Representation learning of resting state fMRI with variational autoencoder

•Variational auto-encoder disentangles generative factors of resting state fMRI activity.•Variational auto-encoder trained with unsupervised learning extracts useful latent representations discriminative across individuals.•Temporal gradients of the latent representations report various types of tra...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 241; p. 118423
Main Authors Kim, Jung-Hoon, Zhang, Yizhen, Han, Kuan, Wen, Zheyu, Choi, Minkyu, Liu, Zhongming
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Variational auto-encoder disentangles generative factors of resting state fMRI activity.•Variational auto-encoder trained with unsupervised learning extracts useful latent representations discriminative across individuals.•Temporal gradients of the latent representations report various types of transition in cortical network activity. Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity.
AbstractList Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity.
Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity.Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity.
•Variational auto-encoder disentangles generative factors of resting state fMRI activity.•Variational auto-encoder trained with unsupervised learning extracts useful latent representations discriminative across individuals.•Temporal gradients of the latent representations report various types of transition in cortical network activity. Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity.
ArticleNumber 118423
Author Liu, Zhongming
Zhang, Yizhen
Kim, Jung-Hoon
Han, Kuan
Choi, Minkyu
Wen, Zheyu
AuthorAffiliation b Department of Electrical Engineering and Computer Science, University of Michigan, United States
c Weldon School of Biomedical Engineering, Purdue University, United States
a Department of Biomedical Engineering, University of Michigan, United States
AuthorAffiliation_xml – name: a Department of Biomedical Engineering, University of Michigan, United States
– name: c Weldon School of Biomedical Engineering, Purdue University, United States
– name: b Department of Electrical Engineering and Computer Science, University of Michigan, United States
Author_xml – sequence: 1
  givenname: Jung-Hoon
  surname: Kim
  fullname: Kim, Jung-Hoon
  organization: Department of Biomedical Engineering, University of Michigan, United States
– sequence: 2
  givenname: Yizhen
  surname: Zhang
  fullname: Zhang, Yizhen
  organization: Department of Electrical Engineering and Computer Science, University of Michigan, United States
– sequence: 3
  givenname: Kuan
  surname: Han
  fullname: Han, Kuan
  organization: Department of Electrical Engineering and Computer Science, University of Michigan, United States
– sequence: 4
  givenname: Zheyu
  surname: Wen
  fullname: Wen, Zheyu
  organization: Department of Electrical Engineering and Computer Science, University of Michigan, United States
– sequence: 5
  givenname: Minkyu
  surname: Choi
  fullname: Choi, Minkyu
  organization: Department of Electrical Engineering and Computer Science, University of Michigan, United States
– sequence: 6
  givenname: Zhongming
  surname: Liu
  fullname: Liu, Zhongming
  email: zmliu@umich.edu
  organization: Department of Biomedical Engineering, University of Michigan, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34303794$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gL6BIXLhk8Vcc-4KAipZFRUgVnC3bGW8dsvbiJIv673G6LaV72pNHnpnHr-ed0-IoxABFUWK0wAjzd90iwJSiX-sVLAgieIGxYIQ-K04wknUl64YczXFNK4GxPC5Oh6FDCEnMxIvimDKKaCPZSfH1GjYJBgijHn0MZQ86BR9WZXRlvh_ncMg5KN2362X5x4835VYnf1et-1JPY4RgYwvpZfHc6X6AV_fnWfHz4vOP8y_V1ffL5fnHq8pyisbKNsSRVjSmIdy42nHLWiFxC8w5xqUgdU25xsYSSYk1YKjhjODGEE4MB0HPiuWO20bdqU3KU0i3Kmqv7i5iWimdRm97UBpkA1Q6KxrLsGy1cdgZyiypiURNm1nvd6zNZNbQ2jyHpPsn0KeZ4G_UKm6VYKImmGXA23tAir-nPDC19oOFvtcB4jSo_Jua0prxWfebvdIuTikPca7igiOUbclVr_9X9E_Kg2WPkm2Kw5DAKet35mWBvlcYqXlHVKced0TNO6J2O5IBYg_w8MYBrZ92rZD93XpIarA-2w-tT2DHbIA_BPJhD2J7H7zV_S-4PQzxF5a_82o
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120651
crossref_primary_10_1016_j_neuroimage_2023_120142
crossref_primary_10_3389_fncom_2024_1478193
crossref_primary_10_1007_s11063_022_11108_w
crossref_primary_10_3389_fnhum_2023_1134012
crossref_primary_10_1016_j_media_2023_102756
crossref_primary_10_7554_eLife_80878
crossref_primary_10_1109_ACCESS_2023_3340266
crossref_primary_10_1016_j_patter_2024_100930
crossref_primary_10_1016_j_neuroimage_2024_120806
crossref_primary_10_1038_s41598_024_76695_1
crossref_primary_10_1162_netn_a_00281
crossref_primary_10_1088_1748_9326_ad0607
crossref_primary_10_1155_2022_1124927
crossref_primary_10_1016_j_compbiomed_2023_107395
crossref_primary_10_1016_j_knosys_2024_112597
crossref_primary_10_3389_fpsyt_2024_1397093
crossref_primary_10_3390_bioengineering10101209
Cites_doi 10.1016/j.neuroimage.2016.01.005
10.1016/j.tics.2013.06.007
10.1016/j.neuroimage.2013.08.048
10.1002/hbm.1024
10.1371/journal.pcbi.1003915
10.1093/cercor/bhs352
10.1016/j.neuroimage.2018.11.016
10.3389/fnins.2019.00434
10.1109/TMI.2017.2715285
10.1176/ajp.2007.164.3.450
10.1016/j.neuroimage.2008.09.036
10.1038/nrn2719
10.1016/j.neuroimage.2018.01.029
10.1038/s41593-017-0007-y
10.1073/pnas.0504136102
10.1016/j.neuroimage.2015.03.070
10.1073/pnas.1608282113
10.1016/j.neuroimage.2019.116459
10.1038/s41467-019-10317-7
10.1073/pnas.1520613113
10.1016/j.neuroimage.2019.116276
10.1162/netn_a_00068
10.1016/j.neuroimage.2019.06.012
10.1002/mrm.1910340409
10.1038/srep40722
10.1016/j.neuroimage.2011.10.059
10.1016/j.jneumeth.2019.108506
10.1038/nrn2201
10.1073/pnas.1501242112
10.1371/journal.pcbi.1007263
10.1016/j.neuroimage.2019.116398
10.7554/eLife.33321
10.1016/j.mri.2019.05.031
10.1016/j.neuroimage.2016.09.046
10.1038/nn.4244
10.1016/j.neuroimage.2013.11.046
10.1016/j.neuroimage.2014.03.034
10.1016/j.neuroimage.2012.01.021
10.1109/ACCESS.2017.2762703
10.1016/j.neuroimage.2011.01.008
10.1016/j.neuroimage.2019.05.039
10.3389/fnins.2020.00881
10.1371/journal.pcbi.0010042
10.1016/j.neuroimage.2007.11.059
10.1038/nature14539
10.1073/pnas.0700668104
10.1109/TMI.2003.822821
10.1089/brain.2017.0561
10.1016/j.neuroimage.2017.09.012
10.1016/j.neuroimage.2013.04.127
10.3389/fnins.2019.01136
10.1038/s42003-019-0659-0
10.1038/s41593-019-0520-2
10.1016/j.neuron.2018.03.044
10.1073/pnas.1405003111
10.1073/pnas.0905267106
10.1073/pnas.1121329109
10.3389/fnins.2014.00229
10.1016/j.tics.2019.03.007
10.1016/j.neuroimage.2009.11.011
10.1002/hbm.24006
10.1109/TBME.2019.2895663
10.1007/978-3-030-59728-3_52
10.1016/j.neuroimage.2013.05.079
10.1162/netn_a_00129
10.1016/j.mri.2009.02.004
10.1016/j.neucom.2018.09.066
10.1002/hbm.24891
10.1016/j.neuroimage.2014.10.002
10.1016/j.mri.2010.03.002
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2009.12.011
10.1038/nn.4135
10.1038/nature18933
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Nov 1, 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Nov 1, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2021.118423
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 118423
ExternalDocumentID oai_doaj_org_article_ae97e39fc87c419dabf1fb34c252907d
PMC8485214
34303794
10_1016_j_neuroimage_2021_118423
S1053811921006984
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH104402
– fundername: NCCIH NIH HHS
  grantid: R01 AT011665
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-c72f2d87b726bf5f6c4d891de4ff469825536a1bc2932cbeb3b64217b262b6e83
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:25:36 EDT 2025
Thu Aug 21 17:54:49 EDT 2025
Thu Jul 10 23:46:26 EDT 2025
Wed Aug 13 03:33:05 EDT 2025
Mon Jul 21 05:24:25 EDT 2025
Thu Apr 24 22:53:29 EDT 2025
Tue Jul 01 03:02:19 EDT 2025
Fri Feb 23 02:41:22 EST 2024
Tue Aug 26 20:02:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Variational autoencoder
Deep generative model
Latent gradients
Unsupervised learning
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-c72f2d87b726bf5f6c4d891de4ff469825536a1bc2932cbeb3b64217b262b6e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Zhongming Liu conceived the original idea. Jung-Hoon Kim, Yizhen Zhang, Kuan Han, Minkyu Choi and Zhongming Liu designed and implemented the model and algorithm. Jung-Hoon Kim and Yizhen Zhang performed the analysis. Zheyu Wen helped debugging of the model and the final algorithm. Jung-Hoon Kim and Minkyu Choi documented the model and source code. Jung-Hoon Kim and Zhongming Liu wrote the paper.
Author credits
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811921006984
PMID 34303794
PQID 2568600343
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ae97e39fc87c419dabf1fb34c252907d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8485214
proquest_miscellaneous_2555335468
proquest_journals_2568600343
pubmed_primary_34303794
crossref_citationtrail_10_1016_j_neuroimage_2021_118423
crossref_primary_10_1016_j_neuroimage_2021_118423
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118423
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Yang, Zhou, Ni, Xu, Chen, Wang, Lei (bib0102) 2019
Bright, Murphy (bib0008) 2015; 114
Fox, Raichle (bib0029) 2007; 8
Richards, Lillicrap, Beaudoin, Bengio, Bogacz, Christensen, Clopath, Costa, de Berker, Ganguli (bib0080) 2019; 22
Venkatesh, Jaja, Pessoa (bib0094) 2019; 186
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0082) 2014; 90
Suk, Wee, Lee, Shen (bib0091) 2016; 129
Cui, Zhao, Chen, Han, Guo, Xie, Liu (bib0018) 2019
Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner (bib0040) 2017; 2
Calhoun, Adali, Pearlson, Pekar (bib0012) 2001; 13
Koppe, Toutounji, Kirsch, Lis, Durstewitz (bib0054) 2019; 15
Shi, Wen, Zhang, Han, Liu (bib0087) 2018; 39
Liégeois, Li, Kong, Orban, Van De Ville, Ge, Sabuncu, Yeo (bib0059) 2019; 10
Sutskever, Vinyals, Le (bib0092) 2014
Huang, Hu, Zhao, Makkie, Dong, Zhao, Guo, Liu (bib0041) 2017; 37
Matsubara, Tashiro, Uehara (bib0068) 2019; 66
Fischl (bib0026) 2012; 62
.
Kashyap, Keilholz (bib0044) 2020; 4
Biswal, Zerrin Yetkin, Haughton, Hyde (bib0007) 1995; 34
Nair, Hinton (bib0072) 2010
Gonzalez-Castillo, Hoy, Handwerker, Robinson, Buchanan, Saad, Bandettini (bib0035) 2015; 112
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird (bib0088) 2009; 106
Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (bib0075) 2014; 84
Khemakhem, I., Kingma, D.P., Hyvärinen, A., 2019. Variational autoencoders and nonlinear ICA: a unifying framework. arXiv preprint arXiv:1907.04809.
Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
Byrge, Kennedy (bib0011) 2019; 3
Mantini, Perrucci, Del Gratta, Romani, Corbetta (bib0066) 2007; 104
Bianciardi, Fukunaga, van Gelderen, Horovitz, de Zwart, Shmueli, Duyn (bib0005) 2009; 27
Kriegeskorte, Kievit (bib0055) 2013; 17
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (bib0037) 2014; 95
Khosla, Jamison, Kuceyeski, Sabuncu (bib0049) 2019; 199
Liégeois, Laumann, Snyder, Zhou, Yeo (bib0058) 2017; 163
Kell, Yamins, Shook, Norman-Haignere, McDermott (bib0046) 2018; 98
Smith, Miller, Moeller, Xu, Auerbach, Woolrich, Beckmann, Jenkinson, Andersson, Glasser (bib0089) 2012; 109
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib0093) 2013; 80
Han, Wen, Shi, Lu, Zhang, Fu, Liu (bib0038) 2019; 198
Liu, Zhao, Wang, Xin, Zhao, Guttery, Zhang (bib0061) 2020
Chang, Glover (bib0013) 2010; 50
Yu, Y., Chan, K.H.R., You, C., Song, C., Ma, Y., 2020. Learning diverse and discriminative representations via the principle of maximal coding rate reduction. arXiv
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni (bib0103) 2011
Venkatesh, Jaja, Pessoa (bib0095) 2020; 207
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib0030) 2005; 102
Beckmann, Smith (bib0004) 2004; 23
Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (bib0074) 2014; 8
Birn, Smith, Jones, Bandettini (bib0006) 2008; 40
Lu, Jaime, Yang (bib0063) 2019; 13
Lucas, Tucker, Grosse, Norouzi (bib0064) 2019; 32
Jarrett (bib0043) 2009
Rogers, Katwal, Morgan, Asplund, Gore (bib0081) 2010; 28
Murphy, Birn, Handwerker, Jones, Bandettini (bib0071) 2009; 44
Rebollo, Devauchelle, Beranger, Tallon-Baudry (bib0078) 2018; 7
Seo, Morante, Kopsinis, Theodoridis (bib0084) 2019
Garrity, Pearlson, McKiernan, Lloyd, Kiehl, Calhoun (bib0032) 2007; 164
Gadgil, S., Zhao, Q., Adeli, E., Pfefferbaum, A., Sullivan, E.V., Pohl, K.M., 2020. Spatio-temporal graph convolution for functional MRI analysis. arXiv preprint arXiv:2003.10613.
Amico, Goñi (bib0002) 2018; 8
He, Kong, Holmes, Nguyen, Sabuncu, Eickhoff, Bzdok, Feng, Yeo (bib0039) 2020; 206
Shen, Wang, Liu, Hu (bib0086) 2010; 49
Özbay, Chang, Picchioni, Mandelkow, Chappel-Farley, van Gelderen, de Zwart, Duyn (bib0073) 2019; 2
Dvornek, Yang, Ventola, Duncan (bib0022) 2018
Fox, Buckner, Liu, Chakravarty, Lozano, Pascual-Leone (bib0027) 2014; 111
Rakic (bib0077) 2009; 10
Zhang, Wang, Zhou, Yuan, Shen, Initiative (bib0105) 2011; 55
Chen, Hu (bib0015) 2018; 8
Kim, Lee (bib0051) 2016
Moradi, Pepe, Gaser, Huttunen, Tohka, Initiative (bib0070) 2015; 104
Wang, Liang, Jiang, Nguchu, Zhou, Wang, Wang, Li, Zhu, Wu (bib0097) 2020; 41
Sporns, Tononi, Kötter (bib0090) 2005; 1
Khaligh-Razavi, Kriegeskorte (bib0047) 2014; 10
Khosla, Jamison, Ngo, Kuceyeski, Sabuncu (bib0050) 2019
LeCun, Bengio, Hinton (bib0056) 2015; 521
Liu, Li, Yan, Wang, Ma, Shen, Xu, Initiative (bib0060) 2020; 208
Azzalini, Rebollo, Tallon-Baudry (bib0003) 2019; 23
Chou, Sundman, Whitson, Gaur, Chu, Weingarten, Madden, Wang, Kirste, Joliot (bib0016) 2017; 7
Makkie, Huang, Zhao, Vasilakos, Liu (bib0065) 2019; 325
Mejia, Nebel, Barber, Choe, Pekar, Caffo, Lindquist (bib0069) 2018; 172
Zhang, Han, Worth, Liu (bib0106) 2020; 11
Zhao, Honnorat, Adeli, Pfefferbaum, Sullivan, Pohl (bib0107) 2019
Winder, Echagarruga, Zhang, Drew (bib0100) 2017; 20
Shao, H., Lin H., Yang, Q., Yao S., Zhao, H., Abdelzaher, T., 2020. DynamicVAE: Decoupling reconstruction error and disentangled representation learning. arXiv:2009.06795
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib0025) 2015; 18
D'Souza, Nebel, Wymbs, Mostofsky, Venkataraman (bib0019) 2019
Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson (bib0033) 2016; 536
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib0034) 2013; 80
Chang, Leopold, Schölvinck, Mandelkow, Picchioni, Liu, Frank, Turchi, Duyn (bib0014) 2016; 113
Margulies, Ghost, Goulas, Falkiewicz, Huntenburg, Langs, Bezgin, Eickhoff, Castellanos, Petrides, Jefferies, Smallwood (bib0067) 2016; 113
Leopold, Maier (bib0057) 2012; 62
Zhao, Li, Zhang, Zhao, Makkie, Zhang, Li, Liu (bib0108) 2018
Riaz, Asad, Alonso, Slabaugh (bib0079) 2020; 335
Kawahara, Brown, Miller, Booth, Chau, Grunau, Zwicker, Hamarneh (bib0045) 2017; 146
Wang, Li, Chen, Hu (bib0096) 2019; 13
Wen, Shi, Chen, Liu (bib0099) 2018; 8
Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib0001) 2014; 24
Brown, Lee, Pasquini, Seeley (bib0009) 2021
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo (bib0042) 2013; 80
Yamins, DiCarlo (bib0101) 2016; 19
Fan, Su, Qin, Hu, Shen (bib0024) 2020; 14
Zou, Zheng, Miao, Mckeown, Wang (bib0109) 2017; 5
Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Power (10.1016/j.neuroimage.2021.118423_bib0075) 2014; 84
Liégeois (10.1016/j.neuroimage.2021.118423_bib0058) 2017; 163
Fox (10.1016/j.neuroimage.2021.118423_bib0027) 2014; 111
Wang (10.1016/j.neuroimage.2021.118423_bib0096) 2019; 13
Liu (10.1016/j.neuroimage.2021.118423_bib0061) 2020
Bianciardi (10.1016/j.neuroimage.2021.118423_bib0005) 2009; 27
Venkatesh (10.1016/j.neuroimage.2021.118423_bib0095) 2020; 207
Wang (10.1016/j.neuroimage.2021.118423_bib0097) 2020; 41
Amico (10.1016/j.neuroimage.2021.118423_bib0002) 2018; 8
Mejia (10.1016/j.neuroimage.2021.118423_bib0069) 2018; 172
Yang (10.1016/j.neuroimage.2021.118423_bib0102) 2019
Khosla (10.1016/j.neuroimage.2021.118423_bib0050) 2019
Garrity (10.1016/j.neuroimage.2021.118423_bib0032) 2007; 164
Richards (10.1016/j.neuroimage.2021.118423_bib0080) 2019; 22
Calhoun (10.1016/j.neuroimage.2021.118423_bib0012) 2001; 13
10.1016/j.neuroimage.2021.118423_bib0031
Chang (10.1016/j.neuroimage.2021.118423_bib0013) 2010; 50
Kim (10.1016/j.neuroimage.2021.118423_bib0051) 2016
Huang (10.1016/j.neuroimage.2021.118423_bib0041) 2017; 37
Fox (10.1016/j.neuroimage.2021.118423_bib0029) 2007; 8
Yamins (10.1016/j.neuroimage.2021.118423_bib0101) 2016; 19
Riaz (10.1016/j.neuroimage.2021.118423_bib0079) 2020; 335
Chou (10.1016/j.neuroimage.2021.118423_bib0016) 2017; 7
Winder (10.1016/j.neuroimage.2021.118423_bib0100) 2017; 20
Lucas (10.1016/j.neuroimage.2021.118423_bib0064) 2019; 32
Azzalini (10.1016/j.neuroimage.2021.118423_bib0003) 2019; 23
Shi (10.1016/j.neuroimage.2021.118423_bib0087) 2018; 39
Biswal (10.1016/j.neuroimage.2021.118423_bib0007) 1995; 34
D'Souza (10.1016/j.neuroimage.2021.118423_bib0019) 2019
Zhao (10.1016/j.neuroimage.2021.118423_bib0108) 2018
Lu (10.1016/j.neuroimage.2021.118423_bib0063) 2019; 13
Zhang (10.1016/j.neuroimage.2021.118423_bib0106) 2020; 11
He (10.1016/j.neuroimage.2021.118423_bib0039) 2020; 206
Khaligh-Razavi (10.1016/j.neuroimage.2021.118423_bib0047) 2014; 10
Shen (10.1016/j.neuroimage.2021.118423_bib0086) 2010; 49
Plis (10.1016/j.neuroimage.2021.118423_bib0074) 2014; 8
10.1016/j.neuroimage.2021.118423_bib0053
10.1016/j.neuroimage.2021.118423_bib0052
Sporns (10.1016/j.neuroimage.2021.118423_bib0090) 2005; 1
Sutskever (10.1016/j.neuroimage.2021.118423_bib0092) 2014
Kriegeskorte (10.1016/j.neuroimage.2021.118423_bib0055) 2013; 17
Smith (10.1016/j.neuroimage.2021.118423_bib0088) 2009; 106
Kell (10.1016/j.neuroimage.2021.118423_bib0046) 2018; 98
Smith (10.1016/j.neuroimage.2021.118423_bib0089) 2012; 109
Glasser (10.1016/j.neuroimage.2021.118423_bib0034) 2013; 80
Salimi-Khorshidi (10.1016/j.neuroimage.2021.118423_bib0082) 2014; 90
Rogers (10.1016/j.neuroimage.2021.118423_bib0081) 2010; 28
10.1016/j.neuroimage.2021.118423_bib0048
Moradi (10.1016/j.neuroimage.2021.118423_bib0070) 2015; 104
10.1016/j.neuroimage.2021.118423_bib0085
Zhang (10.1016/j.neuroimage.2021.118423_bib0105) 2011; 55
Byrge (10.1016/j.neuroimage.2021.118423_bib0011) 2019; 3
Griffanti (10.1016/j.neuroimage.2021.118423_bib0037) 2014; 95
Zhao (10.1016/j.neuroimage.2021.118423_bib0107) 2019
Leopold (10.1016/j.neuroimage.2021.118423_bib0057) 2012; 62
Yeo (10.1016/j.neuroimage.2021.118423_bib0103) 2011
Allen (10.1016/j.neuroimage.2021.118423_bib0001) 2014; 24
Birn (10.1016/j.neuroimage.2021.118423_bib0006) 2008; 40
Gonzalez-Castillo (10.1016/j.neuroimage.2021.118423_bib0035) 2015; 112
Liu (10.1016/j.neuroimage.2021.118423_bib0060) 2020; 208
Han (10.1016/j.neuroimage.2021.118423_bib0038) 2019; 198
Glasser (10.1016/j.neuroimage.2021.118423_bib0033) 2016; 536
LeCun (10.1016/j.neuroimage.2021.118423_bib0056) 2015; 521
Rakic (10.1016/j.neuroimage.2021.118423_bib0077) 2009; 10
Koppe (10.1016/j.neuroimage.2021.118423_bib0054) 2019; 15
Beckmann (10.1016/j.neuroimage.2021.118423_bib0004) 2004; 23
Rebollo (10.1016/j.neuroimage.2021.118423_bib0078) 2018; 7
Bright (10.1016/j.neuroimage.2021.118423_bib0008) 2015; 114
Fischl (10.1016/j.neuroimage.2021.118423_bib0026) 2012; 62
Özbay (10.1016/j.neuroimage.2021.118423_bib0073) 2019; 2
10.1016/j.neuroimage.2021.118423_bib0104
Van Essen (10.1016/j.neuroimage.2021.118423_bib0093) 2013; 80
Matsubara (10.1016/j.neuroimage.2021.118423_bib0068) 2019; 66
Seo (10.1016/j.neuroimage.2021.118423_bib0084) 2019
Hutchison (10.1016/j.neuroimage.2021.118423_bib0042) 2013; 80
Wen (10.1016/j.neuroimage.2021.118423_bib0099) 2018; 8
Zou (10.1016/j.neuroimage.2021.118423_bib0109) 2017; 5
Fox (10.1016/j.neuroimage.2021.118423_bib0030) 2005; 102
Jarrett (10.1016/j.neuroimage.2021.118423_bib0043) 2009
Chang (10.1016/j.neuroimage.2021.118423_bib0014) 2016; 113
Chen (10.1016/j.neuroimage.2021.118423_bib0015) 2018; 8
Khosla (10.1016/j.neuroimage.2021.118423_bib0049) 2019; 199
Brown (10.1016/j.neuroimage.2021.118423_bib0009) 2021
Higgins (10.1016/j.neuroimage.2021.118423_bib0040) 2017; 2
Suk (10.1016/j.neuroimage.2021.118423_bib0091) 2016; 129
Margulies (10.1016/j.neuroimage.2021.118423_bib0067) 2016; 113
Finn (10.1016/j.neuroimage.2021.118423_bib0025) 2015; 18
Nair (10.1016/j.neuroimage.2021.118423_bib0072) 2010
Cui (10.1016/j.neuroimage.2021.118423_bib0018) 2019
Fan (10.1016/j.neuroimage.2021.118423_bib0024) 2020; 14
Venkatesh (10.1016/j.neuroimage.2021.118423_bib0094) 2019; 186
Murphy (10.1016/j.neuroimage.2021.118423_bib0071) 2009; 44
Kawahara (10.1016/j.neuroimage.2021.118423_bib0045) 2017; 146
Dvornek (10.1016/j.neuroimage.2021.118423_bib0022) 2018
Mantini (10.1016/j.neuroimage.2021.118423_bib0066) 2007; 104
Kashyap (10.1016/j.neuroimage.2021.118423_bib0044) 2020; 4
Liégeois (10.1016/j.neuroimage.2021.118423_bib0059) 2019; 10
Makkie (10.1016/j.neuroimage.2021.118423_bib0065) 2019; 325
References_xml – volume: 5
  start-page: 23626
  year: 2017
  end-page: 23636
  ident: bib0109
  article-title: 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI
  publication-title: IEEE Access
– start-page: 709
  year: 2019
  end-page: 717
  ident: bib0019
  article-title: Integrating neural networks and dictionary learning for multidimensional clinical characterizations from functional connectomics data
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 62
  start-page: 2190
  year: 2012
  end-page: 2200
  ident: bib0057
  article-title: Ongoing physiological processes in the cerebral cortex
  publication-title: Neuroimage
– volume: 32
  year: 2019
  ident: bib0064
  article-title: Don't blame the ELBO! A linear VAE perspective on posterior collapse
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Shao, H., Lin H., Yang, Q., Yao S., Zhao, H., Abdelzaher, T., 2020. DynamicVAE: Decoupling reconstruction error and disentangled representation learning. arXiv:2009.06795
– volume: 208
  year: 2020
  ident: bib0060
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease
  publication-title: Neuroimage
– volume: 7
  start-page: e33321
  year: 2018
  ident: bib0078
  article-title: Stomach-brain synchrony reveals a novel, delayed connectivity resting-state network in humans
  publication-title: eLife
– volume: 207
  year: 2020
  ident: bib0095
  article-title: Comparing functional connectivity matrices: A geometry-aware approach applied to participant identification
  publication-title: Neuroimage
– volume: 8
  start-page: 229
  year: 2014
  ident: bib0074
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
– volume: 325
  start-page: 20
  year: 2019
  end-page: 30
  ident: bib0065
  article-title: Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics
  publication-title: Neurocomputing
– volume: 98
  start-page: 630
  year: 2018
  end-page: 644
  ident: bib0046
  article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy
  publication-title: Neuron
– volume: 113
  start-page: 12574
  year: 2016
  end-page: 12579
  ident: bib0067
  article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization
  publication-title: Proc. Natl. Acad. Sci.
– volume: 17
  start-page: 401
  year: 2013
  end-page: 412
  ident: bib0055
  article-title: Representational geometry: integrating cognition, computation, and the brain
  publication-title: Trends Cognit. Sci.
– volume: 2
  start-page: 6
  year: 2017
  ident: bib0040
  article-title: beta-VAE: learning basic visual concepts with a constrained variational framework
  publication-title: ICLR
– volume: 198
  start-page: 125
  year: 2019
  end-page: 136
  ident: bib0038
  article-title: Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex
  publication-title: Neuroimage
– volume: 24
  start-page: 663
  year: 2014
  end-page: 676
  ident: bib0001
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  ident: bib0029
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nature Rev. Neurosci.
– year: 2020
  ident: bib0061
  article-title: Deep spatio-temporal representation and ensemble classification for attention deficit/Hyperactivity disorder
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  ident: bib0004
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 164
  start-page: 450
  year: 2007
  end-page: 457
  ident: bib0032
  article-title: Aberrant “default mode” functional connectivity in schizophrenia
  publication-title: Am. J. Psych.
– volume: 15
  year: 2019
  ident: bib0054
  article-title: Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
  publication-title: PLoS Comput. Biol.
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib0026
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 1
  year: 2005
  ident: bib0090
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
– start-page: 181
  year: 2018
  end-page: 189
  ident: bib0108
  article-title: Modeling 4d fMRI data via spatio-temporal convolutional neural networks (st-cnn)
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 146
  start-page: 1038
  year: 2017
  end-page: 1049
  ident: bib0045
  article-title: BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment
  publication-title: Neuroimage
– reference: Yu, Y., Chan, K.H.R., You, C., Song, C., Ma, Y., 2020. Learning diverse and discriminative representations via the principle of maximal coding rate reduction. arXiv:
– volume: 199
  start-page: 651
  year: 2019
  end-page: 662
  ident: bib0049
  article-title: Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction
  publication-title: Neuroimage
– volume: 50
  start-page: 81
  year: 2010
  end-page: 98
  ident: bib0013
  article-title: Time–frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: Neuroimage
– volume: 109
  start-page: 3131
  year: 2012
  end-page: 3136
  ident: bib0089
  article-title: Temporally-independent functional modes of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib0072
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10)
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: bib0105
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
– volume: 23
  start-page: 488
  year: 2019
  end-page: 509
  ident: bib0003
  article-title: Visceral signals shape brain dynamics and cognition
  publication-title: Trends Cognit. Sci.
– volume: 18
  start-page: 1664
  year: 2015
  ident: bib0025
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nature Neurosci.
– start-page: 608
  year: 2019
  end-page: 620
  ident: bib0084
  article-title: Unsupervised pre-training of the brain connectivity dynamic using residual D-Net
  publication-title: Proceedings of the International Conference on Neural Information Processing
– volume: 28
  start-page: 1058
  year: 2010
  end-page: 1065
  ident: bib0081
  article-title: Functional MRI and multivariate autoregressive models
  publication-title: Magnet. Reson. Imaging
– year: 2019
  ident: bib0102
  article-title: Fused sparse network learning for longitudinal analysis of mild cognitive impairment
  publication-title: IEEE Trans. Cybern.
– volume: 10
  start-page: 724
  year: 2009
  end-page: 735
  ident: bib0077
  article-title: Evolution of the neocortex: a perspective from developmental biology
  publication-title: Nature Rev. Neurosci.
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib0051
  article-title: Evaluation of weight sparsity control during autoencoder training of resting-state fMRI using non-zero ratio and Hoyer's sparseness
  publication-title: Proceedings of the International Workshop on Pattern Recognition in Neuroimaging (PRNI)
– volume: 66
  start-page: 2768
  year: 2019
  end-page: 2779
  ident: bib0068
  article-title: Deep neural generative model of functional MRI images for psychiatric disorder diagnosis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 27
  start-page: 1019
  year: 2009
  end-page: 1029
  ident: bib0005
  article-title: Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study
  publication-title: Magnet. Resonance Imaging
– volume: 8
  start-page: 1
  year: 2018
  end-page: 17
  ident: bib0099
  article-title: Deep residual network predicts cortical representation and organization of visual features for rapid categorization
  publication-title: Scient. Rep.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0056
  article-title: Deep learning
  publication-title: Nature
– volume: 10
  start-page: 2317
  year: 2019
  ident: bib0059
  article-title: Resting brain dynamics at different timescales capture distinct aspects of human behavior
  publication-title: Nature Commun.
– volume: 114
  start-page: 158
  year: 2015
  end-page: 169
  ident: bib0008
  article-title: Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure
  publication-title: NeuroImage
– year: 2009
  ident: bib0043
  article-title: The restless brain
  publication-title: Psychologist
– volume: 3
  start-page: 363
  year: 2019
  end-page: 383
  ident: bib0011
  article-title: High-accuracy individual identification using a “thin slice” of the functional connectome
  publication-title: Netw. Neurosci.
– volume: 129
  start-page: 292
  year: 2016
  end-page: 307
  ident: bib0091
  article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI
  publication-title: Neuroimage
– volume: 186
  start-page: 410
  year: 2019
  end-page: 423
  ident: bib0094
  article-title: Brain dynamics and temporal trajectories during task and naturalistic processing
  publication-title: Neuroimage
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib0030
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  ident: bib0042
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
– volume: 19
  start-page: 356
  year: 2016
  end-page: 365
  ident: bib0101
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nature Neurosci.
– reference: Gadgil, S., Zhao, Q., Adeli, E., Pfefferbaum, A., Sullivan, E.V., Pohl, K.M., 2020. Spatio-temporal graph convolution for functional MRI analysis. arXiv preprint arXiv:2003.10613.
– volume: 4
  start-page: 448
  year: 2020
  end-page: 466
  ident: bib0044
  article-title: Brain network constraints and recurrent neural networks reproduce unique trajectories and state transitions seen over the span of minutes in resting-state fMRI
  publication-title: Network Neurosci.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib0002
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Scienti. Rep.
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib0007
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magnet. Resonance Med.
– year: 2011
  ident: bib0103
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
– volume: 13
  year: 2019
  ident: bib0063
  article-title: Origins of the resting-state functional MRI signal: potential limitations of the “neurocentric” model
  publication-title: Front. Neurosci.
– volume: 113
  start-page: 4518
  year: 2016
  end-page: 4523
  ident: bib0014
  article-title: Tracking brain arousal fluctuations with fMRI
  publication-title: Proc. Natl. Acad. Sci.
– volume: 13
  start-page: 43
  year: 2001
  end-page: 53
  ident: bib0012
  article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms
  publication-title: Human Brain Map.
– volume: 111
  start-page: E4367
  year: 2014
  end-page: E4375
  ident: bib0027
  article-title: Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases
  publication-title: Proc. Natl. Acad. Sci.
– reference: Khemakhem, I., Kingma, D.P., Hyvärinen, A., 2019. Variational autoencoders and nonlinear ICA: a unifying framework. arXiv preprint arXiv:1907.04809.
– volume: 20
  start-page: 1761
  year: 2017
  end-page: 1769
  ident: bib0100
  article-title: Weak correlations between hemodynamic signals and ongoing neural activity during the resting state
  publication-title: Nature Neurosci.
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: bib0092
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in neural information processing systems
– reference: Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  ident: bib0075
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: Neuroimage
– year: 2021
  ident: bib0009
  article-title: A dynamic gradient architecture generates brain activity states
  publication-title: bioRxiv
– volume: 172
  start-page: 478
  year: 2018
  end-page: 491
  ident: bib0069
  article-title: Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage
  publication-title: Neuroimage
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib0082
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– volume: 536
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib0033
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
– year: 2019
  ident: bib0018
  article-title: Modeling brain diverse and complex hemodynamic response patterns via deep recurrent autoencoder
  publication-title: IEEE Trans. Cogn. Devel. Syst
– volume: 39
  start-page: 2269
  year: 2018
  end-page: 2282
  ident: bib0087
  article-title: Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision
  publication-title: Human Brain Map.
– volume: 40
  start-page: 644
  year: 2008
  end-page: 654
  ident: bib0006
  article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration
  publication-title: Neuroimage
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0034
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib0037
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
– start-page: 329
  year: 2018
  end-page: 337
  ident: bib0022
  article-title: Learning generalizable recurrent neural networks from small task-fmri datasets
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 2
  start-page: 421
  year: 2019
  ident: bib0073
  article-title: Sympathetic activity contributes to the fMRI signal
  publication-title: Commun. Biol.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0093
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 10
  year: 2014
  ident: bib0047
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib0088
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib0106
  article-title: Connecting concepts in the brain by mapping cortical representations of semantic relations
  publication-title: Nature Commun.
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: bib0070
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
– year: 2019
  ident: bib0050
  article-title: Machine learning in resting-state fMRI analysis
  publication-title: Magnet. Resonance Imaging
– volume: 22
  start-page: 1761
  year: 2019
  end-page: 1770
  ident: bib0080
  article-title: A deep learning framework for neuroscience
  publication-title: Nature Neurosci.
– volume: 14
  start-page: 881
  year: 2020
  ident: bib0024
  article-title: A deep network model on dynamic functional connectivity with applications to gender classification and intelligence prediction
  publication-title: Front. Neurosci.
– volume: 41
  start-page: 1505
  year: 2020
  end-page: 1519
  ident: bib0097
  article-title: Decoding and mapping task states of the human brain via deep learning
  publication-title: Human Brain Map.
– volume: 37
  start-page: 1551
  year: 2017
  end-page: 1561
  ident: bib0041
  article-title: Modeling task fMRI data via deep convolutional autoencoder
  publication-title: IEEE Trans. Med. Imaging
– volume: 44
  start-page: 893
  year: 2009
  end-page: 905
  ident: bib0071
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: Neuroimage
– start-page: 867
  year: 2019
  end-page: 879
  ident: bib0107
  article-title: Variational autoencoder with truncated mixture of gaussians for functional connectivity analysis
  publication-title: Proceedings of the International Conference on Information Processing in Medical Imaging
– reference: .
– volume: 104
  start-page: 13170
  year: 2007
  end-page: 13175
  ident: bib0066
  article-title: Electrophysiological signatures of resting state networks in the human brain
  publication-title: Proc. Natl. Acad. Sci.
– volume: 8
  start-page: 197
  year: 2018
  end-page: 204
  ident: bib0015
  article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network
  publication-title: Brain Connect.
– volume: 112
  start-page: 8762
  year: 2015
  end-page: 8767
  ident: bib0035
  article-title: Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns
  publication-title: Proc. Natl. Acad. Sci.
– volume: 163
  start-page: 437
  year: 2017
  ident: bib0058
  article-title: Interpreting temporal fluctuations in resting-state functional connectivity MRI
  publication-title: NeuroImage
– reference: Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
– volume: 13
  start-page: 434
  year: 2019
  ident: bib0096
  article-title: Application of convolutional recurrent neural network for individual recognition based on resting state fMRI data
  publication-title: Front. Neurosci.
– volume: 206
  year: 2020
  ident: bib0039
  article-title: Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics
  publication-title: Neuroimage
– volume: 7
  start-page: 40722
  year: 2017
  ident: bib0016
  article-title: Maintenance and representation of mind wandering during Resting-State fMRI
  publication-title: Scient. Rep.
– volume: 335
  year: 2020
  ident: bib0079
  article-title: DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI
  publication-title: J. Neurosci. Methods
– volume: 49
  start-page: 3110
  year: 2010
  end-page: 3121
  ident: bib0086
  article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
  publication-title: Neuroimage
– start-page: 181
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118423_bib0108
  article-title: Modeling 4d fMRI data via spatio-temporal convolutional neural networks (st-cnn)
– volume: 129
  start-page: 292
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118423_bib0091
  article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.005
– volume: 17
  start-page: 401
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118423_bib0055
  article-title: Representational geometry: integrating cognition, computation, and the brain
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2013.06.007
– year: 2020
  ident: 10.1016/j.neuroimage.2021.118423_bib0061
  article-title: Deep spatio-temporal representation and ensemble classification for attention deficit/Hyperactivity disorder
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
– volume: 84
  start-page: 320
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118423_bib0075
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 13
  start-page: 43
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118423_bib0012
  article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms
  publication-title: Human Brain Map.
  doi: 10.1002/hbm.1024
– volume: 10
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118423_bib0047
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003915
– volume: 24
  start-page: 663
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118423_bib0001
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhs352
– volume: 186
  start-page: 410
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0094
  article-title: Brain dynamics and temporal trajectories during task and naturalistic processing
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.11.016
– volume: 13
  start-page: 434
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0096
  article-title: Application of convolutional recurrent neural network for individual recognition based on resting state fMRI data
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00434
– volume: 37
  start-page: 1551
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118423_bib0041
  article-title: Modeling task fMRI data via deep convolutional autoencoder
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2715285
– ident: 10.1016/j.neuroimage.2021.118423_bib0053
– volume: 164
  start-page: 450
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118423_bib0032
  article-title: Aberrant “default mode” functional connectivity in schizophrenia
  publication-title: Am. J. Psych.
  doi: 10.1176/ajp.2007.164.3.450
– volume: 44
  start-page: 893
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118423_bib0071
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.036
– volume: 10
  start-page: 724
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118423_bib0077
  article-title: Evolution of the neocortex: a perspective from developmental biology
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn2719
– volume: 172
  start-page: 478
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118423_bib0069
  article-title: Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.029
– volume: 20
  start-page: 1761
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118423_bib0100
  article-title: Weak correlations between hemodynamic signals and ongoing neural activity during the resting state
  publication-title: Nature Neurosci.
  doi: 10.1038/s41593-017-0007-y
– volume: 102
  start-page: 9673
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118423_bib0030
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0504136102
– year: 2009
  ident: 10.1016/j.neuroimage.2021.118423_bib0043
  article-title: The restless brain
  publication-title: Psychologist
– volume: 2
  start-page: 6
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118423_bib0040
  article-title: beta-VAE: learning basic visual concepts with a constrained variational framework
  publication-title: ICLR
– volume: 114
  start-page: 158
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118423_bib0008
  article-title: Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.070
– start-page: 3104
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118423_bib0092
  article-title: Sequence to sequence learning with neural networks
– volume: 113
  start-page: 12574
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118423_bib0067
  article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1608282113
– volume: 208
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118423_bib0060
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116459
– volume: 10
  start-page: 2317
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0059
  article-title: Resting brain dynamics at different timescales capture distinct aspects of human behavior
  publication-title: Nature Commun.
  doi: 10.1038/s41467-019-10317-7
– volume: 113
  start-page: 4518
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118423_bib0014
  article-title: Tracking brain arousal fluctuations with fMRI
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1520613113
– volume: 206
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118423_bib0039
  article-title: Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116276
– volume: 3
  start-page: 363
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0011
  article-title: High-accuracy individual identification using a “thin slice” of the functional connectome
  publication-title: Netw. Neurosci.
  doi: 10.1162/netn_a_00068
– volume: 199
  start-page: 651
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0049
  article-title: Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.012
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1016/j.neuroimage.2021.118423_bib0007
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magnet. Resonance Med.
  doi: 10.1002/mrm.1910340409
– volume: 7
  start-page: 40722
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118423_bib0016
  article-title: Maintenance and representation of mind wandering during Resting-State fMRI
  publication-title: Scient. Rep.
  doi: 10.1038/srep40722
– volume: 62
  start-page: 2190
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118423_bib0057
  article-title: Ongoing physiological processes in the cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.059
– start-page: 608
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0084
  article-title: Unsupervised pre-training of the brain connectivity dynamic using residual D-Net
– volume: 335
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118423_bib0079
  article-title: DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108506
– volume: 8
  start-page: 700
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118423_bib0029
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn2201
– volume: 112
  start-page: 8762
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118423_bib0035
  article-title: Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1501242112
– volume: 15
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0054
  article-title: Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1007263
– start-page: 807
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118423_bib0072
  article-title: Rectified linear units improve restricted Boltzmann machines
– volume: 207
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118423_bib0095
  article-title: Comparing functional connectivity matrices: A geometry-aware approach applied to participant identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116398
– ident: 10.1016/j.neuroimage.2021.118423_bib0085
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118423_bib0106
  article-title: Connecting concepts in the brain by mapping cortical representations of semantic relations
  publication-title: Nature Commun.
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0018
  article-title: Modeling brain diverse and complex hemodynamic response patterns via deep recurrent autoencoder
  publication-title: IEEE Trans. Cogn. Devel. Syst
– volume: 7
  start-page: e33321
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118423_bib0078
  article-title: Stomach-brain synchrony reveals a novel, delayed connectivity resting-state network in humans
  publication-title: eLife
  doi: 10.7554/eLife.33321
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0050
  article-title: Machine learning in resting-state fMRI analysis
  publication-title: Magnet. Resonance Imaging
  doi: 10.1016/j.mri.2019.05.031
– volume: 146
  start-page: 1038
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118423_bib0045
  article-title: BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.046
– volume: 19
  start-page: 356
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118423_bib0101
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.4244
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118423_bib0082
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118423_bib0037
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118423_bib0026
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 5
  start-page: 23626
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118423_bib0109
  article-title: 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2762703
– volume: 55
  start-page: 856
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118423_bib0105
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 198
  start-page: 125
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0038
  article-title: Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.039
– start-page: 709
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0019
  article-title: Integrating neural networks and dictionary learning for multidimensional clinical characterizations from functional connectomics data
– volume: 14
  start-page: 881
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118423_bib0024
  article-title: A deep network model on dynamic functional connectivity with applications to gender classification and intelligence prediction
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00881
– volume: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118423_bib0090
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– volume: 40
  start-page: 644
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118423_bib0006
  article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.059
– ident: 10.1016/j.neuroimage.2021.118423_bib0048
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118423_bib0056
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118423_bib0002
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Scienti. Rep.
– volume: 104
  start-page: 13170
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118423_bib0066
  article-title: Electrophysiological signatures of resting state networks in the human brain
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0700668104
– volume: 23
  start-page: 137
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118423_bib0004
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 8
  start-page: 197
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118423_bib0015
  article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network
  publication-title: Brain Connect.
  doi: 10.1089/brain.2017.0561
– volume: 163
  start-page: 437
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118423_bib0058
  article-title: Interpreting temporal fluctuations in resting-state functional connectivity MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.09.012
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118423_bib0034
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 13
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0063
  article-title: Origins of the resting-state functional MRI signal: potential limitations of the “neurocentric” model
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.01136
– start-page: 867
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0107
  article-title: Variational autoencoder with truncated mixture of gaussians for functional connectivity analysis
– volume: 2
  start-page: 421
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0073
  article-title: Sympathetic activity contributes to the fMRI signal
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0659-0
– volume: 22
  start-page: 1761
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0080
  article-title: A deep learning framework for neuroscience
  publication-title: Nature Neurosci.
  doi: 10.1038/s41593-019-0520-2
– year: 2011
  ident: 10.1016/j.neuroimage.2021.118423_bib0103
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
– volume: 98
  start-page: 630
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118423_bib0046
  article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.03.044
– volume: 111
  start-page: E4367
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118423_bib0027
  article-title: Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1405003111
– ident: 10.1016/j.neuroimage.2021.118423_bib0052
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118423_bib0088
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0905267106
– volume: 32
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0064
  article-title: Don't blame the ELBO! A linear VAE perspective on posterior collapse
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 109
  start-page: 3131
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118423_bib0089
  article-title: Temporally-independent functional modes of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1121329109
– start-page: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118423_bib0051
  article-title: Evaluation of weight sparsity control during autoencoder training of resting-state fMRI using non-zero ratio and Hoyer's sparseness
– volume: 8
  start-page: 229
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118423_bib0074
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00229
– volume: 23
  start-page: 488
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0003
  article-title: Visceral signals shape brain dynamics and cognition
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2019.03.007
– volume: 49
  start-page: 3110
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118423_bib0086
  article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.011
– volume: 39
  start-page: 2269
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118423_bib0087
  article-title: Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision
  publication-title: Human Brain Map.
  doi: 10.1002/hbm.24006
– year: 2021
  ident: 10.1016/j.neuroimage.2021.118423_bib0009
  article-title: A dynamic gradient architecture generates brain activity states
  publication-title: bioRxiv
– start-page: 329
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118423_bib0022
  article-title: Learning generalizable recurrent neural networks from small task-fmri datasets
– volume: 66
  start-page: 2768
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0068
  article-title: Deep neural generative model of functional MRI images for psychiatric disorder diagnosis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2895663
– ident: 10.1016/j.neuroimage.2021.118423_bib0031
  doi: 10.1007/978-3-030-59728-3_52
– volume: 80
  start-page: 360
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118423_bib0042
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 4
  start-page: 448
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118423_bib0044
  article-title: Brain network constraints and recurrent neural networks reproduce unique trajectories and state transitions seen over the span of minutes in resting-state fMRI
  publication-title: Network Neurosci.
  doi: 10.1162/netn_a_00129
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0102
  article-title: Fused sparse network learning for longitudinal analysis of mild cognitive impairment
  publication-title: IEEE Trans. Cybern.
– volume: 27
  start-page: 1019
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118423_bib0005
  article-title: Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study
  publication-title: Magnet. Resonance Imaging
  doi: 10.1016/j.mri.2009.02.004
– volume: 325
  start-page: 20
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118423_bib0065
  article-title: Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.066
– volume: 41
  start-page: 1505
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118423_bib0097
  article-title: Decoding and mapping task states of the human brain via deep learning
  publication-title: Human Brain Map.
  doi: 10.1002/hbm.24891
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118423_bib0070
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118423_bib0099
  article-title: Deep residual network predicts cortical representation and organization of visual features for rapid categorization
  publication-title: Scient. Rep.
– volume: 28
  start-page: 1058
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118423_bib0081
  article-title: Functional MRI and multivariate autoregressive models
  publication-title: Magnet. Reson. Imaging
  doi: 10.1016/j.mri.2010.03.002
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118423_bib0093
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 50
  start-page: 81
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118423_bib0013
  article-title: Time–frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.011
– volume: 18
  start-page: 1664
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118423_bib0025
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.4135
– volume: 536
  start-page: 171
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118423_bib0033
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– ident: 10.1016/j.neuroimage.2021.118423_bib0104
SSID ssj0009148
Score 2.5334575
Snippet •Variational auto-encoder disentangles generative factors of resting state fMRI activity.•Variational auto-encoder trained with unsupervised learning extracts...
Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118423
SubjectTerms Brain - diagnostic imaging
Brain - physiology
Connectome - methods
Databases, Factual
Deep generative model
Deep learning
Functional magnetic resonance imaging
Humans
Individuality
Latent gradients
Learning
Magnetic Resonance Imaging - methods
Neural networks
Random variables
Rest - physiology
Unsupervised learning
Unsupervised Machine Learning
Variational autoencoder
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQB8SlKn0upciVeo2a2I4f6qmtQBRpe0AgcbP8pFu1WQS7_f2MYycQOHQPvURRnImS8Xgezsw3CH2kkjgTalUZT3jFRGsq5eHATe1b7ggozrQPOf_BTy7Y6WV7-aDVV8oJy_DAmXGfTFAiUBWdFI41yhsbm2gpc6QlENj5pH3B5g3B1AC3C15-ydvJ2Vw9OuTiD6xRiAlJA5pCMkInxqjH7J_YpKc-5-PUyQe26Pg5elacSPwlv_we2grdC7QzL7_JX6LTsz6_tZQVdbi0hrjCy4hTL4502lcS4Tg_-47TXiz-C0Fz2RjEZr1aJoBLH25eoYvjo_NvJ1VpmlA5TutV5QSJxEthBeE2tpE75qVqfGAxpm6REEJQbhrrwM4TZyGWtqnWVVjCieVB0tdou1t24S3CvDYsOvCwKPPMG6FCaLyPXBEZGTVkhsTAPe0KonhqbPFbD6ljv_Q933Xiu858n6FmpLzOqBob0HxNEzTen3Cx-wsgLbpIi_6XtMyQGqZXD6WnoCzhQYsNXuDzSFvck-x2bEh9MEiTLmriVoO_KXmCCILhD-MwLPD018Z0YblO98CM0ZZxOUNvsvCNPADCmoJGhZmYiOWESdORbvGzBxGXTILnxvb_B1ffod30pblE8wBtr27W4T34ait72C_LO5MTQIY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96gvhy-G31lAq-FtskzQc-iIrHebA-HB7sW0jzce6h7bm3e3-_M23atQqyL0vZZko7mcxMJjO_IeQNU9TZUOrCeioKLmtbaA8_wpa-Fo6C4sQ45OKrODnnp8t6mQJu1ymtctSJvaL2ncMY-VswzUogmgp7f_WrwK5ReLqaWmjcJncQugylWi7lDnS34kMpXM0KBQNSJs-Q39XjRa5-wqqFXSKtQHcoTtnMPPUo_jMr9a8X-ncy5R_W6fg-OUxuZf5hkIMH5FZoH5K7i3Rw_oicnvUZr6nQqM1Ts4iLvIs5dufAy762KI-Lsy85RmfzG9hGp1BhbrebDiEvfVg_JufHn799OilSG4XCCVZuCidppF7JRlLRxDoKx73SlQ88RuwfCZsKJmzVOLD81DWwu26w-lU2VNBGBMWekIO2a8MzkovS8ujA52Lcc2-lDqHyPgpNVeTM0ozIkXvGJYxxbHXxw4zJZJdmx3eDfDcD3zNSTZRXA87GHjQfcYKm8YiU3f_RrS9MWnjGBi0D09Ep6XilvW1iFRvGHa2pLqXPiB6n14zFqKA-4UGrPV7g3USbHJbBEdmT-miUJpMUx7XZiXlGXk-3YcnjOY5tQ7fFMTBjrOZCZeTpIHwTD4CwZKBjYSZmYjlj0vxOu_rew4orrsCX48___1ovyD38hqEc84gcbNbb8BL8sk3zql98vwFS7zjq
  priority: 102
  providerName: ProQuest
Title Representation learning of resting state fMRI with variational autoencoder
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921006984
https://dx.doi.org/10.1016/j.neuroimage.2021.118423
https://www.ncbi.nlm.nih.gov/pubmed/34303794
https://www.proquest.com/docview/2568600343
https://www.proquest.com/docview/2555335468
https://pubmed.ncbi.nlm.nih.gov/PMC8485214
https://doaj.org/article/ae97e39fc87c419dabf1fb34c252907d
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFeEN8URhUkXkMT2_GHeNqmTd1QK1SY1LfI8cdWBMlUWh7527lLnI7ASyVekjT2Ren5fHd27n5HyDumqDU-06lxVKRcFibVDg7CZK4QloLixH3I2VxMr_jlslgekNM-FwbDKqPu73R6q63jnUnk5uR2tZp8Bs8AzA3ieSHcrkJMUM4lSvn7X3dhHjrnXTpcwVLsHaN5uhivFjNy9R1mLqwUaQ76Q3HKBiaqRfIfWKp_PdG_Ayr_sFDnj8jD6Fomx93bPyYHvn5C7s_ix_On5HLRRr3GZKM6iQUjrpMmJFihAy_b_KIkzBYXCe7QJj9hKR23CxOz3TQIe-n8-hm5Oj_7cjpNYymF1AqWbVIraaBOyUpSUYUiCMud0rnzPASsIQkLCyZMXlmw_tRWsMKuMANWVlTQSnjFnpPDuqn9S5KIzPBgwe9i3HFnpPY-dy4ITVXgzNARkT33ShtxxrHcxbeyDyj7Wt7xvUS-lx3fRyTfUd52WBt70JzgAO36I1p2e6NZX5dRXErjtfRMB6uk5bl2pgp5qBi3tKA6k25EdD-8ZZ-QCioUHrTa4wU-7GgHgrsn9VEvTWVUHj9K8EKVQOAgaH67a4Zpj99yTO2bLfaBEWMFF2pEXnTCt-MBEGYM9CyMxEAsB0wattSrmxZaXHEF_hx_9V9_6jV5gL-6jM0jcrhZb_0bcN021bidm3CUSzkm944vPk7ncD45m39ajNvtkN9_Bkku
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxBtDASPB0cLeXe9DCCFeVdI2PVStlNuy3kcJArukCYg_xW9k1l4nGCSUSy9RFHssZ2b2m5ndeSD0jAhstMtlpi1mGeWlzqSFD6ZzWzKDATjDPuTkkI1O6N60nG6hX30tTEir7DGxBWrbmLBH_gJMs2Chmwp5ffYtC1OjwulqP0KjU4t99_MHhGznr8bvQb7PMd79cPxulMWpAplhJF9khmOPreAVx6zypWeGWiEL66j3YZwi-NiE6aIyYAixqSDYrEIxKK8wwxVzgsBzL6HLYHjzEOzxKV83-S1oV3pXkkwUhYyZQ10-WdufcvYVUAKiUlwAVgmKycActlMDBlbxX6_37-TNP6zh7g10Pbqx6ZtO726iLVffQlcm8aD-Nto7ajNsY2FTncbhFKdp49MwDSR8bWuZUj85GqdhNzj9DmF73JpM9XLRhBab1s3voJMLYfBdtF03tbuPUpZr6g34eIRaajWXzhXWeiax8JRonCDec0-Z2NM8jNb4ovrktc9qzXcV-K46vieoWFGedX09NqB5GwS0uj905m5_aOanKi50pZ3kjkhvBDe0kFZXvvAVoQaXWObcJkj24lV98SvANTxotsELvFzRRgepc3w2pN7ptUlFoDpX62WVoKerywAx4dxI165ZhntAYqSkTCToXqd8Kx4AYU4A00ESA7UcMGl4pZ59atuYCyrAd6QP_v9aT9DV0fHkQB2MD_cfomvh_3SloDtoezFfukfgEy6qx-1CTNHHi175vwEfynWh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdNPGCuK8wIEjwGC2xHV-EEGJs1brRaqqYtDfj-DKKIBldC-LX-DqOE6ejIKG-7CWKkpwoOfdjnwtCL4jARrtMptpillJe6FRaODCd2YIZDIozrEOOxuzwlB6dFWcb6FdXCxPSKjud2ChqW5uwRr4Lplmw0E2F7PqYFnGyP3hz8S0NE6TCTms3TqNlkWP38weEb5evh_tA65cYDw4-vDtM44SB1DCSzVPDscdW8JJjVvrCM0OtkLl11PswWhH8bcJ0XhowitiUEHiWoTCUl5jhkjlB4L030CYPUVEPbe4djE8mVy1_c9oW4hUkFXkuYx5Rm13WdKucfgWdATEqzkFzCYrJinFsZgis2Mh_feC_Uzn_sI2D2-hWdGqTty0X3kEbrrqLtkZx2_4eOpo0-baxzKlK4qiK86T2SZgNEk6byqbEjybDJKwNJ98hiI8LlYlezOvQcNO62X10ei0ofoB6VV25bZSwTFNvwOMj1FKruXQut9YziYWnROM-4h32lIkdzsOgjS-qS2X7rK7wrgLeVYv3PsqXkBdtl481YPYCgZbPhz7dzYV6dq6i2CvtJHdEeiO4obm0uvS5Lwk1uMAy47aPZEde1ZXCgvKGF03X-IBXS9joLrVu0JrQOx03qai2LtWVkPXR8-VtUDhhF0lXrl6EZ4BipKBM9NHDlvmWOADAjICGB0qssOUKklbvVNNPTVNzQQV4kvTR_z_rGdoCqVfvh-Pjx-hm-J22LnQH9eazhXsCDuK8fBolMUEfr1v4fwPX4Hs8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+learning+of+resting+state+fMRI+with+variational+autoencoder&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kim%2C+Jung-Hoon&rft.au=Zhang%2C+Yizhen&rft.au=Han%2C+Kuan&rft.au=Wen%2C+Zheyu&rft.date=2021-11-01&rft.issn=1053-8119&rft.volume=241&rft.spage=118423&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118423&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2021_118423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon