miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a

To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR inj...

Full description

Saved in:
Bibliographic Details
Published inExperimental Animals Vol. 70; no. 1; pp. 126 - 136
Main Authors Xing, Fangyuan, Liu, Yongrong, Dong, Ruifang, Cheng, Ye
Format Journal Article
LanguageEnglish
Published Japan Japanese Association for Laboratory Animal Science 01.01.2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation.
AbstractList To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation.
To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a , increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation.
Author Liu, Yongrong
Dong, Ruifang
Xing, Fangyuan
Cheng, Ye
Author_xml – sequence: 1
  fullname: Xing, Fangyuan
  organization: Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China
– sequence: 2
  fullname: Liu, Yongrong
  organization: Department of Ultrasound, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China
– sequence: 3
  fullname: Dong, Ruifang
  organization: Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China
– sequence: 4
  fullname: Cheng, Ye
  organization: Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33116025$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1r3DAQxUVIyVdzzq0YenaiL1v2pVBC2hQChdLSoxhpR7ta1rIrySH731fLbpa20ItGMO_35jFzSU7DGJCQG0ZvWSO6O3yZIPjhltOaUiFPyAXrOlYrxvlp-QvJaiYadU4uU1pTypXi_Rk5F4KxlvLmgjwO_lstlKz8MMXxGVNlMaKJsKl8siscPFQRJ4xuTn4MlQ_rOW4rs60yxCVmH5bVz5AbeEveONgkvD7UK_Lj08P3-8f66evnL_cfn2rbCppraFWHTlnk3DjOFws01PCmkR0VzDjRMgBJnZEtNSV5bySoEpq7zsECHRVX5MPed5rNgAuLIZeweop-gLjVI3j9dyf4lV6Oz1p1nWpZXwzeHwzi-GvGlPV6nGMomTWXvexFw5goqnd_jjn6v26uCJq9wMYxpYhOW58hlx2VqX6jGdW7C-nDhTSnenehwt39w71a_5942BPrlGGJRz3E7O0Gj3pV-N1z4I59u4KoMYjfq3evWQ
CitedBy_id crossref_primary_10_1007_s11011_023_01273_9
crossref_primary_10_3389_fnins_2022_901360
crossref_primary_10_1186_s40246_023_00551_y
crossref_primary_10_1080_14728222_2021_2010045
crossref_primary_10_1080_21655979_2021_1999369
crossref_primary_10_2174_0115672026313555240515103132
Cites_doi 10.1016/j.neulet.2015.03.038
10.1182/blood-2005-12-5046
10.1111/j.1748-1716.2011.02294.x
10.1002/jcp.27745
10.1126/science.1188280
10.2174/1871527318666190204104629
10.1111/1440-1681.12742
10.1002/jcp.26394
10.1053/j.gastro.2009.02.003
10.1093/ageing/afq133
10.1371/journal.pone.0066393
10.1073/pnas.0704747104
10.1074/jbc.M115.693937
10.1007/s12975-020-00806-z
10.1161/hs1101.098367
10.1248/bpb.b15-00699
10.1038/sj.bjc.6605174
10.5853/jos.2016.01515
10.1080/02699052.2017.1298005
10.1007/s12035-016-0216-5
10.1016/j.pcad.2017.04.005
10.1007/s12035-016-9842-1
10.1126/scisignal.aat4285
10.1007/s00018-015-2076-y
10.3389/fneur.2018.00617
10.1186/1742-2094-9-111
10.1126/scisignal.135re9
10.3390/ijms161024895
10.1038/emboj.2010.26
10.1016/j.neuropharm.2018.03.006
10.3390/ijms19092834
10.1016/j.conb.2018.06.003
10.1111/ane.13093
10.1159/000489186
10.1016/j.neuropharm.2017.08.036
10.21037/atm-20-3066
ContentType Journal Article
Copyright 2021 Japanese Association for Laboratory Animal Science
Copyright Japan Science and Technology Agency 2021
2021 Japanese Association for Laboratory Animal Science 2021
Copyright_xml – notice: 2021 Japanese Association for Laboratory Animal Science
– notice: Copyright Japan Science and Technology Agency 2021
– notice: 2021 Japanese Association for Laboratory Animal Science 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
RC3
5PM
DOI 10.1538/expanim.20-0034
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1881-7122
EndPage 136
ExternalDocumentID PMC7887619
33116025
10_1538_expanim_20_0034
article_expanim_70_1_70_20_0034_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29G
2WC
3O-
53G
5GY
AAUGY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EMOBN
FRP
GX1
HYE
JSF
JSH
KQ8
M48
M~E
OK1
P2P
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
AAYXX
CITATION
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c630t-a678ef7ce22bf22ddeb0b25548031bf361aa40fb460b1359b4a77722f8fadef03
IEDL.DBID M48
ISSN 1341-1357
IngestDate Thu Aug 21 14:07:08 EDT 2025
Mon Jun 30 16:44:48 EDT 2025
Thu Jan 02 22:39:41 EST 2025
Tue Jul 01 01:21:02 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Thu Aug 17 20:32:58 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords reperfusion injury
brain ischemia
Wnt5a
miR-374
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-a678ef7ce22bf22ddeb0b25548031bf361aa40fb460b1359b4a77722f8fadef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1538/expanim.20-0034
PMID 33116025
PQID 2494935113
PQPubID 2048505
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7887619
proquest_journals_2494935113
pubmed_primary_33116025
crossref_citationtrail_10_1538_expanim_20_0034
crossref_primary_10_1538_expanim_20_0034
jstage_primary_article_expanim_70_1_70_20_0034_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Experimental Animals
PublicationTitleAlternate Exp Anim
PublicationYear 2021
Publisher Japanese Association for Laboratory Animal Science
Japan Science and Technology Agency
Publisher_xml – name: Japanese Association for Laboratory Animal Science
– name: Japan Science and Technology Agency
References 35. Li K, Ding D, Zhang M. Neuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats. Biol Pharm Bull. 2016; 39: 336–342.
39. Zhang P, Yang L, He H, Deng Y. Differential variations of autophagy and apoptosis in permanent focal cerebral ischaemia rat model. Brain Inj. 2017; 31: 1151–1158.
28. Peña ID, Borlongan C, Shen G, Davis W. Strategies to Extend Thrombolytic Time Window for Ischemic Stroke Treatment: An Unmet Clinical Need. J Stroke. 2017; 19: 50–60.
12. Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang W, Yang JG. Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J Cell Physiol. 2019; 234: 10726–10740.
19. McDonald SL, Silver A. The opposing roles of Wnt-5a in cancer. Br J Cancer. 2009; 101: 209–214.
32. Venkat P, Shen Y, Chopp M, Chen J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology. 2018; 134:(Pt B): 310–322.
34. McLeod F, Salinas PC. Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol. 2018; 53: 90–95.
20. Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, et al. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood. 2006; 108: 965–973.
26. Halleskog C, Dijksterhuis JP, Kilander MB, Becerril-Ortega J, Villaescusa JC, Lindgren E, et al. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation. 2012; 9: 111.
10. Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PT, et al. microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model. PLoS One. 2013; 8: e66393.
33. He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol. 2018; 8: 8.
1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019; 139: e56–e528.
7. Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, et al. An Antagomir to MicroRNA-106b-5p Ameliorates Cerebral Ischemia and Reperfusion Injury in Rats Via Inhibiting Apoptosis and Oxidative Stress. Mol Neurobiol. 2017; 54: 2901–2921.
9. Kim T, Mehta SL, Morris-Blanco KC, Chokkalla AK, Chelluboina B, Lopez M, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci Signal. 2018; 11: eaat4285.
27. Ding S, Xu Z, Yang J, Liu L, Huang X, Wang X, et al. The Involvement of the Decrease of Astrocytic Wnt5a in the Cognitive Decline in Minimal Hepatic Encephalopathy. Mol Neurobiol. 2017; 54: 7949–7963.
38. Puig B, Brenna S, Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci. 2018; 19: 19.
18. Kumawat K, Gosens R. WNT-5A: signaling and functions in health and disease. Cell Mol Life Sci. 2016; 73: 567–587.
17. Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA. 2007; 104: 15436–15441.
2. Banerjee S, Williamson D, Habib N, Gordon M, Chataway J. Human stem cell therapy in ischaemic stroke: a review. Age Ageing. 2011; 40: 7–13.
5. Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci. 2015; 16: 24895–24917.
24. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001; 32: 2682–2688.
6. Forouzanfar F, Shojapour M, Asgharzade S, Amini E. Causes and Consequences of MicroRNA Dysregulation Following Cerebral Ischemia-Reperfusion Injury. CNS Neurol Disord Drug Targets. 2019; 18: 212–221.
36. Jung YS, Oh AY, Park HP, Hwang JW, Lim YJ, Jeon YT. Post-ischemic administration of pravastatin reduces neuronal injury by inhibiting Bax protein expression after transient forebrain ischemia in rats. Neurosci Lett. 2015; 594: 87–92.
13. van Amerongen R, Mikels A, Nusse R. Alternative wnt signaling is initiated by distinct receptors. Sci Signal. 2008; 1: re9.
21. Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N, Shibata R, et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science. 2010; 329: 454–457.
16. Yamamoto H, Kitadai Y, Yamamoto H, Oue N, Ohdan H, Yasui W, et al. Laminin gamma2 mediates Wnt5a-induced invasion of gastric cancer cells. Gastroenterology. 2009; 137: 242–252, 252.e1–252.e6.
23. Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, et al. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology. 2018; 135: 11–21.
4. Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol. 2018; 9: 617.
30. Yaghi S, Willey JZ, Cucchiara B, Goldstein JN, Gonzales NR, Khatri P, et al. American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Council on Quality of Care and Outcomes Research. Treatment and Outcome of Hemorrhagic Transformation After Intravenous Alteplase in Acute Ischemic Stroke: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2017; 48: e343–e361.
11. Zhang SB, Liu TJ, Pu GH, Li BY, Gao XZ, Han XL. MicroRNA-374 Exerts Protective Effects by Inhibiting SP1 Through Activating the PI3K/Akt Pathway in Rat Models of Myocardial Ischemia-Reperfusion After Sevoflurane Preconditioning. Cell Physiol Biochem. 2018; 46: 1455–1470.
29. Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, et al. Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res. 2020; 11: 1185–1202.
31. Patel RAG, McMullen PW. Neuroprotection in the Treatment of Acute Ischemic Stroke. Prog Cardiovasc Dis. 2017; 59: 542–548.
14. Kikuchi A, Yamamoto H, Sato A, Matsumoto S. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf). 2012; 204: 17–33.
25. Zhang W, Wang Y, Bi G. Limb remote ischaemic postconditioning-induced elevation of fibulin-5 confers neuroprotection to
22
23
24
25
26
27
28
29
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
(30) 2017; 48
20
21
References_xml – reference: 17. Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA. 2007; 104: 15436–15441.
– reference: 20. Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, et al. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood. 2006; 108: 965–973.
– reference: 26. Halleskog C, Dijksterhuis JP, Kilander MB, Becerril-Ortega J, Villaescusa JC, Lindgren E, et al. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation. 2012; 9: 111.
– reference: 13. van Amerongen R, Mikels A, Nusse R. Alternative wnt signaling is initiated by distinct receptors. Sci Signal. 2008; 1: re9.
– reference: 18. Kumawat K, Gosens R. WNT-5A: signaling and functions in health and disease. Cell Mol Life Sci. 2016; 73: 567–587.
– reference: 11. Zhang SB, Liu TJ, Pu GH, Li BY, Gao XZ, Han XL. MicroRNA-374 Exerts Protective Effects by Inhibiting SP1 Through Activating the PI3K/Akt Pathway in Rat Models of Myocardial Ischemia-Reperfusion After Sevoflurane Preconditioning. Cell Physiol Biochem. 2018; 46: 1455–1470.
– reference: 38. Puig B, Brenna S, Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci. 2018; 19: 19.
– reference: 9. Kim T, Mehta SL, Morris-Blanco KC, Chokkalla AK, Chelluboina B, Lopez M, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci Signal. 2018; 11: eaat4285.
– reference: 19. McDonald SL, Silver A. The opposing roles of Wnt-5a in cancer. Br J Cancer. 2009; 101: 209–214.
– reference: 28. Peña ID, Borlongan C, Shen G, Davis W. Strategies to Extend Thrombolytic Time Window for Ischemic Stroke Treatment: An Unmet Clinical Need. J Stroke. 2017; 19: 50–60.
– reference: 5. Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci. 2015; 16: 24895–24917.
– reference: 27. Ding S, Xu Z, Yang J, Liu L, Huang X, Wang X, et al. The Involvement of the Decrease of Astrocytic Wnt5a in the Cognitive Decline in Minimal Hepatic Encephalopathy. Mol Neurobiol. 2017; 54: 7949–7963.
– reference: 36. Jung YS, Oh AY, Park HP, Hwang JW, Lim YJ, Jeon YT. Post-ischemic administration of pravastatin reduces neuronal injury by inhibiting Bax protein expression after transient forebrain ischemia in rats. Neurosci Lett. 2015; 594: 87–92.
– reference: 10. Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PT, et al. microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model. PLoS One. 2013; 8: e66393.
– reference: 29. Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, et al. Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res. 2020; 11: 1185–1202.
– reference: 39. Zhang P, Yang L, He H, Deng Y. Differential variations of autophagy and apoptosis in permanent focal cerebral ischaemia rat model. Brain Inj. 2017; 31: 1151–1158.
– reference: 31. Patel RAG, McMullen PW. Neuroprotection in the Treatment of Acute Ischemic Stroke. Prog Cardiovasc Dis. 2017; 59: 542–548.
– reference: 21. Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N, Shibata R, et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science. 2010; 329: 454–457.
– reference: 33. He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol. 2018; 8: 8.
– reference: 2. Banerjee S, Williamson D, Habib N, Gordon M, Chataway J. Human stem cell therapy in ischaemic stroke: a review. Age Ageing. 2011; 40: 7–13.
– reference: 25. Zhang W, Wang Y, Bi G. Limb remote ischaemic postconditioning-induced elevation of fibulin-5 confers neuroprotection to rats with cerebral ischaemia/reperfusion injury: Activation of the AKT pathway. Clin Exp Pharmacol Physiol. 2017; 44: 656–663.
– reference: 16. Yamamoto H, Kitadai Y, Yamamoto H, Oue N, Ohdan H, Yasui W, et al. Laminin gamma2 mediates Wnt5a-induced invasion of gastric cancer cells. Gastroenterology. 2009; 137: 242–252, 252.e1–252.e6.
– reference: 35. Li K, Ding D, Zhang M. Neuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats. Biol Pharm Bull. 2016; 39: 336–342.
– reference: 3. Khanevski AN, Bjerkreim AT, Novotny V, Naess H, Thomassen L, Logallo N, et al. NOR-STROKE study group. Recurrent ischemic stroke: Incidence, predictors, and impact on mortality. Acta Neurol Scand. 2019; 140: 3–8.
– reference: 7. Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, et al. An Antagomir to MicroRNA-106b-5p Ameliorates Cerebral Ischemia and Reperfusion Injury in Rats Via Inhibiting Apoptosis and Oxidative Stress. Mol Neurobiol. 2017; 54: 2901–2921.
– reference: 6. Forouzanfar F, Shojapour M, Asgharzade S, Amini E. Causes and Consequences of MicroRNA Dysregulation Following Cerebral Ischemia-Reperfusion Injury. CNS Neurol Disord Drug Targets. 2019; 18: 212–221.
– reference: 24. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001; 32: 2682–2688.
– reference: 15. Matsumoto S, Fumoto K, Okamoto T, Kaibuchi K, Kikuchi A. Binding of APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. EMBO J. 2010; 29: 1192–1204.
– reference: 4. Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol. 2018; 9: 617.
– reference: 12. Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang W, Yang JG. Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J Cell Physiol. 2019; 234: 10726–10740.
– reference: 32. Venkat P, Shen Y, Chopp M, Chen J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology. 2018; 134:(Pt B): 310–322.
– reference: 1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019; 139: e56–e528.
– reference: 22. Nakamura K, Sano S, Fuster JJ, Kikuchi R, Shimizu I, Ohshima K, et al. Secreted Frizzled-related Protein 5 Diminishes Cardiac Inflammation and Protects the Heart from Ischemia/Reperfusion Injury. J Biol Chem. 2016; 291: 2566–2575.
– reference: 8. Han XR, Wen X, Wang YJ, Wang S, Shen M, Zhang ZF, et al. Protective effects of microRNA-431 against cerebral ischemia-reperfusion injury in rats by targeting the Rho/Rho-kinase signaling pathway. J Cell Physiol. 2018; 233: 5895–5907.
– reference: 14. Kikuchi A, Yamamoto H, Sato A, Matsumoto S. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf). 2012; 204: 17–33.
– reference: 34. McLeod F, Salinas PC. Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol. 2018; 53: 90–95.
– reference: 37. Jiang R, Liao J, Yang MC, Deng J, Hu YX, Li P, et al. Lidocaine mediates the progression of cerebral ischemia/reperfusion injury in rats via inhibiting the activation of NF-κB p65 and p38 MAPK. Ann Transl Med. 2020; 8: 548.
– reference: 23. Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, et al. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology. 2018; 135: 11–21.
– reference: 30. Yaghi S, Willey JZ, Cucchiara B, Goldstein JN, Gonzales NR, Khatri P, et al. American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Council on Quality of Care and Outcomes Research. Treatment and Outcome of Hemorrhagic Transformation After Intravenous Alteplase in Acute Ischemic Stroke: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2017; 48: e343–e361.
– ident: 36
  doi: 10.1016/j.neulet.2015.03.038
– ident: 33
– ident: 20
  doi: 10.1182/blood-2005-12-5046
– ident: 14
  doi: 10.1111/j.1748-1716.2011.02294.x
– ident: 12
  doi: 10.1002/jcp.27745
– ident: 21
  doi: 10.1126/science.1188280
– ident: 6
  doi: 10.2174/1871527318666190204104629
– ident: 25
  doi: 10.1111/1440-1681.12742
– ident: 8
  doi: 10.1002/jcp.26394
– ident: 16
  doi: 10.1053/j.gastro.2009.02.003
– ident: 2
  doi: 10.1093/ageing/afq133
– ident: 10
  doi: 10.1371/journal.pone.0066393
– ident: 17
  doi: 10.1073/pnas.0704747104
– ident: 22
  doi: 10.1074/jbc.M115.693937
– ident: 29
  doi: 10.1007/s12975-020-00806-z
– ident: 24
  doi: 10.1161/hs1101.098367
– volume: 48
  start-page: e343
  issn: 0039-2499
  year: 2017
  ident: 30
  publication-title: Stroke
– ident: 35
  doi: 10.1248/bpb.b15-00699
– ident: 19
  doi: 10.1038/sj.bjc.6605174
– ident: 28
  doi: 10.5853/jos.2016.01515
– ident: 39
  doi: 10.1080/02699052.2017.1298005
– ident: 27
  doi: 10.1007/s12035-016-0216-5
– ident: 31
  doi: 10.1016/j.pcad.2017.04.005
– ident: 1
– ident: 7
  doi: 10.1007/s12035-016-9842-1
– ident: 9
  doi: 10.1126/scisignal.aat4285
– ident: 18
  doi: 10.1007/s00018-015-2076-y
– ident: 4
  doi: 10.3389/fneur.2018.00617
– ident: 26
  doi: 10.1186/1742-2094-9-111
– ident: 13
  doi: 10.1126/scisignal.135re9
– ident: 5
  doi: 10.3390/ijms161024895
– ident: 15
  doi: 10.1038/emboj.2010.26
– ident: 23
  doi: 10.1016/j.neuropharm.2018.03.006
– ident: 38
  doi: 10.3390/ijms19092834
– ident: 34
  doi: 10.1016/j.conb.2018.06.003
– ident: 3
  doi: 10.1111/ane.13093
– ident: 11
  doi: 10.1159/000489186
– ident: 32
  doi: 10.1016/j.neuropharm.2017.08.036
– ident: 37
  doi: 10.21037/atm-20-3066
SSID ssj0027729
Score 2.273745
Snippet To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral...
To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126
SubjectTerms Animals
Apoptosis
Bcl-2 protein
Bcl-x protein
bcl-X Protein - genetics
bcl-X Protein - metabolism
Blood-brain barrier
Brain damage
Brain injury
brain ischemia
Brain Ischemia - etiology
Brain Ischemia - genetics
Brain Ischemia - therapy
Cerebral blood flow
Cerebral infarction
Disease Models, Animal
Down-Regulation - drug effects
Edema
Gene expression
Gene Expression - genetics
Head injuries
Infarction
Infarction, Middle Cerebral Artery - complications
Infarction, Middle Cerebral Artery - genetics
Ischemia
Male
MicroRNAs
MicroRNAs - metabolism
MicroRNAs - pharmacology
MicroRNAs - physiology
MicroRNAs - therapeutic use
miR-374
miRNA
Molecular Targeted Therapy
Occlusion
Original
Proto-Oncogene Proteins c-bcl-2 - genetics
Proto-Oncogene Proteins c-bcl-2 - metabolism
Rats
Rats, Sprague-Dawley
Reperfusion
reperfusion injury
Reperfusion Injury - complications
Reperfusion Injury - genetics
Ribonucleic acid
RNA
Wnt protein
Wnt-5a Protein - genetics
Wnt-5a Protein - metabolism
Wnt5a
Title miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a
URI https://www.jstage.jst.go.jp/article/expanim/70/1/70_20-0034/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/33116025
https://www.proquest.com/docview/2494935113
https://pubmed.ncbi.nlm.nih.gov/PMC7887619
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental Animals, 2021, Vol.70(1), pp.126-136
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VClIvVcujDaXIBw5cAontPPbQVlVVtKq0CKGuQFwi27FpVkuAsEjw7zvjZEO32vaSi8eOMuPJPDz-BmC_TEvhuOGhooNDGbs4HHBrwkQKo60epLnPd4xO0uFY_rhILp7bAXUMvF8a2lE_qXEzPXy8e_qCCv_Jd-8R-ZF9RMWp6Fp5SHArK_ASzVJG7QxGMn-OvjLfsowAzMJYJFmH87NkgQUTtTZBL-3KLnNA_66j_MMwHb-B151Hyb62W-AtvLD1Bqxf3vh8-SYMr6sz1G_JKp8-sPfM2IZOi6esws-315Vijb21jXugxBmr6gmymekn1haJo2lj5_UsUVswPv7-89sw7NonhCYV0SxUaIesy4zlXDvO8T-mI40RhMxRkbUTaayUjJyWaaSRIQMtVYZM4i53qrQuEtuwWt_U9j2w2KHfZoVJjYglj5RKVDRAGbuoLBV6cAEczjlWmA5bnFpcTAuKMZDFRcfigns0UhnAQT_htoXV-Dfp51YEPWGnUz1hhhPp0U3ox-neGip_ALtz0RXz_VVwQuWhQ1QRwLtWiv36QsRxir5gANmCfHsCguReHKmrXx6am2ozMSTd-f8rP8ArTqUxPpOzC6uz5sF-RN9mpvf8nsXnyeloz6eefgOpr_1D
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-374+improves+cerebral+ischemia+reperfusion+injury+by+targeting+Wnt5a&rft.jtitle=Experimental+animals&rft.au=Xing%2C+Fangyuan&rft.au=Liu%2C+Yongrong&rft.au=Dong%2C+Ruifang&rft.au=Cheng%2C+Ye&rft.date=2021-01-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=70&rft.issue=1&rft.spage=126&rft_id=info:doi/10.1538%2Fexpanim.20-0034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon