychologist – volume: 2 start-page: 6 year: 2017 ident: 10.1016/j.neuroimage.2021.118423_bib0040 article-title: beta-VAE: learning basic visual concepts with a constrained variational framework publication-title: ICLR – volume: 114 start-page: 158 year: 2015 ident: 10.1016/j.neuroimage.2021.118423_bib0008 article-title: Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.070 – start-page: 3104 year: 2014 ident: 10.1016/j.neuroimage.2021.118423_bib0092 article-title: Sequence to sequence learning with neural networks – volume: 113 start-page: 12574 year: 2016 ident: 10.1016/j.neuroimage.2021.118423_bib0067 article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1608282113 – volume: 208 year: 2020 ident: 10.1016/j.neuroimage.2021.118423_bib0060 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116459 – volume: 10 start-page: 2317 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0059 article-title: Resting brain dynamics at different timescales capture distinct aspects of human behavior publication-title: Nature Commun. doi: 10.1038/s41467-019-10317-7 – volume: 113 start-page: 4518 year: 2016 ident: 10.1016/j.neuroimage.2021.118423_bib0014 article-title: Tracking brain arousal fluctuations with fMRI publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1520613113 – volume: 206 year: 2020 ident: 10.1016/j.neuroimage.2021.118423_bib0039 article-title: Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116276 – volume: 3 start-page: 363 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0011 article-title: High-accuracy individual identification using a “thin slice” of the functional connectome publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00068 – volume: 199 start-page: 651 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0049 article-title: Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.06.012 – volume: 34 start-page: 537 year: 1995 ident: 10.1016/j.neuroimage.2021.118423_bib0007 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magnet. Resonance Med. doi: 10.1002/mrm.1910340409 – volume: 7 start-page: 40722 year: 2017 ident: 10.1016/j.neuroimage.2021.118423_bib0016 article-title: Maintenance and representation of mind wandering during Resting-State fMRI publication-title: Scient. Rep. doi: 10.1038/srep40722 – volume: 62 start-page: 2190 year: 2012 ident: 10.1016/j.neuroimage.2021.118423_bib0057 article-title: Ongoing physiological processes in the cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.059 – start-page: 608 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0084 article-title: Unsupervised pre-training of the brain connectivity dynamic using residual D-Net – volume: 335 year: 2020 ident: 10.1016/j.neuroimage.2021.118423_bib0079 article-title: DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108506 – volume: 8 start-page: 700 year: 2007 ident: 10.1016/j.neuroimage.2021.118423_bib0029 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nature Rev. Neurosci. doi: 10.1038/nrn2201 – volume: 112 start-page: 8762 year: 2015 ident: 10.1016/j.neuroimage.2021.118423_bib0035 article-title: Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1501242112 – volume: 15 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0054 article-title: Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1007263 – start-page: 807 year: 2010 ident: 10.1016/j.neuroimage.2021.118423_bib0072 article-title: Rectified linear units improve restricted Boltzmann machines – volume: 207 year: 2020 ident: 10.1016/j.neuroimage.2021.118423_bib0095 article-title: Comparing functional connectivity matrices: A geometry-aware approach applied to participant identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116398 – ident: 10.1016/j.neuroimage.2021.118423_bib0085 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118423_bib0106 article-title: Connecting concepts in the brain by mapping cortical representations of semantic relations publication-title: Nature Commun. – year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0018 article-title: Modeling brain diverse and complex hemodynamic response patterns via deep recurrent autoencoder publication-title: IEEE Trans. Cogn. Devel. Syst – volume: 7 start-page: e33321 year: 2018 ident: 10.1016/j.neuroimage.2021.118423_bib0078 article-title: Stomach-brain synchrony reveals a novel, delayed connectivity resting-state network in humans publication-title: eLife doi: 10.7554/eLife.33321 – year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0050 article-title: Machine learning in resting-state fMRI analysis publication-title: Magnet. Resonance Imaging doi: 10.1016/j.mri.2019.05.031 – volume: 146 start-page: 1038 year: 2017 ident: 10.1016/j.neuroimage.2021.118423_bib0045 article-title: BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.046 – volume: 19 start-page: 356 year: 2016 ident: 10.1016/j.neuroimage.2021.118423_bib0101 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nature Neurosci. doi: 10.1038/nn.4244 – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.neuroimage.2021.118423_bib0082 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.neuroimage.2021.118423_bib0037 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.neuroimage.2021.118423_bib0026 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 5 start-page: 23626 year: 2017 ident: 10.1016/j.neuroimage.2021.118423_bib0109 article-title: 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2762703 – volume: 55 start-page: 856 year: 2011 ident: 10.1016/j.neuroimage.2021.118423_bib0105 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 198 start-page: 125 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0038 article-title: Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.039 – start-page: 709 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0019 article-title: Integrating neural networks and dictionary learning for multidimensional clinical characterizations from functional connectomics data – volume: 14 start-page: 881 year: 2020 ident: 10.1016/j.neuroimage.2021.118423_bib0024 article-title: A deep network model on dynamic functional connectivity with applications to gender classification and intelligence prediction publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00881 – volume: 1 year: 2005 ident: 10.1016/j.neuroimage.2021.118423_bib0090 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010042 – volume: 40 start-page: 644 year: 2008 ident: 10.1016/j.neuroimage.2021.118423_bib0006 article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.059 – ident: 10.1016/j.neuroimage.2021.118423_bib0048 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.neuroimage.2021.118423_bib0056 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118423_bib0002 article-title: The quest for identifiability in human functional connectomes publication-title: Scienti. Rep. – volume: 104 start-page: 13170 year: 2007 ident: 10.1016/j.neuroimage.2021.118423_bib0066 article-title: Electrophysiological signatures of resting state networks in the human brain publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0700668104 – volume: 23 start-page: 137 year: 2004 ident: 10.1016/j.neuroimage.2021.118423_bib0004 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.822821 – volume: 8 start-page: 197 year: 2018 ident: 10.1016/j.neuroimage.2021.118423_bib0015 article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network publication-title: Brain Connect. doi: 10.1089/brain.2017.0561 – volume: 163 start-page: 437 year: 2017 ident: 10.1016/j.neuroimage.2021.118423_bib0058 article-title: Interpreting temporal fluctuations in resting-state functional connectivity MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.09.012 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2021.118423_bib0034 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 13 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0063 article-title: Origins of the resting-state functional MRI signal: potential limitations of the “neurocentric” model publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01136 – start-page: 867 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0107 article-title: Variational autoencoder with truncated mixture of gaussians for functional connectivity analysis – volume: 2 start-page: 421 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0073 article-title: Sympathetic activity contributes to the fMRI signal publication-title: Commun. Biol. doi: 10.1038/s42003-019-0659-0 – volume: 22 start-page: 1761 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0080 article-title: A deep learning framework for neuroscience publication-title: Nature Neurosci. doi: 10.1038/s41593-019-0520-2 – year: 2011 ident: 10.1016/j.neuroimage.2021.118423_bib0103 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – volume: 98 start-page: 630 year: 2018 ident: 10.1016/j.neuroimage.2021.118423_bib0046 article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy publication-title: Neuron doi: 10.1016/j.neuron.2018.03.044 – volume: 111 start-page: E4367 year: 2014 ident: 10.1016/j.neuroimage.2021.118423_bib0027 article-title: Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1405003111 – ident: 10.1016/j.neuroimage.2021.118423_bib0052 – volume: 106 start-page: 13040 year: 2009 ident: 10.1016/j.neuroimage.2021.118423_bib0088 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0905267106 – volume: 32 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0064 article-title: Don't blame the ELBO! A linear VAE perspective on posterior collapse publication-title: Adv. Neural Inf. Process. Syst. – volume: 109 start-page: 3131 year: 2012 ident: 10.1016/j.neuroimage.2021.118423_bib0089 article-title: Temporally-independent functional modes of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1121329109 – start-page: 1 year: 2016 ident: 10.1016/j.neuroimage.2021.118423_bib0051 article-title: Evaluation of weight sparsity control during autoencoder training of resting-state fMRI using non-zero ratio and Hoyer's sparseness – volume: 8 start-page: 229 year: 2014 ident: 10.1016/j.neuroimage.2021.118423_bib0074 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00229 – volume: 23 start-page: 488 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0003 article-title: Visceral signals shape brain dynamics and cognition publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2019.03.007 – volume: 49 start-page: 3110 year: 2010 ident: 10.1016/j.neuroimage.2021.118423_bib0086 article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.011 – volume: 39 start-page: 2269 year: 2018 ident: 10.1016/j.neuroimage.2021.118423_bib0087 article-title: Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision publication-title: Human Brain Map. doi: 10.1002/hbm.24006 – year: 2021 ident: 10.1016/j.neuroimage.2021.118423_bib0009 article-title: A dynamic gradient architecture generates brain activity states publication-title: bioRxiv – start-page: 329 year: 2018 ident: 10.1016/j.neuroimage.2021.118423_bib0022 article-title: Learning generalizable recurrent neural networks from small task-fmri datasets – volume: 66 start-page: 2768 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0068 article-title: Deep neural generative model of functional MRI images for psychiatric disorder diagnosis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2895663 – ident: 10.1016/j.neuroimage.2021.118423_bib0031 doi: 10.1007/978-3-030-59728-3_52 – volume: 80 start-page: 360 year: 2013 ident: 10.1016/j.neuroimage.2021.118423_bib0042 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 4 start-page: 448 year: 2020 ident: 10.1016/j.neuroimage.2021.118423_bib0044 article-title: Brain network constraints and recurrent neural networks reproduce unique trajectories and state transitions seen over the span of minutes in resting-state fMRI publication-title: Network Neurosci. doi: 10.1162/netn_a_00129 – year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0102 article-title: Fused sparse network learning for longitudinal analysis of mild cognitive impairment publication-title: IEEE Trans. Cybern. – volume: 27 start-page: 1019 year: 2009 ident: 10.1016/j.neuroimage.2021.118423_bib0005 article-title: Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study publication-title: Magnet. Resonance Imaging doi: 10.1016/j.mri.2009.02.004 – volume: 325 start-page: 20 year: 2019 ident: 10.1016/j.neuroimage.2021.118423_bib0065 article-title: Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.066 – volume: 41 start-page: 1505 year: 2020 ident: 10.1016/j.neuroimage.2021.118423_bib0097 article-title: Decoding and mapping task states of the human brain via deep learning publication-title: Human Brain Map. doi: 10.1002/hbm.24891 – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.neuroimage.2021.118423_bib0070 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118423_bib0099 article-title: Deep residual network predicts cortical representation and organization of visual features for rapid categorization publication-title: Scient. Rep. – volume: 28 start-page: 1058 year: 2010 ident: 10.1016/j.neuroimage.2021.118423_bib0081 article-title: Functional MRI and multivariate autoregressive models publication-title: Magnet. Reson. Imaging doi: 10.1016/j.mri.2010.03.002 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2021.118423_bib0093 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 50 start-page: 81 year: 2010 ident: 10.1016/j.neuroimage.2021.118423_bib0013 article-title: Time–frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.011 – volume: 18 start-page: 1664 year: 2015 ident: 10.1016/j.neuroimage.2021.118423_bib0025 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nature Neurosci. doi: 10.1038/nn.4135 – volume: 536 start-page: 171 year: 2016 ident: 10.1016/j.neuroimage.2021.118423_bib0033 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – ident: 10.1016/j.neuroimage.2021.118423_bib0104 |
SSID | ssj0009148 |
Score | 2.5334575 |
Snippet | •Variational auto-encoder disentangles generative factors of resting state fMRI activity.•Variational auto-encoder trained with unsupervised learning extracts... Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118423 |
SubjectTerms | Brain - diagnostic imaging Brain - physiology Connectome - methods Databases, Factual Deep generative model Deep learning Functional magnetic resonance imaging Humans Individuality Latent gradients Learning Magnetic Resonance Imaging - methods Neural networks Random variables Rest - physiology Unsupervised learning Unsupervised Machine Learning Variational autoencoder |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQB8SlKn0upciVeo2a2I4f6qmtQBRpe0AgcbP8pFu1WQS7_f2MYycQOHQPvURRnImS8Xgezsw3CH2kkjgTalUZT3jFRGsq5eHATe1b7ggozrQPOf_BTy7Y6WV7-aDVV8oJy_DAmXGfTFAiUBWdFI41yhsbm2gpc6QlENj5pH3B5g3B1AC3C15-ydvJ2Vw9OuTiD6xRiAlJA5pCMkInxqjH7J_YpKc-5-PUyQe26Pg5elacSPwlv_we2grdC7QzL7_JX6LTsz6_tZQVdbi0hrjCy4hTL4502lcS4Tg_-47TXiz-C0Fz2RjEZr1aJoBLH25eoYvjo_NvJ1VpmlA5TutV5QSJxEthBeE2tpE75qVqfGAxpm6REEJQbhrrwM4TZyGWtqnWVVjCieVB0tdou1t24S3CvDYsOvCwKPPMG6FCaLyPXBEZGTVkhsTAPe0KonhqbPFbD6ljv_Q933Xiu858n6FmpLzOqBob0HxNEzTen3Cx-wsgLbpIi_6XtMyQGqZXD6WnoCzhQYsNXuDzSFvck-x2bEh9MEiTLmriVoO_KXmCCILhD-MwLPD018Z0YblO98CM0ZZxOUNvsvCNPADCmoJGhZmYiOWESdORbvGzBxGXTILnxvb_B1ffod30pblE8wBtr27W4T34ait72C_LO5MTQIY priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96gvhy-G31lAq-FtskzQc-iIrHebA-HB7sW0jzce6h7bm3e3-_M23atQqyL0vZZko7mcxMJjO_IeQNU9TZUOrCeioKLmtbaA8_wpa-Fo6C4sQ45OKrODnnp8t6mQJu1ymtctSJvaL2ncMY-VswzUogmgp7f_WrwK5ReLqaWmjcJncQugylWi7lDnS34kMpXM0KBQNSJs-Q39XjRa5-wqqFXSKtQHcoTtnMPPUo_jMr9a8X-ncy5R_W6fg-OUxuZf5hkIMH5FZoH5K7i3Rw_oicnvUZr6nQqM1Ts4iLvIs5dufAy762KI-Lsy85RmfzG9hGp1BhbrebDiEvfVg_JufHn799OilSG4XCCVZuCidppF7JRlLRxDoKx73SlQ88RuwfCZsKJmzVOLD81DWwu26w-lU2VNBGBMWekIO2a8MzkovS8ujA52Lcc2-lDqHyPgpNVeTM0ozIkXvGJYxxbHXxw4zJZJdmx3eDfDcD3zNSTZRXA87GHjQfcYKm8YiU3f_RrS9MWnjGBi0D09Ep6XilvW1iFRvGHa2pLqXPiB6n14zFqKA-4UGrPV7g3USbHJbBEdmT-miUJpMUx7XZiXlGXk-3YcnjOY5tQ7fFMTBjrOZCZeTpIHwTD4CwZKBjYSZmYjlj0vxOu_rew4orrsCX48___1ovyD38hqEc84gcbNbb8BL8sk3zql98vwFS7zjq priority: 102 providerName: ProQuest |
Title | Representation learning of resting state fMRI with variational autoencoder |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921006984 https://dx.doi.org/10.1016/j.neuroimage.2021.118423 https://www.ncbi.nlm.nih.gov/pubmed/34303794 https://www.proquest.com/docview/2568600343 https://www.proquest.com/docview/2555335468 https://pubmed.ncbi.nlm.nih.gov/PMC8485214 https://doaj.org/article/ae97e39fc87c419dabf1fb34c252907d |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFeEN8URhUkXkMT2_GHeNqmTd1QK1SY1LfI8cdWBMlUWh7527lLnI7ASyVekjT2Ren5fHd27n5HyDumqDU-06lxVKRcFibVDg7CZK4QloLixH3I2VxMr_jlslgekNM-FwbDKqPu73R6q63jnUnk5uR2tZp8Bs8AzA3ieSHcrkJMUM4lSvn7X3dhHjrnXTpcwVLsHaN5uhivFjNy9R1mLqwUaQ76Q3HKBiaqRfIfWKp_PdG_Ayr_sFDnj8jD6Fomx93bPyYHvn5C7s_ix_On5HLRRr3GZKM6iQUjrpMmJFihAy_b_KIkzBYXCe7QJj9hKR23CxOz3TQIe-n8-hm5Oj_7cjpNYymF1AqWbVIraaBOyUpSUYUiCMud0rnzPASsIQkLCyZMXlmw_tRWsMKuMANWVlTQSnjFnpPDuqn9S5KIzPBgwe9i3HFnpPY-dy4ITVXgzNARkT33ShtxxrHcxbeyDyj7Wt7xvUS-lx3fRyTfUd52WBt70JzgAO36I1p2e6NZX5dRXErjtfRMB6uk5bl2pgp5qBi3tKA6k25EdD-8ZZ-QCioUHrTa4wU-7GgHgrsn9VEvTWVUHj9K8EKVQOAgaH67a4Zpj99yTO2bLfaBEWMFF2pEXnTCt-MBEGYM9CyMxEAsB0wattSrmxZaXHEF_hx_9V9_6jV5gL-6jM0jcrhZb_0bcN021bidm3CUSzkm944vPk7ncD45m39ajNvtkN9_Bkku |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxBtDASPB0cLeXe9DCCFeVdI2PVStlNuy3kcJArukCYg_xW9k1l4nGCSUSy9RFHssZ2b2m5ndeSD0jAhstMtlpi1mGeWlzqSFD6ZzWzKDATjDPuTkkI1O6N60nG6hX30tTEir7DGxBWrbmLBH_gJMs2Chmwp5ffYtC1OjwulqP0KjU4t99_MHhGznr8bvQb7PMd79cPxulMWpAplhJF9khmOPreAVx6zypWeGWiEL66j3YZwi-NiE6aIyYAixqSDYrEIxKK8wwxVzgsBzL6HLYHjzEOzxKV83-S1oV3pXkkwUhYyZQ10-WdufcvYVUAKiUlwAVgmKycActlMDBlbxX6_37-TNP6zh7g10Pbqx6ZtO726iLVffQlcm8aD-Nto7ajNsY2FTncbhFKdp49MwDSR8bWuZUj85GqdhNzj9DmF73JpM9XLRhBab1s3voJMLYfBdtF03tbuPUpZr6g34eIRaajWXzhXWeiax8JRonCDec0-Z2NM8jNb4ovrktc9qzXcV-K46vieoWFGedX09NqB5GwS0uj905m5_aOanKi50pZ3kjkhvBDe0kFZXvvAVoQaXWObcJkj24lV98SvANTxotsELvFzRRgepc3w2pN7ptUlFoDpX62WVoKerywAx4dxI165ZhntAYqSkTCToXqd8Kx4AYU4A00ESA7UcMGl4pZ59atuYCyrAd6QP_v9aT9DV0fHkQB2MD_cfomvh_3SloDtoezFfukfgEy6qx-1CTNHHi175vwEfynWh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdNPGCuK8wIEjwGC2xHV-EEGJs1brRaqqYtDfj-DKKIBldC-LX-DqOE6ejIKG-7CWKkpwoOfdjnwtCL4jARrtMptpillJe6FRaODCd2YIZDIozrEOOxuzwlB6dFWcb6FdXCxPSKjud2ChqW5uwRr4Lplmw0E2F7PqYFnGyP3hz8S0NE6TCTms3TqNlkWP38weEb5evh_tA65cYDw4-vDtM44SB1DCSzVPDscdW8JJjVvrCM0OtkLl11PswWhH8bcJ0XhowitiUEHiWoTCUl5jhkjlB4L030CYPUVEPbe4djE8mVy1_c9oW4hUkFXkuYx5Rm13WdKucfgWdATEqzkFzCYrJinFsZgis2Mh_feC_Uzn_sI2D2-hWdGqTty0X3kEbrrqLtkZx2_4eOpo0-baxzKlK4qiK86T2SZgNEk6byqbEjybDJKwNJ98hiI8LlYlezOvQcNO62X10ei0ofoB6VV25bZSwTFNvwOMj1FKruXQut9YziYWnROM-4h32lIkdzsOgjS-qS2X7rK7wrgLeVYv3PsqXkBdtl481YPYCgZbPhz7dzYV6dq6i2CvtJHdEeiO4obm0uvS5Lwk1uMAy47aPZEde1ZXCgvKGF03X-IBXS9joLrVu0JrQOx03qai2LtWVkPXR8-VtUDhhF0lXrl6EZ4BipKBM9NHDlvmWOADAjICGB0qssOUKklbvVNNPTVNzQQV4kvTR_z_rGdoCqVfvh-Pjx-hm-J22LnQH9eazhXsCDuK8fBolMUEfr1v4fwPX4Hs8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+learning+of+resting+state+fMRI+with+variational+autoencoder&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kim%2C+Jung-Hoon&rft.au=Zhang%2C+Yizhen&rft.au=Han%2C+Kuan&rft.au=Wen%2C+Zheyu&rft.date=2021-11-01&rft.issn=1053-8119&rft.volume=241&rft.spage=118423&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118423&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2021_118423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |