miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a
To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR inj...
Saved in:
Published in | Experimental Animals Vol. 70; no. 1; pp. 126 - 136 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Association for Laboratory Animal Science
01.01.2021
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation. |
---|---|
AbstractList | To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation. To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a , increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation. |
Author | Liu, Yongrong Dong, Ruifang Xing, Fangyuan Cheng, Ye |
Author_xml | – sequence: 1 fullname: Xing, Fangyuan organization: Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China – sequence: 2 fullname: Liu, Yongrong organization: Department of Ultrasound, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China – sequence: 3 fullname: Dong, Ruifang organization: Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China – sequence: 4 fullname: Cheng, Ye organization: Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33116025$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1r3DAQxUVIyVdzzq0YenaiL1v2pVBC2hQChdLSoxhpR7ta1rIrySH731fLbpa20ItGMO_35jFzSU7DGJCQG0ZvWSO6O3yZIPjhltOaUiFPyAXrOlYrxvlp-QvJaiYadU4uU1pTypXi_Rk5F4KxlvLmgjwO_lstlKz8MMXxGVNlMaKJsKl8siscPFQRJ4xuTn4MlQ_rOW4rs60yxCVmH5bVz5AbeEveONgkvD7UK_Lj08P3-8f66evnL_cfn2rbCppraFWHTlnk3DjOFws01PCmkR0VzDjRMgBJnZEtNSV5bySoEpq7zsECHRVX5MPed5rNgAuLIZeweop-gLjVI3j9dyf4lV6Oz1p1nWpZXwzeHwzi-GvGlPV6nGMomTWXvexFw5goqnd_jjn6v26uCJq9wMYxpYhOW58hlx2VqX6jGdW7C-nDhTSnenehwt39w71a_5942BPrlGGJRz3E7O0Gj3pV-N1z4I59u4KoMYjfq3evWQ |
CitedBy_id | crossref_primary_10_1007_s11011_023_01273_9 crossref_primary_10_3389_fnins_2022_901360 crossref_primary_10_1186_s40246_023_00551_y crossref_primary_10_1080_14728222_2021_2010045 crossref_primary_10_1080_21655979_2021_1999369 crossref_primary_10_2174_0115672026313555240515103132 |
Cites_doi | 10.1016/j.neulet.2015.03.038 10.1182/blood-2005-12-5046 10.1111/j.1748-1716.2011.02294.x 10.1002/jcp.27745 10.1126/science.1188280 10.2174/1871527318666190204104629 10.1111/1440-1681.12742 10.1002/jcp.26394 10.1053/j.gastro.2009.02.003 10.1093/ageing/afq133 10.1371/journal.pone.0066393 10.1073/pnas.0704747104 10.1074/jbc.M115.693937 10.1007/s12975-020-00806-z 10.1161/hs1101.098367 10.1248/bpb.b15-00699 10.1038/sj.bjc.6605174 10.5853/jos.2016.01515 10.1080/02699052.2017.1298005 10.1007/s12035-016-0216-5 10.1016/j.pcad.2017.04.005 10.1007/s12035-016-9842-1 10.1126/scisignal.aat4285 10.1007/s00018-015-2076-y 10.3389/fneur.2018.00617 10.1186/1742-2094-9-111 10.1126/scisignal.135re9 10.3390/ijms161024895 10.1038/emboj.2010.26 10.1016/j.neuropharm.2018.03.006 10.3390/ijms19092834 10.1016/j.conb.2018.06.003 10.1111/ane.13093 10.1159/000489186 10.1016/j.neuropharm.2017.08.036 10.21037/atm-20-3066 |
ContentType | Journal Article |
Copyright | 2021 Japanese Association for Laboratory Animal Science Copyright Japan Science and Technology Agency 2021 2021 Japanese Association for Laboratory Animal Science 2021 |
Copyright_xml | – notice: 2021 Japanese Association for Laboratory Animal Science – notice: Copyright Japan Science and Technology Agency 2021 – notice: 2021 Japanese Association for Laboratory Animal Science 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 RC3 5PM |
DOI | 10.1538/expanim.20-0034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1881-7122 |
EndPage | 136 |
ExternalDocumentID | PMC7887619 33116025 10_1538_expanim_20_0034 article_expanim_70_1_70_20_0034_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29G 2WC 3O- 53G 5GY AAUGY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EMOBN FRP GX1 HYE JSF JSH KQ8 M48 M~E OK1 P2P RJT RNS RPM RZJ TKC TR2 X7M XSB AAYXX CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c630t-a678ef7ce22bf22ddeb0b25548031bf361aa40fb460b1359b4a77722f8fadef03 |
IEDL.DBID | M48 |
ISSN | 1341-1357 |
IngestDate | Thu Aug 21 14:07:08 EDT 2025 Mon Jun 30 16:44:48 EDT 2025 Thu Jan 02 22:39:41 EST 2025 Tue Jul 01 01:21:02 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Thu Aug 17 20:32:58 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | reperfusion injury brain ischemia Wnt5a miR-374 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-a678ef7ce22bf22ddeb0b25548031bf361aa40fb460b1359b4a77722f8fadef03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1538/expanim.20-0034 |
PMID | 33116025 |
PQID | 2494935113 |
PQPubID | 2048505 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7887619 proquest_journals_2494935113 pubmed_primary_33116025 crossref_citationtrail_10_1538_expanim_20_0034 crossref_primary_10_1538_expanim_20_0034 jstage_primary_article_expanim_70_1_70_20_0034_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Experimental Animals |
PublicationTitleAlternate | Exp Anim |
PublicationYear | 2021 |
Publisher | Japanese Association for Laboratory Animal Science Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Association for Laboratory Animal Science – name: Japan Science and Technology Agency |
References | 35. Li K, Ding D, Zhang M. Neuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats. Biol Pharm Bull. 2016; 39: 336–342. 39. Zhang P, Yang L, He H, Deng Y. Differential variations of autophagy and apoptosis in permanent focal cerebral ischaemia rat model. Brain Inj. 2017; 31: 1151–1158. 28. Peña ID, Borlongan C, Shen G, Davis W. Strategies to Extend Thrombolytic Time Window for Ischemic Stroke Treatment: An Unmet Clinical Need. J Stroke. 2017; 19: 50–60. 12. Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang W, Yang JG. Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J Cell Physiol. 2019; 234: 10726–10740. 19. McDonald SL, Silver A. The opposing roles of Wnt-5a in cancer. Br J Cancer. 2009; 101: 209–214. 32. Venkat P, Shen Y, Chopp M, Chen J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology. 2018; 134:(Pt B): 310–322. 34. McLeod F, Salinas PC. Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol. 2018; 53: 90–95. 20. Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, et al. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood. 2006; 108: 965–973. 26. Halleskog C, Dijksterhuis JP, Kilander MB, Becerril-Ortega J, Villaescusa JC, Lindgren E, et al. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation. 2012; 9: 111. 10. Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PT, et al. microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model. PLoS One. 2013; 8: e66393. 33. He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol. 2018; 8: 8. 1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019; 139: e56–e528. 7. Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, et al. An Antagomir to MicroRNA-106b-5p Ameliorates Cerebral Ischemia and Reperfusion Injury in Rats Via Inhibiting Apoptosis and Oxidative Stress. Mol Neurobiol. 2017; 54: 2901–2921. 9. Kim T, Mehta SL, Morris-Blanco KC, Chokkalla AK, Chelluboina B, Lopez M, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci Signal. 2018; 11: eaat4285. 27. Ding S, Xu Z, Yang J, Liu L, Huang X, Wang X, et al. The Involvement of the Decrease of Astrocytic Wnt5a in the Cognitive Decline in Minimal Hepatic Encephalopathy. Mol Neurobiol. 2017; 54: 7949–7963. 38. Puig B, Brenna S, Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci. 2018; 19: 19. 18. Kumawat K, Gosens R. WNT-5A: signaling and functions in health and disease. Cell Mol Life Sci. 2016; 73: 567–587. 17. Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA. 2007; 104: 15436–15441. 2. Banerjee S, Williamson D, Habib N, Gordon M, Chataway J. Human stem cell therapy in ischaemic stroke: a review. Age Ageing. 2011; 40: 7–13. 5. Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci. 2015; 16: 24895–24917. 24. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001; 32: 2682–2688. 6. Forouzanfar F, Shojapour M, Asgharzade S, Amini E. Causes and Consequences of MicroRNA Dysregulation Following Cerebral Ischemia-Reperfusion Injury. CNS Neurol Disord Drug Targets. 2019; 18: 212–221. 36. Jung YS, Oh AY, Park HP, Hwang JW, Lim YJ, Jeon YT. Post-ischemic administration of pravastatin reduces neuronal injury by inhibiting Bax protein expression after transient forebrain ischemia in rats. Neurosci Lett. 2015; 594: 87–92. 13. van Amerongen R, Mikels A, Nusse R. Alternative wnt signaling is initiated by distinct receptors. Sci Signal. 2008; 1: re9. 21. Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N, Shibata R, et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science. 2010; 329: 454–457. 16. Yamamoto H, Kitadai Y, Yamamoto H, Oue N, Ohdan H, Yasui W, et al. Laminin gamma2 mediates Wnt5a-induced invasion of gastric cancer cells. Gastroenterology. 2009; 137: 242–252, 252.e1–252.e6. 23. Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, et al. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology. 2018; 135: 11–21. 4. Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol. 2018; 9: 617. 30. Yaghi S, Willey JZ, Cucchiara B, Goldstein JN, Gonzales NR, Khatri P, et al. American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Council on Quality of Care and Outcomes Research. Treatment and Outcome of Hemorrhagic Transformation After Intravenous Alteplase in Acute Ischemic Stroke: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2017; 48: e343–e361. 11. Zhang SB, Liu TJ, Pu GH, Li BY, Gao XZ, Han XL. MicroRNA-374 Exerts Protective Effects by Inhibiting SP1 Through Activating the PI3K/Akt Pathway in Rat Models of Myocardial Ischemia-Reperfusion After Sevoflurane Preconditioning. Cell Physiol Biochem. 2018; 46: 1455–1470. 29. Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, et al. Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res. 2020; 11: 1185–1202. 31. Patel RAG, McMullen PW. Neuroprotection in the Treatment of Acute Ischemic Stroke. Prog Cardiovasc Dis. 2017; 59: 542–548. 14. Kikuchi A, Yamamoto H, Sato A, Matsumoto S. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf). 2012; 204: 17–33. 25. Zhang W, Wang Y, Bi G. Limb remote ischaemic postconditioning-induced elevation of fibulin-5 confers neuroprotection to 22 23 24 25 26 27 28 29 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 (30) 2017; 48 20 21 |
References_xml | – reference: 17. Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA. 2007; 104: 15436–15441. – reference: 20. Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, et al. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood. 2006; 108: 965–973. – reference: 26. Halleskog C, Dijksterhuis JP, Kilander MB, Becerril-Ortega J, Villaescusa JC, Lindgren E, et al. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation. 2012; 9: 111. – reference: 13. van Amerongen R, Mikels A, Nusse R. Alternative wnt signaling is initiated by distinct receptors. Sci Signal. 2008; 1: re9. – reference: 18. Kumawat K, Gosens R. WNT-5A: signaling and functions in health and disease. Cell Mol Life Sci. 2016; 73: 567–587. – reference: 11. Zhang SB, Liu TJ, Pu GH, Li BY, Gao XZ, Han XL. MicroRNA-374 Exerts Protective Effects by Inhibiting SP1 Through Activating the PI3K/Akt Pathway in Rat Models of Myocardial Ischemia-Reperfusion After Sevoflurane Preconditioning. Cell Physiol Biochem. 2018; 46: 1455–1470. – reference: 38. Puig B, Brenna S, Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci. 2018; 19: 19. – reference: 9. Kim T, Mehta SL, Morris-Blanco KC, Chokkalla AK, Chelluboina B, Lopez M, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci Signal. 2018; 11: eaat4285. – reference: 19. McDonald SL, Silver A. The opposing roles of Wnt-5a in cancer. Br J Cancer. 2009; 101: 209–214. – reference: 28. Peña ID, Borlongan C, Shen G, Davis W. Strategies to Extend Thrombolytic Time Window for Ischemic Stroke Treatment: An Unmet Clinical Need. J Stroke. 2017; 19: 50–60. – reference: 5. Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci. 2015; 16: 24895–24917. – reference: 27. Ding S, Xu Z, Yang J, Liu L, Huang X, Wang X, et al. The Involvement of the Decrease of Astrocytic Wnt5a in the Cognitive Decline in Minimal Hepatic Encephalopathy. Mol Neurobiol. 2017; 54: 7949–7963. – reference: 36. Jung YS, Oh AY, Park HP, Hwang JW, Lim YJ, Jeon YT. Post-ischemic administration of pravastatin reduces neuronal injury by inhibiting Bax protein expression after transient forebrain ischemia in rats. Neurosci Lett. 2015; 594: 87–92. – reference: 10. Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PT, et al. microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model. PLoS One. 2013; 8: e66393. – reference: 29. Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, et al. Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res. 2020; 11: 1185–1202. – reference: 39. Zhang P, Yang L, He H, Deng Y. Differential variations of autophagy and apoptosis in permanent focal cerebral ischaemia rat model. Brain Inj. 2017; 31: 1151–1158. – reference: 31. Patel RAG, McMullen PW. Neuroprotection in the Treatment of Acute Ischemic Stroke. Prog Cardiovasc Dis. 2017; 59: 542–548. – reference: 21. Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N, Shibata R, et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science. 2010; 329: 454–457. – reference: 33. He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol. 2018; 8: 8. – reference: 2. Banerjee S, Williamson D, Habib N, Gordon M, Chataway J. Human stem cell therapy in ischaemic stroke: a review. Age Ageing. 2011; 40: 7–13. – reference: 25. Zhang W, Wang Y, Bi G. Limb remote ischaemic postconditioning-induced elevation of fibulin-5 confers neuroprotection to rats with cerebral ischaemia/reperfusion injury: Activation of the AKT pathway. Clin Exp Pharmacol Physiol. 2017; 44: 656–663. – reference: 16. Yamamoto H, Kitadai Y, Yamamoto H, Oue N, Ohdan H, Yasui W, et al. Laminin gamma2 mediates Wnt5a-induced invasion of gastric cancer cells. Gastroenterology. 2009; 137: 242–252, 252.e1–252.e6. – reference: 35. Li K, Ding D, Zhang M. Neuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats. Biol Pharm Bull. 2016; 39: 336–342. – reference: 3. Khanevski AN, Bjerkreim AT, Novotny V, Naess H, Thomassen L, Logallo N, et al. NOR-STROKE study group. Recurrent ischemic stroke: Incidence, predictors, and impact on mortality. Acta Neurol Scand. 2019; 140: 3–8. – reference: 7. Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, et al. An Antagomir to MicroRNA-106b-5p Ameliorates Cerebral Ischemia and Reperfusion Injury in Rats Via Inhibiting Apoptosis and Oxidative Stress. Mol Neurobiol. 2017; 54: 2901–2921. – reference: 6. Forouzanfar F, Shojapour M, Asgharzade S, Amini E. Causes and Consequences of MicroRNA Dysregulation Following Cerebral Ischemia-Reperfusion Injury. CNS Neurol Disord Drug Targets. 2019; 18: 212–221. – reference: 24. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001; 32: 2682–2688. – reference: 15. Matsumoto S, Fumoto K, Okamoto T, Kaibuchi K, Kikuchi A. Binding of APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. EMBO J. 2010; 29: 1192–1204. – reference: 4. Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol. 2018; 9: 617. – reference: 12. Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang W, Yang JG. Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J Cell Physiol. 2019; 234: 10726–10740. – reference: 32. Venkat P, Shen Y, Chopp M, Chen J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology. 2018; 134:(Pt B): 310–322. – reference: 1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019; 139: e56–e528. – reference: 22. Nakamura K, Sano S, Fuster JJ, Kikuchi R, Shimizu I, Ohshima K, et al. Secreted Frizzled-related Protein 5 Diminishes Cardiac Inflammation and Protects the Heart from Ischemia/Reperfusion Injury. J Biol Chem. 2016; 291: 2566–2575. – reference: 8. Han XR, Wen X, Wang YJ, Wang S, Shen M, Zhang ZF, et al. Protective effects of microRNA-431 against cerebral ischemia-reperfusion injury in rats by targeting the Rho/Rho-kinase signaling pathway. J Cell Physiol. 2018; 233: 5895–5907. – reference: 14. Kikuchi A, Yamamoto H, Sato A, Matsumoto S. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf). 2012; 204: 17–33. – reference: 34. McLeod F, Salinas PC. Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol. 2018; 53: 90–95. – reference: 37. Jiang R, Liao J, Yang MC, Deng J, Hu YX, Li P, et al. Lidocaine mediates the progression of cerebral ischemia/reperfusion injury in rats via inhibiting the activation of NF-κB p65 and p38 MAPK. Ann Transl Med. 2020; 8: 548. – reference: 23. Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, et al. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology. 2018; 135: 11–21. – reference: 30. Yaghi S, Willey JZ, Cucchiara B, Goldstein JN, Gonzales NR, Khatri P, et al. American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Council on Quality of Care and Outcomes Research. Treatment and Outcome of Hemorrhagic Transformation After Intravenous Alteplase in Acute Ischemic Stroke: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2017; 48: e343–e361. – ident: 36 doi: 10.1016/j.neulet.2015.03.038 – ident: 33 – ident: 20 doi: 10.1182/blood-2005-12-5046 – ident: 14 doi: 10.1111/j.1748-1716.2011.02294.x – ident: 12 doi: 10.1002/jcp.27745 – ident: 21 doi: 10.1126/science.1188280 – ident: 6 doi: 10.2174/1871527318666190204104629 – ident: 25 doi: 10.1111/1440-1681.12742 – ident: 8 doi: 10.1002/jcp.26394 – ident: 16 doi: 10.1053/j.gastro.2009.02.003 – ident: 2 doi: 10.1093/ageing/afq133 – ident: 10 doi: 10.1371/journal.pone.0066393 – ident: 17 doi: 10.1073/pnas.0704747104 – ident: 22 doi: 10.1074/jbc.M115.693937 – ident: 29 doi: 10.1007/s12975-020-00806-z – ident: 24 doi: 10.1161/hs1101.098367 – volume: 48 start-page: e343 issn: 0039-2499 year: 2017 ident: 30 publication-title: Stroke – ident: 35 doi: 10.1248/bpb.b15-00699 – ident: 19 doi: 10.1038/sj.bjc.6605174 – ident: 28 doi: 10.5853/jos.2016.01515 – ident: 39 doi: 10.1080/02699052.2017.1298005 – ident: 27 doi: 10.1007/s12035-016-0216-5 – ident: 31 doi: 10.1016/j.pcad.2017.04.005 – ident: 1 – ident: 7 doi: 10.1007/s12035-016-9842-1 – ident: 9 doi: 10.1126/scisignal.aat4285 – ident: 18 doi: 10.1007/s00018-015-2076-y – ident: 4 doi: 10.3389/fneur.2018.00617 – ident: 26 doi: 10.1186/1742-2094-9-111 – ident: 13 doi: 10.1126/scisignal.135re9 – ident: 5 doi: 10.3390/ijms161024895 – ident: 15 doi: 10.1038/emboj.2010.26 – ident: 23 doi: 10.1016/j.neuropharm.2018.03.006 – ident: 38 doi: 10.3390/ijms19092834 – ident: 34 doi: 10.1016/j.conb.2018.06.003 – ident: 3 doi: 10.1111/ane.13093 – ident: 11 doi: 10.1159/000489186 – ident: 32 doi: 10.1016/j.neuropharm.2017.08.036 – ident: 37 doi: 10.21037/atm-20-3066 |
SSID | ssj0027729 |
Score | 2.273745 |
Snippet | To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral... To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 126 |
SubjectTerms | Animals Apoptosis Bcl-2 protein Bcl-x protein bcl-X Protein - genetics bcl-X Protein - metabolism Blood-brain barrier Brain damage Brain injury brain ischemia Brain Ischemia - etiology Brain Ischemia - genetics Brain Ischemia - therapy Cerebral blood flow Cerebral infarction Disease Models, Animal Down-Regulation - drug effects Edema Gene expression Gene Expression - genetics Head injuries Infarction Infarction, Middle Cerebral Artery - complications Infarction, Middle Cerebral Artery - genetics Ischemia Male MicroRNAs MicroRNAs - metabolism MicroRNAs - pharmacology MicroRNAs - physiology MicroRNAs - therapeutic use miR-374 miRNA Molecular Targeted Therapy Occlusion Original Proto-Oncogene Proteins c-bcl-2 - genetics Proto-Oncogene Proteins c-bcl-2 - metabolism Rats Rats, Sprague-Dawley Reperfusion reperfusion injury Reperfusion Injury - complications Reperfusion Injury - genetics Ribonucleic acid RNA Wnt protein Wnt-5a Protein - genetics Wnt-5a Protein - metabolism Wnt5a |
Title | miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a |
URI | https://www.jstage.jst.go.jp/article/expanim/70/1/70_20-0034/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/33116025 https://www.proquest.com/docview/2494935113 https://pubmed.ncbi.nlm.nih.gov/PMC7887619 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental Animals, 2021, Vol.70(1), pp.126-136 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VClIvVcujDaXIBw5cAontPPbQVlVVtKq0CKGuQFwi27FpVkuAsEjw7zvjZEO32vaSi8eOMuPJPDz-BmC_TEvhuOGhooNDGbs4HHBrwkQKo60epLnPd4xO0uFY_rhILp7bAXUMvF8a2lE_qXEzPXy8e_qCCv_Jd-8R-ZF9RMWp6Fp5SHArK_ASzVJG7QxGMn-OvjLfsowAzMJYJFmH87NkgQUTtTZBL-3KLnNA_66j_MMwHb-B151Hyb62W-AtvLD1Bqxf3vh8-SYMr6sz1G_JKp8-sPfM2IZOi6esws-315Vijb21jXugxBmr6gmymekn1haJo2lj5_UsUVswPv7-89sw7NonhCYV0SxUaIesy4zlXDvO8T-mI40RhMxRkbUTaayUjJyWaaSRIQMtVYZM4i53qrQuEtuwWt_U9j2w2KHfZoVJjYglj5RKVDRAGbuoLBV6cAEczjlWmA5bnFpcTAuKMZDFRcfigns0UhnAQT_htoXV-Dfp51YEPWGnUz1hhhPp0U3ox-neGip_ALtz0RXz_VVwQuWhQ1QRwLtWiv36QsRxir5gANmCfHsCguReHKmrXx6am2ozMSTd-f8rP8ArTqUxPpOzC6uz5sF-RN9mpvf8nsXnyeloz6eefgOpr_1D |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-374+improves+cerebral+ischemia+reperfusion+injury+by+targeting+Wnt5a&rft.jtitle=Experimental+animals&rft.au=Xing%2C+Fangyuan&rft.au=Liu%2C+Yongrong&rft.au=Dong%2C+Ruifang&rft.au=Cheng%2C+Ye&rft.date=2021-01-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=70&rft.issue=1&rft.spage=126&rft_id=info:doi/10.1538%2Fexpanim.20-0034&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon |